126 research outputs found

    Haptic teleoperation of the youbot with friction compensation for the base

    Get PDF
    Haptic devices are bringing new possibilities for teleoperation by increasing the level of awareness that the operator can have over the slave. In other words, they create a stronger link between them. Because it is not enough to have a view of the task at hand, it is better to feel what is really happening at the other side. The main goal of the project is to provide the KUKA youBot with an Omega 6 haptic interface. The operator can feel the movement limitations that the arm’s tooltip may be experiencing, resulting in a better driving practice. But with these new capabilities other concerns arise, like the choice of an appropriate control algorithm, the correct coupling of workspaces or the design of a suitable data handling scheme. However, the current setup has not yet been submitted to a proper system validation and so there is still much work to do in order to increase its overall performance. Since friction can have a major role in the control scheme of the system, the latter should be provided with friction compensation. To achieve this, a study of the youBot wheels motor block friction has been carried out. These results are then also incorporated in the robot simulation. Moreover, when identifying this kind of behaviours some important decisions have to be made in order to get the best results from the time invested. Among those are the selection of a friction model, the system identification experiments and the validation of results. In conclusion, it has been proven that the implementation of a haptic interface for the youBot is not only feasible but that it delivers a greater overall teleoperation experience. Also, although the results of this project are an initial version of the system, the friction compensation for the base motor blocks is already working with acceptable performance. ________________________________________________________________________________________________________________Los dispositivos hápticos están trayendo nuevas posibilidades a la teleoperación, aumentando el nivel de consciencia que el operador puede tener sobre la máquina que dirige. En otras palabras, crean un vínculo más fuerte entre ambos. Y es que a veces no es suficiente visualizar la tarea que se esta realizando, es mejor notar lo que realmente está pasando en el otro lado. El objetivo principal del proyecto es proporcionar al robot youBot de KUKA una interfaz con el dispositivo háptico Omega6. El operador puede notar las limitaciones en los movimientos que la herramienta del brazo robot pueda estar experimentando, resultando así en una mejor experiencia de conducción. Pero con estas nuevas capacidades aparecen otras preocupaciones, como elegir un algoritmo de control apropiado, la correcta unión de los espacios de trabajo o el diseño de un esquema de manejo de datos adecuado. Sin embargo, la instalación actual aún no ha sido sometida a una evaluación de sistema apropiada y por lo tanto todavía hay mucho trabajo por hacer para incrementar el rendimiento general. Ya que la fricción puede tener un rol importante en el esquema de control del sistema, este debería ser provisto con compensación de fricción. Para lograr esto se ha llevado a cabo un estudio de los bloques motor de las ruedas del youBot. Estos resultados se han incorporado también a la simulación del robot. Por otra parte, cuando se identifican esta clase de comportamientos se han de tomar decisiones importantes para obtener los mejores resultados del tiempo empleado. Entre estas están la selección de un modelo de fricción adecuado, los experimentos para identificar el sistema y la validación de los resultados. En conclusión, se ha probado que la implementación del youBot con una interfaz háptica no es solo posible sino que mejora la experiencia general de teleoperación. Además, aunque los resultados del proyecto son una versión inicial del sistema, la compensación de la fricción para los bloques motor de la base ya está funcionando con un rendimiento aceptable.Ingeniería Industria

    Design of Novel Sensors and Instruments for Minimally Invasive Lung Tumour Localization via Palpation

    Get PDF
    Minimally Invasive Thoracoscopic Surgery (MITS) has become the treatment of choice for lung cancer. However, MITS prevents the surgeons from using manual palpation, thereby often making it challenging to reliably locate the tumours for resection. This thesis presents the design, analysis and validation of novel tactile sensors, a novel miniature force sensor, a robotic instrument, and a wireless hand-held instrument to address this limitation. The low-cost, disposable tactile sensors have been shown to easily detect a 5 mm tumour located 10 mm deep in soft tissue. The force sensor can measure six degrees of freedom forces and torques with temperature compensation using a single optical fiber. The robotic instrument is compatible with the da Vinci surgical robot and allows the use of tactile sensing, force sensing and ultrasound to localize the tumours. The wireless hand-held instrument allows the use of tactile sensing in procedures where a robot is not available

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Modular robots for sorting

    Get PDF
    Current industrial sorting systems allow for low error, high throughput sorts with tightly constrained properties. These sorters, however, are often hardware limited to certain items and criteria. There is a need for more adaptive sorting systems for processes that involve a high throughput of heterogeneous items such as import testing by port authorities, warehouse sorting for online retailers, and sorting recycling. The variety of goods that need to be sorted in these applications mean that existing sorting systems are unsuitable, and the objects often need to be sorted by hand. In this work I detail my design and control of a modular, robotic sorting system using linear actuating robots to create both low-frequency vibrations and peristaltic waves for sorting. The adaptability of the system allows for multimodal sorting and can improve heterogeneous sorting systems. I have designed a novel modular robot called the Linbot. These Linbots are based on an actuator design utilising a voice coil for linear motion. I designed this actuator to be part of a modular robot by adding on-board computation, sensing and communication. I demonstrate the individual characteristics of these robots through a series of experiments in order to give a comprehensive overview of their abilities. By combining multiple Linbots in a collective I demonstrate their ability to move and sort objects using cooperative peristaltic motion. In order to allow for rapid optimisation of control schemes for Linbot collectives I required a peristaltic table simulator. I designed and implemented a peristaltic table simulator, called PeriSim, due to a lack of existing solutions. Controllers optimised in simulation often suffer from a reduction in performance when moved to a real-world system due to the inaccuracies in the simulation, this effect is called the reality gap. I used a method for reducing the reality gap called the radical envelope of noise hypothesis, whereby I only modelled the key aspects of peristalsis in PeriSim and then varied the underlying physics of the simulation between runs. I used PeriSim to optimise controllers in simulation that worked on a real-world system. I demonstrate the how the Linbots and PeriSim can be used to build and control an adaptive sorter. I built an adaptive sorter made of a 5x5 grid of Linbots with a soft sheet covering them. I demonstrate that the sorter can grade produce and move objects of varying shapes and sizes. My work can guide the future design of industrial adaptive sorting systems

    “Design, Development and Characterization of a Thermal Sensor Brick System for Modular Robotics

    Get PDF
    This thesis presents the work on thermal imaging sensor brick (TISB) system for modular robotics. The research demonstrates the design, development and characterization of the TISB system. The TISB system is based on the design philosophy of sensor bricks for modular robotics. In under vehicle surveillance for threat detection, which is a target application of this work we have demonstrated the advantages of the TISB system over purely vision-based systems. We have highlighted the advantages of the TISB system as an illumination invariant threat detection system for detecting hidden threat objects in the undercarriage of a car. We have compared the TISB system to the vision sensor brick system and the mirror on a stick. We have also illustrated the operational capability of the system on the SafeBot under vehicle robot to acquire and transmit the data wirelessly. The early designs of the TISB system, the evolution of the designs and the uniformity achieved while maintaining the modularity in building the different sensor bricks; the visual, the thermal and the range sensor brick is presented as part of this work. Each of these sensor brick systems designed and implemented at the Imaging Robotics and Intelligent Systems (IRIS) laboratory consist of four major blocks: Sensing and Image Acquisition Block, Pre-Processing and Fusion Block, Communication Block, and Power Block. The Sensing and Image Acquisition Block is to capture images or acquire data. The Pre-Processing and Fusion Block is to work on the acquired images or data. The Communication Block is for transferring data between the sensor brick and the remote host computer. The Power Block is to maintain power supply to the entire brick. The modular sensor bricks are self-sufficient plug and play systems. The SafeBot under vehicle robot designed and implemented at the IRIS laboratory has two tracked platforms one on each side with a payload bay area in the middle. Each of these tracked platforms is a mobility brick based on the same design philosophy as the modular sensor bricks. The robot can carry one brick at a time or even multiple bricks at the same time. The contributions of this thesis are: (1) designing and developing the hardware implementation of the TISB system, (2) designing and developing the software for the TISB system, and (3) characterizing the TISB system, where this characterization of the system is the major contribution of this thesis. The analysis of the thermal sensor brick system provides the user and future designers with sufficient information on parameters to be considered to make the right choice for future modifications, the kind of applications the TISB could handle and the load that the different blocks of the TISB system could manage. Under vehicle surveillance for threat detection, perimeter / area surveillance, scouting, and improvised explosive device (IED) detection using a car-mounted system are some of the applications that have been identified for this system

    Turbulent Shear Flow in a Rapidly Rotating Spherical Annulus

    Get PDF
    This dissertation presents experimental measurements of torque, wall shear stress, pressure, and velocity in the boundary-driven turbulent flow of water between concentric, independently rotating spheres, commonly known as spherical Couette flow. The spheres' radius ratio is 0.35, geometrically similar to that of Earth's core. The measurements are performed at unprecedented Reynolds number for this geometry, as high as fifty-six million. The role of rapid overall rotation on the turbulence is investigated. A number of different turbulent flow states are possible, selected by the Rossby number, a dimensionless measure of the differential rotation. In certain ranges of the Rossby number near state borders, bistable co-existence of states is possible. In these ranges the flow undergoes intermittent transitions between neighboring states. At fixed Rossby number, the flow properties vary with Reynolds number in a way similar to that of other turbulent flows. At most parameters investigated, the large scales of the turbulent flow are characterized by system-wide spatial and temporal correlations that co-exist with intense broadband velocity fluctuations. Some of these wave-like motions are identifiable as inertial modes. All waves are consistent with slowly drifting large scale patterns of vorticity, which include Rossby waves and inertial modes as a subset. The observed waves are generally very energetic, and imply significant inhomogeneity in the turbulent flow. Increasing rapidity of rotation as the Ekman number is lowered intensifies those waves identified as inertial modes with respect to other velocity fluctuations. The turbulent scaling of the torque on inner sphere is a focus of this dissertation. The Rossby-number dependence of the torque is complicated. We normalize the torque at a given Reynolds number in the rotating states by that when the outer sphere is stationary. We find that this normalized quantity can be considered a Rossby-dependent friction factor that expresses the effect of the self-organized flow geometry on the turbulent drag. We predict that this Rossby-dependence will change considerably in different physical geometries, but should be an important quantity in expressing the parameter dependence of other rapidly rotating shear flows

    2017 Abstract Book

    Get PDF

    Combined musculoskeletal and finite element modelling of the lumbar spine and lower limbs

    Get PDF
    Bone health deterioration is a major public health issue increasing the risk of fragility fracture with a substantial associated psychosocioeconomic impact. In the lumbar spine, physical deconditioning associated with ageing and chronic pain is a potential promoter of bone structural degradation. General guidelines for the limitation of bone loss and the management of pain have been issued, prescribing a healthy lifestyle and a minimum level of physical activity. However, there is no specific recommendation regarding targeted activities that can effectively maintain lumbar spine bone health in populations at risk. The aim of this thesis was to develop a new predictive computational modelling framework for the study of bone structural adaptation to healthy and pathological conditions in the lumbar spine. The approach is based on the combination of a musculoskeletal model of the lumbar spine and lower limbs with structural finite element models of the lumbar vertebrae. These models are built with bone and muscle geometries derived from healthy individuals. Based on daily living activities, musculoskeletal simulations provide physiological loading conditions to the finite element models. Cortical and trabecular bone are modelled with shell and truss elements whose thicknesses and radii are adapted to withstand the physiological mechanical environment using a strain driven optimisation algorithm. This modelling framework allows to generate healthy bone architecture when a loading envelope representative of a healthy lifestyle is applied to the vertebrae, and identify influential activities. Prediction of bone remodelling under altered loading scenarios characteristic of lumbar pathologies can also be achieved. The modelling approach developed in this thesis is a powerful tool for the investigation of bone remodelling in the lumbar spine. Preliminary results indicate that locomotion activities are insufficient to maintain lumbar spine bone health. Specific recommendations to limit the effect of physical deconditioning related to muscle weakening back pain are suggested. The approach is also promising for the investigation of other lumbar pathologies such as age related osteoporosis and scoliosis.Open Acces

    Annual report / IFW, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

    Get PDF
    • …
    corecore