
Theoretical Computer Science 394 (2008) 64–83
www.elsevier.com/locate/tcs

Decidability and syntactic control of interferenceI

J. Laird∗

Department of Computer Science, University of Bath, UK

Received 9 March 2006; received in revised form 25 October 2007; accepted 26 October 2007

Communicated by B. Pierce

Abstract

We investigate the decidability of observational equivalence and approximation in Reynolds’ “Syntactic Control of Interference”
(SCI), a prototypical functional-imperative language in which covert interference between functions and their arguments is
prevented by the use of an affine typing discipline.

By associating denotations of terms in a fully abstract “relational” model of finitary basic SCI (due to Reddy) with multitape
finite state automata, we show that observational approximation is not decidable (even at first order), but that observational
equivalence is decidable for all terms.

We then consider the same problems for basic SCI extended with non-local control in the form of backwards jumps. We show
that both observational approximation and observational equivalence are decidable in this “observably sequential” version of the
language by describing a fully abstract games model in which strategies are regular languages.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Interference control; Idealized Algol; Game semantics; Multitape automata

1. Introduction

A significant difficulty for reasoning about programming languages that combine higher-order functions with
imperative variables is the possibility of covert interference between functions and their arguments. A key example
is the phenomenon of aliasing, in which two identifiers may be bound to the same cell. For instance, in a typical
sequential imperative language without higher-order functions, the commands x := 0; y := 1 and y := 1; x := 0
are contextually equivalent, because the implicit assumption that x and y refer to different cells means that the
order in which they are assigned is not observable. However, in functional-imperative languages such as Idealized
Algol, aliasing means that this syntactic distinction between identifiers cannot be maintained under reduction, and the
equivalence fails: e.g. (λy.x := 0; y := 1) x and (λy.y := 0; x := 1) x are clearly inequivalent.

This has created interest in ways of controlling interference, and eliminating aliasing, since this should make it
easier to reason about program behaviour, both informally and using inference systems such as forms of Hoare logic.

I This research was supported by UK EPSRC grant GR/S72181. An extended abstract of this paper appeared in the Proceedings of ICALP 2005
[J. Laird, Decidability in syntactic control of interference, in: Proceedings of ICALP ’05, in: LNCS, vol. 3580, Springer, 2005, pp. 904–916].

∗ Tel.: +44 12 25384438.
E-mail address: jiml@cs.bath.ac.uk.

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.10.045

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82673934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:jiml@cs.bath.ac.uk
http://dx.doi.org/10.1016/j.tcs.2007.10.045

J. Laird / Theoretical Computer Science 394 (2008) 64–83 65

Reynolds’ Syntactic Control of Interference (SCI) [28] is a typing system for Idealized Algol which prevents covert
interference by preventing sharing of variables between functions and their arguments. The objective of this paper is
to investigate decidability of the formal properties of observational equivalence and approximation in SCI, and related
languages, over bounded datatypes.

The full SCI system (and variants such as SCIR [25]) contains a notion of passive type; the programs (and contexts)
typable at purely passive types are essentially those of PCF, and so equivalence at such types is conservative over
PCF equivalence and is therefore not decidable even when ground types are bounded [16]. Consequently, we restrict
attention to the “actively typed” fragment or basic SCI, which may be regarded as the core of a family of related typing
systems for interference control. We also restrict basic SCI to containing while loops rather than full recursion: we
show that including the latter leads to undecidability of termination.

In the first part of this paper, we will show that observational equivalence for basic SCI (over bounded datatypes)
is decidable, but that observational approximation is not, even for terms which contain no procedural abstractions.
This result is perhaps surprising, since basic SCI is a subsystem of Idealized Algol, for which equivalence and
approximation are both decidable for terms at (finitary) third-order types [24,22] and undecidable at fourth order [21].
The undecidability of observational approximation (and associated results, such as the undecidability of equivalence
in a non-deterministic variant of the language) raises the question of whether deciding such properties in the presence
of interference control is always difficult. The problem in basic SCI is in some respects analogous to the situation in
PCF: whilst it is a sequential language, it is not observably sequential; different sequentializations of a program may
approximate each other (for example, λx .λy.x; y is equivalent in SCI to λx .λy.y; x).

In the case of PCF, Cartwright and Felleisen [6] have shown that adding simple non-local control operators (catch)
results in a language – “observably sequential PCF”, or SPCF – with an effectively presentable fully abstract model,
for which equivalence and approximation are therefore decidable at finitary types. Pursuing the analogy between PCF
and SCI, we obtain a natural observably sequential version of the latter by adding backwards jumps to labelled points
(expressively equivalent to catch). We show that we may represent denotations in a fully abstract games model of
observably sequential SCI as (single tape) finite state automata, and that observational approximation is therefore
decidable.

1.1. Related work

This study is inspired by “algorithmic game semantics” [7], in which the denotation of each term as a strategy in
a fully abstract game semantics with a formal language. These techniques have been used to show that observational
equivalence and approximation in (finitary) Idealized Algol are decidable at third-order types – by showing that the
denoting strategies are recognized by deterministic pushdown automata [22] – but not at fourth order [21]. The latter
undecidability result depends crucially on the nesting of function calls, which is not possible in SCI. Indeed, it is
straightforward to give equationally sound interpretations of basic SCI terms as regular languages (cf. Abramsky’s
Serially Re-entrant Algol [2]).

These results suggest a methodological basis for investigating observational equivalence and approximation in
basic SCI, but one obstacle to applying it is that game semantics appears to be “too sequential” to capture this directly.
McCusker and Wall have described a game semantics of basic SCI (in fact, full SCIR) [20], based on a “non-linear”
notion of view. Like the games models of PCF, the associated full abstraction result depends on a quotient operation,
which renders it difficult to reason directly about equivalence.

However, basic SCI also has a simple semantics based on sets (or coherence spaces) and relations, described by
Reddy [27], and investigated further by McCusker, who proved that it is fully abstract [18]. This model may also be
thought of as a prototypical form of game semantics, and we may apply similar methodologies to reason about it. We
show that the denotations of first-order terms correspond to a form of multitape deterministic finite state automata,
as introduced by Rabin and Scott in 1959 [26]. It is straightforward to show that containment of 2-tape deterministic
FSA is undecidable [11]. By contrast, the problem of decidability of equivalence for all multitape deterministic FSA
remained open for thirty years, before being resolved (affirmatively) by Harju and Karhumäki [8]. These results have
direct implications for basic SCI: denotational equivalence, which is observational equivalence, is decidable at first
order but observational approximation (inclusion of denotations) is not (even though all first-order terms of Idealized
Algol are typable in SCI — the point being that the possible observations of first-order terms are more restricted
in SCI). Although denotations of terms at higher-order types do not correspond directly to multitape automata, we

66 J. Laird / Theoretical Computer Science 394 (2008) 64–83

show that there is a “definable monomorphism” from every type to a first-order type, and that equivalence is therefore
decidable at all types. We may compare this to languages such as SPCF, for which we may show that every type-object
is a definable retract of a first-order type-object [14].

Our decidability results for observably sequential SCI are obtained using algorithmic game semantics: we define a
category of games in which there are no explicit justification pointers, and so we may obtain finite state representations
of strategies at all types, following [7]. The main development here is to define suitable constraints on strategies and
to prove that the resulting semantics of observably sequential SCI is inequationally fully abstract (although it contains
compact elements which are not definable). This model is more closely related to the game semantics of SCI of
McCusker and Wall [20].

2. Basic SCI

The syntax of basic SCI [28] (to which we henceforth refer as simply “SCI”) is, in essence, the same as that of
Idealized Algol [29]: terms are generated from the λ-calculus with products, and constants representing numerals,
conditionals and loops, and declaration, assignment and dereferencing of integer variables. Types are generated from
a basis including the type of expressions returning integer values, and the type of variables storing integer values,
using the constructors ((function-space) and & (additive product).

We work with a lean syntax which may be sugared up to more closely resemble that of Idealized Algol. We assume
a base type n (of expressions) for each natural number n, containing the numerals {i | i < n}. In particular, we have
a type 0, containing no values, a unit type 1 and a binary type 2. We write T n for the n-fold product of copies of
T . We follow Reynolds in representing the type var[n] (for n > 0) of imperative variables with values in n as the
type n&1n (the product of the types of its “methods”, dereferencing and assignment, which are therefore expressible
as projections). So this version of the language implicitly contains “bad variables” — objects of var-type which do
not behave as reference cells. This does not affect the results given here for basic SCI: approximation is shown to be
undecidable for the var-free types, whilst McCusker has shown that observational equivalence in basic SCI with bad
variables is conservative over equivalence in the language without bad variables [19].

Thus the types of finitary SCI are:

S, T ::= n | S (T | S&T,

where n ranges over the natural numbers, s n. The depth or order of a type (and the corresponding closed terms) is
defined: o(n) = 0, o(S&T) = max{o(S), o(T)}, o(S (T) = max{o(S) + 1, o(T)}.

Typing judgements are based on the affine λ-calculus with pairing, with a typing coercion rule from m to n for
m < n. The formation rules for terms in multiset contexts are:

x :T,Γ`x :T
C :T ∈C
Γ`C :T

Γ`M :m
Γ`M :n m < n

Γ`M :S Γ`N :T
Γ`〈M,N 〉:S&T

Γ ,x :S`M :T
Γ`λx .M :S(T

Γ`M :S(T ∆`N :S
Γ ,∆`M N :T ,

where the set of constants C consists of the following:

Projections πi : T0&T1 (Ti , for i ∈ {0, 1} (yielding also πi : T n (Ti for i < n).
Numerals i : n for i < n.
Case statements casen,m : n&mn (m for n > 0,
Loops while0 : m + 1 (1.
New variable declaration new : (var[n] (m) (m.

Note the additive typing of case which allows sharing of variables between sequentially executed procedures. We
may derive terms casen,T : n&T n (T for arbitrary T — if M : 1, we write case 〈M, N 〉 as M; N . We write Ω
for while0 0. Given M : var[n], we may write !M for π0 M and M := N for case 〈N , π1 M〉. We have omitted a
constant for parallel composition, noting that in SCI it is (observationally) equivalent to sequential composition. We
have included iteration (while0) rather than recursion (with appropriate typing restrictions) for reasons discussed in
Section 2.1.

J. Laird / Theoretical Computer Science 394 (2008) 64–83 67

Table 1
Reduction rules for SCI programs

E[(λx .M) N],E −→ E[M[N/x]],E
E[πi 〈M0, M1〉] −→ E[Mi],E
E[case 〈i, M〉],E −→ E[πi M],E
E[while0 M],E −→ E[case 〈M, 〈while0 M, 0, . . . , 0〉〉],E
E[new M],E −→ E[M a],E ∪ {〈a, 0〉} a 6∈ π1(E)

E[π0 a],E −→ E[n],E 〈a, n〉 ∈ E
E[πi (π1 a)],E −→ E[0],E[a 7→ i]

We say that a term-in-context Γ ` M : T has order n if o(T) ≤ n and every variable in Γ has a type of order
strictly less than n.

We give a “small-step” operational semantics based on evaluation contexts, which are defined by the following
grammar:

E[·] ::= [] | E[] M | πi E[] | case E[] | case 〈E[], M〉 | while0 E[]

A store is a finite partial function from location names to sets of pairs 〈a, n〉 of location names (variables of var type)
and natural numbers. The reductions for pairs M, E of a term (of ground type) and a store are given in Table 1. These
specify a unique reduction for every program (in environment) which is not a value, by “unique decomposition” of
such programs into an evaluation context and a redex. In particular, note that a “head normal” term of product type
may be either a pair, or else a location name — requiring several, non-conflicting rules for projection. We write M ⇓

if evaluation of M, ∅ terminates, and so define the standard notions of observational approximation and equivalence:
M . N if C[M] ⇓ implies C[N] ⇓.
M ' N if M . N and N . M .

2.1. Undecidability of termination in the presence of recursion

As in [18], we have presented basic SCI containing iteration (the while0 constant). This is consistent with its
role as the extension of a basic imperative language with higher-order procedures, although it differs from Reynolds’
original SCI, which includes a fixpoint combinator, Y : (T → T) → T [28]. However, as Reynolds notes, Y cannot be
used in an unrestricted way without causing interference (and breaking affine typing): reduction of YM to M (YM) is
liable to result in interference between the two occurrences of M , unless they can be guaranteed to use any shared state
passively. In basic SCI, without any notion of passive typing, the obvious way to do this is to restrict the introduction
rule for YM so that M is a closed term — i.e. via the typing rule

` M : T (T

YM : T

Y then preserves subject reduction with respect to SCI typing, and is clearly sufficient to express while0. What of
the converse: can programs using the restricted form of the Y combinator be “refactored” to an equivalent form using
iteration? For general SCI, over infinite data types, this is an interesting problem: it is well known that instances of tail
recursion may be refactored in this way. In [14] it is established that in a (stateless) functional language with control
we may reduce all instances of recursion to iteration.

In bounded basic SCI we may show that the Y-combinator is not expressible using iteration, by showing that
termination of programs which use Y is not decidable. (Thus all of the equivalence and approximation problems
subsequently considered become undecidable in the presence of Y.) Of course, equivalence in SCI with Y is
conservative over equivalence in SCI with while0 by continuity — i.e. any equivalence which can be established
using our methods will still hold when recursion is added.

It is not surprising that terms using recursion (and thus requiring an unbounded call stack for their execution) are
not representable as finite state automata. Ong has shown, for example, that queues may be represented in Idealized
Algol [24] over bounded datatypes, using fixpoints of second-order terms. This encoding is not SCI typable, as it
requires state to be shared between recursive calls, but here we give a simple implementation for Minsky machines
[23] in SCI with second-order recursion.

68 J. Laird / Theoretical Computer Science 394 (2008) 64–83

We may present a (deterministic) 2-counter Minsky machine as a finite set of states S, a specified final state, and
an instruction Is for each non-final state in S, of one of the following forms:

• Increment(i, s′) (i ∈ {0, 1}) — increment counter i by one and move to state s′.
• Decrement(i, s′, s′′) (i ∈ {0, 1}) — if counter i is non-zero then decrement it by one and move to state s′, otherwise

move to state s′′.

This operates on configurations (m, n, s) representing the positive integer-values of the two counters and the current
state s, respectively. The machine halts on a given initial configuration if it may reach the final state from that
configuration.

The key to our representation of Minsky machines is the observation that the integer values in the counters may
be represented as basic SCI terms of type 1 (1 — specifically, the value n is represented (up to observational
equivalence) as the term λx .xn , where x0

= 0, x i+1
= x i

; x . Given M : 1 (1 we define:

• inc(M) : 1 (1 = λx .(M x); x , which increments M .
• dec(M) : 1 (1 = λx .new λy.M case 〈!y, 〈y := 1, x〉〉, which decrements M .
• is0(M) : 2 = new λy.(M (y := 1)); !y which returns 0 if M represents zero, and 1 otherwise.

Definition 2.1. Given a Minsky machine P over the states s0, . . . , sn−1, assume s0 is the final state. For each
1 ≤ i < n we define a term
F : (1 (1) ((1 (1) (n (1, x : 1 (1, y : 1 (1 ` Pi (F, x, y) : 1 as follows:

• If Ii is Increment(0, s j) then Pi = ((F inc(x)) y) j.
If Ii is Increment(1, sj) then Pi = ((F x) inc(y)) j.

• If Ii is Decrement(0, s j , sk) then Pi = case 〈is0(x), ((F x) y) k, ((F dec(x)) y) j〉. If Ii is Decrement(1, sj, sk)
then Pi = case 〈is0(y), ((F x) y) k, ((F x) dec(y)) j〉.

Thus we may represent P as the term MP : (1 (1) ((1 (1) (n (1

YλF.λx .λy.λz.case 〈z, 〈0, P1(F, x, y), . . . , Pn−1(F, x, y)〉〉

Proposition 2.2. The Minsky machine P with initial configuration (m, n, si) halts if and only if ((Mp λx .xm) λx .xn)

i ⇓.

Proof. By induction on the number of steps to reach final state/number of unwindings of the fixpoint. (Using some
evident observational equivalences, which we may verify using the fully abstract relational model.) �

Since the halting problem for Minsky machines is not decidable [23] we have:

Corollary 2.3. Termination is not decidable in SCI with recursion.

This leaves open the question of whether we may retain decidability of termination and equivalence whilst allowing
fixpoints of terms lower than third order.

2.2. Relational semantics of basic SCI

We shall now describe the model of basic SCI, based on sets and relations, which we shall use to prove our main
results. This is essentially a version of Reddy’s semantics [27], simplified and proved to be fully abstract by McCusker
[18], and we refer to these works for further details. (We shall give a self-contained proof of full abstraction, however.)
In a previous version of this paper, we described both relational and games models of the affine λ-calculus and SCI
using the notion of BCK-algebra rather than that of symmetric monoidal category with the necessary exponentials.
This presentation is technically somewhat simpler, as it avoids the (unnecessary) definition of a tensor product, but we
revert to the more familiar setting here as it allows more direct comparison with other models of related languages.

Reddy’s semantics is presented using coherence spaces, but McCusker shows that, concretely, it is equivalent to an
interpretation in the category MonRel of monoids and monoidal relations. A monoidal relation from (|A|, eA, ·) to
(|B|, eB, ·) is a relation R on the underlying sets |A| and |B| with the following properties:

J. Laird / Theoretical Computer Science 394 (2008) 64–83 69

Identity eAReB .
Homomorphism If aRa′ and bRb′ then a · bRa′

· b′.
Decomposition If aRb1 · b2 then there exists a1, a2 ∈ |A| such that a1Rb1, a2Rb2 and a = a1 · a2.

We define symmetric monoidal structure on MonRel: the tensor product A ⊗ B has underlying set |A| × |B| and
pointwise monoidal operation, the unit I being the singleton monoid. Whilst (MonRel, I, ⊗) is not symmetric
monoidal closed, it does have sufficient exponentials to define a model of the affine λ-calculus. For any set A, we
have a free monoid (A∗, ε,++) of words over A with concatenation.

Lemma 2.4. The (monoidal) functor | | : MonRel → Rel (forgetful) is left adjoint to ()∗ : Rel → MonRel (free).

Since right adjoints preserve limits, for any sets A and B, the free monoid (A + B)∗ is a cartesian product for A∗ and
B∗ in MonRel.

Lemma 2.5. For any monoid A and set B, (|A| × B)∗ is the exponential of A by B∗ in MonRel.

Proof. We have a natural isomorphism MonRel(A ⊗ B, C∗) ∼= Rel(|A ⊗ B|, C) ∼= Rel(|A| ⊗ |B|, C) ∼=

Rel(|A|, (B × C)) ∼= MonRel(A, (|B| × C)∗). �

Thus we may interpret basic SCI types as sets, defining [[n]] = dne
∗, where dne = {i | i < n}, [[S&T]] = [[S]] + [[T]],

and [[S (T]] = [[S]]
∗

× [[T]]. Using the categorical structure of MonRel, we may interpret terms-in-context
x1 : S1, . . . , xn : Sn ` M : T of the affine λ-calculus with products as monoidal relations from [[S1]]

∗
⊗ · · · ⊗ [[Sn]]

∗

to [[T]]
∗, or equivalently, as relations from |[[S1]]

∗
| × · · · × |[[Sn]]

∗
| to [[T]]. Adopting the latter convention, we assign

meanings to the remaining constants.1

• [[casem,n]] = {〈i l j ir , j〉 | i < m ∧ j < n}

• [[while0]] = {〈0∗n, 0〉 | n > 0},
• [[new]] = {〈〈s, j〉, j〉 | s ∈ cell0}, where celln,k ⊆ [[var[n]]]

∗
= (kr)∗(Σi<n0il(ir)∗)∗.

(We may interpret the Y-combinator on closed terms as a fixpoint operator in MonRel, although MonRel does not
have parameterised fixpoints.)

Proposition 2.6. M ⇓ if and only if [[M]] 6= ⊥.

Proof. See [18]. �

Corollary 2.7. [[M]] ⊆ [[N]] implies M . N.

The converse is also true (i.e. the semantics is fully abstract) as shown in [18], although it does not have the “finite
definability” property: there are compact elements which are not the denotation of any term. In particular, the union
of two definable elements is not definable in general (e.g. the union of left and right projection). Union may be used
to interpret non-deterministic choice (with respect to partial correctness/may-testing): from M, N : T form MorN ,
interpreted as [[M]] ∪ [[N]].

We shall reduce full abstraction to the first-order case, for which we may give a simple proof.

Lemma 2.8. Suppose T (l is a first-order type type of order Then for any e ∈ [[T (l]] there exists a term
Le : (T (l) (1 such that [[Le]] = {〈e, 0〉}.

Proof. Suppose T = n0 × · · · × nk . For j ≤ k, i < n j , let Ω [M] j : T = 〈Ω0, . . . ,Ω j−1, M,Ω j+1, . . . ,Ωk〉. Let
eq : n&n (1 = λx .case 〈π1 x, 〈case 〈π2 x,Ω [0]0〉, . . . , case 〈π2 x,Ω [0]n−1〉 so that [[eq 〈n, n〉]] = {0} and
[[eq 〈n, m〉]] = {} if n 6= m.

Suppose e = 〈i j1
1 . . . i jm

m , a〉. Then we define Le = λ f.new λx .(eq 〈 f case 〈!x, 〈Ω [x := x + 1; i1] j1 , . . . ,Ω [x :=

x + 1; im] jm ,Ω〉〉, a〉); (eq 〈!x, m〉). �

Proposition 2.9. If x1, . . . , xn ` M, N : m, are first-order terms then M . N implies [[M]] ⊆ [[N]].

1 We use superscripts to tag the elements of disjoint unions — e.g. if a ∈ A, then al represents inl(a) ∈ A + B, and if a ∈ Ai , then ai represents
ini (a) ∈ A1 + · · · + An . We compound these operations by concatenation — e.g. if a ∈ Ai then ail represents inl(ini (a)) ∈ (A1 + · · · + An) + B.

70 J. Laird / Theoretical Computer Science 394 (2008) 64–83

Proof. Suppose [[M]] 6⊆ [[N]]. Then there exists 〈〈s1, . . . , sn〉, i〉 ∈ [[M]] such that 〈〈s1, . . . , sn〉, i〉 6∈ [[N]]. Let
C[] = L〈s1,0〉 λx1.L〈s2,0〉 λx2. . . . L〈sn ,i〉 λxn .[]. Then [[C[M]]] = {0} and C[N] = {} and hence M 6. N as
required. �

3. Multitape automata and first-order terms

The particular form of (one-way) deterministic multitape finite state automaton we shall use is tailored for
establishing a correspondence with the relational model. We shall call it a “disjoint final state automaton”, because no
transitions are possible from a final state. It is straightforward to show that it yields the same class of languages as the
original notion [26], by using end-markers.

Definition 3.1. A disjoint final state n-tape automaton α over a finite alphabet Σ is a tuple (C0, C1, . . . , Cn, F, s0, δ)

consisting of disjoint sets of states C0, C1, . . . , Cn, F , an initial state s0 and a (partial) transition function δ :

(Σ ∪ {ε}) × S ⇀ S, where S = C0 ∪ · · · ∪ Cn ∪ F . C0 consists of states in which (only) a ε-transition may be
performed, Ci of states in which a symbol is read from tape i (for 0 < i ≤ n), and F of final states (for which δ is not
defined).

We say that α accepts a tuple of tapes (t1, . . . , tn) if it reads all symbols from each of them and then reaches a final
state. Formally, for each final state f , we may say that the set of pairs A(α) ⊆ (Σ ∗)n

× S of tuples and states accepted
in by α in final state f is the union

⋃
i∈ω A f (α, i), where:

• A f (α, 0) = {〈〈ε, . . . , ε〉, f 〉},
• A f (α, i + 1) = {〈〈t1, . . . , tn〉, s′

〉 | s′
∈ C0 ∧ δ(ε, s′) = s ∧ 〈〈t1, . . . , tn〉, s〉 ∈ A f (α, i)} ∪

{〈〈t1, . . . , mti , . . . , tn〉, s′
〉 | 0 < i ≤ n ∧ s ∈ Ci ∧ δ(m, s′) = s ∧ 〈〈t1, . . . , tn〉, s〉 ∈ A f (α, i)}.

We write L(α) for the set {x | ∃ f ∈ F.〈x, s0〉 ∈ A f (α)} of tuples accepted by α.
To simulate the more general notion of n-tape automaton introduced in [26], we require end-markers for the tapes.

Given a symbol e 6∈ Σ , we shall say that an automaton α over Σ ∪ {e} accepts L ⊆ Σ ∗ with end-marker e if
L(α) = {we | w ∈ L}. We write Le(α) for the language accepted by α, with end-marker e (if any).

The original definition of n-tape automaton [26] includes end-markers, but differs from Definition 3.1 in the
following respects:

• for a tuple to be accepted only requires that all symbols from one of the tapes must be read.
• final states are not necessarily disjoint from the Ci , and the machine may make transitions from them.

It is straightforward to see that any language with end-markers accepted by one form of automaton is accepted by one
in the alternate form. On the one hand, given an automaton of the form of [26], we may obtain a disjoint final state
automaton by adding an operation which, as soon as it reads an end-marker in one tape in a final state, systematically
consumes all of the remaining tapes and then halts in a new (disjoint) final state. On the other hand, given a disjoint
final state automaton, we may add states to record which tapes have reached their end markers, and move into a final
state only when all end-markers have been read.

3.1. 2-tape FSA as SCI terms

There is a simple correspondence between multitape FSA and SCI terms at first-order types, based on the fact
that the denotations of the latter are generated from sets of tuples of words over a finite alphabet. First, for any n-
tape, deterministic, disjoint final state FSA α over the alphabet {0, . . . , m − 1}, we show that we may define a term
x1 : m, . . . , xn : m ` new λs.Mα : 1 such that 〈t1, . . . , tn〉 ∈ L(α) ⇔ 〈〈t1, . . . , tn〉, 0〉 ∈ [[Mα]]. We give the 2-tape
case here, and since every deterministic n-tape FSA is equivalent to one with no ε transitions, we assume C0 is empty.

Definition 3.2. We number the states of α as 0, . . . , k − 1, with 0 being initial. We assume terms state : k (3 such
that [[state n]] = 0 if sn ∈ F and [[state n]] = i if sn ∈ Ci , and tr : k (km such that [[πi (tr j)]] = δ(i, j). Mα

may then be defined as follows:

while0 (case 〈state !s, 〈1, s := case〈x1, tr !s〉, s := case〈x2, tr !s〉〉〉)

J. Laird / Theoretical Computer Science 394 (2008) 64–83 71

Proposition 3.3. 〈t1, t2〉 ∈ L(α) if and only if 〈〈t1, t2〉, 0〉 ∈ [[new λs.Mα]].

Proof. We prove by induction on i that for any t1, t2 ∈ dme
∗ with combined length i , (〈t1, t2〉, s j) ∈ A f (α, i) for

some f if and only if there exists u ∈ cellk, j such that 〈〈t1, t2, u〉, 0〉 ∈ [[Mα]].
For the induction case, suppose 〈〈t1, t2〉, s j 〉 ∈ A f (α, i + 1). If s j ∈ C1 then t1 = mt ′1 for some m, t ′1 and

δ(m, s j) = sa for some sa such that (sl , 〈t ′1, t2〉) ∈ A0(α, i). So by hypothesis there exists u ∈ cellk,a such
that 〈〈t ′1, t2, u〉, 0〉 ∈ [[Mα]]. Let u′

= j l0ar u. Then u′
=∈ cellk, j and 〈〈t1, t2, u′

〉, 0〉 = 〈〈mt ′1, t2, u′
〉, 0〉 ∈

[[case〈(case 〈state !s, 〈1, s := case〈x1, tr !s〉, s := case〈x2, tr !s〉〉〉), 〈Mα, 0〉]] = [[Mα]] as required.
The converse – if there exists u ∈ cellk, j such that 〈〈t1, t2, u〉, 0〉 ∈ [[Mα]] then (〈t1, t2〉, s j) ∈ A f (α, i) for some f

– is similar. �

So we may establish undecidability of inclusion of denotations in the fully abstract model, and hence of observational
approximation in SCI via the following result, which may be proved via an encoding of Post’s correspondence
problem.

Proposition 3.4 ([11]). Inclusion of languages accepted by deterministic 2-tape FSA is undecidable.

(This extends to disjoint-final state automata because L(α) ⊆ L(α′) if and only if Le(α) ⊆ Le(α′).)

Corollary 3.5. Observational approximation in SCI is undecidable at first-order.

Since M . N if and only if M or N ' N , this entails that observational equivalence (w.r.t. may-testing) in SCI with
erratic choice is undecidable at first order.

3.2. First-order terms as multitape automata

The situation with respect to equivalence of multitape automata (and hence, as we shall show, observational
equivalence of SCI) is different.

Theorem 3.6 (Harju and Karhumäki [8]). Equivalence of n-tape deterministic finite state automata is decidable for
all n.

This includes disjoint finite state automata: for any automaton over the alphabet Σ (with e 6∈ Σ) there exists an
automaton α′ over Σ ∪ {e}, such that L(α) = Le(α′). Considered here, as we may deduce from the following lemma.

To use this result to show decidability of SCI equivalence, we prove a converse to Proposition 3.3: the denotation
of every first-order term corresponds to the language accepted by a disjoint final state automaton.

Since basic SCI is a subsystem of the simply-typed λ-calculus with products (and suitable constants), closed under
β and π reduction, it follows from strong normalization of the latter that every term is reducible to a βπ -normal form
(i.e. one which contains no subterms of the form (λx .P) Q or πi 〈M, N 〉) to which it is denotationally equivalent by
soundness of these reductions.

For each first-order βπ -normal term x1 : T1, . . . , xn : Tn ` M : m we define a n-tape FSA αM over the alphabet
[[T1]] ∪ · · · ∪ [[Tn]] with final states F = { f0, . . . , fm−1} which accepts 〈s1, . . . , sn〉 in final state fi if and only if
〈〈s1, . . . , sn〉, i〉 ∈ [[M]].

Definition 3.7. We define αM
= (C M

0 , . . . , C M
n , F, s M

0 , δM) as follows:

• If M = k, then C M
i = ∅ for each i , s M

0 = fk and δM
= ∅.

• If M = xk or M = π j xk then C M
k = {s}, C M

i = ∅ for i 6= k, s M
0 = s, δM (l j , s) = fl and δM (m, s) is undefined

otherwise.
• If M = case 〈L , N0, . . . , Nk−1〉 then C M

i = C L
i + (C N0

i + · · · + C Nk−1
i) for each i , s M

0 = (sL
0)l and

δM (m, sl) = (s Ni
0)ir if δL(m, s) = fi ,

δM (m, sl) = (δL(m, s))l otherwise,
δM (m, sir) = f j if δNi (m, s) = f j ,
δM (m, sir) = (δNi (m, s))ir otherwise.

72 J. Laird / Theoretical Computer Science 394 (2008) 64–83

• If M = while0 N then C M
i = C N

i for each i , s M
0 = s N

0 ,
δM (m, s) = s N

0 if δN (m, s) = f0

δM (m, s) = δN (m, s), otherwise.
• If M = new λx j : var[n].N , then C M

0 = (C N
0 ∪ C N

j) × dne and C M
k = C M

k × dne for k 6∈ {0, j}, s M
0 = 〈s N

0 , 0〉

and
δM (m, 〈s, i〉) = 〈s′, i〉 if m = ε, s ∈ C N

j and δN (i l , s) = s′,

δM (m, 〈s, i〉) = 〈s′, k〉 if m = ε, s ∈ C N
j and δN (0kr , s) = s′,

δM (m, 〈s, i〉) = 〈δN (m, s), i〉, otherwise.

Lemma 3.8. For any M, αM is well-defined.

Proof. The only non-trivial aspect of well-definedness is determinacy — i.e. that δM is a well-defined partial function,
according to the above definition. We show by structural induction on M both that δM is a well-defined partial function,
and that if Ti = m1& · · · &mk then for any state s ∈ C M

i , if δM (vi , s) and δM (u j , s) are both defined then i = j .

The key case is new variable declaration M = new λx j : var[n].N . Suppose δN (0k′

r, s) = s′ and δN (0k′′

r, s) = s′′

for some s ∈ C N
j , so that δM (ε, 〈s, i〉) = 〈s′, k′

〉 = 〈s′′, k′′
〉. But by hypothesis, we have k′

= k′′ and hence s′
= s′′.

Similarly, it is not possible to have both δN (0kr, s) and δN (i l , s) = s′ defined. �

Proposition 3.9. αM accepts 〈t1, . . . , tn〉 in state fi iff 〈〈t1, . . . , tn〉, i〉 ∈ [[M]].

Proof. By structural induction on M . We give the case for M = new λxn+1 : var[m].N . We show by induction on
j that (〈t1, . . . , tn〉, 〈s, k〉) ∈ Ai (αM , j) if and only if there exists tn+1 ∈ cellm,k such that (〈t1, . . . , tn, tn+1〉, s) ∈

Ai (αN , j).
Suppose (〈t1, . . . , tn〉, 〈s, k〉) ∈ Ai (αM , j + 1). If 〈s, k〉 ∈ C M

0 then there exists 〈s′, l〉 such that δM (ε, 〈s, k〉) =

〈s′, l〉 and (〈t1, . . . , tn〉, 〈s′, l〉) ∈ Ai (αM , j), and so by induction hypothesis there exists tn+1 ∈ cellm,l such
that (〈t1, . . . , tn, tn+1〉, s′) ∈ Ai (αN , j). By definition of αM , either s ∈ C N

0 – in which case k = l and
δN (ε, s) = s′, and so (〈t1, . . . , tn, tn+1〉, s) ∈ Ai (αN , j + 1) as required – or else s ∈ C N

n+1, in which case either
δN (kl , s) = s′ and l = k – and so (〈t1, . . . , tn, kl tn+1〉, s) ∈ Ai (αN , j + 1) – otherwise δ((0l)r , s) = s′ and therefore
(〈t1, . . . , tn, (0l)r tn+1〉, s) ∈ Ai (αN , j + 1) as required.

If 〈s, k〉 ∈ C M
i for some i > 0, then ti = mt ′i , where δM (〈s, k〉) = 〈s′, l〉 for some s′ such that

(〈t1, . . . , t ′i , . . . , tn〉, 〈s′, l〉) ∈ Ai (αM , j). By definition of αM , k = l and δN (m, s) = s′. By induction hypothesis,
there exists tn+1 ∈ cellm,k such that (〈t1, . . . , t ′i , . . . , tn, tn+1〉, s′) ∈ Ai (αN , j) and so (〈t1, . . . , tn, tn+1〉, s) ∈

Ai (αN , j + 1) as required.
The converse – if there exists tn+1 ∈ cellm,k such that (〈t1, . . . , tn, tn+1〉, s) ∈ Ai (αN , j) then

(〈t1, . . . , tn〉, 〈s, k〉) ∈ Ai (αM , j) – is proved similarly.
Hence M accepts 〈t1, . . . , tn〉 in final state fi if and only if there exists tn+1 ∈ cellm,0 such that N accepts

〈t1, . . . , tn, tn+1〉 in state fi . By induction hypothesis, N accepts 〈t1, . . . , tn, tn+1〉 in state fi if and only if
〈〈t1, . . . , tn, tn+1〉, i〉 ∈ [[N]] and so M accepts 〈t1, . . . , tn〉 in final state fi if and only if 〈〈t1, . . . , tn〉, i〉 ∈ [[M]]

as required. �

Corollary 3.10. Observational equivalence in basic SCI is decidable at first order.

4. Full abstraction and decidability at higher types

At higher types, denotations no longer consist of tuples of words and so we cannot decide observational equivalence
between terms at these types simply by constructing multitape automata which recognize their denotations. However,
we will show that we can associate a first-order term (and hence a multitape automaton) to each higher-order term in
a way which reflects observational equivalence, which is therefore decidable at all types.

Definition 4.1. A definable monomorphism between types S and T is a term mono : S (T such that for all
e : I → S, e; [[mono]] = e′

; [[mono]] implies e = e′.

Lemma 4.2. If (equational) full abstraction holds at type T , and there is a definable monomorphism from S to T then
full abstraction holds at type S.

J. Laird / Theoretical Computer Science 394 (2008) 64–83 73

Proof. For any M, N : S, if M ' N then mono M ' mono N and so [[M]]; [[mono]] = [[mono M]] = [[mono N]] =

[[N]]; [[mono]]. Hence [[M]] = [[N]] as required. �

(Since morphisms in our model preserve all joins, this lemma extends to inequational full abstraction: if M . N then
[[M]]; [[mono]] ⊆ [[N]]; [[mono]] and so ([[M]] ∪ [[N]]); [[mono]] = ([[M]]; [[mono]]) ∪ ([[N]]; [[mono]]) = [[N]]; [[mono]].
So [[M]] ∪ [[N]] = [[N]] and so [[M]] ⊆ [[N]].)

Lemma 4.3. If equivalence is decidable at type T , and there is a definable monomorphism from S to T , then
equivalence is decidable at type S.

Proof. For any M, N : S we have M ' N iff [[M]] = [[N]] iff [[M]]; [[mono]] = [[N]]; [[mono]] iff mono N '

mono N . �

Thus we can prove that equivalence is decidable at any type S by showing that there is a definable monomorphism
from S to some first-order type.

First, we observe that we may restrict attention to functional types — i.e. types which do not contain any instances
of the product.

Definition 4.4. A definable retraction between types S and T is a pair of terms (in : S (T, out : T (S) such that
[[λx .in (out x)]] = [[λx .x]]. We write S � T if such a retraction exists.

Clearly, if (in, out) is a definable retraction, then in is a definable monomorphism. We also note that given definable
retractions (in1, out1) from S1 to T1 and (in2, out2) from S2 to T2, (λ f.λx .in2 (f (out1 x)), (λ f.λx .out2 (f (in1 x)))

and λx .〈in1 (π1x), in2 (π2x)〉, λx .〈out1 (π1x), out2 (π2x)〉) are definable retractions from S1 (S2 to T1 (T2 and
from S1&S2 to T1&T2 respectively.

Proposition 4.5. Given functional types S, T there is a functional type prod(S, T) (of order max{o(S), o(T), 1}) such
that S&T is a definable retract of prod(S, T).

Proof. By induction on o(S) + o(T). For the base case, suppose S = m and T = n. We define prod(S, T) =d f
2 (max{m, n}, in = λx .λy.case 〈inm y, inn x〉 and out = λx .〈projm (x 0), projn (x 1)〉, where inn =

λx .case〈x, 〈0, . . . , n〉〉 and projn = λx .case〈x, 〈0, . . . , n,Ω〉〉.
For the induction case, suppose T = U (V . Then let prod(S, T) = U (prod(S, V): S&T � (U (

S)&(U (V) ∼= U ((S&V) � U (prod(S, V) =d f prod(S, T). If T is a base type and S = U (V
then prod(S, T) =d f U (prod(V, T). �

Corollary 4.6. For every type T there exists a functional type T of order at most o(T) + 1 with a definable retraction
from T to T .

We now define monomorphisms from higher to lower-order functional types, using the observation that we
may represent a sequence of tuples of sequences 〈Es11, . . . , Es1n〉 . . . 〈Esk1, . . . , Eskn〉 as a tuple of sequences
〈Es11@ · · · @Esk1, . . . , Es1n@ · · · @Eskn〉 (uniquely), where @ is a symbol not occurring in any of the Esi j .

For any types S, T, n, we now define a monomorphism mono1 from (n (S) (T to (n + 1) (S (T .
Recalling the equality test eq : n × n → 1, let

mono1 = λ f.λx .λy. f (λz.(while0 (case 〈x, 〈eq 〈0, z〉, . . . , eq 〈n − 1, z〉, 1〉〉)); y)

Lemma 4.7. mono1 is a definable monomorphism.

Proof. x : n + 1, y : S, z : n ` while0 (case 〈x, 〈〈eq 〈i, z〉 | i < n〉, 1〉)); y : S evaluates by reading a value v from
x – followed by a value u from z, and then diverges if v 6= u – until v = n, when a value is read from y and returned
as a result. So it has the denotation:

{〈〈 Ejn, e, Ej〉, e〉 | Ej ∈ n∗
∧ e ∈ S}.

Thus the denotation of mono1 relates each element 〈〈 Ej1, s1〉 . . . 〈 Ejm, sm〉, t〉 to the unique element 〈 Ej1n . . . n Ejmn,
〈s1 . . . sn, t〉〉, and is therefore a monomorphism. �

74 J. Laird / Theoretical Computer Science 394 (2008) 64–83

For any types S, T, U, V , we now define a monomorphism mono2 from ((S (T) (U) (V to (S&1) (
(T (U) (V :

mono2 = λ f.λx .λg. f λy.(g (π2(x); (y π1(x))))

Lemma 4.8. mono2 is a definable monomorphism.

Proof. The term x : S&1, y : S (T ` (π2 x); (y (π1 x)) : T has the denotation

{〈〈0r Esl , 〈Es, e〉, e〉 | Es ∈ S∗
∧ e ∈ T }

So denotation of x : S&1, y : S (T, g : T (U ` g (π2(x); (y π1(x))) : U relates each element

〈0r Esl
10r . . . 0r Esl

n, 〈 Es1, e1〉 . . . 〈 Esn, en〉, 〈e1, . . . en, u〉〉 to u for Es1, . . . , Esn ∈ [[S]]
∗, e1, . . . , en ∈ [[T]] and u ∈ [[U]].

Thus [[mono2]] relates each element:

〈〈s11, e11〉 . . . 〈s1m1 , e1m1〉, u1〉 . . . 〈〈sn1, en1〉 . . . 〈snmn , enmn 〉, un〉, v〉

to the unique element:

〈0r sl
11 . . . 0r sl

1m1
. . . 0r sl

n1 . . . 0r sl
nmn

, 〈〈e11 . . . e1m1 , u1〉 . . . 〈en1 . . . enmn , un〉, v〉〉

and is therefore a monomorphism. �

Proposition 4.9. For any functional type R of order at most n + 2 there is a functional type R̂ of order at most n + 1
and a definable monomorphism from R to R̂.

Proof. By structural induction on R. For the induction step, if n = 0 then if R has order 2 it is isomorphic
to a type of the form (m (S) (T . By Lemma 4.7 there is a definable monomorphism mono1 from R to
m + 1 (S (T . By induction hypothesis there is a definable monomorphism mono2 from S (T to Ŝ (T ,

and hence λx .λy.mono2 ((mono1 x) y) is a definable monomorphism from R to m + 1 (Ŝ (T .
If n > 0 then R is isomorphic to a type of the form ((S (T) (U) (V , where o(S) ≤ n. By Lemma 4.8 there

is a definable monomorphism from R to S&1 ((T (U) (V and hence – using the induction hypothesis – to
S&1 (̂(T (U) (V . �

Hence we may prove the following by a simple induction on order.

Proposition 4.10. For every type of SCI there exists a definable monomorphism into a first-order type.

By applying Proposition 2.9 and Lemma 4.2 we may now prove McCusker’s theorem.

Theorem 4.11. The relational model of basic SCI is fully abstract.

Hence by Corollary 3.10 and Lemma 4.3.

Theorem 4.12. Observational equivalence in finitary basic SCI is decidable.

5. Observably sequential SCI

We will now show that observational approximation is decidable in an “observably sequential” version of SCI
containing a simple form of non-local control in the form of backwards jumps to labelled program points. (This
breaks the equivalence between parallel and sequential composition which holds in SCI — in particular, jumps may
be regarded as a way for one thread of a parallel composition to interfere with the other by terminating it.)

We form SSCI by extending the syntax of SCI with a single constant label : (0 (0) (1. This acts as a handler
for catching (statically bound) exceptions: if the variable k : 0 is encountered in evaluating M then label λk.M
evaluates to 0.

To define the operational semantics of SSCI, we extend the notion of evaluation context as follows:

E[] ::= [] | E[] M | πi E[] | case E[] | case 〈E[], M〉 | while0 E[] | label E[] | label λk.E[]

J. Laird / Theoretical Computer Science 394 (2008) 64–83 75

Writing Ek[] for an evaluation context which does not bind k, and assuming that all substitutions are capture-
avoiding, we extend the reduction rules for terms in environments (Table 1) with the following rule for label:

E[label λk.E ′

k[k]], E −→ E[0], E

We may use labelled jumps to distinguish SCI-equivalent terms such as λx .λy.x; y and λx .λy.y; x (for example,
taking C[] = label k.(([] k) Ω), we have C[λxy.x; y] ⇓ and C[λxy.y; x] 6⇓).

More generally, using imperative variables we can express Cartwright and Felleisen’s catch operators [6]. For
each n, catchn : (T0 (· · · (Tn−1 (m) (m + n returns i if its argument is strict in its i th argument, or n + j
if it is constant with value j . We define catch0 = λx .x , and catchn+1 =

λ f.new λx .(label λk.(x := ((catchn (f k)) + 1); k); !x).

5.1. A games model of SSCI

We will now give a fully abstract games model of observably sequential SCI, and show that denotations may be
represented as regular languages. It is based on Abramsky and McCusker’s semantics of Idealized Algol [3] (using
Hyland-Ong style dialogue games [10]). We allow the interpretation of backwards jumps by abandoning the notion of
questions and answers – and hence the “bracketing condition” – as in [12].

Since only one thread of computation relating to each argument may be “open” at a time in SSCI programs,
we may omit explicit justification pointers from our model (as proposed by Abramsky for “serially re-entrant
Idealized Algol”[2]). As in McCusker and Wall’s semantics of SCI [20] (and the author’s semantics of linearly used
continuations [15]) we add an equivalence relation ∼ “interference” to the notion of HO-arena in order to indicate
which moves may not occur in the same thread.

Definition 5.1. A SCI arena is a directed acyclic graph (MA, `A) – in the form of a set of nodes or moves MA,
and a set of directed edges (or enabling relation) `A⊆ MA × MA – with a labelling function λA : MA → {P, O},
partitioning the moves between Player and Opponent, and an equivalence relation ∼⊆ MA × MA such that:

• If m ` n then λ(m) = λ(n).
• If m ∼ m′ then λ(m) = λ(n).
• If m ` n and m′

` n then m ∼ m′.

We write M I
A for the set of root nodes of (MA, `A) (the “initial moves”). A is negative if every move in M I

A is an
Opponent move.

We write s v t for “s is a prefix of t” (and s v
E t if s is an even prefix of t). For any sequence s of moves, we define

a subsequence open(s) – the “stack of open moves” – containing at most one move from each ∼ equivalence class.

• open(ε) = ε,
• open(sm) = tm, if there exists tm′

v open(s) such that m′
∼ m, (we say that m closes m′).

• open(sm) = open(s)m, otherwise.

It follows from this definition that the stack of open moves contains at most one representative of each ∼-equivalence
class (and so at most one enabler for any given move). A stack of open moves is a sequence with this property.
Following [10,17], we define the view psq of a stack of open moves s as follows2:

• pεq = ε

• psmq = m, if s contains no enabling move for m,
• psmtnq = psqmn if m ` n.

The stack-view of t is popen(t)q. An alternating sequence s satisfies the stack-visibility condition if:

• the stack-view at every non-initial move b in s contains a (unique) enabling move for b – the implicit justifier of b
– i.e. if tb v s and b is non-initial then there exists ra v popen(t)q such that a ` b.

2 We do not distinguish Player and Opponent views in this notation — the view of any sequence is that of the participant about to move.

76 J. Laird / Theoretical Computer Science 394 (2008) 64–83

A → (A ⊗ A)

O
P
O

55�

P

BB

3
� �

O
P

Fig. 1. A sequence violating the non-interference condition.

• if b closes a in s then a occurs in the stack-view at b — i.e. if tb v s and there exists ra v open(t) such that
a ∼ b then prqa v popen(t)q.

The final constraint required to define our notion of legal sequence is a non-interference condition. We say that two
(occurrences of) moves are co-justified if they have the same justifier, or are both initial.

Definition 5.2. A sequence t satisfies the non-interference condition if for any sb v s′b′
v t and co-justified moves

a, a′ occurring (respectively) in popen(s)q and popen(s′)q: if b ∼ b′ and λ(a) = λ(b) then a ∼ a′.

Note that since the justifier of a and a′ immediately precedes a in popen(s)q and a′ in popen(s′)q, we have either
a = a′ (in which case the condition holds trivially) or else it is the last move to occur in both views, and so a and a′

are the first moves on which the views differ. In this case we shall say that a, a′ are branching moves for s, s′, and we
may restate the non-interference condition equivalently thus: for any sb v s′b′

v t such that b ∼ b′, if a, a′ are the
branching moves for s, s′ then a ∼ a′.

The force of the condition to prevent potentially interfering behaviour will be discussed later (see Fig. 1).

Definition 5.3. The set L A of legal sequences of the arena A consists of the finite, alternating sequences over A,
starting with an Opponent move, and satisfying the stack-visibility and non-interference conditions.

A sequence s is single-threaded if it contains at most one initial move. For any set of sequences S, we write S\ for the
set of single-threaded sequences in S.

We form a category in which the objects are negative SCI-arenas, and morphisms from A to B are strategies over
the arena A → B, which is defined:

A → B = (MA + MB, [λA, λB], (`A + `B), ∼A + ∼B)

(note that this is not a negative arena). As usual, a strategy for the arena A is specified as a non-empty, even-prefix
closed subset of L A satisfying the determinacy condition:

sa, sb ∈ σ =⇒ b = c

In addition, we follow [5] in requiring that strategies satisfy a thread-independence condition. We say that two moves
are hereditarily co-justified if there is some move (which we may assume to be initial) which hereditarily justifies both
of them. We define thread(s) for odd-length legal sequences s ∈ L A→B as follows:

• thread(sa) = a, if a is initial,
• thread(satb) = thread(s)ab, if a is the most recent move hereditarily co-justified with b.

If s is legal then thread(s) is a legal sequence by the visibility condition. A strategy σ : A → B is thread-independent
if:

If sab, t ∈ σ , ta ∈ L A→B and thread(sa) = thread(ta) then tab ∈ σ .

Given σ : A → B and τ : B → C , let σ ; τ : A → C =

{s ∈ (MA + MC)∗ | ∃t ∈ (MA + MB + MC)∗.t�A, B ∈ σ ∧ t�B, C ∈ τ ∧ s = t�A, C},

(where s�A, B denotes the restriction of the sequence s to MA ∪ MB). To prove that this is a well-defined strategy
on A → C , it suffices to show that it is a set of legal sequences, since preservation of determinacy and thread-
independence are shown elsewhere [10,17,9]. Writing IA,B,C for the set of t ∈ (MA + MB + MC)∗ such that

J. Laird / Theoretical Computer Science 394 (2008) 64–83 77

t � A, B ∈ L A→B and t � B, C ∈ L B,C , it suffices to prove that t � A, C ∈ L A→C for all t ∈ IA,B,C . To do this
we adapt the notion of “core view” introduced by McCusker [17]. The (core) stack-view of s ∈ IA,B,C may be defined
as follows:

• pεqc = ε,
• psmqc = m if m is an initial move,
• psmtm′t ′nqc = psqcm′n, if n is a move in A, C , and m′ justifies n and closes m′.
• psmtnqc = psqcm′n, if n is a move in A, C , and m′ justifies n and does not close any move.
• psmqc = psqcm if m is a move in B.

Lemma 5.4. For any sab ∈ IA,B,C :

• psab�A, Cq = psabqc�A, C,
• If b is a Player move in A, B then popen(sa)�A, Bq is a subsequence of psaqc. If b is a Player move in B, C then

popen(sa)�B, Cq are subsequences of psaqc.

Proof. The first part follows directly from the definition of core views.
We prove the second by induction on the length of sa. If a is a move in A or C , then the induction case follows

directly from the definition of core view. So the key case is the one in which a is a move in B. If b is a player move
in B, C then a is a Player move in A, B. Suppose sa = rmr ′m′r ′a, where m′ justifies a and closes m. Then by
the stack-visibility condition (first part), m′ occurs in popen(s � A, B)q and hence by induction hypothesis in ptq.
Since m′ is a Player move in B, C , by the stack-visibility condition (second part) m occurs in prmr ′�B, Cq, and so
popen(r�B, C)q v popen(rmr ′�B, C)q . By inductive hypothesis pr�B, Cq is a subsequence of prqc, and hence of
ptqc. So psa�B, Cq = pr�B, Cqma is a subsequence of ptqc as required. �

Lemma 5.5. If t ∈ IA,B,C then t�A, C satisfies stack-visibility.

Proof. Suppose sa v t , where a is a (non-initial) Player move in C . Then by stack-visibility there is an enabling move
for a in popen(s�B, C)q and hence by Lemma 5.4, in psqc, and so by Lemma 5.4, in popen(s�A, C)q = psqc�A, C .
Similarly, if a closes a move a′ then a′ occurs in ps�B, Cq and hence in psqc and popen(s�A, C)q. �

The set of generalized Player moves of s ∈ IA,B,C consists of those moves which are Player moves in either A → B
or B → C (i.e. Player moves of C , Opponent moves of A and all moves of B). Generalized Opponent moves are
Opponent moves of A → C . We shall say that t ∈ IA,B,C satisfies non-interference with respect to core views if for
any generalized Player moves b, b′ with sb v s′b′

v t and co-justified generalized Opponent moves a, a′ occurring
(respectively) in psqc and ps′qc: if b ∼ b′ then a ∼ a′. As in the original definition we may assume that a, a′ are the
branching moves for s and s′. (Note that they must be moves in A, C .)

Lemma 5.6. If t ∈ IA,B,C satisfies non-interference with respect to core views then t�A, C satisfies non-interference.

Proof. Suppose we have Player moves b, b′ from A → C with sb v s′b′
v t and branching moves a, a′ for

s�A, C and s′�A, C . Then a, a′ are generalized Opponent moves and by by Lemma 5.4, they occur in psqc and ps′qc
(respectively) and so b ∼ b′ implies a ∼ a′ as required. �

Lemma 5.7. Every sequence t ∈ IA,B,C satisfies non-interference with respect to core views.

Proof. By induction on the length of t . Suppose we have generalized Player moves b ∼ b′ with sb v s′b′
= t . Let

a, a′ be the branching moves for s, s′.
Suppose b, b′ are Player moves in B, C . Let c, c′ be the branching moves of s�B, C and s′�B, C . Then c ∼ c′ by

the non-interference condition for s�B, C . If c, c′ are moves in C then they occur in psqc and ps′qc by Lemma 5.4,
and so by definition of core view they must also be the branching moves for s, s′ — i.e. a = c and a′

= c′ and so we
are done. If c, c′ are moves in B then they are generalized Player moves of t , and so we have rc, r ′c′ < t . Moreover,
c and c′ appear in psqc and ps′qc (respectively) by Lemma 5.4. Thus prqc v psqc and pr ′qc v ps′qc and so a, a′ are
the branching moves for r, r ′. So we may apply the induction hypothesis to obtain c ∼ c′ as required. �

The proof of associativity of composition is standard, as is the existence of the standard “copycat” identities. Thus we
have defined a category G of arenas and strategies. We may define Cartesian and symmetric monoidal (multiplicative)
products on G as in [15]: initial moves of A interfere with those from B in A&B but not in A ⊗ B.

78 J. Laird / Theoretical Computer Science 394 (2008) 64–83

• A&B = (MA + MB, [λA, λB], `A + `B, (∼A + ∼B) ∪ ((M I
A)l

× (M I
B)r) ∪ ((M I

B)l
× (M I

A)r))

• A ⊗ B = (MA + MB, [λA, λB], (`A + `B), ∼A + ∼B)

From σ : A → B, τ : A → C , we may form 〈σ, τ 〉 = {s ∈ L A→B&C | ∀t v
E s.thread(t�A, B) ∈ σ ∨ thread(t�

A, C) ∈ τ } and from σ : A → B, τ : C → D, we may form σ ⊗ τ = {s ∈ L A⊗C→B⊗D | ∀t v
E s.t�A, B ∈ σ ∧ t�

C, D ∈ τ }. The unit I for both products is the empty game. In conjunction with the copycat natural isomorphisms
and projections, we have:

Lemma 5.8. (G, I, ⊗) is a SMC with a Cartesian product, &.

Say that an SCI-arena A is well-opened if m, m′
∈ M I

A implies m ∼ m′. Observe that if A is well-opened then the non-
interference condition prevents us from forming the partial “diagonal” strategy from A to A ⊗ A which plays copycat
between A and both components of A ⊗ A as long as it can do so without interleaving threads. This is illustrated in
Fig. 1, in which Player plays interfering moves in A in response to non-interfering moves in A ⊗ A. As in the case of
the relational model, the SMC (G, I, ⊗) is not symmetric monoidal closed, but does have exponentials by well-opened
arenas, allowing us to interpret the types of SCI.

Lemma 5.9. G has (well-opened) exponentials by all well-opened arenas.

Proof. If C is well-opened, then for any B we may define a negative, well-opened arena B (C as for B → C ,
except that the initial moves of C enable the initial moves of B — i.e.:

B (C = (MB + MC , [λB, λC], (`B + `C) ∪ ((M I
B)l

× (M I
C)r), ∼B + ∼C).

There is an isomorphism between legal sequences on A ⊗ B → C and on A → (B (C) obtained by adding
justification pointers from each initial move in B to the first move in the current thread (which yields an isomorphism
Λ between thread-independent strategies on A ⊗ B → C and on A → (B (C). �

Note that if A, B are well-opened then A&B is well-opened. Thus we may interpret each SCI type as a well-opened
arena by setting the denotation of the ground type n to be the well-opened arena An with a single initial Opponent
move q enabling n distinct Player moves a0, . . . , an−1.

Note that A0 (A0 is isomorphic to A1: we define the denotation of label to be this isomorphism. The remaining
constants — the numerals, case, while0 and new are interpreted as strategies essentially as in the game semantics of
Idealized Algol [3]. It is straightforward to check that they satisfy the stack-visibility and non-interference conditions.
In fact we may observe that, roughly speaking, our semantics is the restriction of Abramsky and McCusker’s games
model of Idealized Algol [3] to the implicitly justified sequences satisfying the non-interference condition: if we
extend the latter with finitary expression types and products, then for any SCI type T , L\

[[T]]
is a subset of the

(unbracketed) plays over the corresponding IA type-object. This correspondence extends to the semantics of terms:
if we express label, case and while0 as the corresponding macros in Idealized Algol + catch, then for any SCI
term M : T , [[M]]

\

G = [[M]]I Ac ∩ L [[T]]. Hence we may obtain soundness and adequacy results for our semantics with
minimal modification to the proofs described in [3,4].

Proposition 5.10. For any closed term M : 1, M ⇓ if and only if [[M]] 6= ⊥.

5.2. Strategies as finite state automata

We now observe that denotational equivalence and approximation are decidable because the strategy denoting each
term is a regular language. The key requirement is to show that the set of legal sequences over each SCI type-object
is itself regular, as we may then follow [7] in showing that the composition of regular strategies is regular.

For each finite arena A, let OpA = {open(s) | s ∈ L A}, which is a finite set. We will define a (single
tape) finite state automaton αA over the alphabet MA which recognizes L A, by defining the set of states to be
OpA × P(MA × OpA), and an initial state and transition function so that having read the legal sequence of moves r ,
αA is in the state 〈open(r), X〉, where (m, u) ∈ X if and only if m occurs in open(r) and there is a prefix v v r such
that the same occurrence of m appears in popen(v)q = u. This information is sufficient to determine the legality of
the next move to be read.

J. Laird / Theoretical Computer Science 394 (2008) 64–83 79

Definition 5.11. For each finite arena A, we define αA = (OpA × P(MA × OpA), (ε, ∅), δA), where:
δA(b, (t, X)) = (open(tb), X ′), if:

• there exists rc v ptq such that c ` b,
• if there exists rb′

v s with b ∼ b′ then prqb′
v s,

• if (m, sb′) ∈ X and b ∼ b′ then if rma v s and rma′
v ptq then a ∼ a′,

• (m, u) ∈ X ′ if and only if (m = b and u = popen(tb)q) or (m ∈ |open(tb)| − {b} and (m, u) ∈ X).

Lemma 5.12. The sequence s is accepted by αA in state (t, X) if and only if:

• s is legal,
• open(s) = t ,
• If ra v t , then (a, u) ∈ X if and only if there exists v v s, with praq v u = popen(v)q.

Proof. This follows by induction on the length of s from the definition of αA. �

Corollary 5.13. For any finitary SCI arena A, L A is a regular language.

We say that a strategy σ on a finite arena is regular if it is a regular language — i.e. there is a (deterministic) finite
state automaton ασ such that σ = L(ασ). We may use Corollary 5.13 to show that each of the copycat strategies
which yield the symmetric monoidal and Cartesian structure of G are regular — for example the identity strategy
idA : A → A is the intersection of the “copycat sequences” (Σm∈MA mr ml

+ mlmr)∗ with L A→A. Following [7], we
may show that the composition preserves regularity.

Proposition 5.14. If σ, τ are regular strategies then σ ; τ is a regular strategy.

Proof. Assuming ασ and ατ are ε-free, we define the FSA ασ ;τ by setting Sσ ;τ
= Sσ

× Sτ , sσ ;τ
0 = (sσ

0 , sτ
0) and:

δσ ;τ (m, (s1, s2)) = (s′

1, s2), if m ∈ MA and δσ (m, s1) = s′,
δσ ;τ (m, (s1, s2)) = (s1, s′

2), if m ∈ MC and δτ (m, s2) = s′

2,
δσ ;τ (ε, (s1, s2)) = (s′

1, s′

2), if there exists m ∈ MB such that δσ (m, s1) = s′

1 and δτ (m, s2) = s′

2. �

The interpretations of the constants are regular strategies and thus:

Proposition 5.15. The denotation of every term of finitary observably sequential SCI is a regular strategy.

6. Full abstraction

We will now prove that our interpretation of observably sequential SCI is (inequationally) fully abstract. As in the
relational model of SCI, this is the case despite the fact that there are finitary strategies in the model which are not
the denotations of terms. Moreover, these strategies may correspond to Idealized Algol terms which do intrinsically
exhibit interference. For example, the strategy on the arena (1 (1 (1) (2 which runs its argument f once, and
returns 1 if the last argument tested by it was the leftmost one and 0 otherwise (and therefore sends [[λx .λy.x; y]] to
0, [[λx .λy.y; x]] to 1, and diverges on [[λx .λy.x;Ω]] and [[λx .λy.y;Ω]]). To write this test in Idealized Algol requires
that the two arguments supplied to f write to the same cell — as in λ f.new λx .((f (x := 1)) x := 0); !x ., and so it
cannot be expressed in SCI with or without catch.

As in the case of SCI, it is sufficient to establish full abstraction for functional types.

Lemma 6.1. Every type T is a definable retract of the functional type T .

Proof. As for Proposition 4.5. �

We further simplify the set of types for which we need to prove full abstraction by reduction to the zero types:
functional types generated from the empty type 0. Define the type 0k for each k ≥ 0 by 00 = 0 and 0k+1 = 0 (0k .

Lemma 6.2. 0k is definably isomorphic to k.

Proof. For each k, the arena denoted by 0k has a single initial Opponent move, which enables k distinct P-moves
(in different ∼ equivalence classes). Thus it is isomorphic to the arena Ak . Moreover, the isomorphism is definable in
SSCI as the terms catchk : 0k (k and λx .λEy.case 〈x, 〈y0, . . . , yk−1〉 : k (0k . �

80 J. Laird / Theoretical Computer Science 394 (2008) 64–83

Corollary 6.3. Every functional type is definably isomorphic to a zero type.

In the following we will assume that all arenas are the denotations of functional types, and thus are well-opened and
have the property that m ∼ m′ implies m = m′. We now show that sufficient “observations” are definable to prove
full abstraction.

Definition 6.4. For any sequence s, let |s| be the multiset of moves occurring in s. If s ∈ L\
[[T]]

, we will say that a term
Ms : T tests for s if s ∈ [[Ms]] and for all t ∈ [[Ms]], |t | ⊆ |s|.

First, a key lemma (a form of “linear function extensionality” [1]). For any legal sequence s on ((A (B) (C) (D
there is a legal sequence φ(s) on (B (C) (A (D obtained by simply relabelling moves in A. Acting on
strategies, this sends [[M : ((S (T) (U) (V]] to [[λx .λy.M λz.(x (z y))]]. We shall now identify a set of legal
sequences for which φ is an isomorphism.

Say that m1m2s ∈ L\
A(B is strict if the (Player) move m2 is from A, and head-linear if in addition there is no

initial move from A in s.

Definition 6.5. Given a strict, head-linear legal sequence m1m2s ∈ L\

A((B(C), suppose tb v m1m2s, where b is
an initial move in B. The stack-view popen(t)q contains the Player move m2, and therefore some unique Opponent
move justified by it. We will say that this is the indexing move for b.

Lemma 6.6. Any two occurrences of the initial move of B in m1m2s have the same indexing move.

Proof. Suppose b and b′ are occurrences of the initial move of A in m1m2s, with indices c and c′. Then b ∼ b′ and
so by the non-interference condition c ∼ c′ and so c = c′ as we have assumed that A is a function-type-object. �

Thus if there is some initial move b of B in s with index m we may say that the index of B in s is m.

Lemma 6.7. For any strict and head-linear legal sequence s on (B (C) (A (D in which the index of A is
the initial move in B there is a (strict, head-linear) legal sequence φ−1(s) on ((A (B) (C) (D such that
φ(φ−1(s)) = s.

Proof. We form φ−1(s) by simply relabelling moves from A. �

For any type T1 (· · · (Tn (0, and i ≤ n, let T [i]
= T1 (· · · (Ti−1 (Ti+1 (· · · (Tn (0.

Proposition 6.8. Let S (T be a zero-type. For any even-length sequence s ∈ L\
[[T]]

, there exists a term M(s) : T
which tests for s.

Proof. We define M(s) by induction on the length of s. For the base case, s = ε, let M(s) = Ω . For the induction
case, we first suppose s = m1m2r is strict and head-linear, and that S = R1 (· · · (Rn (0. Define M(s) by
induction on the arity of S (T .

• If T = 0, then for each i ≤ n, r �[[Ri]] = ti1ti2 . . . tiki , where each ti j ∈ L\
[[Ri]]

. For each i ≤ n we may define
xi : var[n + 2] ` Ni : Si =d f xi :=!xi + 1; case 〈!xi , 〈Ω , M(t1), . . . , M(tn),Ω〉〉 for each i (by outer induction
hypothesis), and thus:

M(s) =d f λ f.new λx1 . . . new λxn .(f N1 . . . Nn).

Then by definition of [[M(s)]], if m1m2u ∈ [[S (T]] and u � [[Ri]] v
E ti1ti2 . . . tiki for each i ≤ n then

m1m2u ∈ [[M(s)]], and so, in particular s ∈ [[M(s)]].
Conversely, if m1m2u ∈ [[M(s)]] then |u�[[Ri]]| ⊆ |ti1ti2 . . . tiki | for each i , and so |m1m2u| ⊆ |s| and so M(s)

tests for s as required.
• For the induction case, suppose T = U (V . If s contains no moves of U , then s relabels as a sequence s′ on

S (V , and we may define M(s) = λx .λy.M(s′) x . Otherwise, we assume that the index of U in s is the initial
move in Ri . Then let ŝ be the (legal) sequence on [[(Ri (S[i]) (T]] obtained by relabelling s.

By Lemma 6.7 φ−1(ŝ) is a legal sequence on [[((U (Ri) (S[i]) (V]], and by (inner) induction hypothesis,
there is a term M(φ−1(ŝ)) which tests for it. Hence we may define

M(s) = λx .λy.M(φ−1(ŝ) λEa.(x (ai y))a1 . . . ai−1ai+1 . . . an .

J. Laird / Theoretical Computer Science 394 (2008) 64–83 81

Now suppose s is strict but not head-linear. Then s = m1m2r1m2r2, where m2 does not occur in r1. We may define
a head-linear legal sequence m1m2r1n in [[0 (T]] by adding a single move n in 0. This is no longer than s, and so
we may define a test M(m1m2r1n) : 0 (T for it. Since m1m2r2 is legal and shorter than s, we may define a test
M(m1m2r2) for it. Let

M(s) = λEx .(label λk.(M(m1m2r1n) k Ex)); (M(m1m2r2) Ex).

M(s) first tests for m2r1 and then jumps out using the label operation, and then tests for m2r2 — i.e. M(s) tests for
s as required.

Finally, suppose s is not strict. Then if T = U1 (. . . Un (0, suppose m2 is the initial move
in Ui . We obtain a strict sequence ŝ ∈ [[Ui (S (T [i]

]] by relabelling, and thus a test for s —
λy.λEx .(M(ŝ) xi) yx1 . . . xi1 xi+1 . . . xn . �

Theorem 6.9. For any terms M, N, [[M]] ⊆ [[N]] iff M . N.

Proof. From left to right (soundness) this is a standard corollary of soundness and adequacy for the operational
semantics. In proving the converse (completeness), we assume that M, N are closed terms of a zero-type, T . Suppose
[[M]] 6⊆ [[N]] and let smn be a minimal length sequence in [[M]]

\
− [[N]]

\. Let q be the initial move in M0(0, and a
its response. Then qsmna is a legal sequence on [[T (0 (0]]. By Proposition 6.8, there exists L : T (0 (0
such that qsmna ∈ [[L]] (hence [[L M]] 6= ⊥) and if t ∈ [[L]] then |t | ⊆ |qsmna|.

Suppose [[L N]] 6= ⊥. Then there exists qta ∈ [[L]] such that t ∈ [[N]]. By minimality of smn, s ∈ [[N]], and
hence by determinacy of [[L]] and [[N]], qsm v qt , and so |qsm| ⊆ |qta| ⊆ |qsmna| by definition of [[L]]. But then
t = smn, contradicting the assumption that smn 6∈ [[N]].

Hence [[label (L M)]] 6= ⊥ and [[label (L N)]] = ⊥, and so by soundness and adequacy label (L M) ⇓ and
label (L N) 6⇓ as required. �

By decidability of inclusion in the semantics (Proposition 5.15) we obtain decidability of observational approximation.

Theorem 6.10. Observational equivalence and approximation are decidable in finitary observably sequential SCI.

7. Conclusions and further directions

We may summarize our results via the following table:

Obs. Sequential Erratic
SCI SCI SCI

—————— ————— —————
Equivalence Decidable Decidable Undecidable

——————— —————– ————— —————
Approximation Undecidable Decidable Undecidable

We have also shown that adding fixpoints (for closed terms of order three or greater) breaks termination in all of the
above languages. More generally, we have extended “algorithmic programming language semantics” to an interference
controlled setting, and lent weight to the thesis that observably sequential versions of programming languages are
typically easier to model check. There are many possible variants and extensions of SCI, and thus many remaining
open questions which could be investigated.

Contrary to a claim made in [13], it is not clear whether observational approximation is decidable in SCI without
loops (i.e. without the command while0). The denotations of first-order terms of SCI without while0 are finite
sets, and therefore approximation for such terms is decidable at first order. Moreover we can reduce decidability of
approximation at all higher types to the second-order case via (loop-free) definable monomorphisms. Although we
can simulate any single tape FSA as a loop-free term of second-order type ((1n (1) (1 this does not extend to
the simulation of 2-tape FSA at second-order types as this would require sharing of variables. It may be possible,
however, to represent second-order denotations as finite sets of single-tape automata.

Basic SCI can be extended with a notion of passive type, based on the principle that executing a term of passive type
may not change the store, and therefore variables of passive type may be shared between procedures without causing
interference through the store. As we observed in the introduction, we may (conservatively) embed purely functional

82 J. Laird / Theoretical Computer Science 394 (2008) 64–83

languages such as PCF in these type systems by assigning purely passive types to their terms. Thus reasoning about
them is at least as difficult as reasoning about PCF. The possibility exists of partial results, for example, by restricting
the nesting of passive function types. McCusker and Wall have developed a fully abstract game semantics of SCIR
(for which the basic fragment is similar to the games model described here), but there is no direct characterization of
denotational equivalence in this (quotient) model.

Alternatively, it may be possible to construct relatively simple models of observably sequential SCI extended with
passive types, modelled as in the effectively presentable game (or sequential algorithms semantics of SPCF) as non-
repetitive sequences of moves.

We have considered the addition of two forms of side effect to SCI: non-determinism, and non-local control. Both
of these demonstrate the sensitivity of observational equivalence to the presence of such effects. (We leave open the
problem of decidability for SCI with control and non-determinism — if we introduce erratic choice into our games
model of observably sequential SCI by dropping the determinacy condition for strategies, then full abstraction fails.)
The most significant effects for which we have no results are concurrency and higher-order store. In the case of
higher-order store, much work remains to be done to identify type systems for interference control as well as suitable
semantics. In the case of concurrency, although we can represent parallel composition with no interference between
threads in the relational model of SCI, once we allowed one thread to be terminated by another, things become more
complicated.

Other questions concern the expressive power of SCI and related languages: the correspondence between SCI
terms and multitape finite state automata does not appear to fully capture this. Which functionals, for example, can be
computed by SCI terms? Is there a characterisation of the programs which can be written in total SCI (i.e. SCI with
primitive recursion rather than loops) and their equivalence? In the “observably sequential case” some approaches are
suggested by a companion paper [14] we have studied the expressiveness of a functional language with control (SPCF),
subjected to the same affine typing discipline as SCI – in other words, observably sequential SCI without state. This is
shown to be exactly as expressive as simply-typed SPCF itself – i.e. every term of SPCF is observationally equivalent
(in SPCF) to one which is affinely typable. Since affinely typed SPCF is contained within observably sequential SCI,
the latter can compute every observably sequential functional, and is arguably more expressive than SPCF.

Acknowledgements

I would like to acknowledge the valuable discussions with Guy McCusker and Matthew Wall, and the helpful
comments from the anonymous referees.

References

[1] S. Abramsky, Axioms for full abstraction and full completeness, in: Essays in Honour of Robin Milner, MIT Press, 1997.
[2] S. Abramsky, Beyond full abstraction: Model checking for algol-like languages, in: Lecture Notes from the Marktoberdorf Summer School,

2001.
[3] S. Abramsky, G. McCusker, Linearity, Sharing and State: A fully abstract game semantics for Idealized Algol with active expressions,

in: P.W. O’Hearn, R. Tennent (Eds.), Algol-like Languages, Birkhauser, 1997.
[4] S. Abramsky, G. McCusker, Game semantics, in: H. Schwichtenburg, U. Berger (Eds.), Logic and Computation: Proceedings of the 1997

Marktoberdorf Summer School, Springer-Verlag, 1998.
[5] S. Abramsky, K. Honda, G. McCusker, A fully abstract games semantics for general references, in: Proceedings of the 13th Annual

Symposium on Logic In Computer Science, LICS ’98, 1998.
[6] R. Cartwright, M. Felleisen, Observable sequentiality and full abstraction, in: Proceedings of POPL ’92, 1992.
[7] D. Ghica, G. McCusker, The regular language semantics of second-order Idealised Algol, Theoretical Computer Science 309 (2003) 469–502.
[8] T. Harju, J. Karhumäki, The equivalence problem of multitape finite automata, Theoretical Computer Science 78 (1991) 347–355.
[9] R. Harmer, Games and Full Abstraction for Nondeterministic Languages, Ph.D. Thesis, Imperial College London, 1999.

[10] J.M.E. Hyland, C.-H.L. Ong, On full abstraction for PCF: I, II and III, Information and Computation 163 (2000) 285–408.
[11] E. Kinber, The inclusion problem for some classes of deterministic multitape automata, Theoretical Computer Science 26 (1983) 62–73.
[12] J. Laird, Full abstraction for functional languages with control, in: Proceedings of the Twelfth International Symposium on Logic In Computer

Science, LICS ’97, IEEE Computer Society Press, 1997.
[13] J. Laird, Decidability in syntactic control of interference, in: Proceedings of ICALP ’05, in: LNCS, vol. 3580, Springer, 2005, pp. 904–916.
[14] J. Laird, On the expressiveness of affine programs with non-local control: The elimination of nesting in SPCF, in: Fundamenta Informaticae,

IOS press, 77 (4) (2007) 511–531.
[15] J. Laird, Game semantics and Linear CPS interpretation, Theoretical Computer Science 333 (2005) 199–224.
[16] R. Loader, Finitary PCF is not decidable, Theoretical Computer Science 266 (1–2) (2000) 341–364.

J. Laird / Theoretical Computer Science 394 (2008) 64–83 83

[17] G. McCusker, Games and full abstraction for a functional metalanguage with recursive types, Ph.D. Thesis, Imperial College London, 1996.
Published by Cambridge University Press.

[18] G. McCusker, A fully abstract relational model of Syntactic Control of Interference, in: Proceedings of Computer Science Logic ’02,
in: LNCS, vol. 2471, Springer, 2002.

[19] G. McCusker, On the semantics of the bad-variable constructor in Algol-like languages, Electronic Notes in Theoretical Computer Science,
vol. 83, 2004, 20 pages. URL: http://www.elsevier.nl/locate/entcs/volume83.html.

[20] G. McCusker, M. Wall, Categorical and game semantics for SCIR, in: The Proceedings of Games for Logics and Programming Languages,
2004.

[21] A. Murawski, On program equivalence in languages with ground-type references, in: Proceedings of LICS ’03, IEEE Press, 2003.
[22] A. Murawski, I. Walukiewicz, Third-order Idealized Algol with iteration is decidable, in: Proceedings of FoSSACS ’05, in: LNCS, vol. 3411,

Springer, 2005, pp. 202–218.
[23] M.W. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, 1967.
[24] C.-H.L. Ong, An approach to deciding observational equivalence of Algol-like languages, Annals of Pure and Applied Logic 130 (2004)

125–171.
[25] P.W. O’Hearn, A.J. Power, M. Takeyama, R.D. Tennent, Syntactic control of interference revisited, Theoretical Computer Science 228 (1–2)

(1999) 211–252.
[26] M. Rabin, D. Scott, Finite automata and their decision problems, IBM Journal of Research and Development 3 (1959) 114–125.
[27] U.S. Reddy, Global state considered unnecessary: Object-based semantics for interference-free imperative programs, Lisp and Symbolic

Computation 9 (1) (1996).
[28] J. Reynolds, Syntactic control of interference, in: Conf. Record 5th ACM Symposium on Principles of Programming Languages, 1978,

pp. 39–46.
[29] J. Reynolds, The essence of Algol, in: Algorithmic Languages, North Holland, 1981, pp. 345–372.

http://www.elsevier.nl/locate/entcs/volume83.html

	Decidability and syntactic control of interference
	Introduction
	Related work

	Basic SCI
	Undecidability of termination in the presence of recursion
	Relational semantics of basic SCI

	Multitape automata and first-order terms
	2-tape FSA as SCI terms
	First-order terms as multitape automata

	Full abstraction and decidability at higher types
	Observably sequential SCI
	A games model of SSCI
	Strategies as finite state automata

	Full abstraction
	Conclusions and further directions
	Acknowledgements
	References

