29,890 research outputs found

    Seamless video access for mobile devices by content-aware utility-based adaptation

    Get PDF
    Today's Internet multimedia services are characterized by heterogeneous networks, a wide range of terminals, diverse user preferences, and varying natural environment conditions. Heterogeneity of terminals, networks, and user preferences impose nontrivial challenges to the Internet multimedia services for providing seamless multimedia access particularly for mobile devices (e.g., laptops, tablet PCs, PDAs, mobile phones, etc.). Thus, it is essential that advanced multimedia technologies are developed to deal with these challenges. One of these technologies is video adaptation, which has gained significant importance with its main objective of enabling seamless access to video contents available over the Internet. Adaptation decision taking, which can be considered as the "brain" of video adaptation, assists video adaptation to achieve this objective. Scalable Video Coding (SVC) offers flexibility for video adaptation through providing a comprehensive set of scalability parameters (i.e., temporal, spatial, and quality) for producing scalable video streams. Deciding the best combination of scalability parameters to adapt a scalable video stream while satisfying a set of constraints (e.g., device specifics, network bandwidth, etc.) poses challenges for the existing adaptation services to enable seamless video access. To ease such challenges, an adaptation decision taking technique employing a utility-based approach to decide on the most adequate scalability parameters for adaptation operations is developed. A Utility Function (UF), which models the relationships among the scalability parameters and weights specifying the relative importance of these parameters considering video content characteristics (i.e., motion activity and structural feature), is proposed to assist the developed technique. In order to perform the developed adaptation decision taking technique, a video adaptation framework is also proposed in this paper. The adaptation experiments performed using the proposed framework prove the effectiveness of the framework to provide an important step towards enabling seamless video access for mobile devices to enhance viewing experience of users. © 2012 Springer Science+Business Media, LLC

    Optimal H.264/AVC video transcoding system

    Get PDF
    This paper presents an efficient receiver-aware video transcoding system that systematically chooses the optimal transcoding operation from multiple options while meeting network and user constraints. Multi-objective optimization is used to select the best transcoding method that minimizes transcoding complexity and memory usage while ensuring the client constraints of bitrate and requested quality are fulfilled

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario

    Online Reinforcement Learning for Dynamic Multimedia Systems

    Full text link
    In our previous work, we proposed a systematic cross-layer framework for dynamic multimedia systems, which allows each layer to make autonomous and foresighted decisions that maximize the system's long-term performance, while meeting the application's real-time delay constraints. The proposed solution solved the cross-layer optimization offline, under the assumption that the multimedia system's probabilistic dynamics were known a priori. In practice, however, these dynamics are unknown a priori and therefore must be learned online. In this paper, we address this problem by allowing the multimedia system layers to learn, through repeated interactions with each other, to autonomously optimize the system's long-term performance at run-time. We propose two reinforcement learning algorithms for optimizing the system under different design constraints: the first algorithm solves the cross-layer optimization in a centralized manner, and the second solves it in a decentralized manner. We analyze both algorithms in terms of their required computation, memory, and inter-layer communication overheads. After noting that the proposed reinforcement learning algorithms learn too slowly, we introduce a complementary accelerated learning algorithm that exploits partial knowledge about the system's dynamics in order to dramatically improve the system's performance. In our experiments, we demonstrate that decentralized learning can perform as well as centralized learning, while enabling the layers to act autonomously. Additionally, we show that existing application-independent reinforcement learning algorithms, and existing myopic learning algorithms deployed in multimedia systems, perform significantly worse than our proposed application-aware and foresighted learning methods.Comment: 35 pages, 11 figures, 10 table

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability

    A Framework for Quality-Driven Delivery in Distributed Multimedia Systems

    Get PDF
    In this paper, we propose a framework for Quality-Driven Delivery (QDD) in distributed multimedia environments. Quality-driven delivery refers to the capacity of a system to deliver documents, or more generally objects, while considering the users expectations in terms of non-functional requirements. For this QDD framework, we propose a model-driven approach where we focus on QoS information modeling and transformation. QoS information models and meta-models are used during different QoS activities for mapping requirements to system constraints, for exchanging QoS information, for checking compatibility between QoS information and more generally for making QoS decisions. We also investigate which model transformation operators have to be implemented in order to support some QoS activities such as QoS mapping

    Semantic media decision taking using N3Logic

    Get PDF
    • 

    corecore