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Review of 2017

This Annual Report addresses our cooperation partners worldwide, friends and all those

who are interested in the Institute’s progress. It presents a cross section of our scien-

tific activities in the past year, highlighting exemplary some results in the main part and

giving a systematic overview of the institute’s output on the back pages. The very first

pages of the Annual Report are used for a short flashback to the institutes development

in 2017 beyond scientific results. 

The year 2017 began with the celebration of a jubilee at the Leibniz Institute for Solid

State and Materials Research Dresden: It have been 25 years since the IFW Dresden has

been founded on January 1, 1992. We took this opportunity to thank all our partners and

friends for their support and cooperation during an official ceremony on February 6, 2017

in the Congress Center Leipzig where we celebrated the event together with the other

Saxon Leibniz Institutes. Together we looked back to a very successful development and

presented our recent achievement to our prominent guests, among them the Saxon

Ministe r for Science and the Fine Art Eva-Maria Stange and the president of the Leibniz

Association Matthias Kleiner. On the IFW exhibition stand, our four ERC grantees

presente d their projects which reflected nicely the scope of IFW research. Later on, on

February 27, 2017, we had the IFW’s annual reception, where we celebrated a birthday

party with all the members IFW staff. 

In terms of scientific work, 2017 was again a very productive and successful year for IFW.

As in previous years, our scientific output has been on a high level, both qualitatively and

quantitatively, which has been also confirmed by the annual evaluation of the IFW’s

Scientifi c Advisory Board. The range of materials that we investigate is broad but well-

defined. It contains Quantum Materials, a highly topical class of materials in condensed

matter physics, as well as Functional Materials, representing an important part of

moder n materials engineering. In addition, in the last years, Nanoscale Materials became

a strong focus of present-day materials science and a crucial material class for cutting-

edge developments in electrical engineering. These three classes, Quantum Materials,

Anniversary celebration „25 years Leibniz in Saxony“
on February 6, 2017 in Leipzig  
(Photo: Swen Reinhold)
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Functional Materials and Nanoscale Materials, provide the three materials-oriented

pillars of our scientific work. While being distinctly multidisciplinary, there is a clear

commo n thread to all our activities: all researchers at the IFW Dresden investigate yet

unexplored properties of novel materials with the aim to establish new functionalities

and applications.

The IFW’s Research Program has been adjusted during the program meeting with all

responsibl e scientists of IFW in April 2017. The structuring into the four research areas
� Research Area 1: Functional quantum materials
� Research Area 2: Function through size
� Research Area 3: Quantum effects at the nanoscale
� Research Area 4: Towards products

has been proven to be suitable, providing continuity on the level of research areas and

flexibility on the level of research topics.

In September 2017 the German Research Foundation announced the successful draft pro-

posals wich are invited to submit a full cluster application in the German wide Excellence

Strategy. We are very proud that the TechnischeUniversiät Dresden has been successful

with six cluster proposals and enters the next round for the Clusters of Excellence. We

are especially happy that the IFW participates in three of these proposals for Clusters of

Excellenc e, namely: 
� cfaed: Center for Advancing Electronics Dresden
� DCM: Dresden Center for Materiomics 
� t.qmat: Complexity and Topology in Quantum Matter 

Together with our colleagues at the TU Dresden and the other Dresden research institutes

we are currently working very hard to prepare the full proposals. In the case of approval

these new clusters will have strong impact on the IFW’s strategy as the respective fields

will be essentially strengthened. 

Annual Reception on February 27, 2017. We celebrated the 25th birthday of the
IFW Dresden. Dr. Daniil Karnaushenko (right on the middle picture) received 
the IFW Junior Research Award.    (middle and right photo: Matthias Rietschel)
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2017 was again a yielding year with respect to prizes and honours awarded to members

of the IFW. The most prestigious of the prizes won by IFW members is the Gottfried-

Wilhelm-Leibniz-Prize 2018 of the German Research Foundation, which will be awarded

to Prof. Dr. Oliver G. Schmidt in spring 2018. Furthermore, two outstanding PhD thesis

of IFW junior scientist have been acknowledged with prizes: The Wilhelm-Ostwald-

Societ y awarded its Young Investigator Prize 2017 to Daniil Karnaushenko, and Julia

Körner achieved the Measurement Technology Award of council of university teachers of

metrology.

The training of students and young scientists remains a very important concern of our

work. PhD and diploma students are involved in nearly all scientific projects and in the

resulting publications. Altogether, 26 PhD theses have been successfully completed in

2017, three of them with the best grade possible – summa cum laude. Traditionally, the

IFW acknowledges these outstanding achievements of young scientist by awarding the

Tschirnhaus-Medal.

As a Leibniz Institute, the IFW is financed by the federal government and the German fed-

eral states in equal parts. However, a considerable extension of capability is the amount

of third-party project funding which is also an important index of quality. The level of

third-party funding in 2017 amounts to 8.5 Mio. Euro. Most of this project funding was

acquired in a highly competitive mode from the DFG and the European Commission. In

particular, the high number of four running ERC groups and the substantial participa-

tion in two Collaborative Research Centres (SFB’s) prove the competitiveness of IFW.

Among the large number of other third-party funded projects are two DFG Priority Pro-

grams that are coordinated by scientists form the IFW, as well as six DFG Priority Programs

and two DFG Research Groups where scientists from the IFW participate. 

„Werkstoffwoche” 2017 in Dresden: 
Conference and exhibition with IFW contributions
(Photo: IFW Dresden)

Experimental lecture by Jens Freudenberger and
Andy Thomas during the Dresden Long Night of
Sciences 2017     (Photo: jungvornweg)

Two of the IFW ERC grantees
present their projects  
(Photo: Swen Reinhold)
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Essentially publicly funded, it is our mission to make our research results public. In 2017,

IFW scientists have published about 450 articles in scientific journals and conference pro-

ceedings. 169 invited talks were presented by IFW scientists at conferences, workshops,

seminars and other occasions around the world. In 2017, we were granted 18 patents,

and applications for 12 more patents have been made. Apart from these scientific com-

munications the IFW continued its large efforts to make scientific work accessible for the

general public and to inspire young people to study science or engineering. The most

prominent event in this respect is the Dresden Long Night of Sciences which takes place

once a year before the summer vacancies. In 2017, again, the IFW offered an ample pro-

gram which attracted about 3500 visitors. The highlight was an experimental show on

low temperature physics presented by two IFW scientists in the roles of Heike Kamerlingh

Onnes and Carl von Linde. A closer look to our research was offered to about 100 par -

ticipants of the “Junior Doctor” action and the German wide Girls’ Day. Besides these big

events we organize almost weekly lab-tours for various visitor groups, from school

classes through official representatives to guests from foreign organization.

So we are looking back to a successful year 2017 in the Institute’s development. We are

quite aware that this is due to the sustainable network of colleagues and partners in

universitie s, research institutes and industry, both, on the regional and the interna -

tional scale. We thank all of them for their constructive cooperation and are looking

forwar d to taking up future challenges together. Special tribute is paid to the members

of the Scientific Advisory Board and of the Board of Trustees as well as the funding or-

ganizations that continuously support and foster the positive development of the IFW.

IFW running team at the
REWE Team Challenge 2017
(Photo: IFW Dresden)

International Summer School on Spectroelectrochemistry
organized by IFW in August 2017
(Photo: IFW Dresden)
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Facts & Figures 

Organization

The Leibniz Institute for Solid State and Material Research Dresden (IFW) is one of

currentl y 93 institutes of the Leibniz Association in Germany. It is a legally independent

association, headed by the Scientific Director, Prof. Dr. Burkard Hillebrands, and the

Administrativ e Director, Dr. Doreen Kirmse.

The scientific body of the IFW Dresden is structured into five institutes, the directors of

which are simultaneously full professors at Dresden, respectively Chemnitz Universities

of Technology:
� IFW Institute for Solid State Research, Prof. Dr. Bernd Büchner
� IFW Institute for Metallic Materials, Prof. Dr. Kornelius Nielsch
� IFW Institute for Complex Materials, Dr. Thomas Gemming (temporarily)
� IFW Institute for Integrative Nanosciences, Prof. Dr. Oliver G. Schmidt
� IFW Institute for Theoretical Solid State Physics, Prof. Dr. Jeroen van den Brink

Further divisions are the Research Technology Division and the Administrative Division.

Financing

The institutional funding of IFW is supplied by the Federal government and by the

Germa n states (Länder). In 2017, this funding was EUR 32,245,000 in total. 

In addition, the IFW receives project funding from external sources of about 8.5 million

Euro. Thereof, about 3.4 million Euro came from German Research Foundation (DFG),

2.4 million Euro from European Union programs, 1.1 million Euro from Federal

Governmen t projects, 0.6 million Euro from industry and 1.0 million Euro from other

donors including the Free State of Saxony.

Labtour during the Dresden
Long Night of Sciences 2017
(Photo: IFW Dresden)

Establishment of a new atomic
layer deposition laboratory
(Photo: IFW Dresden)

Guided tour to IFW’s Helium facility for the 
participants of the International Cryogenics 
Conference 2017 in Dresden  (Photo: IFW Dresden)
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Personnel

On 31 December 2017, 479 staff members were employed at the IFW, including 88

doctorat e students as well as 16 apprentices in seven different vocational trainings and

two business students of a vocational academy. Additionally 53 fellowship holders

worked at IFW, among them 20 doctorate students. 

Gender equality, as well as work life balance, are defined goals of the IFW Dresden. In

2017, the percentage of women in scientific positions was 22,4% and the percentage

of women in scientific leading positions was 19,4%. The IFW is regularly audited for

the certificate “audit berufundfamilie” – a strategic management tool for a better com -

patibility of family and career.

Number of publications and patents

In terms of publications, the qualitative and quantitative level remains high at the IFW.

In 2017, IFW scientists have published 444 refereed journal articles, a considerable

number of them in high impact journals. Furthermore, IFW members held 169 invited

talks at conferences and colloquia. 

By 31 December 2017, the IFW holds 117 patents in Germany and 94 international

patents.

Encouragement and training of young people at IFW Dresden: from hands-on
experiments during the Long Night of Sciences up to vocational training.   
(left photo: Steffen Haas, middel and right photo: IFW Dresden)
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Research Area 1

Evidence for a magnetic field induced nematic liquid 
in the spin chain LiCuSbO4

H.-J. Grafe, S. Nishimoto, M. Iakovleva, E. Vavilova1, L. Spillecke, A. Alfonsov, 

M.-I. Sturza, S. Wurmehl, H. Nojiri2, H. Rosner 3, J. Richter 4, U. Rößler, 

S.-L. Drechsler, V. Kataev, B. Büchner

Abstract: We report combined experimental and theoretical evidence of a magnetic

field-induced nematic liquid arising above a field of ∼13 T in the edge-sharing chain

cuprate LiCuSbO4 [1]. Our interpretation is based on the observation of a field induced

spin-gap in the measurements of the 7Li NMR spin relaxation rate T1
−1 as well as con-

trasting field-dependent power-law behavior of T1
−1 vs. T, and is further supported by

static magnetization and ESR data. An underlying theoretical microscopic approach

favorin g a nematic scenario is based essentially on the nearest neighbor xyz exchange

anisotropy within a model for frustrated spin-1/2 chains and is investigated by the

DMRG technique. The employed exchange parameters are justified qualitatively by

electroni c structure calculations for LiCuSbO4. 

Low dimensional spin systems

Electronic correlations in solids give rise to novel ground states of matter such as spin

liquid states in low dimensional quantum magnets [2,3]. Here, long-range magnetic

orde r is suppressed down to T = 0 due to quantum fluctuations [4]. Though individual

spins remain non-ordered in the spin liquid, higher rank magnetic multipoles can order

under favorable conditions [5]. Such a multipolar order does not break time-reversal

symmetr y and is often referred to as a “hidden order” since it is difficult to detect it.

Howeve r, the spin rotational symmetry is broken in this hidden phase which is therefore

also called a spin-nematic state, in analogy with the nematic order in liquid crystals,

where the translational order is absent but rotational symmetry is broken. The ground

state of a Heisenberg spin-1/2 chain with nearest neighbor antiferromagnetic (AFM) in-

teraction J1 is described by the gapless Tomonaga-Luttinger spin liquid [5]. Including

next-nearest neighbor interaction J2 can cause spin frustration and may yield different

phases depending on the frustration ratio α = |J2 /J1|, irrespective of the sign of J1

[6-8]. Theoretical works [8-11] on such frustrated J1(FM)- J2(AFM) chain models have

predicted field-induced multipolar states near the saturation field Hsat above which

all spins are aligned by an external magnetic field H at T = 0. These states form a spin

liquid of multiple p-bound states of magnons corresponding to nematic, triatic, quar-

tic multipolar phases (p = 2, 3, 4, …). In contrast, at lower fields H-dependent incom-

mensurate spin density wave phases (SDWp) can appear in such systems [12]. Recently,

the synthesis of LiCuSbO4, a novel, strongly frustrated J1(FM) - J2(AFM) spin chain

compoun d (Fig. 1) has been reported [13]. It exhibits short-range incommensurate spin

correlations below T∼ 9K but does not show long-range magnetic order at H = 0 down

to T∼ 0.1 K. A sizeable exchange anisotropy was estimated, and magnetization ap-

proaches saturation near 16 T only [13], making LiCuSbO4 an ideal candidate to search

for field induced SDWp or multipolar orders. 

Fig. 1: Crystal structure of LiCuSbO4. The lower panel shows a spin chain 
running along the a direction with the main interactions J1, J1’, and J2 between
the Cu spins (small arrows). The big arrows indicate the DM vector, see text.
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Results in LiCuSbO4 and Discussion

In magnetic materials, the nuclear spin lattice relaxation rate, T1
−1, is caused by the

transverse (i.e. ⊥ to the nuclear spin quantization axis) components of the fluctuating

field exerted on the nuclei by the electron spin system. In addition, in certain cases

such as the dipolar hyperfine coupling of the 7Li nucleus to the Cu electronic spins in

LiCuSbO4, also longitudinal fluctuations (i.e. || to the nuclear spin quantization axis) can

contribute to T1
−1. This is a fortunate circumstance in LiCuSbO4 since the parallel

fluctuation s are those which can evidence nematic spin fluctuations when the transverse

fluctuations are gapped. 

In weakly coupled AFM Heisenberg chains above the Neél ordering temperature TN, T1
−1

increases with decreasing T and/or increasing magnetic field H and tends to diverge

by approaching TN. This is mainly due to the growth of transverse spin fluctuations

whereas parallel spin fluctuations decay smoothly [14,15]. In LiCuSbO4, however, T1
−1

shows a contrasting behavior with respect to temperature and magnetic field (see Fig.

2 b,c,d,e). At relatively small fields (3-12 T) the low-temperature region is determined

by a sharp increase of T1
−1(T) (Fig. 2 b,c), pointing to the vicinity of a magnetically or-

dered state at a lower T. Especially at H = 9 T the increase is substantially more pro-

nounced than at lower fields such as for 3 T indicating an increase of the ordering

temperatur e of this magnetic phase. Such a behavior is not expected for an ordinary

AFM Neél state where TN is usually suppressed by an external magnetic field. In fact,

the field region around 9 T is also identified by the low-temperature anomaly in the mag -

netic specifi c heat [13]. It is conjectured to be a signature of an unusual field-induced

SDWp phase in LiCuSbO4. Above a critical field Hc1 = 13 T, T1
−1 changes from the upturn

Fig. 2: (a) Field dependence of the magnetization at T = 0.45 K. (b) Temperature dependence of
the 7Li nuclear spin lattice relaxation rate at different magnetic fields. (c) The T1

-1 (T) dependence
at T < 20 K for 3T, 9T and 12 T. (d,e) T1

-1 vs. inverse temperature T1
-1 at T < 20 K for fields > 13T.

Solid lines in (c–e) are model curves (see text). 
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behavior to a suppression at low T, suggesting the opening of a gap Δ in the spin ex-

citations. We can extract Δ and a power-law exponent β from a fit of the experimental

data to T1
−1(T ) = C1(H) exp(−Δ/T) + C2(H) (T−Tc)β, which takes into account theoretical

predictions [14,15]. This equation implies the contrasting gapped and critical power-law

contributions to T1
−1 with Δ > 0 and β < 1. By crossing Hc1 = 13 T the growth of T1

−1 turns

into a decay corresponding to the sign change of the exponent β. Concomitantly, the

weight C1 of the gapped term increases on expense of the decreasing weight C2 of the

power-law term. At the same time Δ increases non-linearly, and a finite power law con-

tribution with positive β, in contrast to β < 0 for H < Hc1, is required to achieve the best

fit of T1
−1. All of these characteristics are consistent with a field induced SDWp with p=2

around an intermediate field of ∼ 9 T, and a spin-nematic state above Hc1. In the gapped

regime the longitudinal correlations are decaying with lowering T which corresponds to

the sign change of the power-law exponent β [14,15]. The gapped excitation spectrum

is a distinct feature of the spin-nematic state of the weakly coupled 1D-chains with on-

ly a weak soft mode in the longitudinal channel [12]. Furthermore, with the help of ESR

measurements and theoretical considerations, by the field dependence of the gap, and

by the fact that the magnetization does not saturate above 13 T (Fig. 2a), we could

exclud e that the gap in T1
−1 arises from full polarization of the spins or from staggered

antisymmetric Dzyaloshinskii-Moriya interactions. Instead, the gap is indeed a signa-

ture of a spin-nematic state, where the transverse spin fluctuations are expected to be

gapped, and the longitudinal correlations follow the power law ∼ T β.

Beyond the experimental work, we have performed extensive theoretical calculations.

Relativistic density functional (DFT and DFT+U) electronic structure calculations have

been performed with the aim to understand (i) the amount of interchain couplings and

(ii) the magnitude of the intra-chain couplings. With respect to (i) we have analyzed the

dispersion of bands and found pronounced 1D van Hove singularities near the Fermi

level. Thus, we have confirmed the nearly 1D behavior of LiCuSbO4. Regarding (ii), we

arrive at a sizable splitting of the two NN exchange integrals: J1 = −160K and J1’ = −90K

(Fig. 1), whereas J2 ≈ 37.6 K, only. Thus, we are left with a dominant FM total NN

couplin g and an unrenormalized mean frustration parameter α = J2 /[(J1 + J1’)/2] ≈ 0.3,

close to the quantum critical α = 0.25. 

Density matrix renormalization group calculations (DMRG) were done to analyse a nov-

el anisotropy mechanism based on the low-symmetric NN exchange anisotropy, which

in addition to the J1 −J2 frustration, stabilizes a nematic phase in a moderate high-field

region. In addition, a weak homogeneous and staggered NN DM coupling was found not

to destroy the nematicity. We introduced a 1D frustrated Heisenberg model with a xyz

exchange anisotropy and a magnetic field H along the z axis, and calculated the mag-

netization curve using DMRG. By fitting the experimental curve in Fig. 2 a, we have found

a possible parameter set of the Jx, Jy, and Jz couplings, and a nematic state is established

by the xyz exchange anisotropy in the calculations. To check this possibility, we have cal-

culated the nematic correlation function as an indicator of magnon pairing. Our single

chain Hamiltonian with the involved specific exchange anisotropy describes a 1D system

with a distinctive nematically ordered ground state at T = 0 and at high enough mag -

netic fields in contrast with simple AFM Heisenberg chains. With increasing finite T

this distinct order is more and more suppressed. The field range with the enhanced

nemati c correlations agrees well with that region where the spin gap has been experi-

mentally observed, namely, in between H = 13–16 T. A similar nematicity scenario has

been proposed in our recent work devoted to linarite [16], but there yet not fully

confirme d experimentally. Furthermore, we have also studied the effect of additional

uniform or staggered DM couplings allowed by the crystallographic symmetry as men-

tioned above. As a result we found that the nematic state is hardly affected by a weak

DM coupling. The effect of a staggered DM interaction is even weaker than that of a

unifor m one. 
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Conclusion

We have identified experimentally and theoretically a field induced SDW2 phase, which

is followed by a spin-nematic state above a critical field Hc 1. These phases and the

paramete r window measured by NMR are visualized in the schematic phase diagram

of LiCuSbO4 in Fig. 3. Certainly, there must be also a second “upper” critical field Hc2

framin g the stability region of the strong nematic state in LiCuSbO4. This calls for fur-

ther experimental studies of LiCuSbO4 at higher fields and also at lower temperatures.

[1] H.-J. Grafe, et al. Scientific Reports 7, 6720 (2017)
[2] E. Fradkin, et al. Annu. Rev. Condens. Matter Phys. 1, 153 (2010).
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[12] O. Starykh, et al. Phys. Rev. B 89, 104407 (2014).
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Funding: Deutsche Forschungsgemeinschaft, grants SFB 1143, KA 1694/8-1, 
GR 3330/4-1, Emmy Noether Programme projects WU595/3-1, and WU595/3-2, 
project RFBR 14-02-01194. ICC-IMR.

Cooperation: 1Zavoisky Physical-Technical Institute of the Russian Academy of Sciences,
420029, Kazan, Russia; 2Institute of Materials Research, Tohoku University, 980-8577,
Sendai, Japan; 3Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany;
4Universität Magdeburg, Institut für Theoretische Physik, Magdeburg, Germany

Fig. 3: Schematic phase diagram of LiCuSbO4, 
in part reproduced from Dutton et al. [13]. 
The red area presents an anomalous field induced
SDWp phase, whereas the yellow area depicts a 
stability region of the nematic state. The region
measured by NMR is marked by the black 
rectangle. The blue dashed line denotes the 
critical field Hc1. The brown closed circles labelled
Hsn

max connected with the dashed line depict 
the field of the maximum of the spin-nematic 
correlation function as found in the DMRG 
analysis.
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Correlation induced electron-hole asymmetry 
in quasi-2D iridates

E. M. Pärschke, K. Wohlfeld1, K. Foyevtsova2, J. van den Brink

Abstract: The iridate Sr2IrO4 closely resembles the cuprate La2CuO4 from a magnetic

and crystallographic point of view. When doped with charge carriers, the insulating,

antiferromagnetic cuprate La2CuO4 becomes a superconductor with a relatively high

transition temperature. This raises the question how far Sr2IrO4 is away from supercon-

ductivity upon doping. The first step towards understanding this issue is provided by

a study of the motion of a single charge carrier that is introduced to the compound.

Our theoretical study shows that an electron added to Sr2IrO4 forms a spin- polaron,

similar to the cuprates. But the situation of a removed electron - an added hole - is far

more intricate. In this case complex many-body configurations of singlet and triplet

character form. This effect is due to the presence of strong spin-orbit coupling in irid-

ium ions in combination with electronic correlation effects. As a consequence the cal-

culated photoemission spectrum of Sr2IrO4 (left panel) is very different from its inverse

photoemission spectrum (right panel). We conclude that, unlike in the case of the

cuprates, the electronic structure of electron and hole doped iridates are fundamen-

tally different.

Motivated by similarities between Sr2IrO4 and La2CuO4, we ask the question whether the

quasi-2D iridates can also become superconducting upon charge doping. On the exper-

imental side, very recently signatures of Fermi arcs and the pseudogap physics were found

in the electron- and hole-doped iridates [4, 3] on top of the d-wave gap in the electron-

doped iridate. On the theoretical side, one needs to study a doped multiorbital two-

dimensional Hubbard model supplemented by the non-negligible spin-orbit coupling,

which is a very difficult task. Fortunately, there exists one nontrivial limit of the two-

dimensional doped Hubbard-like problems, whose solution can be obtained in a rela-

tively exact manner. It is the so-called single-hole problem which relates to the motion

of a single charge (hole or doublon) added to the AF and insulating ground state of the

undoped two-dimensional Hubbard–like model [5]. In the case of the cuprates, this prob-

lem has been intensively studied both on the theoretical as well as the experimental side

and its solution (the formation of the spin polaron, i.e. strong coupling of the propagat-

ing hole to the magnons) is considered a first step in understanding the motion of doped

charge [5]. Here we calculate the spectral function of the correlated strong coupling

model describing the motion of a single charge doped into the AF and insulating ground

state of the quasi-2D iridate. The main result is that we find a fundamental difference

between the motion of a single electron or hole added to the undoped iridate.

In particular, introducing a single electron into the quasi-2D iridates, as experimen -

tally realised in an inverse photoemission (IPES) experiment, leads to the creation of

a single 5d 6 doublon in the bulk, leaving the nominal 5d 5 configuration on all other

iridium sites. Since the t2g shell is for the 5d 6 configuration completely filled, the only

eigenstate of the appropriate ionic Hamiltonian is the one carrying J = 0 total angular

momentum. Therefore, just as in the cuprates, the 5d 6 doublon formed in IPES has no

internal degrees of freedom, i.e. �d � � �J = 0�, see Fig. 1.

On the contrary, the hopping of a hole to the nearest neighbor site does not neces -

sarily lead to the coupling to the magnetic excitations from j = 1/2 AF. In [12] we derive

the microscopic model for a single hole introduced into the iridate forming 5d 4

configuratio n, which resembles the case encountered in the photoemission (PES) exper-

iment. Ommiting the details, we point out that due to the strong Hund’s coupling the

lowest eigenstate of the appropriate ionic Hamiltonian for four t2g electrons has the
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total (effective) orbital momentum L = 1 and the total spin momentum S = 1. Moreover,

in the strong spin-orbit coupled regime the eigenstates of such an ionic Hamiltonian are

the lowest lying J = 0 singlet S, and the higher lying J = 1 triplets Tσ (σ = −1, 0, 1, split

by energy λ from the singlet state) and J = 2 quintets. Thus, one obtains that, unlike e.g.

in the cuprates, the 5d 4 hole formed in PES is effectively left with four internal degrees

of freedom, i.e. �h� � ��S �, �T1�, �T0�, �T−1��, see Fig. 1.

Once the hybridization between the iridium ions is turned on, the hopping of the 5d4 hole

between iridium sites i and j is possible, which, similarly to the IPES case, may or may

not couple to magnons. However, there is one crucial difference w.r.t. IPES: the 5d 4 hole

can carry finite angular momentum and thus the 5d 4 doublon may move between the

nearest neighbor sites without coupling to magnons.

Using SCBA [5] we calculate the relevant Green functions for the single electron (5d 6

doublo n) and the single hole (5d 4 hole) doped into the AF ground state of the quasi-2D

iridate.

We first discuss the calculated angle-resolved IPES spectral function shown in Fig. 2(b).

One can see that the first addition state has a quasiparticle character, though its

dispersio n is relatively small: there is a rather shallow minimum at (π/2, π/2) and a

maximu m at the Γ point. Moreover, a large part of the spectral weight is transferred

from the quasiparticle to the higher lying ladder spectrum, due to the rather small

ratio of the spin exchange constants and the electronic hopping [5]. Altogether, these

are all well-known signatures of the spin-polaron physics: the mobile defect in an AF is

Fig. 1: Low energy eigenstates of iridium ions (a) Quantum numbers characterising certain elec-
tronic configuration, where j, l, and s ( J, L, and S ) stands for single-particle (multi-particle) total,
orbital, and spin angular momentum. The red circles indicate the states that are explicitly taken
into account in our effective low-energy theory. (b) Eigenstates for the 5d4 configuration (rele-
vant for the 5d4 hole case) of the appropriate ionic Hamiltonian of iridium ion. 
(c) Same as (b) but for the 5d 5 configuration (as relevant for the quasi-2D iridate ground state).
(d) Same as (b) but for the 5d6 configuration (relevant for 5d6 doublon case). Blue, red and beige
cartoon orbitals indicate the one-particle states with the effective angular momentum l = 1 and
l z = 1, l z = −1 and l z = 0 respectively. Round beige cartoon orbital indicates full shell with L = 0.
Up (down) black arrows indicate s z = 1/2 (s z = 1/2) of spin s = 1/2 states. No arrow on an orbita l
indicates S = 0 state.
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strongly coupled to magnons (leading to the ladder spectrum) and can move coher -

ently as a quasiparticle only on the scale of the spin exchange J1 [5]. Thus, it is not strik-

ing that the calculated IPES spectrum of the iridates is similar to the PES spectrum of the

t – J model with a negative next nearest neighbor hopping – the model case of the hole-

doped cuprates. This agrees with a more general conjecture, previously reported in the

literature: the correspondence between the physics of the hole-doped cuprates and the

electron-doped iridates [14].

Due to the internal spin and orbital angular momentum degrees of freedom of the 5d 4

states, the angle-resolved PES spectrum of the iridates (Fig. 2a) is very different. In good

agreement with experiment [1, 9, 7], the first removal state shows a quasiparticle

character with a relatively small dispersion and a minimum is at the (π, 0) point (so that

we obtain an indirect gap for the quasi-2D iridates). Also the plateau around (π/2, π/2)

and the shallow minimum of the dispersion at the Γ point are reproduced, where the

latter is related to a strong back-bending of higher energy J = 1 triplets [12]. On a

qualitativ e level this quasiparticle dispersion resembles the situation found in the PES

spectrum of the t – J model with a positive next nearest neighbor hopping, which should

model the electron-doped cuprates (or IPES on the undoped). However, the higher en-

ergy part of the PES spectrum of the iridates is quite distinct not only w.r.t. the IPES but

also the PES spectrum of the t – J model with the positive next nearest neighbor hopping.

Thus, the spin-polaron physics, as we know it from the cuprate studies [5], is modified

in this case and we find only very partial agreement with the paradigm stating that the

electron-doped cuprates and the hole-doped iridates show similar physics [14].

This difference follows from the interplay between the free and polaronic hoppings of the

introduced hole which is typically highly nontrivial. The free hopping of the 5d 4 hole is

possible here for both the J = 0 singlet and J = 1 triplets which leads to the onset of

severa l bands. Moreover, the J = 1 triplets can freely hop not only to the next nearest

neighbors but also to the nearest neighbors. For the polaronic hopping, the appearance

of several polaronic channels, originating in the free J-bands being dressed by the

j = 1/2 magnons, contributes to the strong quantitative differences w.r.t. the 5d 6

doublo n case or the cuprates.

Fig. 2: Theoretical spectral functions of iridates (a) Photoemission (PES) and (b) inverse photo -
emission (IPES) spectral function of the low-energy (polaronic) models developed for the quasi-
2D iridates and solved using the self-consistent Born approximation
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In conclusion, the differences between the motion of the added hole and electron in the

quasi-2D iridates have crucial consequences for our understanding of these compounds.

The PES spectrum of the undoped quasi-2D iridates should be interpreted as showing the

J = 0 and J = 1 bands dressed by j = 1/2 magnons and a free nearest and further neigh-

bor dispersion. The IPES spectrum consists solely of a J = 0 band dressed by j = 1/2

magnons and a free next nearest and third neighbor dispersion. Thus, whereas the IPES

spectrum of the quasi-2D iridates qualitatively resemble the PES spectrum of the

cuprates, this is not the case of the iridate PES.

This result suggests that, unlike in the case of the cuprates, the differences between

the electron and hole doped quasi-2D iridates cannot be modelled by a mere change of

sign in the next nearest hopping in the respective Hubbard or t – J model. Any realistic

model of the hole doped iridates should instead include the onset of J = 0 and J = 1

quasiparticl e states upon hole doping.
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Large, three-dimensional and faceted LaFeAsO crystals 

R. Kappenberger, S. Aswartham, F. Scaravaggi, C. G. F. Blum, M. I. Sturza, P. Lepucki, 

F. Caglieris, X. Hong, C. Hess, H.-J. Grafe, A. U. B. Wolter, S. Wurmehl, B. Büchner

Abstract: Even after nine years of intense research on iron-based superconductors, large

and well faceted single crystals with considerable c axis growth of the 1111 family are

still a challenge to be grown. The lack of crystals is hindering their investigation as

posing limits to methods yielding results in k-space (e.g., ARPES, STM, …) and any

c-axis dependent measurements.

In 2017, we were able to apply a sophisticated route based on the not-so-well-known

method of solid state single crystal growth (SSCG) to yield large LaFeAsO single crys-

tals with a considerable crystal growth along the c-axis [1]. 

State-of-the-art

Soon after the discovery of iron-based superconductors single crystals were success -

fully grown in the 11, 122 and 111 families [2-4], the method of choice being self-flux

growth. In the 1111 family, single crystals are hard to be obtained via flux growth

[5,6], although crystals could be successfully synthesized using high pressure high tem-

perature synthesis [7]. However, this method yields rather small crystals and also does

not lead to a reasonable growth along the c direction either. This hurdle has, so far, lim-

ited the detailed investigation of the 1111 family of pnictide superconductors rendering

them the least studied family among all iron-based superconductors. In this work, we

have the SSCG growth method to yield large LaFeAsO single crystals with a considerable

crystal growth along the c axis. 

Solid state single crystal growth (SSCG) 

Solid state single crystal growth (SSCG) is a rather uncommon crystal growth technique.

SSCG has been used to synthesize ceramic materials such as BaTiO3 [8] as well as metal-

lic materials [9]. This method utilizes the phenomenon of abnormal grain growth (AGG)

to grow single crystals from a polycrystalline matrix. While many systems exhibit AGG,

its origin and mechanism is not fully explained so far [10]. Facetted growth and the

presence of a secondary phase have been empirically reported to aid SSCG as well as de-

liberately chosen additives [11]. Several mechanisms have been discussed, for example

grain boundary roughening [12] or the aid of a liquid phase [13].

In our solid state crystal growth experiments, we used polycrystalline pellets and Na-

As powder. Both materials were eventually prepared before the growth and layered int o

an alumina crucible. The molar ratio of LaFeAsO to Na-As used was 1:4, which corresponds

to a ratio in volume of about 1:1. The alumina crucible was welded into an Nb crucible

using approximately 1 bar of argon pressure. For protection from air, the Nb crucible was

enclosed in quartz glass. Subsequently, the material was heated to 1080°C and annealed

for 200 h. After the reaction, the pellets were removed from the crucible and placed in-

to a 1:1 mixture of ethanol and distilled water to remove the water-soluble Na-As. For

removing remaining flux on the crystal surface, the crystals were placed in an ultra -

sonic bath using acetone as a solvent. Single crystals sized up to 2 x 3 x 0.4 mm3 were

obtained. Representative crystals with pronounced facets are shown in Fig. 1. Crystal

growth occurred mainly on the outer surface of the pellets, whereas the crystal size is

considerably smaller in the inside of the pellets.

Solid state single crystal growth occurs when the growth of grains with a specific ori-

entation is preferred, therefore producing abnormally fast growing grains which consume

the neighbouring grains, leading to a bimodal size distribution [12]. A scheme of the

Fig. 1: As-grown LaFeAsO single crystals with 
pronounced facets and a thickness of up to 0.4 mm.
One square on the paper is 1 mm x 1 mm [1].
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process is shown in Fig. 2. In the present case, a liquid phase is introduced to facilitate

SSCG in the form of Na-As. Na-As is actually a phase mix consisting of several phases. The

mixture is melting at 550°C as seen in our DTA measurement (not shown) and starts

penetratin g the pores of the polycrystalline LaFeAsO matrix. At the maximum synthe-

sis temperature of 1080°C the mobility of the atoms in the polycrystal is high enough

to start the SSCG process. The fact that Na-As diffuses into the pores of the polycrystals

is evident by looking at the LaFeAsO pellets after the crystal growth - the pellets retain

their shape, but on contact with water Na-As starts dissolving, thereby releasing the

insolubl e grown crystals from the pellet.

We explored several parameters to verify the SSCG scenario and 

to optimize growth conditions:

Time: The time spent at the maximum temperature is directly correlated to 

the sample size and the growth along c-axis. A first experiment where 

the sample was held at 1080°C for only 48 h yielded crystals with a 

thickness of only about 50 μm without well-formed facets. This 

observation demonstrates that the growth is not a growth from a 

solution, where the crystals grow upon cooling and, hence, upon 

exceeding the solubility product, but in solid matter, where the 

diffusion process scales with time.

Liquid phase: FeAs and LaAs were also tested as liquid phases to avoid incorporation 

of foreign atoms, but FeAs did not diffuse into the polycrystalline 

matrix and the melting point of LaAs is considerably higher than 

1080°C. 

Temperature: Unfortunately, high synthesis temperatures where LaAs could be used 

as the liquid phase are limited by another effect - high temperatures 

lead to interface roughening, thereby preventing the formation of 

faceted grains which are known to be crucial for abnormal grain 

growth [14]. An experiment with Na-As as a liquid phase with 1110°C 

as the maximum temperature yielded considerably smaller crystals.

Mixing: Ground polycrystalline LaFeAsO powder which is thoroughly mixed 

with Na-As leads to strongly decreased crystal size, as expected if 

growth is via SSCG method.

Powder and single crystal X-ray diffraction were performed on the crystals to confirm

the tetragonal crystal structure P4/nmm (No. 129) of LaFeAsO at room temperature. Laue

diffraction was performed to check for single crystallinity (to exclude twinning and

intergrowt h of crystals) and to identify the facets. Fig. 3 shows a schematic drawing of

the crystal morphology and measured Laue diffraction patterns for the {001} and {101}

facets.

Properties of LaOFeAs crystals

The magnetic susceptibility data of LaFeAsO obtained at an external fields of μ0H = 1T

is shown in Fig. 4. Both the magnetic and the structural transition can be assigned to

anomalies shown in Fig. 4. The left inset shows the derivative of the curve, highlighting

the two transitions which can be determined to be at  TN = 127 K (emergence of the

spin-density wave) and Ts = 145 K (structural transition from P4/nmm to Cmmm). The

clearly visible splitting of the two transitions in the susceptibility measurements has not

been clearly observed before in polycrystalline samples. Above the phase transitions the

susceptibility increases linearly, a behavior which has often been observed in the iron-

pnictides [14] and which so far is unexplained as it cannot be described with models

referrin g to purely localised or purely itinerant charge carriers. 

Fig. 2: Schematic drawing of the SSCG process. 
A liquid phase is added to a polycrystalline matrix
with a unimodal size distribution. After annealing, 
a bimodal size distribution has developed, including
large faceted crystals [1].

Fig. 3: Schematic drawing of a crystal indicating 
the facets featuring corresponding Laue patterns
which were used to identify the facets [1].
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Outlook

We will continue to extend the materials basis in the 1111 family to other members. Our

large, three-dimensional and faceted crystals set the stage for investigations that were

until now limited due to the lack of suitable crystals. We will use the crystals to further

explore nematic fluctuations and polarons aiming towards a deeper understanding of the

physics of Fe-based superconductors. 
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Fig. 4: Magnetic susceptibility measurement on a LaFeAsO single crystal parallel to ab with
μ0H =1T. The left inset shows the first derivative of the measurement, highlighting the struc -
tural and magnetic transitions. The inset on the right shows the susceptibility with the field aligned
parallel to the ab plane and parallel to the c axis.



Nanotubular spin-waves conduits

J. A. Otálora, A. Kákay,1J. Lindner, 1H. Schultheiss,1K. Geishendorf, A. Thomas, K. Nielsch

Abstract: Substantial efforts for understanding and controlling mechanisms govern-

ing the spin-wave’s (SW) behavior in a wide variety of ferromagnetic architectures are

taking place. This is because of its potential for boosting spintronics devices towards

applications with unprecedented technological advantages. In this context, a novel lay-

out is proposed and it would significantly foster the endeavor: magnetic nanotubes.

Its outstanding non-reciprocal SWs properties might be the key for their success. These

features are maximum at the ground state and are present not only in the SWs disper-

sion, but also manifest via non-reciprocal SWs absorption. This leads to a difference

in the decay length of counter-propagating magnons along the tube length and the

azimutha l direction [1,2]. Its magnons are plane-waves and its non-reciprocities can

be controlled with an application of weak DC magnetic fields around the tube’s large

axis. Our finding s suggest the magnetic nanotubes as a novel layout for efficient,

flexibl e and reconfigurable magnonic applications.

Curvature-induced non-reciprocal effects

New routes to modify the characteristics of materials with ferromagnetic order are to

bend thin film membranes. Bending the membrane can lead to internal strains and to

a breaks local inversion symmetry [3], resulting, for example, in an unambiguous

distinctio n between the outer and inner surfaces in case of curved geometries such as

nanotubes. The internal energies are also affected, especially when the curvature radius

reaches intrinsic length scales. In strongly curved systems [4], off-diagonal elements

of the exchange interaction are not negligible, leading to chiral ordering. Moreover, the

fields are also influenced by the break of the inversion symmetry. Due to the modified

energies, the magnetic ordering and the magnetization dynamics differ from those

known for thin-films [5-7]. Therefore the curvature can be seen as an extra degree of

freedo m for controlling the characteristics of ferromagnetic materials. 

In Magnonics, spin waves (SWs) or magnons are proposed to transport and process

informatio n analog to, for instance, the charge currents in electronics. Engineering

magnon properties to control the SW excitation and propagation is therefore a crucial

task and, under this goal, the membrane curvature can be used to extend the toolbox

of operations for controlling SWs, which is required in applications such as communica-

tion and logic devices [1,2,8]. Geometries like Möbius rings, helices, grooves stripes, and

nanotubes can be accounted as few sets of layouts wherein the system curvature has

an impact on the SW dynamics. Such topologies are being investigated in our group, with

magnetic nanotubes as our main focus.

Our theoretical predictions suggest magnetic nanotubes as layouts with outstanding SWs

properties, which might boost spintronics devices towards applications with unprece-

dented lower power consumption, reconfigurable functionality, faster operative rates

and further miniaturization. The tunable non-reciprocal SW features induced by the

nanotubula r curvature [1,2,8] is the key. The SWs dispersion relation and absorption is

asymmetric regarding the sign of the propagation vector. This means that counter-

propagatin g magnons have different wave vectors and different extinction lengths for

a given frequency. This can be exploited, for instance, to avoid the formation of

standing spin wave resonances. Therefore, it provides conditions for uni-directional prop-

agation of SWs packages that is fundamental to enhance the efficiency of SWs-based

logic devices [9]. Figure 1(a) sketches a Permalloy (Ni-Fe) nanotube in a circular mag-

netic state wherein the SWs are excited by an rf-field applied at the center of the tube.
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Quasi-monochromatic magnons of different orders (n = 0, ±1, ±2) excited at 4.7 GHz

are shown in Fig. 1(b, c). The radial component of the excited magnon modes is repre-

sented by the color code in Fig. 1(b). Note that the wavelength and transport length of

counter-propagating magnons differ. Figure 1(c) shows the magnon field distribution

along the nanotube perimeter. The case of non-reciprocal SW dispersion and intrinsic

linewidth are presented in Fig. 2(a) and (b), respectively. Aspects like the optimization

of the curvature-induced non-reciprocity as a function of the system size and mag -

netic ground state are currently under research in our group. It means to control the

magnons mode profile and the tuning of non-reciprocity via weak DC external mag -

netic fields.

We believe that three dimensional curvilinear magnetic membranes, in particular

nanotube s, can be exploited as a novel layouts for non-reciprocal conduits, for magnons

transport along curved paths, and as one-dimensional magnonic crystals. 

Synthesis and characterization of nanotubular magnonic devices

Based on the experimental techniques available in our facilities and in our partner’s lab-

oratories for synthesis and magnetic characterization, our research is focused to one type

of curved multilayered nanoconduits: core-shell magnetic nanotubes (CSMNs), which

consist in elongated cylindrically-shaped shells disposed in a concentric configuration

[11], as illustrated in Fig. 3. 

Processes for synthesis are performed by the combination of atomic layer deposition

(ALD) and electrodeposition techniques, leading to the availability of CSMNs with inner

metal wire (Pd, Cu, Au) and outer Insulator Magnetic shell (γ-Fe3O4), with diameters

ranging between 100 nm and 1micron diameter, 1 micron and 20 microns length and

1nm and 50 nm shell thickness. 

Fig. 1: (a) Circular magnetic configuration is excited
with a monochromatic RF field in order to create spin
waves traveling in opposite directions. The wave 
vectors of the left and right propagating SWs differ,
although they have the same frequency. 
(b) Distribution of counter-propagating radial
magnon-mode amplitude excited at 4.7 GHz and 
their (c) orientation of magnon vector field along the
nanotube perimeter for modes n = 0, ±1, ±2. λL and
λR denotes the wavelength of magnons propagating
to the left (L) and right (R), respectively. The Permal-
loy nanotube radius is 80nm with a thickness of
10nm.  

Fig. 2: (a) Dispersion relation of magnons traveling
along the large nanotube axis with wave-vector kz.
Modes of different order are labeled with n = 0, 
±1, ±2. (b) Frequency linewidth of the first three-
magnon modes. The Permalloy nanotube radius 
is 80 nm with a thickness of 10 nm.



22 Research Area 1    FUNCTIONAL QUANTUM MATERIALS

Our laboratory accounts with multiple ALD set ups for conformal coating of different

template s, which can either be arranged of freestanding metal nanowires or nanoporous

anodic aluminum oxide (AAO). In the first case, the insulating magnetic shell is direct-

ly deposited on the cylindrical metal nanowires using ALD. In the latter, case the AAO

is first coated with the insulating magnetic shell and then filled with a metal using

electrodepositio n. In a last step, this technique requires to etch away the AAO leading

to an array of CSMNs.

Both approaches exploit the outstanding ability of ALD to coat high aspect ratio tem-

plates in a uniform manner. The synthesis of magnetic materials via ALD often requires

special modifications of the standard deposition setups. Our laboratory can meet

those requirements with a number of different reactors. The growth of γ-Fe3O4 using

ferrocen e as precursor, for example, requires ozone as oxidizer, which can be supplied

with an external ozone generator. ALD thin films of FeOx have already been success -

fully deposite d in our lab. The next steps are to optimize the film composition and the

magnetic properties with suitable deposition parameters and heat treatments. This

optimize d process can then be used to synthesis CSMNs with γ-Fe3O4 as insulating mag-

netic shell.
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Fig. 3: Illustration of a core-shell magnetic nanotube (Left) made of three concentric shells and
its synthesis by combination of ALD and electrodeposition in alumina templates (Right) [11]
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Fig. 1: (a) The BZ of a WSM as a collection of 2D 
insulators with zero (green) or nonzero (red) Chern
numbers. Weyl nodes (blue spheres) separate planes
with different Chern numbers. The bold frames 
indicate the TRI 2D insulators characterized by a �2

invariant. (b) Typical low-energy surface spectrum 
of a TRI WSM with an additional surface Dirac cone:
surface states are shown in red, whereas the surface
projections of the 3D bulk Weyl cones are high -
lighted in blue. (c)-(d) Fermi arc connectivities in 
the surface BZ of a TRI WSM with four Weyl points
indicated by their topological charge ±. The surface
projections of the TRI planes are highlighted by 
dotted black (ν = 0) or dashed green (ν = 1) lines.

Generic Coexistence of Fermi Arcs and Dirac Cones on the 
Surface of Time-Reversal Invariant Weyl Semimetals 

A. Lau, K. Koepernik, J. van den Brink, C. Ortix

Abstract: The hallmark of Weyl semimetals is the existence of open constant-energy

contours on their surface – the so-called Fermi arcs – connecting Weyl points. In this

work, we show that for time-reversal symmetric realizations of Weyl semimetals these

Fermi arcs in many cases coexist with closed Fermi pockets originating from surface

Dirac cones pinned to time-reversal invariant momenta. The existence of Fermi

pockets is required for certain Fermi-arc connectivities due to additional restrictions

imposed by the six �2 topological invariants characterizing a generic time-reversal

invarian t Weyl semimetal. We show that a change of the Fermi-arc connectivity

generall y leads to a different topology of the surface Fermi surface, and identify the

half-Heusler compound LaPtBi under in-plane compressive strain as a material that

realize s this surface Lifshitz transition. We also discuss universal features of this

coexistenc e in quasi-particle interference spectra.

Weyl Semimetals

Sparked by the discovery of the quantum Hall effect and its theoretical explanation, the

study of topological phases of matter has been one of the driving forces in modern con-

densed matter physics [1,2]. In recent years, the family of topological materials has been

extended by topological semimetals [3]. A milestone was the experimental discovery of

Weyl semimetals (WSMs) [4-6]. WSMs are three-dimensional (3D) gapless materials

whose bulk energy bands cross linearly at isolated points, the so-called Weyl nodes, in

the Brillouin zone (BZ) [3].

A Weyl node represents a monopole of the Berry flux in momentum space. Consequent-

ly, an integral of the Berry flux over a closed surface enclosing the Weyl node results

in a nonzero integer value, which defines the topological charge of the node. Since the

total topological charge of the whole BZ must vanish, Weyl nodes always appear in pairs

of opposite charge and can only be annihilated pairwise. For this reason, they are a ro-

bust bulk feature [3]: generic perturbations shift the nodes in energy and momentum

space without annihilating them.

The nonzero topological charge of the Weyl nodes can also be interpreted as the change

in the Chern number of the collection of gapped two-dimensional (2D) systems realized

by decomposing the 3D BZ of a WSM in 2D momentum space cuts separating the Weyl

points from each other (see Fig. 1a). This property is at the basis of the existence of one

of the most interesting hallmarks of WSMs: the existence of open constant-energy con-

tours in the surface BZ called Fermi arcs connecting the surface projections of Weyl nodes

with opposite charge [3].
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�2 Invariants in TRI Weyl Semimetals

Time-reversal invariant (TRI) realizations of WSMs are special because they can be ad-

ditionally characterized by six �2 invariants associated with the TRI planes of the BZ [7].

The Chern number of the effective 2D insulators realized by the TRI planes will be zero,

but the time-reversal polarizations still allow to characterize the effective 2D systems

in terms of a �2 topological invariant ν [8].

For a generic surface of a WSM, by bulk-boundary correspondence the νi determine

whether an even (ν i = 0) or odd (ν i = 1) number of Kramers pairs of surface states cross

the Fermi level along the surface projection of the i-th TRI plane. This imposes restric-

tions on the structure of the surface Fermi surface but still does not uniquely determine

it. Figs. 1(c) and (d) sketch two allowed but qualitatively very different surface Fermi

surface s of a TRI WSM with corresponding �2 invariants. A surface Fermi surface con -

sisting of only two open arcs, connecting Weyl points as depicted in Fig. 1c, is entirely

allowed. However, different pairs of Weyl points of opposite charge can be connected

only if an additional Fermi pocket, enclosing a TRI point, is created (see Fig. 1d). The

latter situation is a unique signature of Fermi arcs coexisting with a surface Dirac cone

(see Fig. 1b), which is an exclusive feature of TRI WSMs [7]. This surface Dirac cone is pro-

tected for a given connectivity of the Fermi arcs. We emphasize that while this transition

does not change the �2 invariants of the TRI WSM, the change of the Fermi surface

topolog y does imply a Lifshitz transition on the surface of the material.

Phenomenological QPI Patterns

Having established the coexistence of Fermi arcs and Dirac cones in TRI WSMs, we

procee d to analyze their fingerprints in quasiparticle interference (QPI) patterns, which

can be observed in scanning tunnelling spectroscopy experiments. QPI spectra can be

approximated in terms of the joint density of states (JDOS) [9,10]. To understand the

characteristic features arising in QPI spectra, we have therefore performed a phenom-

enological analysis of the JDOS. As a result, we identify two kidney-shaped features,

correspondin g to scattering events between the Fermi arcs and the Fermi pocket, as the

universal QPI feature of the coexistence [7].

Tight-Binding Model

Next, we study a generic tight-binding model for a TRI WSM to investigate on a

microscopi c basis the coexistence of surface Dirac cones and Fermi arcs [7,10]. For

this purpose, we start from a particular WSM phase and vary a tuning parameter β. The

results are presented in Fig. 2. With the chosen parameters, the model features four bulk

Weyl points with topological charge ±1. For the topological invariants of the TRI planes

we find that νkz = π = 1 while the remaining five �2 invariants are all zero. At the (010)

surface we therefore expect an odd number of Kramers pairs at kz = π and an even

numbe r at kz = 0 and kx = 0,π.

For large values of β we find that Fermi arcs connect two Weyl nodes in the left half-

plane and two Weyl nodes in the right half-plane (see Fig. 2a). In Fig. 2b we show the

calculated JDOS of the system. By decreasing the parameter β, a Lifshitz transition takes

place (see Fig. 2c) and the connectivity of the Fermi arcs changes (see Fig. 2e): surface

Fermi arcs connect now two Weyl nodes in the upper half-plane and two Weyl nodes in

the lower half-plane. In addition, we find an elliptical Fermi pocket of surface states

correspondin g to a surface Dirac cone around the Z point of the surface BZ. The Fermi

pocket is required for this particular connectivity of Weyl nodes to satisfy the number of

surface states imposed by the invariants νi which have not changed during the transi-

tion. In agreement with our general considerations, the corresponding JDOS exhibits the

kidney-shaped features indicative of scattering between the Fermi arcs and the Fermi

pocket (see Fig. 2f).
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Fig. 3: Surface Fermi surfaces of LaPtBi with (001)
termination: shown is the surface spectral weight.
The positions of the four Weyl-point projections are
marked by grey dots. The panels display the transi-
tion between different Fermi-arc connectivities by
varying the Fermi level. The connectivity shown in 
(c) requires the presence of an additional Fermi 
pocket around the origin. (d) A further increase of
the Fermi level reveals that the Fermi pocket indeed
originates from a Dirac cone around Γ.

LaPtBi under Strain

We next show the coexistence of Dirac cones and Fermi arcs in the half-Heusler compound

LaPtBi. Theoretical ab-initio studies suggest that LaPtBi realizes a WSM phase with

eight Weyl nodes under a broad range of in-plane biaxial compressive strain [11]. We con-

firm this by performing DFT calculations employing the Full Potential Local Orbital

method [12]. We find eight Weyl points of charge ±1 located at the kx = 0 and ky = 0

planes of the bulk BZ.

For the study of surface states, we investigate a semi-infinite slab with a (001) surface

corresponding to a termination along one of the LaBi planes. In the (001) surface

BZ, the Weyl points are projected pairwise on four different surface momenta thereby

giving the projected Weyl points an effective topological charge of ±2. Hence, there must

be two outgoing Fermi arcs for each Weyl-point projection. Moreover, we find that the

projections of the TRI planes kx = ky and kx = –ky feature an odd number of surface

Kramers pairs (see Fig. 3). This implies non-trivial �2 invariants which we confirm by

explici t calculations [7]. This gives rise to restrictions on the Fermi surface topology

(see Fig. 3).

Fig. 2: Fermi surfaces and JDOS for (010) surfaces 
in the tight-binding model: the first column shows
the Fermi surfaces for different values of the tuning
parameter β. The bulk Weyl nodes are highlighted 
in blue and their topological charge is indicated. 
Surface states are highlighted in red. The second 
column shows the corresponding JDOS spectra. 
In (f ), the kidney-shaped features indicative of the
coexistence of Fermi arcs and Dirac cones are 
clearly visible in the JDOS.
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In Figure 3a, the Fermi level coincides with the Weyl-point energies. In this case, the

Fermi arcs connect in a way that does not require an additional Fermi pocket. By raising

the Fermi level, which can be accomplished for instance by doping, a Lifshitz transition

takes place (compare Fig. 3b to Fig. 2c). Finally, the connectivity of the Weyl nodes

switches which leads to the emergence of an additional Fermi pocket around the project-

ed Γ point, as shown in Fig. 3c. This Fermi pocket is indeed associated with a surface

Dirac cone (see Fig. 3d) as one can infer from surface Fermi surfaces at larger EF. This

establishes LaPtBi under strain as a potential candidate material for the coexistence of

Fermi arcs and Dirac cones [7].
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Fig. 1: (a) Low-T specific heat Cp/T at zero
and chosen magnetic fields. The data at zero
field taken from Refs. [8,9] are compared. 
(b) Temperature dependence of the uniform
magnetic susceptibility χ at μ0H = 0.1 T ob-
tained for the four different field orientations
with respect to the c axis. The inset enlarges
the low-T region. [14]

Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl3

S.-H. Baek, A. U. B. Wolter, S. Nishimoto, J. van den Brink, B. Büchner

Abstract: The Kitaev model on a honeycomb lattice has attracted much attention due

to its exact solubility and its quantum spin liquid (QSL) ground state, which would be

relevant for quantum computing. We report a combined 35Cl nuclear magnetic resonance

and specific heat study in the honeycomb lattice α-RuCl3, a material that has been

suggeste d to potentially realize a Kitaev quantum spin liquid ground state. Our results

provide direct evidence that α-RuCl3 exhibits a magnetic-field-induced QSL. For fields

larger than ∼10 T, a spin gap opens up, while resonance lines remain sharp, evidenc-

ing that spins are quantum disordered and locally fluctuating. The spin gap increases

linearly with an increasing magnetic field, reaching ∼ 50 K at 15 T. 

State-of-the-art

When the interactions between magnetic spins are strongly frustrated, quantum fluctu-

ations can cause spins to remain disordered even at very low temperatures [1]. The quan-

tum spin liquid (QSL) state that ensues is conceptually very interesting - for instance,

new fractionalized excitations appear that are very different from the ordinary spin-wave

excitations in ordered magnets [2-5]. A QSL appears in the so-called Kitaev honeycomb

model [6,7], which has motivated the search for its experimental realization and its

topologica l QSL phases. Within the last 3 years the quest is mainly centered on α-RuCl3,

which is actually believed to be the prime material to-date to harbor physics related to

the Kitaev model.

α-RuCl3 is a Mott insulator with a 2D layered structure of edge-sharing RuCl6 octahedra

arranged in a honeycomb lattice. The spin and orbital moments on the ruthenium sites

are strongly coupled by the spin-orbit interaction leading to the formation of isospins

Jeff = 1/2. While α-RuCl3 displays magnetic long-range order at low temperature of the

so-called zigzag type due to additional non-Kitaev terms in the Hamiltonian, it has been

proposed to still be proximate to the Kitaev spin liquid based on e.g. its small mag -

netic ordering temperature TN ∼7 K and spin excitation spectrum [8-13].

In α-RuCl3 a very peculiar strongly anisotropic magnetism has been reported [8-10]

based on measurements of the uniform magnetic susceptibility χ and the specific heat

Cp /T. From the data it is clear that the antiferromagnetic (AFM) state observed at low

temperature (T ) is hardly affected by external fields along the c direction whereas the

signatures of the long-range magnetic order disappear for moderate fields (H) of about

8 T applied along the ab plane. This pronounced anisotropy of the magnetism is also found

in our crystals (see Fig. 1a and b). Note that whereas earlier studies [8-10] reported
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Fig. 2: (a) The principal axis of the EFG Vzz at the 
35Cl nuclei is along the shared edges of the RuCl6 

octahedra, resulting in three inequivalent 35Cl sites 
in field. (b) When H⎪⎪c (θ = 0), the 35Cl spectrum is
extremely complex and broad. As H is either parallel
or perpendicular to the direction of Vzz, very narrow
35Cl NMR lines were obtained. (c) 35Cl NMR spec-
trum measured at μ0H = 15 T as a function of T
with cooling for two different field orientations. 
The first-order character of the structural transition is
evidenced by the gradual transfer of the 35Cl spectral
weight below TS ~75 K, as clearly shown in the inset.
(d) NMR shift K as a function of T. The strong
anisotropy of K increases rapidly with decreasing T,
approaching a saturated value below ~10K. The 
dotted line is the estimated T dependence of Kquad.
The inset shows the K vs χ plot, which yields the 
hyperfine coupling constants, A hf

⊥ c’= 17.4 kG/μB

and Ahf
| |c’= 12.3 kG/μB. (e) Spin-lattice relaxation

rate T1
-1 vs. T. Whereas T1

-1 is nearly T-independent
above T*= 160 K, it increases (decreases) for H⎪⎪c’
(H⊥ c’ ) below T*, implying the development of 
in-plane spin correlations. [14]

either two magnetic transitions at TN1 ∼ 8 K and TN2 ∼ 14 K or a single transition at

TN ∼13K, our measurements show, essentially, a single transition occurring at a consid-

erably lower temperature, TN1 ∼ 6.2 K. This evidences that our sample is of high quality

with a (nearly) uniform stacking pattern [12].

NMR spectra

Since the 35Cl nuclei (nuclear spin I = 3/2) possess a large quadrupole moment, the NMR

spectra are strongly affected by the electric field gradient (EFG). In α-RuCl3, the prin-

cipal axis of the largest eigenvalue of the EFG tensor Vzz at 35Cl is expected to point along

the shared edges of the RuCl6 octahedra, which are tilted ∼35° away from the c axis as

illustrated in Fig. 2a. As a result, there exist three inequivalent 35Cl sites, yielding a very

complex and broad 35Cl spectrum in a magnetic field, as shown in Fig. 2b. Taking advan-

tage of the fact that the influence of the quadrupole interaction is very sensitive to the

angle between the direction of Vzz and H, it is possible to separate one 35Cl spectrum from

the other two spectra by applying H along one of the three local directions of Vzz at 35Cl

(see Fig. 2b). Therefore, in the following we will present our NMR results with respect to

the Vzz = c ’ axis.

The T dependence of the 35Cl NMR spectrum at 15 T is presented in Fig. 2c. Clearly, there

is no signature of long-range magnetic order, which would cause a large broadening or

splitting of the 35Cl line. Another feature is the appearance of a new NMR peak that

replace s the original one below ∼75 K. This is due to a first-order structural phase

transitio n [9,10]. Figure 2d presents the T dependence of the resonance frequency ν

in terms of the NMR shift K = (ν -ν0)/ν0 where ν0 is the unshifted Larmor frequency.

K is composed, mainly, of the three terms: K = Ahf χspin + Kchem + Kquad, where Ahf is the

hyperfin e (hf) coupling constant, χspin the local spin susceptibility, Kchem the T inde -

pendent chemical shift, and Kquad the second order quadrupole shift. The strong upturn

of K observe d at low T is attributed to χspin, which is consistent with the macroscopic

susceptibilit y (see Fig. 1b).
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Spin-lattice relaxation rate

Figure 2e shows the T dependence of the spin-lattice relaxation rate T1
-1 at μ0H = 15 T.

At high T > T *∼ 160 K, T1
-1 follows roughly the behavior expected for simple paramagnets.

The different absolute values of T1
-1 for the two orientations of H are ascribed to the

anisotropic hf couplings (see Fig. 2d). As T is lowered below T *, T1
-1 increases for H⎪⎪c’

but it decreases for H⊥ c ’. Since the spin-lattice relaxation process is induced by the

transverse components of spin fluctuations (SFs) with respect to the nuclear quantiza-

tion axis, it is clear that T1
-1 for H⎪⎪c’ experiences stronger in-plane and weaker out-

of-plane SFs than for H⊥ c ’. Hence, the increase of the T1
-1 anisotropy with lowering T

is an indication of the development of strong in-plane SFs below T *.

At low temperatures, roughly below 50 K, T1
-1 starts to decrease. For the study of spin

dynamics at low T, it is convenient to consider the quantity (T1T )-1, which is propor -

tional to the q-average of the imaginary part of the dynamical susceptibility. As shown

in Fig. 3a, a broad maximum of (T1T )-1 occurs near 30 K, being followed by a rapid drop

towards low T in an identical manner for both field orientations. The rapid decrease of

(T1T )-1 implies a pronounced depletion of spectral weight in the spin excitation spectrum.

The semilog plot of T1
-1 against 1/T drawn in Fig. 3b unambiguously reveals a spin

gap behavior, T1
-1∼ exp(-Δ/T ), with the gap Δ ∼ 44 and 50 K for H⎪⎪c’ and ⊥c ’, respec -

tively.

In order to study the H dependence of Δ, we measured (T1T)-1 as a function of H⎪⎪c’ at

low T. The results are shown in Fig.3c and 3d. A spin gap is only seen for μ0H > 10 T and

Δ increases linearly with increasing H. At μ0H = 10 T our data show a Curie-like upturn

of the SFs, i.e., (T1T)-1 diverges for low T. Upon further lowering H below 10 T, a sharp

peak in (T1T)-1 signals static magnetic order below TN which decreases with increasing H.

Below TN, the 35Cl spectrum progressively spreads out with decreasing T, indicating the

incommensurate character of AFM order [8]. Thus, our data for (T1T)-1 clearly show a qual-

itative change of the behavior as a function of H: the peak due to static order occurring

at low field is replaced by a spin gap for μ0H > 10 T. At the border the spin dynamics

Fig. 3: (a) (T1T)-1 as a function of T
measured at 15 T. At low T, (T1T )-1

reaches a maximum at ~30 K for both
field directions which is followed by a
rapid drop upon further cooling. Inset
enlarges the low T region. (b) Semilog
plot of T1

-1 vs. 1/T unravels a spin gap
behaviour T1

-1~exp(-Δ/T). The devia-
tion from the gap behavior takes place
below ~10 K, probably indicating a 
small amount of magnetic defects in the
crystal. (c) Strong field dependence of
(T1T)-1 at low T as a function of H⎪⎪c’.
Below 10 T, the AFM ordered phase 
was clearly detected by sharp peaks of
(T1T)-1. (d) The spin gap Δ is rapidly
filled up with decreasing H⎪⎪c’, 
vanishing completely at 10 T. [14]
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suggest quantum criticality, i.e. a divergence of (T1T)-1 for T = 0. To back our NMR

finding s, we measured Cp /T for H⎪⎪c’ (Fig. 4a). The anomaly associated with AFM order

is rapidly suppressed toward 10 T, which perfectly agrees with the T1
-1 results. Further,

we confirmed that at 14 T Cp /T is significantly suppressed at low T, evidencing the

opening of a spin gap for μ0H > 10 T.

An explanation of the observed spin gap in terms of static magnetic order can be ruled

out. For example, the 35Cl spectra measured at μ0H = 15 T do not show any signature of

magnetic order down to 4.2 K (see Fig. 2c). Moreover, it is difficult to attribute the

extracte d large spin gap to some kind of anisotropy gap occurring in the spin wave spec-

trum in magnetically ordered systems. Not only the measured large gap size, but also the

rather isotropic gap behavior, contradicts any interpretation in terms of anisotropy gaps.

The findings are also incompatible with the gap being due to a saturating ferromag -

netic polarization of spins. The magnetization near 10 T is far less than the saturated

value, particularly for H⎪⎪c’ [15]. This clear-cut conclusion from the bare experimental

findings is further supported by a theoretical analysis, where a forced-ferromagnetic

state of α-RuCl3 appears at a critical field of μ0Hc = 23.2 T [14]. 

T-H phase diagram

Our findings are summarized in the T-H phase diagram, see Fig. 4b. The data indicate a

field-induced crossover from a magnetically ordered state at low fields to a disordered

state showing gapped spin excitations in large fields. Moreover, as evident from Fig. 4b,

the field dependence of T1
-1(T ) reveals that Δ increases linearly with H above 10 T. Our

data suggest that when the magnetic field and gap become large enough, it can over-

come the energy scale related to the residual non-Kitaev interactions so that a QSL

emerges.
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Fig. 4: (a) The dependence of Cp/T for H⎪⎪c’.
With increasing H, AFM order is suppressed
and completely disappears at 10 T; at 14 T a
gap appears to be present. (b) The T-H phase
diagram obtained by NMR and specific heat
measurements. TN obtained by specific heat 
for H⊥ c is compared. In the QSL region the
field dependence of the spin-gap Δ is shown
(right axis). [14]



Research Area 1    FUNCTIONAL QUANTUM MATERIALS 31

Fig. 1: (a) Structure of Fe0.95 Co0.05Ge in the cubic B20 phase. Fe and Co atoms are shown in vi-
olet and Ge in brown. (b) TEM image of a Fe0.95Co0.05Ge nanoplate in [001] with the diffraction
pattern in the inset. (c) Skyrmion lattice and (d) helical phase as observed within the marked area
in panel (a). The insets show the experimentally determined magnetic phase diagrams with the
corresponding phases marked in red. H, C, S, and FP denote the helical, cycloidal, skyrmion and
so-called “field polarized ferromagnetic” phases, respectively.

Magnetic characterization in the TEM: 
Skyrmions and electron vortex beams 

S.Schneider, D. Pohl, D. Wolf, A. Lubk, B. Büchner, K. Nielsch, B. Rellinghaus

Abstract: Topological spin solitons and in particular skyrmions possess spin textures

that provide for local variations of the magnetization at nanoscopic length scales. To

exploit their unique transport and topological properties for, e.g., memory applications

a detailed understanding of the interplay between skyrmionic structures, confined

geometries (in thin films or at interfaces), lattice defects or inhomogeneities is indis-

pensable. We aim at determining the details of skyrmionic spin textures in 3D and with

nanometer and sub-nanometer resolution by combining, augmenting and developing

transmission electron microscopy (TEM) based techniques such as Lorentz microscopy,

electron holography and electron energy-loss magnetic chiral dichroism (EMCD) includ-

ing recently developed vortex beam microscopy. 

Skyrmions in thin films

Skyrmions [3] are topologically non-trivial vortex-like spin textures, anticipated for

applicatio n in spintronic technologies, referred to as skyrmionics, in next generation

magnetic data processing and storage due to their facile manipulation by spin-polarized

currents of very low magnitude [4, 5]. In chiral-lattice ferromagnets without spatial in-

version symmetry, such as the B20 compound Fe0.95Co0.05Ge (see Fig. 1a) investigated

in this work, skyrmions arise from the interplay between the Dzyaloshinskii-Moriya

interactio n [6, 7] and ferromagnetic exchange mechanisms [8]. Indeed, these and

simila r competing interactions, such as surface dipolar interaction, may lead to a whole

zoo of non-trivial spin textures, including helical, cycloidal and various skyrmionic

phases (antiskyrmions [9], Néel skyrmions [10]). 
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Fig. 2: (a) L-TEM image in under-focus showing
the skyrmions as dark contrast. (d) Phase image
of the position indicated by the red square in (a).
(b,e) Mapping of the direction of the in-plane
magnetic flux by combining a vector plot (white
arrows) and a false color image. (c,f) False colour
mapping of the magnitude of the in-plane 
magnetic flux. 

Unfortunately, little is known about the three-dimensional shape of skyrmions [11, 12],

although considerable similarities to smectic liquid crystals may be established [13, 14].

Experimental studies on the 3D spin texture in skyrmions have not been reported to date.

Here, we fill that gap by combining the concept of the transport of intensity equation

(TIE) [15], focal series in-line electron holography (EH), and off-axis EH [16] to

quantitativel y reconstruct the projected magnetic field pertaining to both the helical

and the skyrmion lattice phase in single crystal nanoparticles of the isotropic chiral

magne t Fe0.95Co0.05Ge. 

All applied methods have the drawback, that cycloidal modulations (and hence also Néel

skyrmions) are invisible in these techniques, if they are aligned perpendicular to the

beam, either because the z-component of the rotation vanishes directly or because the

stray fields above and below the thin film sample cancel the lateral fields within the

sampl e in projection. 

The skyrmion phase in the Fe0.95Co0.05Ge particles was investigated using a double

correcte d FEI Titan3 80-300 microscope operated in imaging corrected Lorentz mode

(conventional objective lens turned off) at an acceleration voltage of 300 kV. All meas-

urements were performed at a sample temperature of 90 K and an applied field of 43 mT

in out-of-plane direction (see Fig. 1d). A focal series of Lorentz TEM (L-TEM) images of

a single isolated nanoplate oriented along [001] zone axis (see Fig. 1b) was recorded.

Reconstruction of the electron wave’s phase and thereby the magnetic induction was ob-

tained with the help of a modified Gerchberg-Saxton type algorithm. To supplement the

focal series reconstructions from large field of views, smaller areas of the identical

nanoplate were investigated by off-axis EH [16]. A direct tomographic investigation of

the 3D structure of the skyrmionic lattice is currently experimentally unfeasible, because

this would require an externally applied out-of-plane magnetic field to be tilted with the

sample. In the current experimental setup, the skyrmions align along the magnetic field

of the objective lens which has a fixed orientation along the optical axis. 

Thus, indirect experimental evidence for the 3D structure of the skyrmionic lattice may

be currently only inferred from a quantitative analysis of the projected magnetic induc-

tion in the sample conducted with the help of in-line and off-axis electron holography.

Fig. 2a depicts a L-TEM micrograph in underfocus showing the hexagonal skyrmion

lattic e as dark contrast. The image is one out of 21 of the focal series used for in-line

holography reconstruction of the object exit wave in amplitude and phase. Figs. 2b,c
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show magnetic induction maps B
–

⊥ (x, y) in cylindrical coordinate representation

visualizin g the spin texture of the skyrmions by B
–
φ (x, y) (Fig. 2b) and their donut-

shaped magnitude by B
–

r (x, y) (Fig. 2c). Likewise, we observed magnetic induction

maps (Figs. 2e,f) from a phase image reconstructed by off-axis EH (Fig. 2d) on the same

Fe0.95Co0.05Ge nanoplate. Comparing the results of the two holographic methods, we

measure a slightly higher magnetic induction B
–

r (x, y) with a slightly higher spatial

resolutio n in the case of off-axis holography. However, we consistently observe a

reductio n of the B-fields (B
–

max = (0.2 ... 0.3)T ) with respect to the z-invariant case

(B
–

max = 0.48T ) obtained from magnetostatic simulations. Therefore, we propose two

models for the 3D structure of skyrmions. One possible explanation for the reduced in-

plane magnetic flux is a spiraling skyrmion through the thickness of the film, rather than

z-invariant tube like skyrmions. Alternatively, magnetic dead layers at the surfaces or

even more complex spin configurations my account for the experimentally determined

magnetic field reduction.  

Our recent experimental results corroborate the importance of the knowledge of the

exac t 3D structure for the skyrmion lattice in thin films. In order to overcome the per-

taining experimental challenges, in-situ magnetic vector field application devices and

auxiliary magnetic signals such as EMCD and electron vortex microscopy [17–20] need

to be applied.

Electron Vortex microscopy

Recently discovered electron vortex beams (EVBs), which carry quantized orbital an-

gular momenta (OAM) L, promise to also reveal magnetic signals similar to electron

energ y-loss magnetic chiral dichroism (EMCD) [21], which complementary to L-TEM

and EH, provides direct access to the out-of-plane component of the magnetization. Since

electron beams can be easily focused down to sub-nanometer diameters, this novel

techniqu e provides the possibility to quantitatively determine local magnetic properties

with unrivalled lateral resolution. In order to generate the spiralling wave front of an

electron vortex beam with an azimuthally growing phase shift of up to 2π and a phase

singularity in its axial centre, specially designed apertures are needed [22, 23]. Dichroic

signals on the L2 and L3 edge are expected to be of the order of 5% [24, 25]. 

The generation of EVBs is achieved by the implementation of a dislocation-type aperture

into the condenser lens system. The setup allows for scanning TEM investigations (STEM)

with vortex beams, whose OAM is selected by means of an additional discriminator

aperture. New FIB cutting strategies facilitate the production of 50 μm wide and 300 nm

thick high quality vortex apertures (see Fig. 3a). However, in the case of a fork-type

apertur e, the EVB are dispersed in the x-y plane resulting in a mixed probe that inter-

acts with the magnetic sample.

We have recently devised an escape route to this problem by blocking any partial beams

that carry other but the desired OAM prior to the interaction of the beam with the

magneti c sample [19]. This is achieved by using a fork-type aperture in combination

with a special condenser aperture to select a single partial beam with the chosen OAM

(see Fig. 3b). This approach allows to generate atom-sized EVB with angstrom-sized

Fig. 3: (a) Scanning electron microscope image of a 50 μm dislocation aperture (placed at the C2
aperture level in the TEM). The horizontal ligaments are used as reinforcement of the 200nm wide
Pt bars. (b), Image of the electron probe at the sample.The position of the selected probe (L = +1)
with respect to the discriminator aperture at the C3 aperture level is illustrated by the overlaid
yellow schematic. (c), Intensity profile across the probe (in arbitrary units). The signature donut
shape of the outer vortices with ⎢L⎢ = 1 is reflected by a dip in the intensity distribution.
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Fig. 4: (a) Scanning transmission electron microscopy
and spectroscopy performance using single vortex
beams (L = +1) on SrTiO3. Lower panel show false-
color elemental maps of Ti (red) and Sr (blue) as 
obtained from EELS at the Ti-L and Sr-M edges. 
The inset shows the result of an ADF simulation for 
a sample thickness of 20 nm and a source size 
broadening of the L = +1 beam of 30 pm. Single Sr
atomic columns are enlarged to show the intensity
drop in the center of the column. 

probes and a well-defined OAM by which atomic resolution HR-STEM is achieved (see

Fig. 4). Even the fingerprint of the Bessel wave function of the vortex beam that

interact s with the sample can be seen in the HRSTEM images from an intensity drop in

the centr e of the atomic column images. 

In addition, this novel technique is capable of atomic resolution EELS measurements,

which is the prerequisite for atomic resolution EMCD measurements. The quality of the

HR-STEM images and EELS-based elemental maps, which both provide atomic resolution,

promise to open the door for future quantitative measurements of magnetic properties

with ultimate spatial resolution and their local correlation with structural features at the

very same position within the identical sample.
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Research Area 2

Sperm-Tetrapod Micromotor for Targeted Drug Delivery

H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit, O. G. Schmidt

Abstract: Bio-hybrid micromotors have been well developed for various bio-applications

as they combine the advantages of their biological and the synthetic parts. An exampl e

of them are the sperm-hybrid micromotors, where the sperms are used as propulsion

force while the synthetic component is used for their guidance towards the area of in-

terest by using external magnetic fields. Here we present a new type of sperm-hybrid

micromotor and its prospective application in targeted drug delivery. The single sperm

serves as an active drug carrier and driving force, while a laser-printed microstructure,

coated with iron, is used to guide and release the sperm in the in vitro cultured cancer

spheroid by using an external magnet and a structurally imposed mechanical actuation,

respectively. The tubular structure (also called “tetrapod”) features four arms which

release the drug-loaded sperm cell in situ when they bend upon pushing against a tu-

mor spheroid, resulting in the drug delivery, which occurs when the sperm squeezes

through the tumor spheroid and fuses with the cancer cell membrane. 

Guidance and sperm release

Arrays of polymeric tetrapods were fabricated by 3D laser lithography. The arms protrude

from one opening of the microtube in a curved manner. The dimensions of the structure

were optimized according to the dimensions of the sperm, allowing a single sperm to be

blocked in (Fig. 1a). The fabricated tetrapods were coated with 10 nm Fe and 2 nm Ti by

e-beam metal evaporation for magnetic guidance. When an approaching sperm cell

reaches the microstructure, it gets mechanically trapped inside the cavity of the tubu-

lar part and starts to push the tetrapod forward (Fig. 1b). The tubular body of the

tetrapo d is only 2μm longer than the sperm head, thus the sperm tail can still beat freely

outside the tube to provide powerful propulsion as it was previously demonstrated by our

group. Compared to free sperms, the average swimming velocity of the sperm-hybrid

micromotor s is nonetheless decreased by 43% from 73 ± 16 μm/s to 41 ± 10 μm/s (for

15 samples of sperm-hybrid micromotors). The asymmetrically distributed metal coat-

ing makes it possible to guide the tetrapod microstructure or the sperm-hybrid

micromoto r and even manipulate several of them simultaneously. Figure 1c illustrates

a rectangular track of a guided sperm-hybrid micromotor. The hybrid motor was easily

steered by changing the direction of the external magnet.

PDMS microfluidic channels were fabricated as a platform for the investigation of the

sperm release mechanism. Once the rotation stopped, the sperm cell escaped when the

tetrapod arms were bent and enlarged the opening (Fig. 1d). Tetrapods were pushed back

by around 3 μm after the sperms escaped. The reason for this recoils is the existence of

an elastic force that makes the tetrapod arms recover their original shape once the

Fig. 1: (a) SEM images of an array of printed tetra-
pod microstructures. (b) Schematic illustrating the
mechanical release mechanism. (c) Track (red line) 
of a sperm-hybrid motor under magnetic guidance 
in the horizontal and vertical planes, respectively. 
(d) Image sequence of a sperm release process when
the arms hit the corner of a PDMS wall. Blue arrows
point at the sperm head. Time lapse in min:s.
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Fig. 2: (a) Fluorescence and brightfield overlay 
images of DOX-HCl-loaded sperms in (i) 10X and 
(ii) 40X, (iii) 3D reconstruction of 36 z-stack images
with stack separation distance of 0.3μm. (b) Plots of
the drug loading results versus DOX-HCl concentra-
tions in the loading solution (error bars represent the
standard deviation of 4 replicates). The drug loading
ratio is obtained by the ratio of the encapsulated
DOX-HCl into the sperms by the original amount of
DOX-HCl in solution. The drug loading amount is the
encapsulated amount of DOX-HCl in 500 μl sperm
solution at a concentration of 3×106 sperms/mL. The
drug loading efficiency was evaluated by calculating
the loading ratio, i.e. the ratio of the amount of 
drug loaded into sperms to the initial drug amount 
in solution. 

pushing sperm is gone. Even though there is a substantial diversity in bovine sperm

dimension s, swimming behaviors and fabricated tetrapods within a sample, more than

2/3 (15 out of 22) of the coupled motors were shown to successfully release sperm cells.

It was reported that the sperm can generate a more powerful force when the head is push-

ing against an obstacle. In our simulation, the applied force was given according to the

maximum pushing force (450pN) [1] of a sperm in low-viscosity fluid (2.29 ·10-3 Pa·s).

It was reported that the sperm force can be up to 20 times higher when the sperm is

hyperactivate d and swims in the viscoelastic fluid of the female reproductive system

[2]. Thus, this mechanical trigger system can be expected to perform efficiently under

physiological conditions.

Drug loading in sperm

Our previous research demonstrated the capture and guidance/transport of sperm cell

towards in vivo fertilization, using tubular [3] and helical [4] microstructures, respec-

tively. Here, the potential of sperm as a drug carrier was investigated. Doxorubicin

hydrochlorid e (DOX-HCl, commercial anti-cancer drug) was employed as a model drug

to evaluate the encapsulation performance of sperm cells. DOX-HCl-loaded sperms were

obtained by simple co-incubation of DOX-HCl and live sperms. After purification by

centrifugatio n, the incubated sperm sample was redispersed in sperm medium. The

fluorescenc e image shows that majority of the sperm cells were loaded with DOX-HCl

(self-fluorescent at 470 nm excitation wavelength), demonstrating an efficiency of

98% with a count of 3502 sperm cells (Fig. 2a). Drug loading efficiency was evaluated

by calculating the loading ratio. The drug loading amount was determined by the differ-

ence between the initial amount of DOX-HCl before incubation and the residual amount

in the supernatant after co-incubation, which were both quantified by their respective

fluorescence signals. Figure 2b depicts the drug loading profiles related to DOX-HCl con-

centration. In the solution with a concentration of 3×106 sperms per mL, the loading

amount of DOX-HCl increased approximatively linearly with the concentration of DOX-HCl

ranging from 10 to 200 μg/mL. Hence, the loading ratio remains at around 15% for all

concentrations, indicating an average encapsulation of up to 15  pg of DOX-HCl per

singl e sperm cell.
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Drug delivery to tumour spheroid

Hela spheroids were cultured as three dimensional in vitro model of cervix cancer. After

24 hours co-incubation of drug-loaded sperms with spheroids, sperms were found not

only in the solution, but also in the spheroids as shown in the overlaid z-stack images.

This proves the tissue penetration capability of sperms. Cell-killing efficacy was inves-

tigated by using SYBR Green LIVE/DEAD kit [5]. Spheroids without any sperms or drugs,

with only unloaded sperms and with only DOX-HCl solution were cultured as control ex-

periments. Fig. 3a illustrates the drug transport into a spheroid during 72 h when it was

treated with DOX-HCl-loaded sperms. Red fluorescence shows the average intensity of

36 overlaid z-stack images and indicates the presence of DOX-HCl. Gradually, DOX-HCl was

found in the center of the spheroid over time. After 72 h, the size of all spheroids

decrease d owing to drug-induced cell apoptosis. In addition, broken clusters and rup-

tured cells were observed in the medium. After 72 h, the percentage of dead cells after

treatment with DOX-HCl-loaded sperms was significantly higher than in the control

samples. Quantitative results of cell counting are shown in Fig. 3b. In the first 24 h of

culture, there was no significant change in all groups, while after 48 h, DOX-HCl-loaded

sperms showed a cell-killing effect comparable to the DOX-HCl solution treatment with

the same amount of DOX-HCl (1.5 μg) in the same sample volume (100 μL). Unloaded

sperms showed a negative effect on HeLa spheroids as well, as the percentage of live cells

was only 37%, attributed to the spheroid disintegration induced by the sperm beating

and hyaluronidases reaction (from sperm membrane) with the extracellular matrix. 

In order to improve drug availability and to avoid undesired drug accumulation and sperm

fusion with healthy cells, a precise transport of drug-loaded sperm cells is required. As

performed in a microfluidic channel (Fig. 4a), the experiment showed that coupled

sperms swam into the cell cluster after being released, and then the sperm head connect-

ed to the cells in the cluster due to membrane adhesion. In another experiment, the

hybri d micromotor was guided for around 2cm through the constriction channel and re-

leased sperm in a tumor spheroid. The sperm cell was released into the spheroid when

the tetrapod arms hit the outer boundary of the tumor spheroid, and then continued

swimming into the spheroid until it was trapped inside. As shown in Fig. 4b, fluorescence

intensity at the sperm position decreased while the fluorescent area within the spheroid

increased, indicating that DOX-HCl was released from the sperm cell and distributed

within the spheroid. SEM images (Fig. 4c) demonstrates the fusion between sperm and

HeLa cell. Anterior part of the sperm head was fused with the targeted HeLa cell while

Fig. 3: Cell-killing effect of DOX-HCl-loaded sperms
on HeLa spheroids. (a) Overlaid z-stack images of
HeLa spheroids under treatment by DOX-HCl-
loaded sperms. Red color shows the fluorescence 
of DOX-HCl under an excitation light with a wave-
length of 470 nm. Blue arrows point at ruptured
spheroids. (b) Histogram of the percentage of live
cells relative to the total amount of cells at different
time points. (n = 4, cell count = 104 for each sample,
*p < 0.01, ANOVA analysis).
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the midpiece and the flagellum remained outside. Blebs and vesicles were observed on

the HeLa cell that was fused with a DOX-HCl-loaded sperm, indicating its death by apop-

tosis (Fig. 4d, i). Cells fused with unloaded sperms did not show such blebs (Fig. 4d, ii)

and thus were presumably still alive, just as unfused cells. Taking advantage of this cell

fusion ability of sperm cells, our sperm-hybrid system yields a practical potential to

enhanc e the drug uptake and availability by transporting it from cell to cell (sperm to

HeLa cell) without dilution into the extracellular medium.

In summary, a novel drug delivery system based on sperm-hybrid micromotors has

been developed. This system exhibits impressive advantages such as, efficient drug en-

trapment, precise guidance and enhanced drug-uptake by membrane fusion. Although

there are still some challenges to overcome before this system can be applied in in vivo

environments, such as imaging and biodegradability,6 sperm-hybrid systems can be

envisione d to be applied in in situ diagnosis and treatment in the near future.
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Fig. 4: (a) Image sequence of the sperm release process when the arms hit HeLa cells. Time lapse
in min:s. Red arrows point at the sperm head. (b) DOX-HCl distribution in a HeLa spheroid with
overlaid z-stack images of the fluorescence channel (20 images with a stack separation distance
of 2 μm). Red arrows point at the sperm head. (c) SEM images showing the sperm-HeLa cell
fusion. (i) Cell fusion with the DOX-HCl-loaded sperm; (ii) Cell fusion with an unloaded sperm.
Red arrows point at a cell in apoptosis and the blue arrows point at live cells. 
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Metastable phase formation in undercooled Fe-Co melts 
under terrestrial and microgravity conditions

O. Shuleshova, I. Kaban, W. Löser, S. Ziller, U. Reinhold, D. Lindackers

Abstract: Solidification of deeply undercooled metallic liquids with help of the electro-

magnetic levitation technique has been studied at the IFW Dresden since more than

20 years. Currently, in the frame of the ELIPS programme of the European Space

Agency, our institute participates in the international EML microgravity experiments

comprising parabolic flight campaigns and experiments on board of the Internation-

al Space Station. Aiming to answer a fundamental question about the influence of the

melt convection on solidification process, several industrially relevant materials,

such as Fe-Co soft-magnetic alloys, Fe-Ni-Cr stainless steels, and light-weight Ti-Al-

based alloys, are studied.

Non-equilibrium solidification on ground

Non-equilibrium solidification of high-performance Fe-Co-based magnetic alloys remains

a matter of intensive fundamental research. It is known [1] that above the critical un-

dercooling in a wide composition range these alloys solidify in a metastable phase with

the bcc structure (δ-ferrite), which subsequently transforms into a stable γ-phase with

the fcc structure (austenite), Fig. 1. The solidification pathway which involves transient

metastable phase formation alters the microstructure and resulting material properties,

thus making it crucial to understand the peculiarities of this process. The time between

the two nucleation events (transformation delay) strongly depends on the alloy

compositio n as the thermodynamic driving force, defined by the difference between the

liquidus temperatures of stable and metastable phases, increases with increasing Co con-

tent. Besides, the delay time shows a strong dependence on the level of undercooling

and on the melt convection, varying from microseconds at turbulent convective

condition s to milliseconds in absence of the melt flow. Under terrestrial conditions, these

two extreme cases are realised using different types of levitation techniques such as

electromagneti c and electrostatic levitation, EML and ESL respectively [2]. In the EML,

liquid metallic sample, held by Lorentz force within a high-frequency induction coil, ex-

periences a strong electromagnetic stirring. On contrast, in the ESL, electrically charged

drop, positioned by Coulomb force in a static electric field and heated by a laser, is in

almos t stagnant state. In both techniques, nucleation and growth of crystal phases are

commonly studied by observation of the sample surface with a high-speed video cam-

era, as demonstrated for the Fe60Co40 alloy in Fig. 2. Due to the release of the latent heat,

the rapidly growing solid phase (δ-ferrite) is clearly distinguishable from the undercooled

melt, and the secondary, γ-phase (austenite) – from the primary phase. Obviously, the

main drawback of the video observations is that the crystalline phases and their sequence

cannot be identified directly.

Fig. 2: Heat evolution on the sample surface during solidification of the Fe60Co40 alloy undercooled
to 250 K in ground-based EML (false colour). The primary δ-ferrite (yellow) sweeps across the
sample surface with the velocity of about 30 m/s. After a few μs, γ-phase (austenite, orange) nu-
cleates and takes over the whole sample. Images are taken at 30 000 fps (corresponds to approx.
33μs between each frame).

Fig. 1: High-temperature part of the binary Fe-Co
phase diagram with metastable extensions of the
solidus and liquidus lines of the δ-bcc phase 
(dashed lines) into a stable γ-fcc range [1]. Below 
the metastable extension of the δ-ferrite liquidus 
line the nucleation of both phases (δ-ferrite and
austenite) becomes thermodynamically possible.
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Fig. 3: Mobile electromagnetic levitation facility developed and constructed at the IFW Dresden
for solidification and structural studies of undercooled melts: the EML chamber with equipment,
X-ray beam layout, and flat-panel detector at the beamline P07 at the PETRA III synchrotron
storag e ring at DESY Hamburg.

Fig. 4: Synchrotron XRD patterns measured during
melting, undercooling and solidification of the
Fe80Co20 alloy: top panel – 3D view; bottom panel –
XRD data synchronised in time with the temperature
profile. The primary, metastable δ-bcc phase forms
upon solidification from the undercooled melt, and
then completely transforms into a stable γ-fcc phase.

Time-resolved X-ray diffraction on levitated samples

Recently, the metastable formation of the δ-ferrite and its transformation to the sta-

ble austenite in the Fe-Co and Fe-Ni-Cr alloys [3] has been studied in situ by time-resolved

diffraction of synchrotron X-rays conducted at the PETRA III storage ring at the German

Electron Synchrotron (DESY) in Hamburg. The samples of about 1 gram mass were

processed in a mobile EML facility, specifically developed for solidification and struc -

tural investigations through joint efforts of the Research Technology Division and our

group (Fig.3). The vacuum chamber of the IFW-EML enables sample processing either

at a high vacuum or in a high-purity inert gas atmosphere. In case of the Fe-Co and

Fe-Ni-Cr alloys, the chamber was evacuated to about 10-6 mbar and backfilled to about

250 mbar with high-purity He (6N). The positioning and heating of a sample is realized

with a water-cooled copper coil powered by a generator operating at a frequency of

230-300 kHz. The cooling is achieved by directing the inert gas streams, the same as the

chamber atmosphere, onto the sample surface. The sample temperature is measured with

a single colour pyromete r operating at acquisition rate of 100 Hz.

The structure of electromagnetically levitated samples was measured in transmission

geometry with monochromatic radiation of 121.3 keV and a beam size of 0.5x0.5 mm2.

The scattered intensity was acquired using a flat-panel Perkin Elmer 1621 X-ray detec-

tor providing sufficient counting statistics at the acquisition rate up to 15 Hz. The

detecto r was mounted perpendicular to the direct beam at 0.8m sample-to-detector

distanc e. The total scattering intensity as a function of the diffraction vector Q was

obtaine d by azimuthal integration of the two-dimensional XRD patterns. Due to a high

time-resolution of the PE 1621 detector, formation of the metastable phase in Fe-Co and

Fe-Ni-Cr alloys has been for the first time captured in situ by XRD. An example of the

high-energy XRD data measured during melting and solidification of the Fe80Co20 alloy,

as well as the corresponding thermogram, are shown in Fig. 4.

Microgravity experiments with TEMPUS facility on parabolic flights

To explore the effects of the intermediate levels of induced convection, the undercool-

ing and solidification experiments have been carried out using EML technique under re-

duced gravity conditions during joint DLR and ESA parabolic flight campaigns operated
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Fig. 5: Top left panel: undercooling experiments with the Fe50Co50 alloy in TEMPUS facility on
a parabolic flight; top right panel – temperature profile (black line) acquired during the first
parabola along with the values of the heater voltage (blue line) and the μg-level (green line); 
bottom panel – high-speed imaging of the solidification; rapid recalescence event discloses for-
mation of the metastable δ-bcc phase (the time between each frame is 25μs).

by Novespace SA in Bordeaux, France [4]. During a flight, the Airbus A310 ZERO-G air-

craft performs a nose-up manoeuvre with a steep climb for about 20 seconds followed

by reducing the engine thrust almost to zero. This injects the aircraft into parabolic free

fall for about 22 seconds. Afterwards, the aircraft accelerates again and comes to a steady

horizontal flight. These manoeuvres are usually repeated 30 times per flight day. The

Airbu s A310 ZERO-G is equipped with scientific instruments for different experiments

unde r microgravity conditions, among which one of the largest is the TEMPUS facility

(Fig. 5 top left panel); from German “Tiegelfreies elektromagnetisches Positionieren

unter Schwerelosigkeit”, meaning containerless electromagnetic positioning under zer o

gravity [5]. The main difference of the TEMPUS from the ground-based EML is decou-

pling of the sample positioning and heating, realized by two separate coils inserted in-

to each other. The power supplied to the positioning coil is considerably smaller than that

required to levitate a sample in a ground-based EML, which allows minimizing the induced

convectio n in the melt during parabolic flights.

To enhance the accuracy of the solidification studies, the TEMPUS facility has been

equipped with a high-speed video camera recently. The extensive experimental program

conducted in 2016 and 2017 campaigns included investigations of the Fe-Co alloys. The

Fe50Co50 composition has shown excellent performance reproducing the undercooling in

two ranges: 85 ± 10 K and 300 ± 10 K (Fig. 5). The solidification experiments have been

done at different levels of the residual heater voltage. This provided different stirring

conditions in the melt, ranging from laminar to turbulent regime according to the mag-

neto-hydrodynamic (MHD) calculations [7]. However, the detected time between the nu-

cleation of δ-ferrite and austenite has shown a marginal deviation from that measured

by EML at 1g for a given undercooling. This rather unexpected finding suggests that, in

contrast to the MHD calculations, the laminar regime has not been completely reached

for the Fe-Co system in the parabolic flight experiments. The limiting factor here is the

minimal power required for stable positioning of the sample during parabolic flight.
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Upcoming microgravity experiments with MSL-EML facility 
on board of the ISS

In 2014 a new microgravity platform for levitation experiments has become available at

the European space laboratory Columbus on board of the International Space Station

(ISS). The Material Science Laboratory Electromagnetic Levitator (MSL-EML) is a multi-

user facility, developed in a long-term cooperation between the European Space Agency

(ESA) and the German Aerospace Centre (DLR) [7]. Maintaining the main features of the

TEMPUS facility – decoupling of the sample positioning and heating – the MSL-EML does

not impose the time limitations on the experiment duration. More importantly, the

monotonou s operation under μg allows to further reduce the positioning power so that

truly laminar flow conditions within the Fe-based samples can be reached [3]. The on-

orbit experiments with defined levels of melt convection for the Fe60Co40 alloy, delivered

and integrated to the MSL-EML in 2017, are planned for April 2018.

[1] T.G. Woodcock et al., Calphad 31 (2007) 256.
[2] D. M. Herlach and D. M. Matson (eds.), Solidification of Containerless 
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Fig. 1: Morphological analysis of iron nanoparticles
electrodeposited on GaAs(001). (a) Surface second-
ary electron image by helium ion microscopy, 
(b) Atomic force microscopy image, (c) Atomic
force microscopy height profile along the line AB 
as indicated in (b), and (d) schematic view of 
the orientation relationship between the iron
nanoparticles and the GaAs(001) substrate.

Research Area 3

Magnetism in iron nanoislands tuned by epitaxial growth 
and magneto-ionic reactions  

K. Leistner, M. Yang1, J. Zehner, K. Duschek, S. Oswald, A. Petr, C. Damm, 

K. L. Kavanagh1, K. Nielsch 

Abstract: The control of interfacial properties offers genuine routes to tailor mag -

netism at the nanoscale. Epitaxial growth on suitable substrates is one approach to

defin e the shape and orientation of nanobjects. We achieved individual cuboid iron

nanoparticles by taking advantage of epitaxial growth during electrodeposition on

GaAs. The interplay between metal nuclei growth and hydrogen evolution is found to

be decisive for the epitaxial interface formation. While in this case, electrochemistry

at the interface is exploited to irreversibly define the shape, structure and magnetism

of the iron nanoparticles, reversible manipulation of solid/liquid electrolyte interfaces

can be achieved by magneto-ionic reactions. We, for the first time, utilized iron/iron

oxide nanoislands as magneto-ionic starting material. Voltage-controlled ON/OFF

switching of magnetism is achieved in this case, which presents a highly promising path

for the development of tunable and energy-efficient magnetic nanodevices.

Epitaxial iron nanocuboid assemblies

Iron/iron oxide nanoparticles are of great technological interest because they possess

distinct electronic, catalytic and magnetic properties while at the same time they are

abundant and non-toxic. Conventional synthesis routes for iron/iron oxide nanoparti-

cles are often hampered by the toxicity of precursors, complicated reaction pathways

and/or the need for high temperatures and reaction gas pressures. Electrodeposition

is a room-temperature synthesis method that provides a competitive technological

alternativ e to gas phase and vacuum techniques. 

We investigated the electrodeposition of iron nanoparticles on GaAs(001) to achieve

epitaxia l growth. The use of an electrolyte with low iron ion concentration (0.01 mol/l

FeSO4) and a short deposition time (10 s) resulted in the formation and growth of

individua l Fe nuclei. For electrochemical conditions with dominating hydrogen evolution,

the deposited nanoparticles exhibit a faceted shape, crystallographic alignment and

notabl e magnetic in-plane anisotropy. The beneficial role of the hydrogen evolution on

the epitaxy is found to be related to the effect of hydrogen adsorption during the

Fe/GaAs interface formation [1]. In consequence, we applied a compliance voltage

during immersion of the substrate to boost the hydrogen evolution at the very start of

the deposition. This lead to the formation of epitaxial nanocuboids that are aligned

throughout the substrat e [2]. The resulting surface morphology is shown in Fig. 1. The
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iron nanocuboids exhibit side lengths between 30 and 80 nm and heights of up to 30 nm.

The shape and alignment of these nanoparticles, with respect to the GaAs substrate

orientatio n, agrees with epitaxial cube on cube growth of body centered cubic (bcc)

Fe(001) on GaAs(001) with predominantly {100} facets. The presence of an epitaxial crys-

talline bcc iron core is confirmed by cross-sectional analytical TEM investigations (Fig. 2)

for all shapes. This finding is notable, since it reveals that the round- and square-based

nanoparticles only differ in shape, but not in structure and crystallographic alignment.

The nanoislands are covered by a 2-3 nm crystalline Fe3O4 shell, which preserves the iron

core in ambien t conditions. The ferromagnetic resonance spectra in Fig. 3 show the high-

frequency magnetic response of the electrodeposited nanoparticles. A clear shift to a

higher resonance field is observed for magnetization along the [110] axis in compari-

son to the [100] axis. Thus, the [100] axis is magnetically easier than the [110] axis,

which is as expected from the cubic magnetocrystalline anisotropy of bcc iron. 

The achieved electrochemical epitaxial growth of iron nanoparticles presents a novel

and competitive fabrication route for stable iron nanoparticles attached to a substrate.

This is especially favorable for catalytic and electronic applications requiring a conduc-

tive substrate. The aligned nanoparticles achieved in the present study also offer un-

precedented routes for the fundamental study of the magnetic and electronic properties

of individual nanoobjects. They will be helpful for the experimental validation of

simulation s describing arrays of nanoparticles with a single orientation and the study

of magnetic spin structures evolving at reduced dimensions for specific shapes. 

Fig. 2: Cross-sectional bright field transmission electron microscopy images of typical iron
nanoparticles on GaAs(001) with nanodi raction patterns from the indicated regions and a
selecte d area diffraction pattern of the substrate. The scale bars in the diffraction patterns are
5 nm−1. The di raction patterns of the nanoparticle core give lattice plane distances of 0.205 nm
for the (011) planes and 0.145 nm for the (002) planes, agreeing with those of bcc iron (0.205 nm
and 0.143 nm, respectively).

Fig. 3: In-plane ferromagnetic resonance spectra for
iron nanoparticles electrodeposited on GaAs (001) 
for the magnetic field B applied along the [110] and
[100] directions.
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Magneto-ionic ON/OFF switching of iron nanoislands

The great prospects for low-power magnetoelectronic devices have triggered significant

research activities in the field of voltage-control of magnetism. Magneto-ionic effects

have recently been proposed to achieve voltage-programmable magnetic materials

[3,4]. The magneto-ionic effect relies on voltage-triggered charge transfer reactions in

solid or liquid electrolyte-gated architectures. For instance, a repeatable electrochem-

ical transformation between metal and oxide can be exploited to manipulate magnetic

metals at room temperature and via the application of only a few volts. This makes the

magneto-ionic approach very competitive to many other magnetoelectric mechanisms

such as multiferroics and magnetic semiconductors.

All previous studies related to magneto-ionic effects in metal films utilized physical

methods such as sputtering or molecular beam epitaxy for film preparation. We show

that ultrathin iron nanostructures suitable for magneto-ionic effects can be efficient-

ly prepared by electrodeposition in ambient conditions. Iron is electrodeposited on a

Au/Cr/SiO2 /Si substrate. The 3D growth mode leads to a nanogranular morphology

when the deposition is stopped prior to coalescence. Upon removal from the electrode-

position setup natural oxidation sets in and iron/iron oxide nanoislands are present as

starting material.

To achieve voltage-control of magnetism in these electrodeposited nanoislands, an

aqueous electrolyte containing 1 mol/l KOH was chosen that was already proven to be

suitable for magneto-ionic effects in sputter-deposited continuous FeOx /Fe films [5].

The magneto-ionic reactions are directly linked to the electrochemical processes at the

solid/liquid interface [6]. The cyclic voltammogram in Fig. 4 shows that the electro -

chemical reduction to metallic iron, the subsequent oxidation to iron oxyhydroxide, and

the formation of the passive layer is achieved for the nanoislands. 

The nanostructures were then repeatedly polarized in the electrolyte at suitable reduc-

tion and oxidation potentials, Ered and Eox, respectively. The magneto-ionic changes were

probed by in situ anomalous Hall Effect (AHE) measurements. The AHE curves obtained

during application of Ered and Eox are displayed in Fig. 5. A strong dependence of the

maximu m AHE resistance, which scales with the saturation magnetization, on the applied

Fig. 4: Cyclic voltammogram of electrodeposited iron nanoislands on Au polarized in 1 mol/l KOH.
The cathodic and anodic current peaks show the electrochemically induced phase transformations.
The potentials suitable for reversible oxidation and reduction between a passive layer composed
of iron oxides and metallic iron are indicated. 
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potential is evident. The switching between Ered and Eox leads to a repeatable reduction

to the ferromagnetic metal iron and oxidation to a non-ferromagnetic oxide phase with

significantly lower magnetization. Almost complete ON/OFF switching is achieved. The

effect is larger than in continuous sputtered films of similar nominal thickness [5], which

can be seen as a direct result of the higher interface/volume ratio of the nanoisland

structures. Thus, for the first time, the crucial impact of the morphology on the mag -

neto-ionic effects could be elucidated. The electrochemical synthesis of magneto-

ionic starting material is especially favorable because tunable magnetic material can

also be deposited in channel walls and recesses. This may become important when

applyin g magneto-ionically active layers, e.g., in magnet-based nanofluidic devices.

The presented magneto-ionically active electrodeposited nanostructures demonstrate

an all-electrochemical approach for voltage-control of magnetism that does not require

vacuum technologies. This opens up an important energy-saving pathway that may

bridge the gap between tunable electromagnets involving Joule heating and non-tun-

able permanent magnets. On the base of magneto-ionic manipulation, unprecedented

low-power yet tunable magnet-based nanoscale devices come within reach.

[1] K. Leistner et al., J. Electrochem. Soc. 165 (2018) H3076.
[2] K. Leistner et al., Nanoscale 9 (2017) 5315. 
[3] K. Leistner et al., Phys. Rev. B 87 (2013) 224411.
[4] U. Bauer et al., Nat. Mater. 14 (2015) 174.
[5] K. Duschek et al., APL Mater. 4 (2016) 032301.
[6] K. Duschek et al.,  Electrochem. Comm. 72 (2016) 153.

Funding: This work is partially supported by the DFG (project no. LE2558/1-1), NSERC,
4D Labs, and the excellence program initiative of the IFW Dresden. 

Cooperation: 1Department of Physics, Simon Fraser University, Burnaby, Canada; 
Institute of Physics, University Kassel; Helmholtz-Zentrum Dresden-Rossendorf; 
Shanghai Institute of Microsystem and Information Technology, Shanghai, China

Fig. 5: Magneto-ionic ON/OFF switching of mag -
netism in electrodeposited iron nanoislands (scanning
electron microscopy cross-sectional image in the 
middle) as probed by in situ Anomalous Hall Effect
measurements (on the right). It is based on the 
voltage-triggered and reversible transformation 
between the weakly or non-magnetic oxide state 
and the ferromagnetic iron metal (sketched on the
left side bottom and top, respectively) that can be
achieved in the liquid-electrolyte-gated architecture. 
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Addressable and Color-Tunable Piezophotonic 
Light-Emitting Stripes

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen1, J. Hao1, F. Ding, O. G. Schmidt 

Abstract: As an emerging solid-state lighting (SSL) technology, piezophotonic light-

emitting devices have great potential for future micro- and nanoscale systems due to

the added functionality provided by the electromechanical transduction coupled with

the ability of light emission [1]. The piezophotonic effect is a two-way coupling effect

between piezoelectricity and photoexcitation properties, where the strain-induced

piezoelectric potential modulates the band structure within piezoelectric phosphors,

and thus tunes/controls the relevant optical process [2]. The realization of light emis-

sion stimulated by the piezophotonic effect is to initiate the mechanoluminescence

(ML) process replacing p-n junction based light-emitting diodes (LEDs) for general

lighting purposes. ML emission triggered by mechanical sources offers an enticing

range of possibilities.

Piezophotonic device fabrication

The most common and controllable piezophotonic luminescence devices are composed

of ML phosphor coated on the top of piezoelectric actuators. Relaxor ferroelectric

single -crystal Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) has superior piezoelectric coeffi-

cients (d33 > 1500 pm/V) and electromechanical coupling factors (k33 > 90%) along the

[001] crystallographic direction [3].

Piezophotonic light-emitting sources based on PMN-PT bulk are severely restricted by

many challenges, such as a high voltage burden (up to hundreds of volts), low integra-

tion density and micro-manufacturing difficulties. Also, it is difficult to integrate many

piezoelectric elements with different patterns together on a single chip. 

In this work, a patterned single-crystal PMN-PT thin film of 7μm thickness is obtained

as the active layer. Zinc sulfides doped with Mn, Cu and Al ions (ZnS:Mn and ZnS:Cu,Al)

were selected as the phosphors due to their intense and durable ML characteristics[4].

The utilization of piezoelectric thin films strongly reduces the voltage burden, and

allow s us to take advantage of mature micro-manufacturing techniques.

Figure 1a schematically illustrates the device fabrication process. The (001)-oriented

single-crystal PMN-PT was bonded on Si. Then it was mechanically grinded down to

tens of microns. We further etched the PMN-PT film down to 7μm thickness with RIE.

Afterward s photolithography and gold sputtering were used to define the array of top

Fig. 1: (a) Schematic illustration of the device fabrica-

tion process. (b) SEM image of an array of patterned

single-crystal PMN-PT actuators. Scale bar, 50 μm.

The inset shows the details of the trenches in the

PMN-PT thin film. Scale bar, 20 μm. 
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contacts. We used focused ion beam (FIB) to etch the trenches into the single crystal

PMN-PT thin film around the top contacts. Figure 1b shows the scanning electron

microscop y (SEM) image of an array of the etched PMN-PT actuators on Si. Each ele-

ment has a footprint of 120μm × 100μm. The inset of Fig. 1b shows the details of the

trenches in the film. The trenches are deep enough to penetrate into the silicon sub-

strate, facilitating subsequent undercut etching. The wet chemical undercut etching

was used to release the single-crystal PMN-PT thin film from the substrate. As shown in

SEM image, no cracks on the PMN-PT were found after the processing. The distinctive can-

tilever geometry of the single-crystal PMN-PT thin film is likely to be important to reduce

the clamping strain and improve the piezoelectric response. ZnS:Mn thin films were

afterward s deposited onto the PMN-PT actuators.

Piezoluminescence characterization

Figure 2 shows the piezoluminescence intensity as a function of the frequency and

magnitude of the applied voltage. The luminescence intensity increases linearly when in-

creasing the frequency from 25 to 150 Hz as shown in Fig. 2a and 2b. The luminescence

intensity is also enhanced by an increase of the applied voltage from 8 to 24 Vpp

(Fig. 2c). Photographs of tunable light emissions from the ZnS:Mn stripe is demonstrat-

ed in Fig. 2e. The piezophotonic device reaches a luminous efficacy of 1.2 lm/W at 24 Vpp

and 150 Hz. The brightness increased linearly with the increasing frequency as shown in

Fig. 2e. The luminance values were found to be 20.8 cd/m2, 41.5 cd/m2, and 64.2 cd/m2,

at the frequencies of 50 Hz, 100 Hz, and 150 Hz, respectively, while the applied voltage

kept at 24 Vpp.  

Fig. 2: (a) Luminescence spectra at different frequencies under fixed voltage 20 Vpp. (b) Peak

intensit y at 596 nm versus applied frequency. (c) Luminescence spectra under different voltage

amplitudes at 150 Hz. (d) Peak intensity at 596 nm versus square of amplitude. (e) Light-emit-

ting images of ZnS:Mn stripes operating with 24 Vpp, and at varying frequencies of 50, 100, and

150 Hz (left to right, respectively). Scale bar indicates 50 μm.
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The ability to individually control the chip-integrated piezophotonic components is

highly desirable. Incorporating such components onto a Si platform should be appeal-

ing for developing on-chip piezophotonic devices. The integration of such devices on

PMN-PT bulk has been challenging because of the large footprint of individual light-emit-

ting elements, high voltage burden, and high production costs. Here, we demonstrate

a prototype piezophotonic device to circumvent these challenges. Figure 3a shows the

sketch of such a device. Four light-emitting units are encoded from A to D, which can be

electrically triggered independently. Each unit can produce local deformation not influ-

enced by others. Figure 3b demonstrates the addressable characteristics of the device.

When all the external voltage is switched off, there is no light-emission observed from

all the four units (situation i). To individually address each unit, we first trigger unit A

with 24 Vpp at 150 Hz and bright light can be observed in unit A only (situation ii). In

situation iii, we switch off unit A, and excite units B and C. As shown in Fig. 3b, only units

B and C glow. Situation iv shows that four elements are triggered simultaneously. The

addressabilit y shown here promises more flexibility for many intriguing applications,

especiall y when used as light sources or displays with each unit as active pixel.

Piezoluminescence color manipulation

The ability to manipulate the color of the piezophotonic luminescence is highly desirable.

By regulating the mixing ratio of two or more ML materials can realize color tuning. How-

ever, it is essentially an irreversible and ex-situ method. Previous research reported that

the ML spectrum of ZnS:Cu,Al shifted to short wavelength as the strain rate was increased

[5] due to the increasing recombination of the electrons in the conduction band (or shal-

low donor level) and holes in the valence band (or the e state of Cu) [6]. The normal

mechanica l stretching-releasing system can only provide the strain rate up to several

hundred Hertz. Thus shifts of only several nanometers were observed. Here, our electri-

cal-triggered PMN-PT based device can be stimulated up to megahertz, which is suitable

for realizing color manipulation of ML from ZnS:Cu,Al contained phosphor layers. Figure

4a shows the spectral shape of ZnS:Cu,Al under the frequencies increased from 50Hz to

100 kHz, the applied voltage was kept at 20 Vpp. The spectra are normalized to the peak

of ZnS:Cu,Al at 522 nm for intuitively showing the changes. With the strain rate increased,

Fig. 3: (a) Schematic illustration of the prototype device. Four individual light-emitting units are

addressed: A, B, C, and D, from left to right, respectively. Each unit incorporates ZnS:Mn layer

(purple),  PMN-PT thin film actuator (blue), and top and bottom Au electrodes (yellow). The whole

device is integrated on Si (gray). (b) Demonstration of four representative addressable light

emissio n states. Switch-off of all units (i); Trigger unit A solely (ii); Turn on units B and C simul-

taneously (iii); Turn on all units (iv).

a)

b)
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the light emission of ZnS:Cu,Al around 460 nm enhances and gradually dominates the

emission. The calculated Commission Internationale de L’Eclairage (CIE) coordinates

clearly suggest the shift from (0.27, 0.57) at 50 Hz to (0.20, 0.30) at 100 kHz (Fig. 4c).

In order to obtain a more colorful patterned device, a bilayer film composed of

ZnS:Cu,Al and ZnS:Mn was deposited on the PMN-PT. Fig. 4b shows the normalized

spectra of ZnS:Cu,Al/ZnS:Mn bilayer. The calculated spectra is normalized by the peak

wavelength of the ZnS:Mn. Results have shown that the spectral shape of ZnS:Mn is

unchange d with increasing frequency, which is consistent with previous reports. While,

the intensity of ZnS:Cu,Al clearly increases. The calculated CIE coordinates shift from

(0.39, 0.50) to (0.26, 0.31) with the frequency increasing from 50 Hz to 100 kHz for

the ZnS:Cu,Al/ZnS:Mn bilayer emission. As a result, a color-tunable light emission from

orange to blue-green is obtained. These results imply that continuous and reversible

controllabl e color manipulation can be achieved through real-time regulating the strain

actuating rate.

[1] F. Xue et al., Adv. Mater. 28, (2016) 3391.
[2] X. Wang et al., Adv. Mater. 27, (2015) 2324.
[3] Y. Chen et al., Nano Energy 31 (2017) 239.
[4] S. Jeong et al., Adv. Mater. 25, (2013) 6194.
[5] W. Shin et al., ACS Applied Materials & Interfaces 8 (2016) 1098.
[6] S. Jeong et al., Appl. Phy. Lett. 102 (2013) 051110.
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Fig. 4: The normalized piezophotonic 

luminescence spectra under the selective

frequency conditions (a) ZnS:Cu,Al film 

and (b) ZnS:Cu,Al/ZnS:Mn bilayer film. 

(c) The CIE coordinates showing the color

tuning with the frequency increasing.
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A quantum material that emits pairs 
of entangled photons on demand

R. Keil, M. Zopf, Y. Chen, B. Höfer, F. Ding, O. G. Schmidt

Abstract: Polarization-entangled photons play an essential role in many quantum

communication concepts. Semiconductor quantum dots are among the leading candi-

dates for the deterministic generation of entangled photons, offering pure single

photon emission with high internal quantum efficiency. However, most investigated

quantum dot species suffer from low yield, low degree of entanglement and poor

wavelength control.

We show that with a new generation of GaAs/AlGaAs quantum dots grown by local

droplet etching, a large solid-state emitter ensemble of highly entangled photon

pairs can be obtained - without any post-growth tuning. Under resonant two-photon

excitation, all measured dots emit single pairs of entangled photons with ultra-high

purity, high degree of entanglement and ultra-narrow wavelength distribution at

rubidiu m transitions. Therefore, this material system is an attractive candidate for the

realization of a solid-state quantum repeater - among many other key enabling quan-

tum photonic elements.

Solid-state ensemble of highly entangled photon sources 
at rubidium atomic transitions

Single pairs of entangled photons are a key element in quantum information technol -

ogy. They enable secure quantum communication [1], robust qubit transfer [2] and can

distribute entanglement between separate computation nodes, rendering even a

“quantu m internet” possible [3].

However, deterministic sources of highly entangled photon pairs remain a challenge. So

far, photons generated from spontaneous parametric down conversion [4] have been

used to demonstrate various entanglement-based concepts, but this process is charac-

terized by Poissonian statistics, i.e. a tradeoff has to be made between source bright-

ness and multi-photon emission probability, fundamentally limiting their applicability

in complex quantum protocols.

Semiconductor quantum dots (QDs) are among the leading candidates to overcome these

restraints. The cascaded decay of the biexciton (XX) via the intermediate exciton states

(X) generates single, polarization-entangled photon pairs ⎟ψ +� = 1—
√2

(⎟HH� +⎟VV�),

where H and V denote horizontal and vertical linear polarization. However, anisotropies

in strain, composition and shape can reduce the QD symmetry, resulting in two non-de-

generate X states split by the fine structure splitting (FSS). The resulting two-photon

state has the form ⎟ψ � = 1—
√2

(⎟HH� + e i T1S/�⎟VV�), where T1 is the radiative lifetime of

the exciton and S the FSS. To obtain a high degree of entanglement, the experimental

strategies are to reduce the FSS S and/or the exciton lifetime T1.

Despite various investigated material systems and architectures [5-8], most QD species

suffer from extremely low yield, low degree of entanglement and poor wavelength

contro l, blocking the way towards scalable applications.

In this work, we show that a large ensemble of as-grown polarization-entangled photon

emitters can be obtained, using an emerging family of GaAs/AlGaAs QDs grown by local

droplet etching [9]. These QDs exhibit very small FSS and short radiative lifetimes. Un-

der pulsed resonant two-photon excitation all measured QDs emit single pairs of entan-

gled photons with ultra-high purity and high degree of entanglement (fidelity F up to

0.91). These QDs offer a deterministic wavelength control and ultra-narrow wavelength

distribution, specifically tailored to match the optical transitions of rubidium. Thereby,

we envision a hybrid quantum repeater that incorporates QD-generated entangled

photo n qubits interfaced with a rubidium-based quantum memory.
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Sample growth

The QDs in this work are fabricated by solid-source molecular beam epitaxy. Fig. 1a shows

a sketch of the processes involved in the QD formation. Al is deposited on AlGaAs, form-

ing liquid droplets. Driven by concentration gradients, dissolution of As and diffusion

of Al induce the formation of nanoholes with high in-plane symmetry, which crystallize

under As atmosphere and are then filled with GaAs and overgrown by AlGaAs to obtain

QDs with three-dimensional carrier confinement.

The QD emission wavelength depends on the GaAs infilling amount. Envisioning a hybrid

interface between QD and an atom based quantum memory several samples with vary-

ing GaAs amount have been grown, targeting the D1 and D2 transition of rubidium at a

wavelength of 794.9 and 780.2nm. Fig. 1b shows the exciton wavelength distribution

for two samples with 2nm (blue) and 2.75nm (green) GaAs. Statistics on over 50 QDs

show an unprecedented control on the central emission wavelength and distribution with

mean values of 779.8 ± 1.6 nm and 796.3 ± 1.3nm.

The symmetric shape in combination with negligible composition intermixing and a

strain-free interface between GaAs and AlGaAs suggest low FSS values. Fig. 1c shows

the statistical distribution of the FSS for the GaAs/AlGaAs QD sample studied in this

work (blue) and a typical InAs/GaAs QD sample (grey) for 45 and 114 measured dots. The

GaAs QDs feature an average FSS of only 4.8 ± 2.4 eV that is among the best values

reporte d for any QD species and is a prerequisite for highly polarization-entangled

photon emission.

Resonant excitation of the biexciton

A QD emitting close to the Rb D2 transition (∼780.2nm) is optically excited by a laser

pumping the surrounding higher-bandgap AlGaAs. The resulting spectrum (Fig. 2a)

shows the exciton (X) at λ =778.5nm and the biexciton (XX) transition at λ =780.1nm

among other excitonic states.

In order to drive the XX transition coherently, the two-photon resonance of the XX state

is addressed by a pulsed laser. The laser background can be effectively suppressed using

notch filters, resulting in a very pure spectrum (Fig. 2b).

To verify pure single-photon emissions from XX and X, we perform an autocorrelation

measurement using a Hanbury Brown and Twiss setup. The autocorrelation function

g2(τ) plotted over the photon arrival delay τ shows a clear absence of coincidences at

zero delay and proves the high purity single-photon emission (Fig. 2c).

Fig. 1: Growth of highly homogeneous GaAs/AlGaAs 
quantum dots. (a) Schematic of involved processes 
during the quantum dot (QD) formation. (b) Exciton 
emission wavelength distribution for two different 
samples tailored for coupling to atomic transitions 
of rubidium. Inset: sketch of envisioned interface 
between QD and an atomic quantum memory. 
(c) Occurrence of the exciton fine structure splitting
S, comparing the GaAs/AlGaAs QDs (blue) with 
InAs/GaAs QDs (grey). Inset: scheme of the 
biexciton decay.
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Fig. 2: Resonant excitation of the biexciton state in
GaAs/AlGaAs quantum dots. (a) QD emission 
spectrum for above-band excitation, showing 
dominant exciton (X) and biexciton (XX) emission. 
(b) Resonant excitation of the XX state using a 
two-photon excitation scheme. The residual laser is
suppressed by using notch filters. (c) Intensity-auto-
correlation measurement of the XX and X transition
confirming very pure single-photon emission. 
(d) Measurement of the fluorescence lifetime T1

for the XX and X state. The solid lines are theoretical
fits. Short radiative lifetimes of T1,XX = 112ps and 
T1,X =134ps are determined.

Fig. 3: Degree of entanglement from a quantum dot
with finite fine structure splitting. (a) Cross-correla-
tion measurements between the XX and X emission
on a QD with a FSS of S = 2.3 μeV for co- and cross-
polarized photons in the rectilinear (HV), diagonal
(DA) and circular (RL) polarization bases. For better
visibility an offset in the delay time  is added in the
cross-polarized case. (b,c) Real (b) and imaginary (c)

part of the two-photon density matrix. The fidelity
extracted from this matrix is F = 0.91.

Next, we measure the luminescence lifetime T1 by recording the intensity correlation

betwee n the laser pulse and the arrival time of the photons (Fig. 2d). The extracted

lifetime s T1,XX = 112 ps and T1,X = 134 ps are among the lowest values recorded for as-

grown QDs. The lifetime-limited linewidth of the X emission is therefore ΔE = 4.9 μeV,

close to the average FSS in our sample.

Evaluating the degree of entanglement

To determine the degree of entanglement, a QD with a FSS of S = 2.3 μeV is chosen,

representin g a large portion (∼22%) of QDs in the sample. The emitted photons are sent

onto a beam splitter with polarization analyzers in each output arm. The X and XX pho-

tons are spectrally separated and sent to single-photon detectors and the second-order

cross-correlation function g2
XX,X for any polarization configuration can be obtained.

Fig. 3a shows g2
XX,X for three bases of co-polarized and cross-polarized photons:

rectilinea r (HV), diagonal (DA) and circular (RL). As expected for an ideal entangled state

⎟ψ +� = 1—
√2

(⎟LXXRX � +⎟RXXLX �), a strong bunching (antibunching) at τ = 0 is observed for

co-polarization (cross-polarization) in the rectilinear and orthogonal base, whereas

this behaviour is reversed for the circular base.

Next, the density matrix ρ of the two-photon state is reconstructed from cross-correla-

tion measurements for 16 different base configurations. The matrix is shown in Fig. 3,

split into real (Fig. 3b) and imaginary part (Fig. 3c). It is characterized by outer-

diagona l, real-part matrix elements close to 0.5, while all other elements are close to

zero. This is in agreement with the expected entangled state and a fidelity to ⎟ψ +� of

F = 0.91 is obtained, which surpasses any other reported QD system.
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Furthermore, six additional QDs were selected, representing the full range of observed

FSS. Fig. 4 shows the values of F plotted as a function of the FSS (black circles), overlaid

on the FSS distribution in the sample (grey histogram). The data from Zhang et al. [10]

are shown as reference for typical InAs/GaAs QDs (orange). 

All measured dots exhibit fidelities F >0.5 leading to the conclusion that almost 100%

of the QDs in the sample generate polarization-entangled photons, which is a milestone

for solid-state entangled photon sources. 

Fig. 4 also shows the theoretically expected fidelity versus the FSS for the range of

observe d X lifetimes [11]. The significantly higher fidelities compared with that of

InAs/GaAs QDs even for vanishing FSS are expected to originate from the weak

electron–nuclear spin hyperfine interactions in this type of QDs.

Discussion

In summary, we demonstrated a new type of solid-state polarization-entangled photon

source based on an emerging family of GaAs/AlGaAs QDs. These QDs can be grown with

unprecedented wavelength control, ultra-small FSS and short radiative lifetime, enabling

entanglement fidelities up to F = 0.91, which are among the highest values reported for

QD-based sources. Remarkably, the whole set of measurements draws an unambiguous

conclusion that we have obtained a large ensemble of entangled photon emitters on a

single wafer, with almost 100% of QDs in the sample having fidelities >0.5 and a great

fraction are expected to exhibit fidelities F > 0.8 without any post-growth tuning.

We envision that a number of key enabling quantum photonic elements can be practi -

cally implemented by using this novel material system, in particular a quantum repeater

as the backbone for long-range quantum communication.
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Fig. 4: Entanglement fidelity of quantum dots with
different fine structure splitting. The entanglement 
fidelity and the occurrence of QDs are plotted over
the FSS S. All measured GaAs/AlGaAs QDs from the
sample (black circles) emit entangled photons with 
a fidelity above the classical limit (dashed line). For
comparison, fidelity values of InAs/GaAs QDs taken
from ref. 10 are plotted in orange. Using a theoretical
model, the fidelity F(T1,S ) is plotted for two radiative
lifetimes T1 = 120 ps (red) and T1 = 220 ps (blue), 
representing the range of all measured values for T1

in the sample.
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Single-electron lanthanide- lanthanide bonds inside 
the fullerene cage: en route to unusual electronic 
and magnetic properties

F. Liu, D. S. Krylov, N. A. Samoylova, L. Spree, M. Rosenkranz, 

S. M. Avdoshenko, A. U. B. Wolter, T. Greber 1, A. A. Popov

Abstract: High chemical and thermal stability of fullerenes protects endohedral en-

tities from the environment and stabilizes unusual species, which cannot exist

otherwis e. In particular, when lanthanide dimers are enclosed inside the carbon cage,

the covalent lanthanide-lanthanide bond can be formed. The metal-metal bonding

orbita l occupied with one or two electrons is then the frontier orbital of the fullerene

molecule, and its population can be manipulated by redox reactions. Especially inter-

esting are dimetallofullerenes featuring single-electron metal-metal bond, because the

presence of an unpaired valence spin results in giant exchange interactions and strong

coupling of the 4f-derived spins. For the lanthanides with large magnetic anisotropy

(Dy, Tb), such dimetallofullerenes exhibit single molecule magnetism with high

blockin g temperature of magnetization.

Magnetic and optical properties of lanthanides earned them a plethora of practical

application s and reinforce continuous exploration of the new possibilities the par -

tially-filed 4f-shell can provide for academic and applied research in chemistry, physics,

and material science. The search for unusual oxidation states of lanthanides is one of

the directions, in which the research is going, and the compounds with a formal 2+

oxidatio n state have been obtained for a majority of the lanthanide row. However, the

synthesis of molecular compound with covalent lanthanide-lanthanide bonds is still chal-

lenging for traditional organometallic chemistry. This obstacle can be circumvented by

confining lanthanide ions within a limited space, such as the inner space of a fullerene

molecule.

In endohedral metallofullerenes (EMFs), metal atoms transfer their valence electrons

to the carbon cage. The EMFs can be then described as non-dissociative “salts,” with

endohedra l metal atoms as cations and fullerene cages as anions [1]. In dimetallo-

fullerenes (di-EMFs, i.e. EMFs with two metal atoms), positively charged metal atoms

repe l each other. However, certain typically trivalent metal atoms in di-EMFs form a

metal-metal bonding orbital, whose energy is close to the energy of the frontier fullerene

molecular orbitals (MOs). Whether the M–M bonding MO in a given di-EMF involves the

HOMO or the LUMO depends on the relative energies of the cage frontier MO and the

energ y of the metal-metal bonding orbital [2].

Fig. 1 compares MO energies of two representative fullerene cages often found in di-EMFs,

C80 - Ih and C82 -C3v, to the orbital energies of two lanthanide dimers, La2 and Lu2 [3, 4].

Fig. 1: Molecular orbital energy levels of empty
fullerenes C80-Ih and C82-C3v compared to those of
the metal dimers La2 and Lu2. Occupied MO levels
of fullerenes are shown as black lines, unoccupied
levels – as pink lines. Gray arrows indicate donation
of 6 or 4 electrons from metal dimer to fullerene in
corresponding dimetallofullerenes. 
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Fig. 2: (a) Square wave voltammetry of 
several M2@C82-C3v fullerenes at their first
oxidation step (M2 = Lu2, YLu, Er2, ErSc, Sc2);
(b) HOMO orbitals for Lu2@C82, Y2@C82,
and YLu@C82; (c) EPR spectrum of Sc2@C82

+

cation in o-dichlorobenzene solution at room
temperature, a(45Sc) = 199.2 G, g = 1.994.

C80-Ih has a small gap between the HOMO and the 3-fold degenerate LUMO, and the open-

shell electronic structure of the molecule is very unstable. However, if the LUMO is filled

with six electrons, the structure is stabilized. C80 -Ih is thus an archetypical cage for EMFs

with 6-fold electron transfer from endohedral species to the fullerene. A good example

of such species is La2 dimer. It has 6 valence electrons with relatively high energies (high-

er than the energy of the fullerene LUMO), so that when the La2 dimer is encapsulated

inside C80 -Ih, a complete transfer of all six valence electrons to the fullerene occurs. The

formal charge distribution in the resulting di-EMF molecule is then (La3+)2@C80
6 −, the

HOMO is localized on the fullerene, whereas the LUMO resembles the (6s)σg
2 orbital of

the pristine La2 dimer.

The lanthanide contraction results in a substantially different electronic structure of Lu2

when compared to that of La2. The valence MOs of the Lu2 span a broader energy range,

and its (6s)σg
2 level is lower than the LUMO of C80 -Ih. As a result, the hypothetical

Lu2@C80 -Ih has an open-shell electronic structure with 5 electrons transferred from Lu2

to the C80 - Ih cage. One electron still occupies the Lu–Lu bonding MO, forming thus a

single-electron metal-metal bond. The fullerene C82 -C3v appears to be a more suitable

host for Lu2 because it has two low-energy unoccupied MOs and hence acts as an

accepto r of four electrons. In Lu2@C82 -C3v, four electrons of Lu2 are donated to the

fullerene cage, whereas the (6s)σg
2 orbital of Lu2 remains occupied by two electrons. The

formal charge distribution in the di-EMF is then (Lu2+)2@C82
4 −, and the molecule

feature s two-electron Lu–Lu bond [2].

Thus, early lanthanides prefer to form di-EMF without M–M bonds, whereas lanthanides

close to the end of the 4f-row are predisposed to form di-EMFs with M–M bond. In both

types of di-EMFs, the metal-metal bonding MO is the frontier orbital, and hence its

population can be changed in the course of suitably chosen redox reaction. For instance,

oxidation of M2@C82 molecules (M = Sc, Y, Er, Lu) corresponds to the removal of the

electro n from the metal-metal bond. Therefore, their oxidation potentials are metal-

dependen t and vary in a rather broad potential range of 0.4 V (Fig. 2) [3]. Enhanced

contributio n of metal s-atomic orbital to the spd-hybrid M–M HOMO of M2@C82 yields

a large isotropic hyperfine coupling constant for metals with non-zero nuclear spin in
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cation radicals [M2@C82]•+. A striking example is the cation radical [Sc2@C82]•+, which

exhibits well-resolved EPR spectrum with the hyperfine structure spanning 2800 Gauss.

Instead of 15 lines expected for two equivalent Sc with nuclear spin of 7/2, experimen-

tal spectrum comprises 64 lines caused by a hyperfine splitting with the large 45Sc

hyperfin e constant of 199.2 G (Fig. 2c). Formation of the single-electron Er–Er bond

in [Er2@C82-C3v]•+ was also supported by SQUID magnetometry. The oxidation of

Er2@C82 strongly modified the spin state of the endohedral Er2 unit, presumably

creatin g a three-center [Er3+–e–Er3+] system with stronger exchange interactions than

in the pristine Er2@C82 [3].

Peculiar electronic structure is found in di-EMFs with Yttrium and lanthanides in the mid-

dle part of the lanthanide row (Gd–Ho). In the arc-discharge synthesis these metals do

form M2@C80 -Ih molecules, but their ground electronic state is a triplet with the formal

charge distribution (M2)5+@C80
5−, similar to aforementioned Lu2@C80. The M–M bond-

ing MO of such di-EMFs is occupied by a single electron, and another unpaired spin is

delocalize d over the fullerene cage. Electronic structure of M2@C80 -Ih can be stabilized

by adding an electron, which yields to closed-shell electronic structure of the fullerene

cage, (M2)5+@C80
6−. The non-charged form of these di-EMFs are then obtained by

substitutio n reaction with benzyl bromide, giving air-stable M2@C80(CH2Ph) derivatives

still featuring the single-electron M–M bond (Fig. 3a) [5]. For M = Y, localization of the

spin density on the Y–Y bonding MO is confirmed by EPR spectroscopy, which revealed

large isotropic 89 Y hyperfine coupling constants near of 80 G and significant hyperfine-

and g-tensor anisotropy in the frozen solution (Fig. 3b,c). The first reduction potentials

of M2@C80(CH2Ph) derivatives are metal-dependent and span the range from −0.52 V

in Y2@C80(CH2Ph) to −0.86 V in Gd2@C80(CH2Ph), showing that the surplus electron

populate s the single-occupied M–M bonding MO, thus forming a “standard” two-electron

bond in anions [4].

Dy2@C80(CH2Ph) is found to be a single molecule magnet with broad hysteresis and un-

usually high blocking temperature of magnetization of 22 K (Fig. 4) [5]. Measurements

of the relaxation times of magnetization showed that at low temperature the main

relaxatio n mechanism is the temperature-independent quantum tunneling, whereas at

Fig. 3: (a) A chemical route to stabilize electronic
structure of M2@C80 fullerenes via reduction and
subsequent nucleophilic substitution yielding 
air-stable M2@C80(CH2Ph) monoadduct (arrows 
denote unpaired spins). (b) EPR spectra of the
toluene solution of Y2@C80(CH2Ph) at room tem -
perature and at 150K (below the freezing point of
the solvent); the isotropic RT spectrum has g-factor
of 1.9733 and the a iso(

89Y) value of 223.8 MHz; the 
axial spectral pattern in frozen solution is reproduced
by g⊥ = 1.9620, g = 1.9982, a⊥(89Y) = 208.0 MHz,
a (89Y) = 245.9 MHz; (c) DFT-computed spin density
distribution in Y2@C80(CH2Ph).
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higher temperature the relaxation is dominated by the Orbach mechanism with the bar-

rier of 613 K (Fig. 5a). Unprecedented magnetic properties of Dy2@C80(CH2Ph) are due

to the giant exchange interaction between lanthanide ions mediated by the unpaired

electron delocalized between them. The three-center spin system of Dy2@C80(CH2Ph) is

described as [Dy3+–e–Dy3+ ]. In the ground state, all three moments are parallel and

coupl e ferromagnetically to form a single spin unit of 21 μB with a Dy-electron exchange

constant of 32 cm−1 (46 K). The barrier of the magnetization reversal is assigned to

the exchange excited state, in which the spin of one Dy center is flipped (Fig. 5b) [5].

Semi-occupied M–M bonding MO is thus essential to achieve unprecedented magnetic

properties in lanthanide di-EMFs. It may be also beneficial for the spin-polarized elec-

tronic transport through single fullerene molecules, which can lead to single-molecule

electronic and spintronic devices.
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Fig. 5: (a) Magnetization relaxation times of
Dy2@C80(CH2Ph) obtained from dc- and ac-measure-
ments in zero field and in the constant field of 0.4 T.
The inset shows χ” values measured at different 
temperatures and frequencies. (b) Low-energy part 
of the spectrum of the effective spin Hamiltonian of
the [Dy3+–e–Dy3+] system with transition proba-
bilities visualized as lines of different thickness 
(thicker lines correspond to higher probabilities). 
A schematic description of the spin alignment in the
ground state and exchange-excited states is also
shown (Dy spins – green arrows, single electron spin –
dark blue arrow). With the exchange coupling con-
stant jDy,e = 32 cm−1, the energy of the first exchange
excited state matches the Orbach barrier of 613 K.

Fig. 4: (a) Determination of blocking temperature 
of magnetization TB of Dy2@C80(CH2Ph): the sample
is first cooled in zero-field to 1.8 K, then magnetic
susceptibility χ is measured in the field of 0.2 T 
with increasing temperature (red curve), then the
measurement is performed at cooling down to 
1.8 K (blue curve); the vertical bar denotes TB. 
(b) Hysteresis of magnetization in Dy2@C80(CH2Ph).
measured at various temperatures.
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Theoretical prediction of a giant anisotropic 
magnetoresistance in carbon nanoscrolls

C. H. Chang and C. Ortix

Abstract: Advanced nanotechnology is continually gifting us with low-dimension

nanoarchitectures that have rich forms of geometry to host novel magnetic states.

Snake orbits, for instance, are trajectories of charge carriers curving back and forth,

which form at an interface where either the magnetic field direction or the charge

carrie r type is inverted. In graphene p-n junctions, their presence is manifested in the

appearance of magnetoconductance oscillations at small magnetic field. Here we

show that signatures of snake orbits can also be found in curved nanomaterials by

studying the classical magnetotransport properties of carbon tubular nanostructures

subject to relatively weak transversal magnetic fields where snake trajectories appear

in close proximity to the zero radial field projections. In carbon nanoscrolls the

formatio n of snake orbits leads to a strongly directional dependent positive magnetore-

sistance with an anisotropy up to 80%.

Carbon Nanomaterials

Carbon nanomaterials, such as carbon nanotubes (CNT) [1] and graphene [2], continue

to trigger a lot of attention due to their very unique structural and physical properties

[3]. In recent years, another carbon nanomaterial, called carbon nanoscroll (CNS), has

emerged [4]. It is a spirally wrapped graphite layer that, unlike a multiwalled carbon

nanotub e (MWCNT), is open at two edges and does not form a closed structure. CNSs are

scrolled from an undefined number of graphene layers. In addition, the chemical

process can potentially induce unexpected defects in the material, thereby lowering its

quality. Controlled fabrication of high-quality CNSs has been instead achieved [5] using

isopropyl alcohol solutions to roll up high-quality monolayer graphene predefined on

Si/SiO2 substrates. 

The peculiar geometric structure of CNSs yields unusual electronic, and transport prop-

erties in uniform electric and magnetic fields. The natural presence of edge nanoscrolls

in graphene, for instance, has been predicted to be at the basis of the poor quantization

of the Hall conductance in suspended samples [6]. This is due to the fact that inside the

scrolls, the electrons respond primarily to the normal component of the externally

applie d magnetic field [7], which oscillates in sign and largely averages out. 

In this work, we theoretically predict a strongly directional dependent magnetoresistance

(MR) in CNSs subject to relatively weak transversal magnetic fields. The reason for the

occurrence of this phenomenon is that the oscillation of the effective magnetic field felt

by the electrons in a CNS leads to the formation of classical snake orbits, whose number

changes with the direction of the externally applied magnetic field. As a result, we find

a giant anisotropic magnetoresistance (AMR) with a magnitude of up to 80%, a value

comparable to the AMR observed in the quantum anomalous Hall phase of ferromag -

netic topological insulator thin films [8], and an order of magnitude larger than the

bulk AMR of conventional ferromagnetic alloys [9]. This suggests a novel route towards

miniaturized nanoscale devices exploiting the AMR effect for magnetic recording, for

instanc e.

Magnetic states and Magnetotransport of Carbon Nanotubes

To prove the assertions above, we first elucidate the effect of snake orbit formation by

analyzing the magnetotransport properties of single-walled CNTs subject to transversal

magnetic fields in the classical diffusive transport regime. Figure 1 shows the ensuing

behavior of the MR Δρ||/ρb = ρyy(B)/ρyy(0)-1. When the applied magnetic field is

weak, the Lorentz force bends the trajectory of a carrier into the helix orbit (see left-up
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panel in Fig.1), which leads to the MR increasing with the square of the strength of

applie d field. When the magnetic field is large enough, the carrier at the surface per-

pendicular to the field moves in a cyclotron orbit, and the carrier at the surface paral-

lel to the field moves in a snake orbit for it inverts chirality around the surface. The

surface s with cyclotron orbits are insulating, and the two surfaces with snake orbits are

respected to two conduction channels (see right-down panel in Fig.1). Since the

width of conduction channels decreases with the field strength by a ratio B-0.5, snake

orbit s finally results in a MR increasing with the square root of the field. The details of

theoretical approach using Kubo formula are provided in Ref. 10. 

To verify the validity of our approach, we have compared our theoretical results with the

MR measurements performed by Kasumov and collaborators [11] on a 6 nm outer radius

isolated multi-winding CNT, which show an inflexion point in the MR at an external

moderat e magnetic field ≈1.6 T. From the condition that the inflexion point occurs

when the CNT radius exactly matches the effective cyclotron radius, we obtain m

vF = 1.54x10-27m•kg/s, which is compatible with a Fermi velocity [12,13] of the order

of 105m/s and a cyclotron mass approximately two order of magnitudes smaller than

the mass of free carriers. By further taking into account a sizable magnetic-field inde-

pendent resistivity, which we attribute to inter-wall and contact resistivities suppress-

ing the MR by approximately one order of magnitude, we find a perfect agreement in the

behavior of the MR as a function of the magnetic-field strength [see Fig.1]. Moreover,

the value of the mean free path l = 2RCNT ≈12nm is consistent with the experimental

value s reported in high-biased SWCNT [14].

Magnetic states and Magnetotransport of Carbon Nanoscrolls

Having established that our analysis in the classical diffusive transport regime correct-

ly accounts for the behavior of the MR in CNTs up to moderate magnetic field strengths,

we now move to analyze the magnetotransport properties of CNSs taking into account

their peculiar geometric structure. In the remainder we will restrict ourselves to a one-

winding CNS. Figure 2b shows the magnetic field dependence of the conductivity

along the CNS azimuthal direction σ t = σss measured in units of the conventional

Fig. 1: Classical magnetoresistance of a CNT. Log-log plot of the MR as a function of the mag-
netic field strength B measured by the ratio between the CNT radius RCNT and the characteristic
cyclotron radius Rcycl. ρb is the longitudinal resistivity in the absence of externally applied mag-
netic fields. The circles are rescaled experimental results adapted from Ref..
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Fig. 2: Electron orbits and magnetoconductivity of a one-winding CNS for different magnetic

field directions. a The green and yellow regions indicate the portion of the CNS where the effec-
tive magnetic field felt by the electrons is positive and negative, respectively. The top panels
schematically show the native three-dimensional description whereas the middle and bottom pan-
els sketch the effective two-dimensional description with the characteristic electron trajectories
in the weak and moderate field strength regime for different orientations. b, c σ t (σ| | ) denotes
the conductivity across (along) the tube axis, with σb the conductivity of a bulk 2D channel in the
absence of magnetic fields. The triangles (circles) are the theoretical results for a one-winding CNS
with mean free path l/W =10 subject to a field in the θ = 0 (θ = π /2) direction.

Fig. 3: Classical magnetoresistance of a one-

winding CNS. MR as a function of the magnetic
field strength B measured by the ratio between the
CNS radius RCNS and the characteristic cyclotron
radius Rcycl. ρb is the longitudinal resistivity of a
bulk 2D channel in the absence of magnetic fields.
The triangles are the result for a magnetic field 
direction theta = 0 while the circles are for θ = π/2.
The mean free path has been set to l =10W and
l =W in a and b respectively.

conductivit y of a “bulk” (arclength W = 2πRCNS ➔∞) 2D channel in zero magnetic field.

Here, we have set the mean free path l to be one order of magnitude larger than the CNS

width to assure the transport is well inside the quasi-ballistic regime. For zero magnet-

ic field, diffusive boundary scattering strongly suppresses the conductivity along the CNS

width. A finite magnetic field leads to a further decrease of the conductivity, independ-

ent on the direction of the transversal magnetic field. The behavior of the conductivity

component along the CNS axis σ|| = σyy is instead entirely different (see Fig. 2c). In the

weak-field regime RCNS << Rcycl we find an enhancement of the conductivity due to mag-

netic reduction of backscattering [15]. This enhancement of the conductivity is followed

by an ultimate suppression due to the formation of snake orbits, which, as discussed

above, yield a positive MR. Moreover, we find the conductivity σ|| to strongly depend on

the magnetic field direction. This is because for a magnetic field oriented along the

edge axis (θ = 0) there are two regions where its normal component switches sign

(c.f. Fig. 2a), contrary to the case of a magnetic field oriented perpendicularly to the

edge axis θ = π/2 in which case the magnetic field switch is encountered only along one

line of the scroll. The ensuing proliferation of snake orbits for θ =0 then leads to a much

slower suppression of the conductivity since their contribution proportional to B-0.5

instea d of the usual B-2 contribution of cyclotron orbits.

The knowledge of the magnetoconductivity tensor components allows us to obtain the

behavior of the magnetoresistance ρ||. For l/W ≤ 10, the zero-field resistivity is well

describe d by the well-known formula [15] ρ|| = ρb (1+ 4l /(3π W)) accounting for

boundar y scattering effects on the resistivity. In the weak-field regime a negative MR

due to magnetic suppression of backscattering is explicitly manifest only when the mean

free path largely exceeds the width of the CNS (c.f. Fig. 3), which is in perfect analogy

with the situation encountered in a 2D channel subject to an homogeneous perpendi-

cular magnetic field [16]. In the intermediate field regime, the MR behavior strongly
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resemble s the MR in the absence of boundary scattering (c.f. Fig. 1) but acquires a

strong directional dependence independent of the ratio l/W. As long as the boundary

scattering is completely diffusive, the directional dependence comes entirely from the

aforementioned proliferation of snake orbits, and therefore the AMR in both cases in

Fig. 3 reaches a giant value ≈ 80%. 
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Chemical Gating of a Weak Topological Insulator: Bi14Rh3I9

M. P. Ghimire and M. Richter

Abstract: The compound Bi14Rh3I9 has been suggested as a weak three-dimensional

topologica l insulator on the basis of angle-resolved photoemission and scanning-

tunnelin g experiments in combination with density functional (DF) calculations [1,2].

These methods unanimously support the topological character of the headline com-

pound, but a compelling confirmation could only be obtained by dedicated transport

experiments. The latter, however, are biased by an intrinsic n-doping of the material’s

surface: Electronic reconstruction of the polar surface shifts the topological gap be-

low the Fermi energy [3], which would also prevent any future device application. He-

re, we report the results of DF calculations for chemically gated and for counter-doped

surfaces of Bi14Rh3I9. We demonstrate that both methods can be used to compensate

the surface polarity without closing the electronic gap [4].

Introduction

Topological insulators (TIs) have recently attracted attention due to their massless

Dira c-cone-like surface states protected by time-reversal symmetry (TRS). In a nutshell,

TIs are characterized by these gapless surface states and a bulk energy gap. Three-di-

mensional (3D) TIs are called strong or weak based on four Z2 invariants (ν0; ν1,ν2,ν3).

If ν0 = 1, the material is a strong TI; if ν0 = 0 and any of the indices (ν1,ν2,ν3) is equal

to one, it is a weak TI. In the former case, including the wellknown compounds Bi2Se3

and Bi2Te3, the TRS-protected surface states are present on all facets, while in the

latte r case, such surface states are present only on certain facets. Their peculiar proper-

ties bear the potential for novel types of information processing [5].

Weak 3D TIs suggested hitherto are usually hosted by layered crystal structures. The

strength of the related interlayer coupling influences their bulk band structure: (i) In

Bi2TeI with strong interlayer coupling, this coupling is essential for the formation of the

weak 3D TI state [6]; (ii) a weak interlayer coupling, however, results in a quasi two-

dimensional (2D) band structure. This situation is found, among others, in Bi14Rh3I9

[1,2]. Weak 3D TIs of the second kind may allow to produce 2D TI structures that are

expecte d to show the quantum spin-Hall (QSH) effect. This can be achieved by cleaving

off  thin layers from the bulk 3D TI as an alternative way to the fabrication of quantum

wells [7]. Indeed, a single, charge-compensated layer of Bi14Rh3I9 was predicted to be

a 2D TI in a recent calculation [8].

Fig. 1: (from Ref. [4]): Bulk structure of Bi14Rh3I9. 
(a) Elementary cell with [(Bi4Rh)3I]2+ in the upper
part and [Bi2I8]2− in the lower part. The color code 
is violet for Bismuth, green for Rhodium, and yellow
for Iodine. (b) Rotated view of the [(Bi4Rh)3I]2+ layer,
also denoted as 2D TI layer; (c) the same for the
[Bi2I8]2− layer, also denoted as spacer layer.
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The recently synthesized title compound was characterized as a layered ionic structure

with alternating cationic [(Bi4Rh)3I]2+ and anionic [Bi2I8]2− layers, as shown in Fig. 1.

DF calculations for this material found (ν0; ν1, ν2, ν3) = (0; 0, 0, 1). Further, the elec -

tronic band structure grossly agreed with angle-resolved photoemission spectra (ARPES)

obtained on single crystals. On this basis, Bi14Rh3I9 was claimed to be a weak TI [1].

Subsequentl y, this hypothesis was strengthened by scanning tunneling microscopy

(STM) experiments [2]. By STM topography, the investigated [001] surface was found to

exhibit areas with both types of layers. Clear signatures of one-dimensional (1D) states

were observed in the band gap only at step edges of cationic surface layers. However, the

related surface-layer gap was found 0.25 eV below the Fermi level (EF) [2]. The

[(Bi4Rh)3I]2+ layer carrying the edge states was observed to be structurally intact. The

[Bi2I8]2− layer, however, contained holes that were attributed to the evaporation of

iodine atoms during cleavage. Such a chemical reconstruction is one possibility [9] to

compensate the obvious surface polarity of the system. DF calculations confirmed the

observed down-shift of the topologically nontrivial band gap at the cationic [001]

surfac e [3]. This is a clear sign of an electronic reconstruction as a second possibility [9]

to compensate surface polarity.

A confirmation of the weak 3D TI state of Bi14Rh3I 9 would require to observe the QSH

effec t on the mentioned 1D edge states [10]. However, related transport experiments

only make sense if the observed intrinsic doping is compensated by reasonable means,

and thus, the topological gap with the edge states is shifted to EF. There are several pos-

sible ways to compensate the surface polarity:

(i) physical gating by preparation of a dielectric gate structure and applying 

the electric field effect;

(ii) chemical gating by deposition of an oxidizing agent; or 

(iii) counterdoping of the surface layer.

Here, we report results of investigations into the two latter possibilities by means of

DF calculations. In particular, we study the effects of Iodine deposition as a sparse

overlaye r and of counter-doping by exchanging surface layer Bi atoms by Sn. The results

are expected to provide suggestions for the preparation of forthcoming transport

experiment s, which are required to confirm the topological state of Bi14Rh3I9 or simi-

lar systems.

Method

All DF calculations were done with the full-potential local-orbital (FPLO) code developed

at IFW Dresden [11]. The self-consistent calculations were carried out in the four-

componen t Dirac mode. This effort is necessary because the involved elements have a

sizable spin-orbit coupling, which is responsible for opening the band gap. In order to

simulate the [001] surface of a bulk sample, we considered a series of slabs with thick-

ness varying from 1.25 to 3.75 nm, i.e., from one to three structural layers. The consi-

dered layer stacks have the same lateral cell dimensions as the experimental bulk

structure [1], and equivalent atomic positions.

In Ref. [4], we considered chemical modifications on both cationic and anionic surfaces.

First, the experimentally observed desorption of Iodine from the anionic (spacer) lay-

er was modeled, where about two Iodine atoms per surface elementary cell are removed

during cleavage [2,3]. Second, adsorption of a sparse Iodine layer on top of the catio-

nic (2D TI) surface was investigated for the sake of tuning EF . Third, we investigated the

effect of surface doping by replacing part of the Bi atoms in the outermost atomic lay-

er of the 2D TI surface by Sn. Details of the second type of modification are presented

in the following section, while the summary mentions results of the third type as well.
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Chemical gating

With the aim to compensate the surface charge and to move the surface gap with the

topologica l edge states toward EF, we generate a sparse layer of 1 − 3 Iodine atoms per

surface unit cell (SUC) on top of the 2D TI surface. This concentration, about 0.08 − 0.25

monolayers, is similar to the concentration of Copper atoms that were recently used in

chemical gating of the strong 3D TI Bi2Se3 [12]. The calculated adsorption energy gain

amounts to 1.7eV for the first Iodine atom per SUC, 1.6 eV for the second, and 1.4 eV for

the third one, if deposition of atomized Iodine is assumed. These numbers have to be

reduce d by 1.0 eV for the case of molecular Iodine deposition.

The related density of states (DOS) contributions of the 2D TI surface are shown in Fig.2

for the simplest case of one structural layer. For the lowest concentration of one

Iodin e atom per SUC, EF is shifted downward in comparison to the pristine case (not

shown), indicating a reduction of electron-type bulk carriers, but stays within the con-

duction band (Fig. 2a). Next, for two Iodine atoms per SUC, EF moves to the bottom of

the conduction band. The calculated surface band gap of 0.07eV (Fig. 2b) is smaller than

the bulk gap, but transport experiments would be feasible. Further, if three Iodine atoms

per SUC are deposited, EF shifts into the valence band and a crossover from electron ty-

pe to hole type behavior occurs (Fig. 2c). These findings confirm the naive expectation

that the formal surface charge of +2 can be compensated by two Iodine atoms. In the

following, we will restrict our investigation to this adsorbant concentration.

Fig. 3 shows the surface-layer projected DOS for slabs of one, two, and three structural

layers. We first consider the 2D TI surface DOS, Fig. 3(a,c,e). In all cases, the valence

band and the lower part of the conduction band (up to about 0.35eV) is dominated by

contributions of similar weight from Bi-6p and from 5p states located at the adsorbed

Iodine atoms. Above the narrow gap at 0.35 eV, the DOS is dominated by Bi-6p states.

With increasing thickness of the slab, the 2D TI gap is found to increase from about

0.07eV to about 0.12 eV. The smaller gap size in the case of a slab with only one structu-

ral layer is due to the presence of a narrow band with a width of 0.10 eV just above EF.
Fig. 2: (from Ref. [4]): Layer-resolved density of
states (DOS) of the 2D TI surface layer (Bi4Rh)3I1+n

for deposition of n = 1 (a), n = 2 (b), and n = 3 (c)

Iodine atoms per surface unit cell (SUC) on top of 
the 2D TI surface. The spacer surface is chemically 
reconstructed by removing two Iodine atoms per
SUC as observed in experiment [2].

Fig. 3: (from Ref. [4]): Layer-resolved density of
states (DOS) of 2D TI surface layers (Bi4Rh)3I3 (a,c,e)

and spacer surface layers Bi2I6 (b,d,f) for one (a,b),
two (c,d), and three (e,f) structural layers with two
Iodine atoms per surface unit cell (SUC) deposited 
on top of the 2D TI surface. The spacer surface is
chemically reconstructed by removing two Iodine
atoms per SUC as observed in experiment [2].
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By comparison with the data of the thicker slabs it becomes obvious that this band

originate s from hybridization with spacer surface states being present at the same

energy for all considered slab thicknesses, Fig. 3(b,d,f). The integrated weight of that

band, projected to the 2D TI surface, amounts to 0.82 (0.05, 0.0034) electrons for slabs

with one (two, three) structural layers. With increasing slab thickness, the interaction

between the two surfaces and the related in-gap states at the 2D TI surface becomes

weak and finally negligible for slab thickness larger than 2.5 nm. This means that ultra-

thin films, in particular those with only one structural layer, may not be advantageous

for the demonstration of the QSH effect in Bi14Rh3I9 due to possible narrowing of the

gap by interaction with the opposite surface. Rather, films with a thickness larger than

2.5nm may serve the goal if their surface is doped with Iodine or other oxidizing agents

in an appropriate concentration. We suggest that the concentration could be naturally

stabilized by a self-limited adsorption process, as overdoping might be thermodynami-

cally unstable. This idea is supported by the calculated adsorption energy gain, which

is considerably reduced with growing concentration of adsorbed Iodine. A fine-tuning

of the concentration should be possible by the substrate temperature.

Summary

We have demonstrated that chemical gating can compensate the intrinsic n-doping at

the surface of Bi14Rh3I9, a suggested weak 3D topological insulator. By deposition of

Iodin e adatoms in an appropriate concentration or by partial exchange of surface

Bismut h atoms by Tin, the topological gap is shifted to the Fermi level. While the former

method might be easier implemented for a proof-of-principle experiment, the latter

might be more robust for potential applications. Importantly, the gap is not closed upon

chemical gating. As the applied local density approximation usually underestimates the

gap size, this statement should be robust. Thus, the gated material will be suitable for

transport experiments with the particular aim to confirm its topological character. We

further find that the gap size grows with the thickness of the material. Therefore, no

improvemen t of transport-related properties is expected upon extreme reduction of the

sample thickness to one structural layer (1.25 nm).
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Fig. 1: a) Compact SAW aerosol generator
during Ethanol atomization (140 μl/min), 
b) Atomization regimes observed for a 90 μm
SAW chip and water with improved fluid 
supply position

a) b)
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Abstract: Besides fundamental investigations on the dynamic behavior of polar

dielectric s our main research was devoted to the application-oriented fields of micro -

acoustics. Highlighted topics comprise the utilization of surface acoustic waves (SAW)

in the two growing branches of next generation SAW devices, namely acoustofluidic de-

vices and wireless, self-sufficient sensors for harsh environments. For the first branch,

the implementation of SAW actuators in advanced fluidic setups was investigated, e.g.

for the controlled generation of aerosols by compact and mass-producible devices and

regarding the exploitation of SAW electric fields to enhance streaming in microfluidic

channels of lab-on-a-chip systems. For the second branch, we investigated two of the

most important aspects for high temperature sensors, i.e. the establishment of novel

electrode metallization systems with increased temperature capability as well as the

precise microacoustic characterization of promising piezoelectric crystal materials.

Compact SAW aerosol generator

Surface acoustic wave (SAW) aerosol generators hold substantial promise for thera -

peutic and industrial applications, including medical inhalators, particle and film

synthesi s, olfactory displays and mass spectrometry. In previous studies, the aerosol

generatio n from different fluids including such with high viscosity [1] and issues of pow-

er efficiency in SAW devices were investigated [2]. Furthermore, a new application in the

field of aerosol based film deposition [3] was demonstrated in the IFW Dresden. 

Based on extensive fundamental and applied material research efforts in combination

with technology development, a compact SAW aerosol generator, mass-producible by

highly accurate standard techniques and on-chip integrated fluid supply, was developed

[4]. This setup was employed to investigate relevant influences on the acoustofluidic

interactio n, including the local acoustic wave field, the electric load power, the fluid

flow rate and the fluid supply position. 

In SAW atomization, aerosol droplets originate from a fluid film stabilized by the

acoustofluidic interaction on the chip surface. The driving force is a balance between

acoustic radiation pressure and capillary stress, leading to film shaping based on the

standing acoustic wave field, i.e. the lateral distribution of the SAW amplitude. There-

fore, the acoustic wave field and the geometrical boundary conditions of the fluid sup-

ply are crucial for the device operation, defining the fluid film extension, the transient

device behavior and the aerosol generation. Based on our studies, criteria for the

desig n of ideal SAW atomization chips were formulated. With accordingly improved

experimenta l conditions, a stable atomization was achieved in a broad range of power

and flowrate combinations, different atomization regimes were identified, and the

possibilit y of droplet size distribution tailoring was demonstrated (Fig. 1). 
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Depending on the intended task, the future use of SAW aerosol generators based on

disposabl e chips or chips with long lifetime is possible. Additionally, the setup is

compatibl e to the future integration together with other microfluidic components,

miniaturized fluid reservoirs / pumps and intelligent electronics for more complex

signalin g and analysis.

SAW electric field effect on acoustic streaming

When studying the fundamentals of acoustic streaming, one commonly takes into

accoun t only the force related to the high-frequency acoustic field in the liquid as a

second-order effect. However, in SAW-driven microfluidic devices, the initial wave prop-

agates along the surface of a strong piezoelectric substrate, typically LiNbO3. Hence, the

SAW induces in the liquid not only an acoustic field, but also an electric field. The latte r

polarizes the liquid and, correspondingly, exerts on it an instantaneous force with

quadratic dependence on the electric field. As a result, a time-independent non-conser-

vative force appears which is able to set in motion the liquid in a closed channel.

Our investigations reveal that the ‘electric’ contribution due to the electric field accom-

panying the SAW can be comparable to, or even more significant than, the ‘mechanical’

contribution due to the acoustic field which is generated in the liquid by the SAW [5].

An example is depicted in Fig. 2.

The electric force can be significant only at distances from the channel bottom not

exceedin g half wavelength, in contrast to the mechanical force acting over the whole

channel. Therefore, the electric field effect weakens with increasing the channel height

since the relative volume of the channel space where the electric force drives the

acoustic streaming reduces. The frequency dependence of the relative contribution of

these two forces is controlled by the frequency dependence of the dielectric loss in the

liquid. The relative contribution of the electric field decreases with increasing the

liqui d viscosity.

High temperature SAW device electrode metallization

Another current research topic is the development of wireless temperature sensor devices

for high temperature range above 400°C based on the SAW operation principle. To

realiz e such devices, high demands are put on the high temperature stability of the piezo-

electric substrate, the metallization for the interdigital transducers as well as of the

Fig. 2: Absolute values of the streaming velocity vst in pure water; (a) the effect of combined ‘elec-
tric’ force and ‘mechanical’ force; (b) only the mechanical force is taken into account. The acoustic
streaming is activated by the leaky SAW propagating on 64°Y-rotated LiNbO3. The channel x-z
cross section is 100 x 100 μm2, the leaky SAW wavelength is 100 μm.
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antenn a. In 2017, a preparation routine for the deposition of Pt antennae on Al2O3 high

temperature ceramics was developed using a combination of electron beam evaporation

of a 100 nm Pt seed layer and subsequent electrochemical deposition of a thicker Pt lay-

er, respectively, to reach a total Pt film thickness of about 1 μm [6]. A second key aspect

concerned the optimization of the cleaning procedure for both, the ceramic and the

piezoelectric substrates prior to the film deposition since any contamination on the

substrat e surface might deteriorate the adhesion of the grown film. For Ca3TaGa3Si2O14

(CTGS), a two-step cleaning procedure combining a SC-1 cleaning at a reduced tem -

perature of 30°C and a subsequent UV-ozone cleaning prior to deposition of the

metallizatio n resulted in lowest residual contamination [7].

In one of our most promising metallizations, RuAl, a high-temperature treatment at

above 600°C leads to an oxidation of Al to Al2O3 at the sample surface even under high

vacuum conditions and to a chemical reaction with the CTGS substrate. The latter is

successfull y suppressed by introducing a 10 nm SiO2 barrier layer at the interface [8]. The

lack of Al due to aluminum oxidation at the surface was tried to be countered by increas-

ing the nominal Al content in the films. The study of a wide range of film composition

(series of Ru100-x Al x, x = 50, 55, 60, 67) showed that after heat treatment the films are

more homogeneous (Fig.  3) but the RuAl phase formation is reduced [9]. However,

extende d layers of this material are stable up to 900°C under high vacuum and up to

600°C in air, respectively.

High precision microacoustic material data set for CTGS single crystal

Since the beginning of using piezoelectric single crystals for highly-precise microacoustic

components rigorous knowledge of material constant (MC) sets was an indispensable

requiremen t. The sets have to be both accurate and complete. Accuracy is important for

acceptable agreement between device simulation and experimental reality, complete-

ness preferentially plays a role for finding out figure-of-merit issues for optimum prac-

tical use of crystals. The present material under study is CTGS. It belongs to the point

group 32, i.e., it has 10 electromechanical MC’s, in addition to the mass density. The aim

of our work was to develop calculation ways of accuracies and to use this knowledge for

getting optimum combinations of SAW experiments for the best MC extraction.

Fig. 3: Cross section images of RuAl thin
films with various compositions after 
annealing for 10 h at 800°C under high
vacuum and at 600 and 800°C in air.
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On the base of the least squares method which is arranged to our problem of fitting

theoretica l to experimental values of crystal orientation dependent SAW phase veloc-

ity the surroundings of the minimum sum (MSS) of velocity deviation squares has been

analyzed, similarly to [10]. This was done by forming a ‘sensitivity matrix’ (or Jacobian

matrix: derivatives of each considered velocity w.r.t. each searched MC) based on a MC

set found in first approximation. Figures 4a and 4b depict examples of such matrices

demonstrating quite different sensitivity dependencies on orientation which is an

importan t condition for successful MC extraction. The subsequent evaluation of the

quadrati c dependence of MSS on all MC’s enables to obtain the full set of MC accuracies. 

We have demonstrated that angular dependent measurements of SAW velocities com -

bining samples with different surface orientations, e.g. on Y-cut, 45°rotated Y-cut,

135°rotated Y-cut, and X-cut result in a distinctly more accurate set of MC’s with uncer-

tainties up to 2 orders smaller compared to experiments on samples with only one

surfac e orientation (Y-cut) [11].
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Fig. 4: Sensitivity of SAW velocity in CTGS
w.r.t. the considered material constant as a
function of 2nd and 3rd Euler angle 
(1st Euler angle: 0°); a) elastic constant c14, 
b) piezoelectric constant e11.
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Abstract: Metastable Ti alloys are new materials of load-bearing implants for hard tis-

sue support. Suitable mechanical biofunctionality demands much lower stiffness than

present clinical implants combined with high strength, fatigue and wear resistance, as

well as excellent biocompatibility. Alloys based on the metastable Ti-Nb system are par-

ticularly promising: Selecting composition and thermomechanical processing paths for

controlled adjustment of microstructural parameters leads to phase configurations

which yield outstanding mechanical properties. Activation of athermal and isothermal

phase transformations through recently uncovered precipitation pathways opens new

microstructural design approaches. Furthermore, α″ martensite exhibits some of the

largest thermal expansion rates ever reported for solid crystalline metals (giant ther-

mal expansion). For cast β-type Ti-40Nb alloys recrystallization and cold rolling routes

were developed resulting in significant tensile strength increase while maintaining the

Young’s modulus low (∼ 60 GPa). Alternatively, powder metallurgical processing can

generate nanostructured states with remarkable strength. For improved surface

bioactivity of β-type Ti-Nb alloys anodization treatments were successfully developed

to grow oxide layers with characteristic morphologies at the nano- and microscale. From

those alloys osteosynthesis plates were produced according to industrial standards.

Phase formation and unusual thermal behaviour 
in the metastable Ti-Nb system

In collaboration with a research team from University of Ioannina (Greece) a fundamen-

tal experimental and theoretical study concerning the formation of phases in the

metastable Ti-Nb system, their crystallographic structure and electronic properties

was conducted, aiming to enlighten the electronic origins of the β-phase stability. Both

quantum-mechanical calculations and X-ray diffraction found several structural phas-

es depending on the Nb concentration [1]. Fig. 1 shows X-ray diffraction patterns of cast

and homogenized Ti-xNb (x ≤ 29.3 at.%; 45.8 wt.%) alloy samples. The main structural

constituent in these alloys is either α′, α″ or β. In all martensitic alloys minor amounts

of ω and/or retained β are present. In Nb-lean alloys containing less than 9 at.% Nb

mainly hexagonal martensite α′ was found. Alloys with Nb contents from 9 at.% to

20.4 at.% consist primarily of the orthorhombic martensite α″. Besides α″, alloys

containin g 22.4 at.% Nb and more contained increasing amounts of retained β that

did not transform into martensite by quenching. For Nb contents higher than 24.9 at.%

(38 wt.%) no secondary phases were detected besides the β-phase. 

Since the discovery of shape memory (SM) effects in Ti–Nb this system serves as a

prototyp e to study SM in Ni-free Ti alloys. The transformation pathways triggered by

heatin g of α″ martensite depend on the Nb content [2]. Calorimetry (DSC) analysis at

a constant heating rate was conducted for homogenized Ti–xNb alloys. 

Reversion of α″ martensite followed by substantial ω iso precipitation occurs for x ≥ 28.5.

In contrast, for x ≤ 21 α″ decomposes directly into α +β phase mixture. Formation of

ω iso starts during the martensitic reversion of α″ for x = 28.5, whereas more than

100°C above the austenite finish temperature Af for x = 36. During further heating

ω iso transforms back to β. For x = 28.5 this reaction overlaps and is followed by α

precipitatio n. 

Fig. 1: X-ray diffraction patterns of cast and homogenized Ti-Nb alloys (at.%) [1].
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Fig. 2: Evolution of in situ synchrotron X-ray
diffraction patterns of homogenized Ti-36 Nb
(wt.%): left side – initial phases; 
right side – phases formed during heating [2].

Variable-temperature synchrotron X-ray diffraction (SXRD) was employed to track these

transformations in situ for the same alloys and new phases were detected including α,

β, ω iso, a Nb-depleted α″ (α″lean) and a thermally formed α″iso [2]. Fig. 2 shows exem-

plarily the pattern evolution during heating of Ti-36Nb up to 760°C confirming the

formatio n of ω iso and α. Using the diffractograms the lattice parameters for all phases

were determined including the three types of α″ (martensite, α″lean, α″iso). The lattice

parameters of α″ martensite are strongly affected by the Nb content. Nb-lean α″ is

structurall y closer to hcp α′ whereas Nb-rich α″ is more similar to bcc β. The highlight

of this study was the demonstration that α″ martensite displays both one of the largest

positive and one of the largest negative linear thermal expansion coefficients αL ever

reported for solid crystalline metallic systems [2]. A remarkable anisotropy of the

therma l expansion of α″ martensite for Ti–36Nb was observed: While the aα″ and cα″

spacings expand at a rate of 163.9×10−6 °C −1 and 24.4×10−6 °C −1, respectively, the bα″

spacing contracts by −95.1×10−6 °C −1 between 50°C and 210°C. Fig. 3 illustrates this

schematically. Typical values for αL for engineering metals and alloys are positive and

range between 0–40×10−6 °C −1. Expansion rates comparable to or larger than those for

Ti–36Nb are only found for members of other material classes. In case of α″ martensite

in Ti–Nb, the expansion and contraction along the unit cell edges partially compensate

each other leading to a volumetric expansion rate αV between 24.7×10−6 °C −1 and

91.0×10−6 °C −1. 

Thermomechanical processing of β-type Ti-Nb alloys

For β-type Ti-40Nb (wt.%) alloys thermomechanical processing routines were developed

to evaluate the effectiveness of different hardening strategies for the improvement of

their mechanical biofunctionality. The aim was to significantly increase the yield and

tensile strength in comparison to the cast and homogenized state (H) while maintain-

ing a very low Young’s modulus of ≤ 60 GPa. Fig. 4 shows tensile test curves of Ti-40Nb

samples after different processing treatments including warm and cold rolling as well as

annealing steps. To exploit grain boundary hardening, a grain refinement of the β-phase

was anticipated by a recrystallization treatment (R) and a significant drop of the grain

size from 230 to 26 μm was achieved. The ultimate tensile strength was increased by 3%

to 495 MPa, while the Young’s modulus remained unchanged. Cold-rolling (CR) with 36%

thickness reduction was applied after recrystallization and led to a pronounced work

hardening which caused an increase of the ultimate tensile strength by about 32% to

650 MPa. The precipitation of small amounts of α-phase obtained by aging at 450°C (A)

resulted in an increase of the ultimate tensile strength to 674 MPa. However, the Young’s

modulus also increased to 68 GPa. Therefore, the CR route was identified as the most

promising one [3]. Those hardening strategies were found to be also transferrable to

Fig. 3: Schematic illustration of the anisotropy of 
the thermal expansion of α″ martensite for Ti–36Nb
(wt.%): aα″ and cα″ spacings expand at a rate of
163.9×10−6 °C−1 and 24.4×10−6 °C−1, b spacing
contracts by −95.1×10−6 °C−1 between 50 °C and
210 °C. 
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Fig. 4: Tensile test curves of Ti-40Nb (wt.%) after
different thermomechanical treatments: 
(H) homogenized, (R) recrystallized, (CR) cold rolled,
(A) aged [3]. 

Fig. 5: Surface state of Ti-40Nb (wt.%) after plasma
electrolytic oxidation (PEO): SEM top surface and
cross section and GDOES depth profile [7].

In-containing β-type Ti-Nb alloys with further reduced Young’s modulus and indium

effect s on the deformation mechanisms, in particular on stress-induced martensite

formation were discussed [4]. Alternatively, powder metallurgical processing of β-phase

Ti-Nb alloys was successfully applied [5]. Hot compaction of gas-atomized and addition-

ally intensively milled Ti-45Nb powder yielded fully dense samples with nanograin

microstructur e. Those exhibit a very high compressive yield strength of 940MPa and a

low Young’s modulus of 70 GPa. An efficient new approach to produce ultrafine-grained

β-type Ti-Nb powder by reactive milling of the elements in hydrogen atmosphere was

develope d [6].      

Surface engineering of Ti alloy surfaces 
for hard tissue implant application

For β-type Ti-40Nb alloys different anodization techniques were applied to grow oxide

layers with characteristic morphologies at the nano- and microscale [7].

Anodization in fluoride-containing solutions generates self-organized oxide nanotube

layer s whereby the nanotubes have higher aspect ratios than those grown on cp2-Ti. The

electrolyte composition has a significant influence on the resulting oxide morphology.

The transfer of such anodization to Ti-Nb-Zr-Si metallic glass surfaces was demonstrat-

ed yielding double-wall oxide nanotubes with incorporation of all alloying constituents

[8]. Those tubular structures are targeted as containers for drug-delivery systems.

Plasm a electrolytic oxidation of Ti-40Nb in strongly alkaline solution yields a two-layer

oxide structure with a thin compact inner layer and a much thicker outer layer with

micropore s and microchannels, as shown in Fig.5. The latter is due to spark discharging
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and arcing during the severe anodization process. In comparison to oxide growth on

cp-Ti, on the β-phase alloy thickness growth is much more enhanced and slightly larg-

er dimensions of micropores are detected. The oxides are crystalline mainly with rutile

structure. In result of GD-OES depth profile analysis of treated alloy surfaces as shown

in Fig. 5, these were identified as mixed oxides (TixNb1-x)O2. Inductively coupled RF oxy-

gen plasma anodization was done in cooperation with a team at JLU Gießen. It causes

the formation of microstructured oxides on the Ti-40Nb surface. With increasing process-

ing temperature a transition from random structured to patterned oxides was observed

which is opposite to the trend for cp2-Ti. For all three techniques the oxide layer growth

on the Ti-40Nb alloy follows the principal mechanisms that are established for Ti. Nb

species are always involved in the oxidation processes which causes enhanced layer

thicknes s growth, morphology changes and mixed oxides. All obtained oxide types are

promising as coatings of bone implants for improved bioactivity. 

In a pilot study, from thermomechanically processed β-type Ti-40Nb sheets osteosyn-

thesis plates were manufactured by an industrial standard procedure developed for

clinica l Ti which comprises laser cutting, deburring and vibration grinding and surface

anodization oxidation. A typical plate is shown in Fig. 6. In collaboration with a team from

TU Dresden the fatigue behaviour of those plates and tensile test samples was analysed

and superimposed influences of the surface state, the sample geometry and the

microstructu re were discussed [9]. 
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Fig. 6: Osteosynthesis plate made of thermo-
mechanically processed Ti-40Nb (wt.%) with
industrial surface finish [9].
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Ultra-high-strength tool steels prepared by selective 
laser melting and casting – a comparative study

J. Sander, J. Hufenbach, L. Giebeler, H. Wendrock, T. Gemming, U. Kühn

Abstract: Selective laser melting is an additive manufacturing process, which enables

industrial scale production of complex shaped metal parts. Moreover, high cooling rates

are realized in the SLM process leading to highly refined microstructure. This report

shows the influence of the SLM process on a FeCrMoVC alloy regarding microstructure,

behavior under compressive load, and wear resistance. A comparison is draw with the

cast state of the FeCrMoVC alloy and with commercial 1.2379 cold work tool steel

(X153CrMoV12). The results demonstrate that the SLM process is beneficial to the in-

vestigated properties. SLM samples achieved a hardness of 65 HRC and a compression

strength of 5300 MPa. Furthermore, the wear resistance of SLM processed samples is

65% higher in comparison to cast FeCrMoVC and 25% higher compared to that of

commercial 1.2379. The increased wear resistance of SLM samples is caused by the suc-

cessful prevention of carbide breakouts under wear load and the increased hardness.

General aspects

Tool steels are known for their marked wear resistance as well as hardness, strength, and

adequate toughness. By an appropriate alloy design and manufacturing process, the

microstructur e and related properties of the tool steels can be tailored adjusted within

a large spread. Thereby, as-cast steels may show an enhanced wear resistance and

strength compared to heat-treated steels resulting in a longer tool life [1]. Though, the

impact toughness of high-alloyed cast tool steels is in general lower compared to con-

ventionally produced steels, due to the coarse carbide network along the primary grain

boundaries [2]. However, by an appropriate grain refinement an increase in toughness

and strength can be obtained.

Selective laser melting presents an additive manufacturing technology enabling a

significan t refinement of the grains and microstructural constituents due to very high

solidification rates within the process. As shown in previous work, this leads to an

increas e of compression strength and hardness [3]. 

Various authors report a significantly different mechanical and wear behavior of SLM

fabricate d samples compared to their cast equivalents. For aluminum alloys [4,5],

titaniu m alloys [6,7], CoCr alloys [8,9], and tool steels [10] an increase of the wear

resistanc e of SLM produced parts could be observed. Although, there is no general in-

crease of wear resistance with increasing material strength properties or hardness [11].

Further studies are necessary to fully understand the influence of the SLM process on the

mechanical and wear properties.

Microstructure and mechanical behaviour of Fe85Cr4Mo8V1C1

In Fig.1 SEM images of the deep etched microstructure of the investigated FeCrMoVC

modifications and the reference material is presented. The arrangement of the carbides

is exposed. 

The cast sample of the FeCrMoVC alloy consists of martensite (71  wt.%), retained

austenit e (24%), as well as Mo-rich M2C (M=Mo, V, Cr) carbides (3 wt.%), and V-rich MC

(M=V, Mo) carbides (2 wt.%) [13]. These complex carbides form a fine network-like struc-

ture as displayed in Fig.1a. In Fig.1b a SEM image of the reference steel (1.2379) is

shown, which is composed of martensite (64 wt.%), retained austenite (3 wt.%), and

dense isolated clusters of Cr7C3 carbides (33 wt.%). The FeCrMoVC SLM sample consists

of martensite (73  wt.%), retained austenite (15 wt.%), carbides of the M2C type

Fig. 1: SEM images of deep etched samples. a) cast
state of the FeCrMoVC alloy, b) 1.2379 used as 
reference material, c) SLM sample of the FeCrMoVC
alloy, here only the carbide network is visible.
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(M=Mo, V, Cr) (6 wt.%), and MC (M=V, Mo) (6 wt.%). The carbide network has a long

drawn cell structure (Fig. 1c) and is orientated in building direction. In comparison to

the cast sample, the carbides are refined and homogeneously distributed. The refinement

is caused by the high cooling rates in the SLM process, which are around one thousand

times higher than in the presented casting process [3,13].

A summary of the mechanical properties of the tested alloys can be found in Tab. 1. The

cast FeCrMoVC has a hardness of about 60 HRC, resulting of the high martensite content

as well as the M2C and MC carbides. Moreover, the compression strength is around

3500 MPa combined with a fracture strain of 17%. In comparison, the 1.2379 shows a

hardness of 61 HRC due to the higher martensite content and the much higher carbide

content. Nevertheless, the difference of the average hardness is only 1 HRC despite the

33 wt.% Cr7C3 carbides in the 1.2379 compared to 5 wt.% carbides in the cast sample.

This is explained by the lower microhardness of the M7C3 carbides compared to M2C and

MC carbides [14]. The compression strength of the 1.2379 is 3200 MPa, whereby the

fracture strain amounts 24%. The higher average compression strength of the cast

FeCrMoVC sample mainly results from the network-like structure of the carbides and the

deformation induced transformation of retained austenite into martensite [12]. How-

ever, the network-like structure of the M2C carbides in the cast sample provides fracture

sites [2], which lead to a reduced fracture strain compared to the 1.2379 steel. 

The SLM sample has a significantly increased hardness of 65 HRC compared to the cast

sample, an increased compression strength of 5326 MPa, and a fracture strain of 15.6%.

This can be explained by the refined microstructure of the SLM sample and the homo-

geneously dispersion of alloying elements and carbides leading to a Hall-Petch strength-

ening [3]. Furthermore, the carbide and martensite content is increased, which provides

high hardness but causes embrittlement and, consequently, lowers the fracture strain.

The different wear behavior of the tool steel samples are reflected by the wear rate

(Tab.1). The SLM samples show a significantly higher wear resistance compared to the

cast FeCrMoVC samples and the 1.2379 reference steel. Fig. 2 presents height mappings

and SEM images of the wear surfaces. It is observable that with decreasing wear rate

also the roughness of the wear surface decreases. This is because of the decreasing depth

Fig. 2: Height mappings and SEM images of the
wear surfaces of cast FeCrMoVC (a, b), 1.2379
reference (c, d), and SLM processed FeCrMoVC
(e, f ) samples.
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of the scratches. The depth of the scratches is strongly influenced by the morphology and

properties of the phase constituents of the tested materials. With increasing hardness

of phases, a decreasing penetration depth of the abrasive SiC-particles of the grinding

wheel was observed, leading to less material removal. Microcutting and microplough-

ing are the underlying wear mechanisms and, amongst other things, depend on the

hardnes s of the material [15]. However, bearing in mind the similar hardness of the cast

samples and the 1.2379 further influences than the hardness need to be considered. 

The SEM images of the wear surfaces reveal additional wear mechanisms. The type, shape,

size, and volume fraction of the carbides play an important role in wear behavior. The M2C

and MC carbide types are reported to have high hardness and fracture toughness [14],

leading to high wear resistance against softer abrasives, but they also tend to break out

in larger areas [16]. Those breakouts can be observed in the cast sample in Fig. 3b. The

Cr7C3 type carbides in the 1.2379 are softer than the M2C and MC carbide types [14].

Consequent ly, they are cut by harder abrasives instead of breaking out [16] visible in

Fig. 1d. This behavior and the higher carbide content is cause for the higher wear

resistanc e of the 1.2379 compared to the cast FeCrMoVC sample. 

The carbides in the SLM sample are of the same type as in the castings, but occur in

higher volume fractions (M2C and MC type). Nevertheless, no breakout areas have been

found on the wear surface. Fig. 1c and Fig. 2f show the structure of the carbides in the

SLM sample. They are highly refined and arranged in a continuous network structure

compared to the carbides in the as cast sample (Fig. 1a, Fig. 2a). Consequently, they have

a bigger surface and stronger bonding to the matrix, which prevents breakouts. The

combinatio n of a high matrix hardness, high carbide content, and homogeneously dis-

persed carbidic phases, leads to a tailored microstructure and, therefore, to superior wear

resistance of SLM processed FeCrMoVC alloy.

Tab. 1: Mechanical properties of SLM processed FeCrMoVC, 
cast FeCrMoVC, and 1.2379 reference sample.

Hardness 
(HRC)

61

59

65

Wear rate
(mm3/Nm)

0.06039

0.08379

0.04506

Compression
strength (MPa)

3190

3536

5326

Fracture strain
(%)

24

17

16

1.2379

Cast FeCrMoVC

SLM FeCrMoVC

Fig. 3: Application-oriented parts were manufactured.
Top: milling cutter with integrated cooling channels.
Bottom: drill with integrated cooling channels, after
SLM process and after grinding, sharpening, and 
testing.
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Conclusions 

The investigated mechanical properties of SLM processed FeCrMoVC alloy benefit from

the refinement of the microstructure resulting from the high cooling rates in the SLM

process. In fact, the compression strength, hardness, and wear resistance are signifi -

cantly increased compared to the cast state and 1.2379 reference steel. The reason is

give n by the enhanced hardness and the prevention of carbide breakouts, which appeared

in the cast state. 

Application-orientated parts have been built to show the potential of this technology

(Fig. 3). A milling cutter with integrated cooling channels, as well as, a drill with inte-

grated cooling channels was produced. The drill has been grinded and sharpened and was

successfully tested. In conclusion, the SLM process is advantageous for the processing

of high-strength FeCrMoVC tool steel. 
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Institut Strukturforschung TU Dresden, Dresden/ Germany, 17.1.17 (2017).

42) J. Fink, ARPES studies of charge carrier scattering rates in iron-based superconductors and related compounds, Electronic Properties 

of Strongly Correlated Materials, Vancouver/ Canada, 4.-6.12.17 (2017).

43) J. Fink, Non-Fermi-liquid behavior, Lifshitz transitions, and Hund’s metal behavior of iron-based superconductors and related 

compounds from ARPES, International Conference „Superstripes 2017“: Quantum physics in Complex Matter: Superconductivity, 

Magnetism and Ferroelectricity, Ischia/ Italy , 5.-10.6.17 (2017).

44) V.M. Fomin, Topology-driven effects in advanced nanoarchitectures, 4th World Congress and Expo on Nanotechnology and 

Materials Science, Barcelona/ Spain, 5.-7.4.17 (2017).

45) V.M. Fomin, Topology-driven effects in advanced nanoarchitectures, 2017 EMN Vienna Meeting, Vienna/ Austria, 
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56) I.C. Fulga, Integer spin fermions - a minimal model, FKT Seminar, University of Regensburg, Regensburg/ Germany, 

July 2017 (2017).
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59) A. Gebert, Development of low modulus beta Ti-Nb alloys for bone implant applications, Dresden Concept Scientific Area Network 
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2017, Dresden/ Germany, 27.-29.9.17 (2017).

121) R. Schaefer, Advanced Magneto-Optical Domain Analysis in Soft Magnetic Materials, 2017 TMS Annual Meeting and Exhibition, 

San Diego/ USA, 26.2.-2.3.17 (2017).

122) R. Schaefer, Magneto-optical Kerr Microscopy: Status, Progress and Challenges, Workshop „Frontiers in Metrology Techniques for 

Magnetic Nanodevices“, Oregon State University, Corvallis/ USA, 20.-21.7.17 (2017).
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123) R. Schaefer, Magnetic Materials, Erasmus block lecture, University Polytecnica, Institute for Metallic Materials Science, 

Bucharest/ Romania, 13.-15.3.17 (2017).

124) R. Schaefer, I. Soldatov, Micromagnetism, Magnetic Microstructure and their Magneto-Optical analysis, Seminar at Department 

of Physics, Tsinghua University, Bejijng/ China, 30.5.17 (2017).

125) R. Schaefer, I. Soldatov, Micromagnetism, Magnetic Microstructure and their Magneto-Optical analysis, Seminar at Key Lab for 

Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou/ China, 11.5.17 (2017).

126) Gabi Schierning, Template Assisted Electrochemical Deposition and High Power Factor Materials for Integrated Thermoelectric 

Devices, 232 ECS Meeting, National Harbor, Maryland/ USA, 1.-5.10.17 (2017).

127) Gabi Schierning, Thermoelectric devices from nanocrystalline silicon: Materials processing and device concepts, MCARE 2017 - 

Materials Challenges in Alternative and Renewable Energy, Jeju Island/ Korea, 20.-24.2.17 (2017).

128) O.G. Schmidt, Microtubular NEMS for on- and off-chip biosensing and -medical applications, NanoBioSensors Conference, 

Dresden/ Germany, 4.-5.9.17 (2017).

129) O.G. Schmidt, Microtubular NEMS: From concepts to applications, 19th Nano Congress for Next Generation, Brussels/ Belgium, 

31.8.-1.9.17 (2017).

130) O.G. Schmidt, 3D microtubular NEMS: From nanophotonics to biomedical applications, International Workshop on Advanced 

3D Patterning, Dresden/ Germany, 5.-6.10.17 (2017).

131) O.G. Schmidt, Semiconductor-based quantum light sources, ESR Workshop on Nanoscale Quantum Optics, Budapest/ Hungary, 

26.-27.10.17 (2017).

132) O.G. Schmidt, Inorganic nanomembranes for quantum photonics and optoplasmonics, SPIE Photonics West, San Francisco/ USA, 

28.1.-2.2.17 (2017).

133) O.G. Schmidt, Nanomembrane devices: From conception to implementation, Colloquium, FU Berlin, Berlin/ Germany, 

16.6.17 (2017).

134) O.G. Schmidt, Nano- and quantum photonics with membranes and dots, JST Agency and Leibniz Association Workshop Advanced 

Material Sciences Dresden/ Germany, 20.-22.9.17 (2017).

135) O.G. Schmidt, Bubble-propelled and biohybrid micromotors, The Hamlyn Symposium on Medical Robotics, 

London/ United Kingdom, 25.-28.6.17 (2017).

136) O.G. Schmidt, 3D Assembly of microtubular nanomembranes: From basics to devices, XVI. DESY Research Course 2016: 

Nanoscience at modern x-ray sources, Hamburg/ Germany, 1.-3.3.17 (2017).

137) O.G. Schmidt, Interfacing microtubular NEMS with single cells and biomolecules, International Conference on Functional 

Nanomaterials and Nanodevices Budapest/ Hungary, 24.-27.9.17 (2017).

138) O.G. Schmidt, Micromotors: From science fiction into the realm of possibilities, Intelligent Systems Colloquium, 

Max Planck Institute for Intelligent Systems, Stuttgart/ Germany, 7.7.17 (2017).

139) O.G. Schmidt, Micromotors: Opportunities and challenges, International Conference on Micro/Nanomachines, Wuhan/ China, 

25.-28.8.17 (2017).

140) O.G. Schmidt, Microtubular NEMS for on- and off-chip applications, International Conference on Materials for Advanced 

Metallization 2017 (MAM2017), Dresden/ Germany, 26.-29.3.17 (2017).

141) O.G. Schmidt, Opportunities and challenges of micromotors, Micromotors Summer School, Dresden/ Germany, 15.-18.8.17 (2017).

142) S. Schneider, D. Pohl, S. Loeffler, P. Schattschneider, M. Schmidt, D. Kasinathan, J. Rusz, T. Gemming, A. Lubk, D. Wolf, 

U.K. Roessler, M.J. Stolt, S. Jin, L. Schultz, K. Nielsch, S.T.B. Goennenwein, B. Rellinghaus, Quantitative magnetic 

characterization in the TEM, Seminar Song Jin Group, Madison, WI/ USA, 3.8.17 (2017).

143) L. Schultz, Interaction of Ferromagnetic and Superconducting Permanent Magnets: Quantum Levitation or: The Physics Behind the 

„Back to the Future II“ Hoverboard, Physikalisches Kolloquium, Universität Augsburg, Augsburg/ Germany, 10.7.17 (2017).

144) L. Schultz, Superconducting Magnetic Levitation - the Miraculous World of Superconductivity, 

Humboldt-Kolleg „Limits of Knowledge“, Crakow/ Poland, 22.-25.6.17 (2017).

145) L. Schultz, Vom Schweben auf Magnetfeldern - die wundersame Welt der Supraleitung, Alexander von Humboldt Stiftung, 

Feodor-Lynen-Ausschuss – Langer Abend, Bad Godesberg/ Germany, 10.10.17 (2017).

146) L. Schultz, Symposium on Heusler Compounds as Hardmagnetic Materials, Dresden, MPI für Chemische Physik fester Stoffe, 

Dresden/ Germany, 24.3.17 (2017).

147) L. Schultz, D. Berger, SupraTrans - ein schwebendes, umweltfreundliches, geraeuscharmes und sparsames Transportsystem 

fuer Personen und Gueter, Verkehrsausschuss der IHK Dresden, Dresden/ Germany, 29.3.17 (2017).
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148) L. Schultz, G. Fuchs, K. Nenkov, Interaction of Ferromagnetic and Superconducting Permanent Magnets: Passively Stable 

Magnetic Levitation, 1st Workshop of the ERA Net RUS Plus Project „Magnes“, Wroclaw/ Polen, 2.-3.2.17 (2017).

149) L. Schultz, G. Fuchs, K. Nenkov, Possible Applications Related to the Results of the ERA.Net RUS Plus-Innovation Project MAGNES, 

2nd Workshop of the ERA.Net RUS Plus-Innovation Project MAGNES, Wroclaw/ Poland, 28.-29.12.17 (2017).

150) S. Scudino, Strain analysis of plastically-deformed bulk metallic glasses: challenges and opportunities, PETRA IV: 

Research with High Energy X-Rays at Ultra-Low Emittance Sources, DESY Hamburg/ Germany, 13.-15.2.17 (2017).

151) M. Sieger, P. Pahlke, J. Haenisch, M. Lao, M. Eisterer, A. Meledin, G. Van Tendeloo, K. Nielsch, L. Schultz, R. Huehne, 

Fast PLD growth of nanostructured YBCO coated conductors with artificial pinning centers, 30th International Symposium 

on Superconductivity 2017 (ISS2017), Tokio/ Japan, 13.-15.12.17 (2017).

152) M. Sieger, P. Pahlke, R. Ottolinger, J. Haenisch, B. Holzapfel, M. Lao, M. Eisterer, A. Meledin, G. Van Tendeloo, B.H. Stafford, 

M. Bauer, K. Nielsch, L. Schultz, R. Huehne, Incorporation of artificial pinning centers in thick YBCO films grown on technical 

templates by pulsed laser deposition, IUMRS-ICAM 2017, Kyoto/ Japan, 27.8.-1.9.17 (2017).

153) M. Stoica, P. Ramasamy, I. Kaban, S. Scudino, J. Eckert, Crystallization behavior and soft magnetic properties of 

(Fe36Co36B19.2Si4.8Nb4)99.5Cu0.5 bulk metallic glass, TMS 2017, The 146th Annual meeting and exhibition, 

San Diego/ USA, 26.2.-2.3.17 (2017).

154) M. Uhlemann, V. Haehnel, F.Z. Kahn, J. Koenig, G. Mutschke, H. Schloerb, I. Fritsch, Combining magnetic forces for contactless 

manipulation of fluids and electrochemical detection in microfluidic systems, 68th Annual Meeting of the International Society 

of Electrochemistry, Providence, Rhode Island/ USA, 27.8.-1.9.17 (2017).

155) J. van den Brink, Iridates and RuCl3: From Heisenberg antiferromagnets to potential Kitaev spin-liquids, Recent Progress in Many 

Body Theories 19, POSTECH, Pohang/ Korea, 25.6.17  (2017).

156) J. van den Brink, Iridates and RuCl3: From Heisenberg antiferromagnets to potential Kitaev spin-liquids, APS March Meeting 

Invited Talk, New Orleans/ USA, 13.3.17 (2017).

157) J. van den Brink, Josephson Currents Induced by the Witten Effect, Workshop Topology Meets Materials, Dresden/ Germany, 

5.6.17 (2017).

158) J. van den Brink, Josephson Currents Induced by the Witten Effect, Physics Colloqium, University of Cologne/ Germany, 

3.5.17 (2017).

159) J. van den Brink, Iridates and RuCl3: From Heisenberg antiferromagnets to potential Kitaev spin-liquids, MSU-IFW-ILTPE workshop, 

Moscow/ Russia, 15.6.17 (2017).

160) J. van den Brink, Resonant Inelastic X-ray Scattering on high Tc cuprates and magnetic iridates, Spectroscopy Village Science 

Away Day, Abingdon/ United Kingdom, 31.3.17 (2017).

161) J. van den Brink, Theory of Spectroscopy on Strongly Correlated Electron Systems, 7th MaNEP Winterschool, Saas Fee/ Switzerland, 

9.1.17 (2017).

162) J. van den Brink, Tuneable anyon statistics of vortices at topological insulator interfaces, CSF Conference - New Trends in 

Topological Insulators, Monte Verita/ Switzerland, 19.7.17 (2017).

163) J. van den Brink, Josephson Currents Induced by the Witten Effect, Nordita Workshop on Multicomponent and Strongly Correlated 

Superconductivity, Stockholm/ Sweden, 20.8.17 (2017).

164) A. Waske, Magnetokalorische Materialien: Von den Grundlagen zur Anwendung, Seminar des VDI-Arbeitskreis Werkstofftechnik, 

Bremen/ Germany, 21.6.17 (2017).

165) A. Waske, A. Funk, A. Rack, R. Schaefer, In-situ imaging techniques for the study of hysteresis in magnetocaloric materials, 

International workshop on  Hysteresis in magnetocaloric, electrocaloric and elastocaloric refrigeration, Dresden/ Germany, 

7.-10.2.17 (2017).

166) A. Waske, M. Krautz, A. Funk, B. Weise, J. Eckert, Rapidly quenched and amorphous magnetocaloric alloys, 

International Conference on rapidly Quenched & Metastable Materials (RQ16), Leoben/ Austria, 27.8.-1.9.17 (2017).

167) A. Winkler, Applications for surface acoustic wave (SAW) devices and material-/technology related issues in their realization, 

Micro/Nanofluidic BioMEMS Group, Massachusetts Institute of Technology (MIT), Boston/ USA, 30.11.17 (2017).

168) A. Winkler, Acoustofluidics, Einzelvorlesung im Rahmen der Vorlesungsreihe „Biotechnologische Verfahren“, 

Technische Universität Dresden, Dresden/ Germany, 1.6.17 (2017).

169) U. Wolff, B. Ambrozic, J. Zavasnik, K. Zuzek Rozman, K. Leistner, K. Nielsch, S. Sturm, In-situ observation of the electrochemical 

deposition of Fe in a transmission electron microscope, Institutsseminar „Nanostructured Materials“ Jozef Stefan Institute, 

Ljubljana/ Slovenia, 16.10.17 (2017).
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Issues of patents (issue decision date)

EP15732568.9 Batterieträger (02.08.2017 )
(11414 EP) Inventors: Markus Herklotz, Jonas Weiß, Lars Giebeler, Michael Knapp      

14/408,126 Verfahren zur kontrollierten Bewegung von motilen Zellen in flüssigen oder gasförmigen Medien (26.09.2017 )
(11213 US) Inventors: Veronika Magdanz, Samuel Sanchez Ordonez, Oliver G. Schmidt       

DE 10 2011 006 963.1 Mehrspur-Unidirektionalwandler (08.05.2017 )
(11109 DE) Inventors: Sergey Biryukov, Günter Martin, Bert Wall       

DE 10 2011 007 700.6 Verbundwerkstoff und Verfahren zu seiner Herstellung (19.10.2017 )
(11111 DE) Inventors: Uwe Gaitzsch, Claudia Hürrich, Martin Pötschke, Jan Romberg, Stefan Roth, 

Ludwig Schultz, Sandra Kaufmann-Weiß   

DE 10 2012 213 839.0 Verfahren zur kontrollierten Bewegung von Objekten in flüssigen Medien (24.02.2017 )
(11209 DE) Inventors: Robert Streubel, Denys Makarov, Oliver G. Schmidt, Larysa Baraban, Gianaurelio Cuniberti     
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Priority patent applications (priority date)

11623 DE Magnetokalorischer Wärmeübertrager mit anisotroper Wärmeleitfähigkeit und Verfahren zur Herstellung 
(03.02.2017)
Inventors: Maria Krautz, Markus Klose, Anja Waske, Martin Uhlemann      

11604 DE Vorrichtung zur Steuerung und/oder Regelung der Strömung von Fluiden (12.05.2017)
Inventors: Anja Waske, Maria Krautz, David Werner, Samuel Grasemann      

11713 DE Verfahren sowie Vorrichtung und Anordnung  zur Filtration magnetischer Partikel (12.05.2017)
Inventors: Anja Waske, Stefanie Hartmann        

11714 DE Kompakte Kondensatoren und Verfahren zu ihrer Herstellung (24.05.2017)
Inventor: Oliver G. Schmidt  

11525 DE Aufgerollte magnetische Kondensatoren und Verfahren zu ihrer Herstellung (24.05.2017)
Inventors: Oliver G. Schmidt, Stefan Harazim, Shoichiro Suzuki       

11526 DE Aufgerollte Energiespeicherbauelemente und Verfahren zu ihrer Herstellung (24.05.2017)
Inventor: Oliver G. Schmidt         

11712 DE In situ-Verfahren und Vorrichtung zur Herstellung von Garnen aus Kohlenstoffnanotubes (12.06.2017)
Inventors: Vyacheslav Khavrus, Albrecht Leonhardt, Ralf Voigtländer, Bernd Büchner      

11630 DE Brennstoffzelle (30.06.2017)
Inventors: Jörg König, Sebastian Burgmann        

11626 DE Verfahren zur Herstellung omniphober Oberflächen (06.07.2017)
Inventors: Julia Linnemann, Jakob Sablowski, Simon Unz, Michael Beckmann, Lars Giebeler     

11613 DE Dreidimensionale Mikro-Bauelemente und Verfahren zu ihrer Herstellung (22.08.2017)
Inventors: Daniil Karnaushenko, Dmitriy Karnaushenko, Oliver G. Schmidt       

11717 DE Vorrichtung und Verfahren zur Bestimmung von Eigenschaften leitfähiger oder dielektrischer Schichten 
(28.09.2017)
Inventors: Hagen Schmidt, Günter Martin        

11715 DE Impulsauflösendes Photoelektronenspektrometer und Verfahren zur impulsauflösenden 
Photoelektronenspektroskopie (15.12.2017)
Inventor: Sergey Borisenko         
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Graduation of young researchers 2017

Habilitation 

Christian Hess Spin-heat transport of low-dimensional quantum magnets, TU Dresden

Axel Lubk Holography and Tomography with Electrons – Froam Quantum States to Three-Dimensional Fields and Back, 
TU Dresden

PhD Theses 

Florian Bittner Untersuchung der Wechselwirkung von Verarbeitung, Gefüge und Eigenschaften 
hartmagnetischer Mn-Al-Legierungen mit L10-Struktur, TU Dresden

Anja Bonatto Minella One-dimensional carbon nanostructures grown from permalloy catalyst nanoparticles, TU Dresden

Tilo Espenhahn Schaltbare Fahrwegkomponenten für supraleitende Magnetschwebebahnen, TU Dresden

Uwe Gräfe Investigation of the Superconducting and Magnetic Phase Diagram of Off-Stoichiometric LiFeAs, TU Dresden 

Marcel Haft Synthese intermetallischer Nanostrukturen in Kohlenstoffnanoröhren, TU Dresden

Frank Kirtschig Topological k · p Hamiltonians and their applications to uniaxially strained Mercury telluride, TU Dresden

Anett Förster Epitaktische Ni-Mn-Ga-Co-Schichten für magnetokalorische Anwendungen, TU Dresden

Thomas Freudenberg Integration prästabilisierter Nanopartikel in lösungsbasierten supraleitenden YBa2Cu3O7-δ- Schichten, 
TU Dresden

Stephan Fuchs Elektronenspinresonanz an Iridaten in Doppelperowskistrukturen, TU Dresden

Katrin Junghans Clusterfullerensynthese mit Methan, TU Dresden 

Dmitriy Karnaushenko Compact helical antenna for smart implant applications, TU Chemnitz

Konrad Kosiba Flash-Annealing of Cu-Zr-Al-based Bulk Metallic Glasses, TU Dresden

Pranab Kumar Nag Unusual electronic properties in LiFeAs probed by low temperature scanning tunneling microscopy 
and spectroscopy, TU Dresden 

Xueyi Lu Architectural nanomembranes as cathode materials for Li-O2 Batteries, TU Chemnitz

Abbas Madani Titanium dioxide based microtubular cavities for on-chip integration, TU Chemnitz

Mahmoud Madian Fabrication and characterization of highly-ordered TiO2-CoO, CNTs@TiO2-CoO and TiO2-SnO2 
nanotubes as novel anode materials in lithium ion batteries, TU Dresden

Miléna Martine Na-Sb-Sn-based negative electrode materials for room-temperature sodium cells for 
stationary Applications, TU Dresden

Michael Mietschke Zusammenhang von Gefüge und ferroelektrischen Eigenschaften texturierter PMT-PT-Dünnschichten, 
TU Dresden

Parthiban Ramasamy Soft Ferromagnetic bulk metallic glasses with enhanced mechanical properties, TU Dresden

Jinbo Pang Thermal deposition approaches for graphene growth over various substrates, TU Dresden

Florian Rückerl Photoemission Spectroscopy at Organic Semiconductor Systems, TU Dresden 

Nataliya Samoylova Cluster-based redox activity in Endohedral Metallofullerenes: Electrochemical and EPR studies, TU Dresden 

Benjamin Schleicher Herstellung und multivariable Beeinflussung epitaktischer Ni-Mn-Ga-Co-Schichten auf 
piezoelektrischen Substraten, TU Dresden

Xiaolei Sun Nanomembranes based on nickel oxide and germanium as anode materials for lithium-ion batteries, 
TU Chemnitz

Yannic Utz The Effect of In-Chain Impurities on 1D Antiferromagnets - An NMR Study on Doped Cuprate Spin Chains, 
TU Dresden

Lixia Xi High-temperature interactions of molten Ti-Al, Ni-Al and Ni-B alloys with TiB ceramic, TU Dresden
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Diploma and Master Theses

Mirunalini Devarajulu Local Photo-response Characteristics in Organic Nanosystems via Cs-AFM, TU Chemnitz

Kristina Ditte Chemical derivatization of endohedral metallofullerene Y3N@C80 and its influence on 
luminescent properties, TU Dresden

Esther Fischer Electron Energy-Loss Spectroscopy of High-Temperature Superconductors Bi-2212 and Bi-2223, 
TU Dresden

Christian Frach Verformungseigenschaften mechanisch vorbelasteter CuZr-Basis-Gläser, TU Dresden

Hannes Funke Quatum Confinement in Bi2Te3 Nanostructures, TU Dresden

Kevin Geishendorf Annealing of YIG/Pt-Heterostructures for Spin Injection Experiments, TU Dresden

Lukas Graf Transport properties of thin transition-metal dichalcogenide nanostructures

Yue Gu Fabrication and Optimization of Organic Thin Film Transistors, TU Chemnitz

Georg Horn Spinonischer Wärmetransport in Ladungsdotierten Heisenberg-Spinketten, TU Dresden

Esther Jarossey Synthesis and Crystal Growth of Honeycomb Quantum Magnets, TU Dresden

Felix Kern Development and Implementation of Liquid He Cryo Electron Microscopy and First Experiments, 
TU Dresden

Piotr Lepucki Untersuchung von Kobalt-dotiertem LaOFeAs Poly- und Einkristallen mit NMR und NQR, TU Dresden

Sebastian Maletti Temperatur– und zusammensetzungsabhängige Untersuchungen an Na-Ionen-Akkumulatoren und Na,
Li-Hybridakkumulatoren mit Lithiumtrivanadat (LiV3O8) als Kathodenmaterial, TU Dresden

Rick Ottolinger Untersuchung der Dickenabhängigkeit charakteristischer Eigenschaften Ba2Y(Nb,Ta)O6 dotierter 
YBa2Cu3O7-δ-Schichten, TU Dresden

Viveksharma Prabhakara Transport properties of Bi4Br4 and Bi4I4 topological insulators, TU Dresden

Norbert Puwenberg Multi-Frequency Magnetic Force Microscopy of Curved Magnetic Thin Films, TU Dresden

Nicola Schädlich Untersuchungen zum Einfluss der Erstarrungs- und Abkühlraten auf die Gefügebildung und die 
mechanischen Eigenschaften ausgewählter Stahlgusslegierungen, TU Dresden

Subao Shi Fabrication of Single Crystal Organic Thin Film Transistor Arrays, TU Chemnitz

Pengfei Song Strukturelle und ferroelektrische Eigenschaften von epitaktischen BaHfxTi1-xO3-Schichten, TU Dresden

Aoyu Tan Spin Transport in Ultra-Thin Bi2Te3 Nanostructures, TU Dresden

Lakshmi Varadharajan Nanoscale Organic Photodetector based on Rolled-up Nanomembrane Contact, TU Chemnitz

Christoph Wuttke Thermische und elektrische Transportuntersuchungen an Rhodium-dotiertem BaFe2As2, TU Dresden

Longqian Xu Fabrication of Molecular Thin-Film Rectifier and Photodetector Based on Rolled-up 
Nanomembrane Electrodes, TU Chemnitz
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Calls and Awards 2017 

Professorships

Thirupathaiah Setti S.N. Bose National Centre for Basic Sciences, Under Department of Science and Technology, India

Awards

Oliver G. Schmidt Gottfried-Wilhelm-Leibniz-Preis 2018 of the German Research Foundation (DFG) 

Jeroen van den Brink Zernike-Chair 2017, University of Groningen

Daniil Karnaushenko Wilhelm-Ostwald-Nachwuchspreis 2017 of the Wilhelm-Ostwald-Gesellschaft 

Yan Chen Chinese Chinese Government Award for Outstanding Chinese Student Abroad

Julia Körner Messtechnik-Preis des Arbeitskreises der Hochschullehrer für Messtechnik e.V. (AHMT) 

Best poster/best contribution awards

Sonja Maria Weiz Best Student Paper Award at the 18th International Conference on Biomedical Applications of 
Electrical Impedance Tomography (21.-24.6. at Dartmouth College, Hanover, NH) 

Sonja M. Weiz Best Presentation Award of the NanoBioSensors conference (Sept. 4-5, 2017 in Dresden, Germany) f

Haifeng Xu Best Poster Award at the International Conference on Micro/nanomachines 
(Aug. 25-28, 2017 in Wuhan, China)

IFW Awards

Konrad Kosiba Tschirnhaus-Medal of the IFW for excellent PhD theses

Florian Rückerl Tschirnhaus-Medal of the IFW for excellent PhD theses

Florian Bittner Tschirnhaus-Medal of the IFW for excellent PhD theses
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Scientific conferences and IFW colloquia 2017

March 13 - 14 Scientific Networking Workshop Thermoelectricity, IFW Dresden

March 15 1st Dresden Symposium on Electron Microscopy, jointly organized by cfaed, DCN, IFW and DFCNA

March 19 - 24 DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) TU Dresden

April 3 - 5 XXVII International EPR seminar, IFW Dresden

April 24 - 28 Symposium on application of magneto-caloric materials on the Intermag Conference in Dublin (Ireland) 

April 25 - 28 International Workshop TOP-SPIN 3: Spin and Topological Phenomena in Nanostructures, IFW Dresden

August 18 - 25 Summer School Spectroelectrochemistry, IFW Dresden

August, 28 - 30 3rd Condensed Matter Summer School 2017, Zbaszyn, Poland

Sep 6 - 8 Spins, waves and interactions 2017, Greifswald 

Nov. 15 - 17 Cooperation Kick-Off Workshop mit SPINTEC Grenoble, IFW Dresden

IFW-Colloquium 

Mainzer,Prof. Dr. Klaus, TU München, Kosmos und Chaos - Ordnung und Unordnung um uns, 27.02.2017

Schroers, Prof. Dr. Jan, Yale Univ., New Haven, USA, Materials Science and Development of Complex Materials, 03.05.2017

Ludwig, Prof. Dr. Alfred, Ruhr-Univ. Bochum, Discovery and Optimization of Nanostructured Functional Materials for 
Future Energy Systems, 10.05.2017 

Christiansen, Prof. Dr. Silke, Helmholtz-Zentrum Berlin für Materialien und Energie 3D nanoarchitectures for energy- and 
bio-medical technologies - enhanced functionality through correlative microscopy and spectroscopy, 18.12.2017

Quantum Matter Colloquium 

Berndt, Prof. Richard, Univ. Kiel, A surface science approach to molecular and atomic contacts, 18.01.2017 

Janoschek, Dr. Marc, National Laboratory Los Alamos, USA, Neutron Spectroscopy on the Most Complex Element: Plutonium, 08.02.2017

Eberhardt, Prof. Wolfgang, Technical Univ. Berlin, DESY-CFEL Science, Hamburg, New Dimensions in Angle 
Resolved Photoemission from Solids; a complementary approach to as-laser spectroscopy, 22.02.2017

Krasnov, Prof. Vladimir, Stockholm University, Multiple quantum critical points in the doping phase diagram of cuprates, 12.04.2017

Hill, Prof. Stephen, Florida State Univ. and NHMFL Tallahassee, USA, EPR Studies of Molecular Lanthanide Spin Qubits, 24.05.2017

Rübhausen, Prof. Dr. Michael, Univ. Hamburg, Coupled Energy and Time Scales in Strongly Interacting Condensed Matter Systems, 
31.05.2017 

Cao, Prof. Gang, Univ. of Colorado at Boulder, USA, The Challenge of Spin-Orbit-Tuned Ground States in Iridates, 11.07.2017 

Wrachtrup, Prof. Jörg, Univ. Stuttgart, Probing matter with quantum sensors, 23.08.2017 

Trauzettel, Prof. Dr. Björn, University of Wuerzburg, Correlation effects in topological insulators, 06.09.2017

Heidrich-Meisner, Dr. Fabian, Ludwig-Maximilians-Univ. München, Advanced density matrix renormalization group methods 
for electron-phonon problems, 15.09.2017

Ovchinnikov, Prof. Dr. Yury N., Landau Institute for Theoretical Physics, Russian Academy of Science, Some achievements in 
theory of Superconductivity in L.D. Landau Institute, 20.09.2017

von Oppen, Prof. Dr. Felix, Dahlem Center for Complex Quantum Systems and Freie Univ. Berlin, Topological superconductivity 
and Majorana bound states in chains of magnetic adatoms on superconductors, 11.10.2017

Chubukov, Prof. Dr. Andrey V., Univ. of Minnesota, Minneapolis, USA, Superconductivity from repulsion, 23.10.2017 

Renner, Prof. Christoph, Univ. of Geneva, Switzerland, Conventional aspects of ‘unconventional’ high temperature cuprate 
superconductors observed by scanning tunneling microscopy, 07.12.2017 
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Guests and Scholarships 2017

Guest scientists (stay of 4 weeks and more)

Name Home Institute Home country

Dr. Ahmad, Mushtaq COMSATS Institute of Information Technology Pakistan

Dr. Allison, Morgan Charles University Sydney Australia

Dr. Amigo, Maria Lourdes Universidad Nacional de Cuyo Italy

Dr. Amusan, Akinwumi Abimbola Otto-von-Guericke Universität Magdeburg Nigeria

Prof. Dr. Asthana, Rajiv University of Wisconsin-Stout USA

Dr. Aswartham, Saicharan University of Kentucky India

Dr. Balach, Juan National Council of Scientific and Technical Res. Argentina

Dr. Basbus, Juan Felipe Centro Atomico Bariloche, Rio Negro Argentina

Dr. Bashlakov, Dmytro Verkin Insitute Kharkiv Ukraine

Dr. Bastien, Gael University  Grenoble Alpes France

Prof. Brenig, Wolfram TU Braunschweig Germany

Dr. Brünig, Raimund BelektroniG Germany

Dr. Caglieris, Federico CNR-SPIN-Institute, Universität Genua Italy

Prof. Dr. Cao, Gang University of Colorado China 

Dr. Charnukha, Aliaksei University of California Belarus

Dr. Darinskiy, Alexander Institut für Kristallographie Moskau Russia

Prof. Dr. Dhagat-Jander, Pallavi Oregon State University India

Dr. Dioguardi, Adam Paul Los Alamos National Laboratory USA

Dr. Egunov, Aleksandr Instiute of Materials Science of Mulhouse Russia

Dr. Ertugrul, Onur Izmir Katip Celebi University Russia

Dr. He, Ran University of Houston, USA China 

Dr. Hu, Han Nanyang Technological University Singapore China 

Dr. Huang, Shao-Zhuan Wuhan University of Technology China 

Prof. Jander, Albrecht Oregon State University, USA USA / Germany

Dr. Karmakar, Koushik Indian Institute of Science Education and Research     India

Dr. Kataeva, Olga Arbuzov Institute, Kazan Russia

Dr. Krupskaya, Yulia Universität Genf Russia

Dr. Kumar, Sanjeev Iiser Mohali Faculty of Physics India

Dr. Kuzian, Roman Institute for Materials Science Kiev Ukraine

Dr. Kvitnytska, Oksana Verkin Insitute Kharkiv Ukraine

Dr. Lee, Jae-Ki Korea Electrotechnology Research Institute South Korea

Dr. Lee, Minho Korea Electrotechnology Research Institute South Korea

Dr. Li, Yuan Institute of Semiconductors Beijing China 

Dr. Liu, Fupin University of Science and Technology Hefei China 

Dr. Machata, Peter Slovak University of Technology Bratislava Slovakia

Dr.Morozov, Igor Lomonosov State University Moscow Russia

Prof. Dr. Morr, Dirk University of Illinois at Chicago USA

Prof. Dr. Naidiuk, Iurii Verkin Insitute Kharkiv Ukraine

Dr. Novikov, Sergei Ioffe Institut Sankt Petersburg Russia

Dr. Nussinov, Zohar Washington University USA

Dr. Otalora Arias, Jorge Augusto Center for Nanoscience & Nanotechnology Colombia 

Prof. Dr. Ovchinnikov, Yuri Landau Institute for Theoretical Physics Russia

Dr. Palani, Iyamperumal Anand Indian Institute of Technology Indore India

Prof. Patra, Ajit Kumar Central University of Rajasthan India

Dr. Ramachandran, Ganesh Institute of Mathematical Sciences, Chennai India

Prof. Dr. Rapta, Peter Slovak University of Technology Slovakia
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Dr. Salazar, Enriquez University Colombia Colombia

Prof. Dr. Sobczak, Natalia Foundry Research Institut Krakov Poland

Dr. Stoeck, Ulrich Zschimmer&Schwarz GmbH Germany

Dr. Tian, Zhaoming University Tokyo China 

Dr. Valligatla, Sreeramulu CNR-IFN Trento India

Dr. Vavilova, Evgeniia Zavoisky Physical-Technical Institute Kazan Russia

Dr. Volegov, Alexey Ural Federal University Russia

Dr. Wang, Jiawei Hongkong University of Science and Technology China 

Dr. Wang, Liran Universität  Heidelberg China 

Dr. Weng, Qunhong National Institute for Materials Science China 

Dr. Yerin, Yuriy Institute for Physics of Microstrutures N. Novgorod     Ukraine

Dr. You, Jhih-Shih Harvard University Taiwan

Dr. Zalibera, Michal Universität Bratislava Slovakia

Prof. Dr. Zhang, Lin Leibniz Universität Hannover China 

Prof. Dr. Zotos, Xenophon Universität von Kreta Greek

Scholarships

Name Home country Donor

Dr. Ghimire, Madhav Prasad Nepal Alexander von Humboldt Foundation

Dr. Jayamani, Jayaraj India Alexander von Humboldt Foundation

Dr. Kim, Beom Seok South Korea Alexander von Humboldt Foundation

Dr. Kravchuk, Volodymyr Ukraine Alexander von Humboldt Foundation

Dr. Morrow, Ryan Christopher USA Alexander von Humboldt Foundation

Dr. Shrestha, Nabeen Kumar Nepal Alexander von Humboldt Foundation

Dr. Wenig, Qunhong China Alexander von Humboldt Foundation

Dr. Zhang, Yang China Alexander von Humboldt Foundation

Dedkova, Katerina Czech Republic DAAD

Dr. Hong, Xiaochen China DAAD

Dr. Kamashev, Andrey Russia DAAD

Meinero, Martina Italy DAAD

Charbonneau, Valerie Canada DAAD

Prabhune, Ameya India DAAD

Saha, Snehajyoti India DAAD

Ghunaim, Rasha Palestinian territories DAAD

Shahid, Rub Nawaz Pakistan DAAD

Dr. Ahmad, Mushtaq Pakistan DAAD Leibniz Program

Moo, Guo Sheng James Singapore BMBF - Green Talents

Linnemann, Julia Germany Deutsche Bundesstifung Umwelt 

Dr. Xi, Lixia China Graduiertenakademie TU Dresden

Bittner, Florian Germany Graduiertenakademie TU Dresden

Mix, Torsten Germany Graduiertenakademie TU Dresden

Pahlke, Patrick Germany Graduiertenakademie TU Dresden

Sieger, Max Germany Graduiertenakademie TU Dresden

Lupu, Oana-Gratiela Romania EU - ERASMUS MUNDUS

Manga, Mihaela-Monica Romania EU - ERASMUS MUNDUS

Batalha, Rodolfo Lisboa Brazil CAPES Foundation 

Dr. Wang, Jing China China Scholarship Council

Deng, Liang China China Scholarship Council
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Name Home country Donor

Ding, Ling China China Scholarship Council

Fan, Xingce China China Scholarship Council

Feng, Le China China Scholarship Council

He, Tianbing China China Scholarship Council

Li, Zichao China China Scholarship Council

Li, Yang China China Scholarship Council

Liu, Lixiang China China Scholarship Council

Lu, Xueyi China China Scholarship Council

Sui, Yan Fei China China Scholarship Council

Wang, Pei China China Scholarship Council

Wang, Ju China China Scholarship Council

Xu, Haifeng China China Scholarship Council

Xue, Peng China China Scholarship Council

Yin, Yin China China Scholarship Council

Dr. Wuppulluri, Madhuri India Eleonore Trefftz Guest Professorship 

Dr. Tynell, Tommi Paavo Finland Finnish Cultural Foundation

Miyajima, Tomohiro Japan Kyushu University

Gao, Bo China Harbin Institute of Technology 

Li, Haichao China Harbin Institute of Technology 

Liu, Bo China Internationale Graduiertenschule

Park, Eunmi South Korea Internationale Graduiertenschule

Yousefli, Soroor Iran, Islam. Rep. Iran Powder Metallurgy Complex

Salman Omar, Oday Iraq Iraqi government

Lara Ramos, David Alberto Mexico Mexican government

Dr. Gan, Li-Hua China Natural Science Foundation of China

Takeda, Akira Japan Niigata University

Assoc. Prof. Dr. Wang, Shenghai China Shandong University Weihai

Fernandez Roldan, Jose Angel Spain Spanish government
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Guest stays of IFW members at other institutes 2017

Gael Bastien 01.10.2017 – 23.10.2017, NMR Messungen, Laboratoire de 
Phyisique du solide, Orsay, France

Bernd Büchner 07.09.2017 – 22.09.2017, Lectures at KITP, St. Barbara, USA 

Alexander Fedorov 01.06.2017 – 19.06.2017, Beamline Bessy, Berlin, Germany
07.07.2017 – 31.07.2017, Beamtime Bessy, Berlin, Germany

Monica Fernandez Barcia 11.11.2017 – 16.12.2017, ETHZ, Zürich, Schwitzerland, 
Training in ITN-SELECTA Project

Jeroen van den Brink 26.10.2017 – 15.12.2017, Zernike Institute for Advanced Materials, 
University of Groningen, The Netherlands, Zernike Chair

Ching-Hao Chang 13.02.2017 – 03.03.2017, Academia Sinica, National Tsing Hua 
University, and National Chiao Tung University, China, Research 
cooperation on spintronics, quantum transport, topological 
material, and magnetotransport 

07.08.2017 – 24.08.2017, Academia Sinica, National Tsing Hua 
University, and National Chiao Tung University, China, Research 
cooperation on spintronics, quantum transport, topological 
material, and magnetotransport 

Stefan-Ludwig Drechsler 18.06.2017 – 03.07.2017, Vereinigtes Institut für Kernforschung 
(VIK) Dubna, Russland, Working visit on super conductors and 
magnetism 

Dmitri Efremov 16.07.2017 – 30.07.2017, The Abdus Salam International Centre 
for Theoretical Physics (ICTP), Trieste, Italy, Research cooperation 
on fluctuation effects in multiband superconductors

Jörg Fink 01.05.2017 – 31.05.2017, Gastaufenthalt an der Universität of 
British Columbia, Vancouver, Canada 

03.04.2017 – 23.04.2017, Messungen bei Bessy, Berlin, Deutschland 

Lars Giebeler 18.03.2017 – 06.04.2017, Centro Atómico Bariloche (CAB), 
San Carlos de Bariloche, Argentinien, Research cooperation 

29.11.2017 – 15.12.2017, Centro Atómico Bariloche (CAB), 
San Carlos de Bariloche, Argentinien, Research cooperation

Romain Giraud 03.01.2017 – 20.01.2017, Collaboration SPINTEC, CNRS, Spintec, 
Grenoble, France

02.05.2017– 24.05.2017, Collaboration SPINTEC, CNRS, Spintec, 
Grenoble, France

06.06.2017 – 23.06.2017, Collaboration SPINTEC, CNRS, Spintec, 
Grenoble, France

28.08.2017 -  14.09.2017, Collaboration SPINTEC, CNRS, Spintec, 
Grenoble, France

20.11.2017 – 08.12.2017, Collaboration SPINTEC, CNRS, Spintec, 
Grenoble, France

Junhee Han 29.07.2017 – 11.08.2017, Shanghai University, Shanghai, China, 
Research cooperation

Volker Hoffmann 09.04.2017 – 01.05.2017, Chuo University, Tokyo, Japan, 
Research cooperation

Vladislav Kataev 26.04.2017 – 11.05.2017, Measurements and research at Zavoisky 
Physical Technical Institute, Kazan, Russia 

21.09.2017 – 08.10.2017, Measurements and invited talk at 
Zavoisky Physical Technical Institute, Kazan, Russia
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Beom Seok Kim 20.01.2017 – 26.02.2017, Yonsei University, Seoul, Republic of Korea, 
Research cooperation

Denis Krylov 05.06.2017 – 18.07.2017, SQUID Messungen, Universität Zürich, 
Schwitzerland

Andrey Malyuk 30.10.2017 – 24.11.2017, Crystal Growth Collaboration, 
Yamanashi University, Kofu, Japan 

Rafael Gregorio Mendes 17.03.2017 – 16.05.2017, Soochow University, Suzhou, China, 
Measurements and research cooperation 

22.10.2017 – 22.12.2017, Soochow University, Suzhou, China, 
Measurements and research cooperation 

David Alberto Ramos Lara 25.02.2017 – 13.05.2017 Purdue Purdue University, Indiana, USA

Mark H. Rümmeli 10.05.2017 – 15.07.2017, Soochow University, Suzhou, China, 
Measurements and research cooperation

Maik Scholz 02.02.2017 – 31.05.2017, Measurements and training, 
Universität Okayama, Japan  

Mihai-Ionut Sturza 27.11.2017 – 22.12.2017, research stay, measurements and invited 
talk, National Institute of Materials Physics, Bukarest, Rumania

Stefan Schwabe 13.07.2017 – 23.07.2017, International School for Materials for 
Energy and Sustainability VI Pasadena, USA

09.10.2017 – 21.10.2017, European School on Magnetism Cargèse, 
Korsika, France

Ulrike Wolff 22.09.2017 – 05.11.2017, Jozef Stefan Institut Ljubljana, Slovenia, 
In-situ measurements TEM 

01.04.2017 – 13.04.2017, Jozef Stefan Institut Ljubljana, Slowenien, 
In-situ measurements TEM 

Lixia Xi 23.07.2017 – 12.08.2017, Foundry Research Institute, Krakow, 
Poland, Research cooperation

Xenophon Zotos 29.09.2017 – 01.12.2017, Lectures at Univ. Heraklion, Greece

Yang Zhang 12.01.2017 – 04.02.2017, IASTU Tsinghua University, Bejing, China, 
Research visit and talk on Spin Hall effect without spin orbit 
integration in non collinear magnets

19.05.2017 – 19.07.2017, Forschungszentrum Jülich, Research visit 
and collaboration on Photocurrent from circularly polarized light

01.10.2017 – 31.12.2017, RIKEN, Wako, Japan, Research visit - 
Circular photogalvanic effect and shift current In Weyl semimetals, 
and nonlinear inverse Nernst effect from Berry curvature dipole 
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Board of trustees

Jörg Geiger, Saxonian Ministry of Science and Art - Head -

Dr. Peter Schroth, Federal Ministry of  Education and Research 

Prof. Dr. Gerhard Rödel, TU Dresden

Prof. Dr. Sibylle Günter, MPI for Plasma Physics 

Scientific Advisory Board

Prof. Dr. Maria-Roser Valenti, Univ. Frankfurt, Germany - Head -

Prof. Dr. Robert H. Blick, Univ. Hamburg, Germany

Prof. Dr. Sang-Wook Cheong, Rutgers, USA

Prof. Dr. Andrey Chubukov, Univ. of Minnesota, USA

Prof. Dr. Ralph Claessen, Univ. Würzburg, Germany

Prof. Dr. Matthias Göken, Univ. Erlangen-Nürnberg, Germany 

Dr. Heinz Neubert, Siemens AG, Germany

Prof. Dr. Nini Pryds, TU Denmark Lyngby, Denmark

Dr. Jürgen Rapp, Robert Bosch GmbH, Germany

Prof. Dr. Roberta Sessoli, Univ. di Firenze, Italy
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