

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all

UGent research publications. Ghent University has implemented a mandate stipulating that all

academic publications of UGent researchers should be deposited and archived in this repository.

Except for items where current copyright restrictions apply, these papers are available in Open

Access.

This item is the archived peer-reviewed author-version of:

Semantic Media Decision Taking using N3Logic

Wim Van Lancker and Davy Van Deursen and Ruben Verborgh and Rik Van de Walle

In: Proceedings of the FTRA 2011 International Workshop on Advanced Future Multimedia

Services, 2011

To refer to or to cite this work, please use the citation to the published version:

Van Lancker, W. and Van Deursen, D. and Verborgh R., and Van de Walle, R. (2011).

Semantic Media Decision Taking using N3Logic. Proceedings of the FTRA 2011 International

Workshop on Advanced Future Multimedia Services

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55728814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Semantic Media Decision Taking using N3Logic

Wim Van Lancker, Davy Van Deursen, Ruben Verborgh, and Rik Van de Walle

Ghent University – IBBT, ELIS – Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

{wim.vanlancker,davy.vandeursen,ruben.verborgh,rik.vandewalle}@ugent.be

http://multimedialab.elis.ugent.be/

Abstract

In this paper, we introduce a Media Decision Taking En-
gine (MDTE), enabling the automatic selection and/or
rating of multimedia content versions, based on the
available context information. The presented approach
is fully semantic-driven, which means that we not only
semantically model the context information, but also the
decision algorithms themselve, which are represented in
N3Logic, a rule language that extends RDF. The de-
cision rules are based on a rating function, supporting
the specification of weights and affinity parameters for
each environment property. Finally, we show how the
MDTE is integrated in a media delivery platform, using
the provisions of the existing Web infrastructure.

Keywords: Decision Taking, Media Selection,
N3Logic, RDF, Rules

1 Introduction

Recent years have witnessed an increasing heterogene-
ity in the multimedia landscape on different fronts. First,
there is a growing diversity in end-user devices that are
able to consume multimedia content. In particular, these
devices may vary in terms of screen size, supported me-
dia formats, and battery life. Next, network technolo-
gies, used to transport the multimedia content to the
end-user may differ in terms of bandwidth, jitter, and er-
ror robustness. Furthermore, the number of multimedia
coding standards has grown significantly over the last
few years, especially with the introduction of new me-
dia coding formats such as H.264/AVC, Scalable Video
Coding (SVC), VP8, and HD Photo. At the same time,
older standards such as H.262/MPEG-2 Video and MP3
are still present. Next to coding formats, there also ex-
ists a wide variety of delivery formats and protocols [24].
For instance, video can be delivered in MP4 or WebM
containers over HTTP, in RTP packets over RTSP, or
using the recently introduced HTTP adaptive stream-
ing paradigm.

The efficient delivery of multimedia content in today’s
world of ubiquitous multimedia consumption is an im-
portant technological challenge, due to the above de-
scribed heterogeneity. Ideally, the delivery of multime-
dia content needs to occur in a transparent way in order
to obtain Universal Multimedia Access (UMA, [26]). To-
day, content providers try to cope with the diversity in

usage environments (i.e., devices, network technologies,
users) by offering different versions of the same mul-
timedia content. For instance, YouTube has about ten
configurations, varying in coding format and resolution1.
Currently, the choice of which version is delivered to the
end-user is left to the user. An alternative to storing mul-
tiple versions of the same multimedia content is the use
of scalable media codecs (such as SVC). However, de-
spite numerous recent standardization efforts, scalable
media codecs did not find much uptake yet. Nonethe-
less, we also take into account scalable media codecs in
our approach and provide support for them.

In this paper, we present our Media Decision Tak-
ing Engine (MDTE), a tool for automatic selection
of multimedia content versions, based on the available
context information. The presented approach is fully
semantic-driven, which means that we not only seman-
tically model the context information, but also the de-
cision algorithms themselve. Semantic in this context
means that the represented information is machine-
understandable [4]. For this purpose, we use the Re-
source Description Framework (RDF, [11]) to represent
the context information. The decision algorithms are de-
scribed in N3Logic [3], a rule language that extends RDF
with syntax for nested graphs, quantified variables, pred-
icates for implication, and built-in functions.

The paper is organized as follows. Sect. 2 discusses
related work. In Sect. 3, the general architecture and
context information flow is presented, while the models
for the context are discussed in Sect. 4. We present our
formalized semantic decision rules driving the MDTE
in Sect. 5. Further, in Sect. 6 we elaborate on how the
MDTE can be integrated into a media delivery platform
that we introduced in previous work. Finally, conclusions
are drawn and future work is discussed in Sect. 7.

2 Related Work

Most related work around media selection and adap-
tation decision taking is situated in the context of
the MPEG-21 Digital Item Adaptation (MPEG-21
DIA, [10]) specification. More specifically, the Usage
Environment Description (UED) tools, Universal Con-
straints Description (UCD) tool, and Adaptation Qual-
ity of Service (AQoS) tool provide models that can be

1 http://en.wikipedia.org/wiki/YouTube#
Quality_and_codecs

http://multimedialab.elis.ugent.be/
http://en.wikipedia.org/wiki/YouTube#Quality_and_codecs
http://en.wikipedia.org/wiki/YouTube#Quality_and_codecs

2

used by media selection and adaptation decision taking
engines.

For instance, Mukherjee et al. show universal meth-
ods based on pattern search to process the informa-
tion provided by the MPEG-21 DIA tools to make de-
cisions [17]. Fully MPEG-21 DIA-based decision taking
engines are also used in [8] and [9]. Further, Szwabe
et al. describe in [20] how dynamic media adaptation
based on a rate control scheme is realized through an
MPEG-21 DIA-based Adaptation Decision Taking En-
gine (ADTE), while Köhncke et al. make use of prefer-
ence graphs and composition algorithms for adaptation
tools [12].

The approaches described by Lopez et al. in [14] and
Prangl et al. in [19] come closest to the approach we
describe in this paper. Lopez et al., which also use pref-
erence graphs to obtain decisions, distinguish between
hard constraints (i.e., imposed by the terminal and net-
work) and soft constraints (i.e., preferences by the user).
Prangl et al. focus on a generic semantic-based audio-
visual utility model for MPEG-21 DIA that aims to
enhance the multimedia experience for the user. More
specifically, based on media characteristics, the percep-
tual quality is estimated and taken into account during
the decision taking process.

Related work outside the scope of MPEG-21 DIA is
for instance described by Lum et al. in [15]. They present
a content adaptation system that decides on the optimal
content version for presentation and the best strategy for
deriving that version, based on CC/PP-based context
information.

The work described in this paper (although our con-
cepts are also based on MPEG-21 DIA) differs in a num-
ber of ways from the above described related work:

– we use a fully formally described context model (see
Sect. 4);

– our algorithms are not hardcoded in software but
formally described in terms of rules, enabling ver-
ification and proof generation of the results (see
Sect. 5);

– we also distinguish between hard and soft con-
straints, but we do not map them onto terminal/net-
work and user preferences respectivily (see Sect. 5);

– we elaborate on how the different parts of the con-
text model are populated in a real server platform
(see Sect. 6);

– we provide a workflow for using our MDTE in a fully
Web-enabled media server environment (see Sect. 6).

3 Media Decision Taking Engine:
Approach

The MDTE is fully driven by context information on the
one hand and decision taking rules on the other hand.
Fig. 1 provides an overview of all this information. The
context information consists of three parts: information
about the multimedia content, information about the

media server capabilities

logical media resource

audio tracks

different

codecs &

bit rates

video tracks

different

codecs &

bit rates

image tracks

different

codecs &

bit rates

format

constraints

delivery

protocols

rule engine

usage environment

device

capabilities

network

characteristics

user

characteristics

decision
decision

rules

Fig. 1. Information consumed by the Media Decision Taking
Engine

media server capabilities, and information about the us-
age environment.

The multimedia content is organized in terms of log-
ical and physical media resources. A logical media re-
source collects all media tracks about one media item.
For example, a logical media resource can correspond
to a music performance of a rock band. Examples of
media tracks belonging to this logical media resource
are an H.264/AVC video track having a resolution of
1920x1080, an Ogg Vorbis audio track having a bit rate
of 128 kbit/s, and a PNG image track (representing a
screenshot) with a resolution of 704x576. Each track con-
tains a detailed description of its technical parameters.

The media server capabilities provides an overview
of which delivery formats and protocols are currently
supported by the media server. This is necessary be-
cause for some delivery protocols, server extensions (be-
yond HTTP) are necessary (e.g., RTSP and RTMP
require a specialized media streaming server). Addi-
tionally, the supported delivery formats are also de-
scribed (e.g., MP4, WebM, Ogg). Finally, a number of
constraints are present linking coding formats such as
H.264/AVC and AAC to delivery formats and protocols.
For example, VP8 and Ogg Vorbis tracks are typically
stored in a WebM container and not in an MP4 con-
tainer. Although most media delivery formats do not
impose restrictions to the underlying coding formats,
the available media players stick to the typical combi-
nations.

3

The usage environment consists of device capabilities,
network characteristics, and user characteristics. Device
capabilities provide information such as the screen size
and the supported media formats. Network character-
istics are for instance the available bandwidth, latency,
and type of network (e.g., 3G, WIFI). Finally, user char-
acteristics are particular choices made by the user be-
forehand. For example, the user prefers WebM as deliv-
ery format.

How the context is modeled is presented in Sect. 4.
The decision rules are discussed in Sect. 5. Since we are
using N3Logic to represent the rules implementing the
decision taking algorithms, the rule engine must be com-
pliant to N3Logic. In this paper we use the Euler Yap
Engine (EYE, [5]) because of its performance in terms
of execution speed compared to other reasoners [2, 18].
The decision itself consists of a ranked list of physical
media URIs that fit the given usage environment and
can be served by the media server.

4 Context Modeling

In this section, we describe which models are used for
the represenation of context information. All models
are implemented using the Web Ontology Language
(OWL, [16]). Moreover, where possible, existing models
(or ontologies) are being reused or extended. Note that
we do not rely directly on the MPEG-21 DIA model (see
also Sect. 2), because it is too detailed for our purposes.
Nevertheless, we do reuse concepts from the MPEG-21
DIA model.

4.1 Media Characteristics

To represent media characteristics such as resolution,
codec, and frame rate, we use the Ontology for Me-
dia Resources 1.0 (a.k.a., Media Annotation (MA) on-
tology) [13]. The ontology, currently being standard-
ized within the W3C, is designed to facilitate cross-
community data integration of information related to
media in the Web. The specification defines a core
set of metadata properties for media resources, along
with their mappings to elements from a set of exist-
ing metadata formats. For instance, different categories
supported by the ontology are identification, content de-
scription, rights, distribution, fragments, and technical
properties. For this purpose, we mainly use the provi-
sions for identification, fragments, and technical proper-
ties.

We distinguish between logical and physical media re-
sources, as described in Sect. 3. A logical media resource
contains a number of tracks. A physical media resource
is then a selection of one or more tracks, combined with a
container format and delivery protocol. Tracks can differ
in terms of coding format, resolution, bit rate, etc.

Within the MA ontology, a track can be identified
through a Media Fragment URI [21]. Note that the Me-
dia Fragment URI 1.0 specification (currently also being

Listing 1.1. Representing media characteristics.

1 @prefix ma: <http://www.w3.org/ns/ma-ont#>.
@prefix nsa: <http://multimedialab.elis.ugent.be/

organon/ontologies/ninsuna#>.
@prefix nf: <http://multimedialab.elis.ugent.be/

organon/ontologies/ninsuna-formats#>.
@prefix : <http://ninsuna/test#>.

5
<http://ninsuna/test>
a ma:MediaResource;
ma:hasTrack :1 , :2 , :3 , :4;
ma:numberOfVideoTracks "2"ˆˆxsd:int;

10 ma:numberOfAudioTracks "2"ˆˆxsd:int;
ma:locator <http://ninsuna/test.mp4?track=1;3>;
ma:locator <http://ninsuna/test.mp3?track=3>;
...

15 :1 a ma:VideoTrack;
ma:frameHeight "240"ˆˆxsd:int;
ma:frameWidth "320"ˆˆxsd:int;
ma:frameRate "25.0"ˆˆxsd:double;
ma:title "1";

20 ma:format nf:H264;
nsa:codingProfile nf:AVC_BASELINE;
ma:averageBitrate "323.747"ˆˆxsd:double;
nsa:maxBitrate "686.421"ˆˆxsd:double;
ma:duration "150.0"ˆˆxsd:double.

25
:2 a ma:VideoTrack;
ma:frameHeight "480"ˆˆxsd:int;
ma:frameWidth "640"ˆˆxsd:int;
ma:frameRate "25.0"ˆˆxsd:double;

30 ma:title "2";
ma:format nf:H264;
nsa:codingProfile nf:AVC_MAIN;
ma:averageBitrate "817.721"ˆˆxsd:double;
nsa:maxBitrate "1023.521"ˆˆxsd:double;

35 ma:duration "150.0"ˆˆxsd:double.

:3 a ma:AudioTrack;
ma:title "3";
ma:format nf:MP3;

40 ma:averageBitrate "81.532"ˆˆxsd:double;
nsa:maxBitrate "127.541"ˆˆxsd:double;
ma:duration "150.0"ˆˆxsd:double.

:4 a ma:AudioTrack;
45 ma:title "4";

ma:format nf:VORBIS;
ma:averageBitrate "95.422"ˆˆxsd:double;
nsa:maxBitrate "135.643"ˆˆxsd:double;
ma:duration "150.0"ˆˆxsd:double.

standardized within W3C) enables the addressing of me-
dia fragments in the Web using Uniform Resource Iden-
tifiers (URI); three different axes are supported: tem-
poral (i.e., a time range), spatial (i.e., a spatial region),
and track (i.e., a track contained in the media resource).
In this paper, we use Media Fragment URIs to identify
and retrieve track media fragments.

Listing 1.1 shows an example RDF instance of a logi-
cal media resource containing an MP3 and a Vorbis au-
dio track and two H.264/AVC video tracks with a differ-
ent resolution and bit rate. The OWL implementation of
the MA ontology2 is used, together with a number of ex-
tensions that we have defined. More specifically, formal
definitions of coding formats and coding profiles have

2 http://dev.w3.org/2008/video/mediaann/
mediaont-1.0/ma-ont.owl

http://dev.w3.org/2008/video/mediaann/mediaont-1.0/ma-ont.owl
http://dev.w3.org/2008/video/mediaann/mediaont-1.0/ma-ont.owl

4

Listing 1.2. Representing server capabilities.

1 @prefix nss: <http://multimedialab.elis.ugent.be/
organon/ontologies/ninsuna-server#>.

@prefix nf: <http://multimedialab.elis.ugent.be/
organon/ontologies/ninsuna-formats#>.

nss:HTTP_MP4 a nss:DeliveryConfiguration;
5 nss:deliveryProtocol nf:HTTP;

nss:deliveryFormat nf:MP4;
nss:codingFormat nf:AAC;
nss:codingFormat nf:H264;
nss:codingFormat nf:MP4V;

10 nss:codingFormat nf:MP3.

nss:HTTP_WEBM a nss:DeliveryConfiguration;
nss:deliveryProtocol nf:HTTP;
nss:deliveryFormat nf:WEBM;

15 nss:codingFormat nf:VP8;
nss:codingFormat nf:VORBIS.

nss:HAS_M3U8 a nss:DeliveryConfiguration;
nss:deliveryProtocol nf:HAS;

20 nss:deliveryFormat nf:M3U8;
nss:codingFormat nf:AAC;
nss:codingFormat nf:H264;
nss:codingFormat nf:MP3.

been defined (e.g., nf:H264 represents H.264/AVC)3.
Also, we defined a number of extra properties, such
as the maximum bit rate (nsa:maxBitrate) and the
codec profile (nsa:codingProfile)4 [25].

4.2 Server Capabilities

For describing the capabilities of a media server, we de-
veloped our own model (by lack of existing models). The
model must be able to represent which delivery formats,
codecs, and protocols are currently supported by the me-
dia server. Therefore, there is one central concept, nss:
DeliveryConfiguration, which combines a nss:
deliveryProtocol, a nss:deliveryFormat, and
one or more nss:codingFormats5.

An example RDF instance of a server capability de-
scription is provided in Listing 1.2. In this example,
three delivery configurations are supported by the media
server:

– H.264/AVC, MPEG-4 Visual, MP3 and/or AAC
stored in an MP4 container and sent over HTTP;

– VP8 and/or Ogg Vorbis stored in a WebM container
and sent over HTTP;

– H.264/AVC, AAC, and/or MP3 described in an
M3U8 manifest file and delivered using HTTP adap-
tive streaming.

3 The ontology is available at http://multimedialab.
elis.ugent.be/organon/ontologies/
ninsuna-formats.

4 The extensions can be found on http://
multimedialab.elis.ugent.be/organon/
ontologies/ninsuna

5 The formalized model (implemented in OWL) can be
found on http://multimedialab.elis.ugent.be/
organon/ontologies/ninsuna-server

Listing 1.3. Representing a usage environment.

1 @prefix ue: <http://multimedialab.elis.ugent.be/
organon/ontologies/adte/usage-environment#>.

@prefix nf: <http://multimedialab.elis.ugent.be/
organon/ontologies/ninsuna-formats#>.

@prefix : <foo#>.

5 :MyUE a ue:UsageEnvironment;
ue:maxFrameHeight "320"ˆˆxsd:int;
ue:maxFrameWidth "480"ˆˆxsd:int;
ue:supportedFormat nf:MP4;
ue:supportedFormat nf:H264;

10 ue:supportedFormat nf:AAC;
ue:supportedProfile nf:AVC_BASELINE;
ue:supportedProtocol nf:HTTP;
ue:supportedProtocol nf:HAS;
ue:deviceProfile [

15 a ue:DeviceProfile;
ue:dimension [a ue:Dimension;
ue:maxFrameHeight "288"ˆˆxsd:int;
ue:maxFrameWidth "352"ˆˆxsd:int;
ue:maxFrameRate "30.0"ˆˆxsd:double];

20 ue:dimension [a ue:Dimension;
ue:maxFrameHeight "240"ˆˆxsd:int;
ue:maxFrameWidth "320"ˆˆxsd:int;
ue:maxFrameRate "10.0"ˆˆxsd:double];

ue:maxBitrate "384.0"ˆˆxsd:double;
25 ue:profile nf:AVC_BASELINE

];

ue:networkConnectionType ue:WIFI;
ue:availableBandwidth "1000.0"ˆˆxsd:double;

30
ue:preferredDeliveryProtocol nf:HAS.

4.3 Usage Environment

To represent the usage environment, we rely on the con-
cepts defined within MPEG-21 DIA. More specifically,
we distinguish between device capabilities (terminal ca-
pabilities in MPEG-21 DIA), network characteristics,
and user characteristics. However, for each of these three
categories, we only use a subset of the available proper-
ties. Also, we do not reuse the MPEG-21 DIA model
directly, but rather flatten the structure (except for the
three main categories) so that it fits better in an OWL
ontology. An example RDF instance of a usage environ-
ment is depicted in Listing 1.3.

4.3.1 Device Capabilities Only device capabilities
that are useful for media decision taking are described.
For instance, the screen size of the device and the sup-
ported media formats, profiles, and protocols. Addition-
ally, we model the concept of ue:DeviceProfiles.
The latter defines for a particular nf:CodingProfile
and ue:maxBitrate a number of possible ue:
Dimensions. A ue:Dimension is a combination of
ue:maxFrameRate, ue:maxFrameHeight, and ue:
maxFrameWidth. In other words, a device profile pro-
vides, for a certain coding profile at a certain bit rate, a
number of possible combinations of frame rate and reso-
lution. Lines 6-26 in Listing 1.3 illustrate the properties
for describing the device capabilities.

4.3.2 Network Characteristics For the moment,
we only have a limited description of the network

nf:H264
nsa:maxBitrate
nsa:codingProfile
nss:DeliveryConfiguration
nss:DeliveryConfiguration
nss:deliveryProtocol
nss:deliveryProtocol
nss:deliveryFormat
nss:codingFormat
http://multimedialab.elis.ugent.be/organon/ontologies/ninsuna-formats
http://multimedialab.elis.ugent.be/organon/ontologies/ninsuna-formats
http://multimedialab.elis.ugent.be/organon/ontologies/ninsuna-formats
http://multimedialab.elis.ugent.be/organon/ontologies/ninsuna
http://multimedialab.elis.ugent.be/organon/ontologies/ninsuna
http://multimedialab.elis.ugent.be/organon/ontologies/ninsuna
http://multimedialab.elis.ugent.be/organon/ontologies/ninsuna-server
http://multimedialab.elis.ugent.be/organon/ontologies/ninsuna-server
ue:DeviceProfile
nf:CodingProfile
ue:maxBitrate
ue:Dimension
ue:Dimension
ue:Dimension
ue:maxFrameRate
ue:maxFrameHeight
ue:maxFrameWidth
ue:maxFrameWidth

5

characteristics. More specifically, we describe the ue:
NetworkConnectionType (e.g., WIFI, UMTS, etc.)
and the ue:availableBandwidth, as illustrated on
lines 28-29 in Listing 1.3. Network characteristics could
be extended with more detailed network conditions and
properties in the future.

4.3.3 User Characteristics We distinguish between
user preferences and user choices. For example, a user
can prefer that its media is delivered using HTTP adap-
tive streaming (note that this choice can also be depen-
dent on the device or network). Line 31 in Listing 1.3 il-
lustrates this preference. A user can also choose a certain
parameter (e.g., a user wants its media to be delivered
over RTSP). Note that we do not model user preferences
that are related to the content of the media resources,
because we are not focussing on recommending media
resources based on their content in this paper.

5 Semantic Decision Rules

In this section, we explain the decision rules that drive
the MDTE, by taking into account the context informa-
tion. The goal of the MDTE is to provide a (ranked) list
of so-called Possible Delivery Configurations (PDCs). A
PDC is a combination of media tracks, a chosen deliv-
ery format, and a chosen delivery protocol (e.g., track
1 and 2, packaged in an MP4 container and delivered
over HTTP). Further, a PDC corresponds to a physical
media resource, which can be represented by means of a
Media Fragment URI (e.g., http://ninsuna/test.
mp4?track=1;2) (see Sect. 4.1).

Overall, the decision taking process can be split up in
two main parts:

– build a list of all PDCs for a given context;
– rank the PDCs according to the estimated Quality

of Experience (QoE) of each PDC.

The next subsections provide the details for those two
parts. Moreover, we elaborate on how these decision
rules are modeled in N3Logic. This way, they can be
interpreted by a generic rule-based Semantic Web rea-
soner such as Eye.

5.1 Excluding Delivery Configurations

As already introduced in Sect. 2, we distinguish between
hard and soft constraints imposed by the usage environ-
ment. Ignoring hard constraints will result in PDCs that
are not working within the given usage environment. For
example, if a device does not support the RTSP delivery
protocol, sending the media resource in a delivery config-
uration using RTSP will fail. Therefore, all PDCs that do
not meet the hard constraints are excluded. Properties
imposing hard constraints are supported coding formats,
supported or chosen delivery formats, and supported or
chosen delivery protocols. Note that we do not consider

check coding formats

check delivery format

check delivery protocol

:PossibleDelivery

Configuration

:EmptyDelivery

Configuration

:PossibleTrack

media server

capabilities

usage

environment

media

characteristics

check coding format

check coding profile

Fig. 2. Building possible delivery configurations

Listing 1.4. Checking the delivery protocol (expressed in
N3Logic rules)

1 {
?dc a nss:DeliveryConfiguration.
?dc nss:deliveryProtocol ?protocol.
?ue a ue:UsageEnvironment.

5 ?ue ue:supportedProtocol ?protocol.
}
=>
{?dc a :SupportedProtocolDeliveryConfiguration.}.

10 {
?dc a nss:DeliveryConfiguration.
?ue a ue:UsageEnvironment.
?ue ue:supportedProtocol nf:Unspecified.

}
15 =>

{?dc a :SupportedProtocolDeliveryConfiguration.}.

parameters such as the screen size as hard constraints
because the screen size of a device does not necessar-
ily corresponds with the maximum resolution the video
player of that device can handle.

In order to build the list of PDCs, a number of steps
are executed; these are also visualized in Fig. 2. In the
first step, we compare the given usage environment (i.e.,
Listing 1.3) with the server capabilities (i.e., Listing 1.2).
Only the nss:DeliveryConfigurations fullfilling
the following conditions are kept for further processing:

– the usage environment supports or chooses coding
formats specified in the delivery configuration, or
has no specified coding formats;

– the usage environment supports or chooses the de-
livery format specified in the delivery configuration,
or has no specified delivery format;

– the usage environment supports or chooses the deliv-
ery protocol specified in the delivery configuration,
or has no specified delivery protocol.

An example of how these conditions can be checked
using formalized rules is given in Listing 1.4. In the
first rule of this example, we check if the usage en-
vironment supports the delivery protocol specified in
the server delivery configuration. The second rule is
triggered in case the usage environment does not specify

ue:NetworkConnectionType
ue:NetworkConnectionType
ue:availableBandwidth
http://ninsuna/test.mp4?track=1;2
http://ninsuna/test.mp4?track=1;2
nss:DeliveryConfiguration

6

its supported delivery protocols. In the latter case,
we regard every nss:DeliveryConfiguration
as a valid candidate. Further, the listing shows
how valid candidate delivery configurations
are promoted to an intermediate class, i.e.,
:SupportedProtocolDeliveryConfiguration.
We have constructed intermediate classes for each of the
above described conditions. When all these conditions
hold, i.e., the delivery configuration is an instance of all
these intermediate classes, we promote the delivery con-
figuration to the :EmptyDeliveryConfiguration
class. In our example, we can see that nss:HTTP_MP4
and nss:HAS_M3U8 are valid delivery configuration
candidates and that nss:HTTP_WEBM is excluded due
to the fact that nf:WEBM is not supported as delivery
format in the given usage environment.

The second step compares the characteristics of the
available tracks of the requested media resource (i.e.,
Listing 1.1) with the given usage environment. A track
is a valid candidate if both of the following conditions
are met:

– the coding format of the track is supported by the
usage environment, or the usage environment has
not specified a coding format;

– the coding profile of the track is supported by the
usage environment, or the usage environment has
not specified a coding profile.

If the above conditions are met for a particular track,
we promote the track to the :PossibleTrack class.
Applying these rules to our example result in three pos-
sible tracks (i.e., track 1, 2, and 3). Track 4 is not a valid
track due to the fact that nf:VORBIS is not supported
in the given usage environment (Listing 1.3).

In the last step, the :PossibleTracks are linked
with the :EmptyDeliveryConfigurations based
on supported coding formats. This allows us to create a
list of :PossibleDeliveryConfigurations. Each
PDC will contain either both a video and an audio track
or just one audio track. In our example, we can construct
6 PDCs:

(1) nss:HTTP_MP4 with track 1 and 3;
(2) nss:HTTP_MP4 with track 2 and 3;
(3) nss:HTTP_MP4 with track 3;
(4) nss:HAS_M3U8 with track 1 and 3;
(5) nss:HAS_M3U8 with track 2 and 3;
(6) nss:HAS_M3U8 with track 3.

5.2 Ranking Possible Delivery Configurations

Given a list of PDCs, we now want to rank this list in
such a way that the highest ranked PDC offers the best
(estimated) QoE in the given usage environment. There-
fore, we consider the remaining properties provided by
the usage environment as soft constraints (i.e., every-
thing except information regarding media formats and
protocols). In order to estimate the QoE of a certain

Listing 1.5. Passing properties and parameters to the rating
calculation

1 {
?pdc a :PossibleDeliveryConfiguration.
?pdc :PDCBitrate ?br.
?context a ue:UsageEnvironment.

5 ?context ue:availableBandwidth ?bw.
_:l :maxBitrateWeight ?weight.
_:l :maxBitrateAffinity1 ?a1.
_:l :maxBitrateAffinity2 ?a2.

}
10 =>

{?pdc :calcRating (?br ?bw ?weight ?a1 ?a2).}.

Listing 1.6. Rating function expressed in N3Logic (for α1)

1 @prefix math: <http://www.w3.org/2000/10/swap/math#>.
{
?t :calcRating1 (?a ?b ?weight ?a1).
(?a ?b) math:difference ?diff1.

5 ?diff1 math:absoluteValue ?diff.
(?diff ?a1) math:exponentiation ?exp.
(-1.0 ?exp) math:product ?prod.
(2.71828183 ?prod) math:exponentiation ?unwrating.
(?unwrating ?weight) math:product ?rating.

10 }
=>
{?t :rating ?rating.}.

PDC, we calculate the distance between a PDC and the
usage environment. More specifically, we introduce a rat-
ing function for each combination of two corresponding
properties (e.g., screen size vs. video resolution, bit rate
vs. bandwidth, etc.). Given a and b two corresponding
properties, the rating ra,b for properties a and b corre-
sponds to the following formula:

ra,b = e−|a−b|
α1

if a ≥ b
ra,b = e−|a−b|

α2
if a < b

ra,b is a value between 0 and 1 with lower values for
greater distances between a and b.

We introduce two affinity parameters in the rating
function, enabling the specification of the affinity of the
differences in both directions. More specifically, the pa-
rameters α1 and α2 denote to which extent ra,b drops
when the difference between a and b becomes higher.
The value of αi lies between 0 and ∞; the higher the
value for αi, the faster the ra,b drops. Note that we use
two αs to indicate the affinity towards the direction of
the difference. If α1 is greater than α2, ra,b will drop less
faster for a < b than for a ≥ b. Equal values for α1 and
α2 denote no preference towards either direction.

Thus, for each combination of two corresponding
properties, two affinity parameters can be specified (one
for each direction). The overal rating of the PDC is then
the weighted sum of the ratings of the individual prop-
erty combinations. Note that the rating for each PDC
seperatly has no actual meaning on its own but is only
used for sorting the PDCs according to rating values.

Listing 1.5 illustrates how the property combina-
tion :PDCBitrate and ue:availableBandwidth
is passed to the rating calculation algorithm, using

nss:DeliveryConfiguration
:SupportedProtocolDeliveryConfiguration
:EmptyDeliveryConfiguration
nss:HTTP_MP4
nss:HAS_M3U8
nss:HTTP_WEBM
nf:WEBM
:PossibleTrack
nf:VORBIS
:PossibleTrack
:EmptyDeliveryConfiguration
:PossibleDeliveryConfiguration
nss:HTTP_MP4
nss:HTTP_MP4
nss:HTTP_MP4
nss:HAS_M3U8
nss:HAS_M3U8
nss:HAS_M3U8
:PDCBitrate
ue:availableBandwidth

7

N3Logic. Next to these two properties, a weight fac-
tor for this property combination is provided, together
with the two affinity parameters (i.e., α1 and α2). Ad-
ditionally, Listing 1.6 shows how the first part of the
rating function (i.e., for the case a < b) is implemented
in N3Logic.

The weight factor denotes the weight of this property
in the overal ranking. The higher the weight, the more
this property will have an influence in the total score
of the PDC. The affinity parameters are used to indi-
cate the penalty of moving further away from the target
value. For example, we can allow the bit rate to dif-
fer more from its target value (i.e., the available band-
width) than the frame rate by setting αi for bit rate
lower than αi for frame rate. Within one property com-
bination (e.g., bit rate), we can specify that lower bit
rates than the target bit rate are penalized less than the
case when the bit rate is higher than the target bit rate.
This is done by setting α1 higher than α2. Additionally,
if we do not allow that a certain property is higher than
its target value (i.e., simulating a hard constraint), α1

must be much higher than α2.
Using the weight and affinity parameters, we can

tweak the MDTE, based on the target application. In
our implementation (see also Sect. 6), we have chosen a
fixed weight of 100 for all properties and αi values be-
tween 0.1 and 0.001. However, future work could consist
of introducing a self-learning system that tweaks these
parameters, based on the received feedback from the us-
age environment.

Applying our rating calculation algorithm to the list of
PDCs that we obtained in Sect. 5.1, we can calculate the
estimated QoE for each PDC. As an example, we con-
sider the ue:maxFrameWidth and ma:frameWidth
property combination. Suppose we have α1 = 0.1 and
α2 = 0.01 for this parameter combination, which de-
notes that we do not like to go over the targeted frame
width, the following ratings are obtained for each PDC
(for our parameter combination only):

– PDCs (1) and (4): 0.3492;
– PDCs (2) and (5): 0.1899;
– PDCs (3) and (6): 0.

Note that PDCs (3) and (6) do not get a rating since
the ue:maxFrameWidth property is not applicable for
those PDCs. If we apply the same rating calculation
algorithm for all properties and subsequently take a
weighted sum of these property ratings, PDC (4) will
get the highest rating.

6 Implementation in a Media Delivery
Platform

We integrated the MDTE as described in the previ-
ous sections in NinSuna6, our fully integrated media

6 http://ninsuna.elis.ugent.be

adaptation and delivery platform. At its core, format-
independent modules for temporal selection and packag-
ing of media content are present. A tight coupling exists
between these core modules and a model for describ-
ing structural, semantic, and scalability information of
media resources. Media resources are ingested into the
platform and mapped to this model. The adaptation
and selection operations are based on this model and
are thus independent of the underlying media formats,
making NinSuna a format-independent media delivery
platform. Furthermore, it enables enhanced support for
media on the Web based on the following features:

– popular media formats (MP4, WebM, Ogg, MPEG-
2 TS) and delivery protocols (RTSP, RTMP, HTTP
progressive download, HTTP adaptive streaming)
on the Web are supported;

– the Media Fragments URI 1.0 protocol [21] is imple-
mented, which enables the delivery of media frag-
ments (i.e., temporal or track fragments) in a stan-
dardized way;

– media metadata is published according to the Ontol-
ogy for Media Resources 1.0 [13], a standardized way
to represent basic information of media resources on
the Web.

A detailed explanation of NinSuna and its core technolo-
gies can be found in [22] and [23].

Next, we elaborate on how the context information
is collected. Subsequently, the workflow is described for
the delivery of a media resource on the NinSuna platform
using the MDTE.

6.1 Context Collection

Similarly to the description of the models for context
information (Sect. 4), we distinguish between server ca-
pabilities, media characteristics, and usage environment.

6.1.1 Server Capabilities The server capabilities
are static for one specific media server, in our case
NinSuna. Hence, we only need to describe the server
capabilities once and adjust them if the server is ex-
tended with a new protocol or media format for exam-
ple. Currently, NinSuna supports HTTP, RTSP, RTMP,
and HTTP Live Streaming (which is a form of HTTP
adaptive streaming) as media delivery protocols; MP4
(with H.264/AVC, MPEG-4 Visual, AAC, MP3), WebM
(with VP8, Ogg Vorbis), MPEG-2 TS (with H.264/AVC,
AAC), JPG, and PNG are supported media format com-
binations.

6.1.2 Media Characteristics Before a media re-
source becomes available within the NinSuna platform,
it needs to be ingested. During this ingest process, infor-
mation regarding the media characteristics is collected.
For instance, based on the available headers present in
the source media that is ingested, technical properties

ue:maxFrameWidth
ma:frameWidth
ue:maxFrameWidth
http://ninsuna.elis.ugent.be

8

Listing 1.7. Representing characteristics of scalable media
resources

1 <http://ninsuna/svc-test>
a ma:MediaResource;
ma:hasTrack :1 , :2;
ma:numberOfVideoTracks "2"ˆˆxsd:int;

5 ma:locator <http://ninsuna/svc-test.mp4?track=1>;
ma:locator <http://ninsuna/svc-test.mp4?track=2>.

:1 a ma:VideoTrack;
ma:frameHeight "480"ˆˆxsd:int;

10 ma:frameWidth "640"ˆˆxsd:int;
ma:frameRate "25.0"ˆˆxsd:double;
ma:title "1";
ma:format nf:H264;
nsa:codingProfile nf:AVC_BASELINE;

15 ma:averageBitrate "817.7"ˆˆxsd:double;
ma:duration "15.0"ˆˆxsd:double.

:2 a ma:VideoTrack;
ma:frameHeight "480"ˆˆxsd:int;

20 ma:frameWidth "640"ˆˆxsd:int;
ma:frameRate "12.5"ˆˆxsd:double;
ma:title "2";
ma:format nf:H264;
nsa:codingProfile nf:AVC_BASELINE;

25 ma:averageBitrate "628.1"ˆˆxsd:double;
ma:duration "15.0"ˆˆxsd:double.

such as codec, resolution, and frame rate can be ex-
tracted. Moreover, the media is organized in terms of
physical and logical media resources, as described in
Sect. 4.1. Therefore, instances of the media character-
istics are automatically generated, compliant to the On-
tology for Media Resources.

When different versions of a media resource corre-
spond to different layers/views of a scalable/multiview
media resource, these versions cannot be described by
the Ontology for Media Resources (at first sight). How-
ever, it should be noted that scalability layers and al-
ternative views are very similar to tracks; the only dif-
ference is that the former can be dependent on other
layers/views while this is not the case for the latter.
Thus, if these layers/views are identifyable, track frag-
ments could be used to address them. Listing 1.7 illus-
trates the description of the characteristics of a media
resource containing two temporal scalability layers (i.e.,
25 fps and 12.5 fps). Each scalability layer corresponds
to a track. Of course, this only works if the server knows
the mapping between tracks and scalability layers, which
is the case with NinSuna.

6.1.3 Usage Environment The usage environment
can be divided into three categories: device capabilities,
network characteristics, and user characteristics, as de-
scribed in Sect. 4.3. It should be noted that we col-
lect the information of the usage environment at the
server, hereby allowing every existing media player. This
means that collecting information of the usage environ-
ment solely relies on what you can get from a normal
HTTP request. Therefore, we currently have no pro-
visions for transparantly collecting information about
network and user characteristics. To overcome this, we
introduced an ad-hoc solution in the sense that we al-

low URI query parameters and map them to the prop-
erties of the usage environment (e.g., http://foo.
com/media?maxBandwidth=1000 is mapped to the
ue:availableBandwidth property). This way, the
responsibility for providing this context information is
handed over to the user agent or a proxy in the net-
work.

In contrast to network and usage characteristics, de-
vice capabilities can be easily detected at the server,
based on a normal HTTP request. Device detection tools
such as Wireless Universal Resource FiLe (WURLF, [1])
or the User Agent Profile (UAProf, [27]) are capable of
recognizing devices based on HTTP headers. In this pa-
per, we use WURFL as device detection tool on our me-
dia delivery platform. WURFL relies on the HTTP User-
Agent request header [6] to determine the device. Based
on a database that maps user agent strings to device ca-
pabilities, we are able to detect properties such as screen
size, supported media formats, and supported codec pro-
files. This way, we are able to populate our model for
device capabilities. An example of a User Agent string
for a Google Nexus S phone is depicted on line 4 of List-
ing 1.8.

Currently, WURFL provides the database in the form
of an XML document, following a proprietary structure.
We created a converter taking as input this XML doc-
ument and producing an RDF document describing the
devices and their capabilities according to the model pre-
sented in Sect. 4.3.1. This way, we obtain a filtered ver-
sion of WURFL’s database, only containing the proper-
ties that we are interested in. Additionally, we enhance
our database with more detailed and up-to-date infor-
mation regarding supported media formats, profiles, and
protocols. These updates are represented in the form
of SPARQL 1.1 UPDATE statements [7], enabling a
flexibel update mechanism when a new version of the
WURFL database is released. In an ideal scenario, a for-
malized data set of device capabilities would be available
in the Linked Open Data cloud7, where everyone can
contribute device information.

6.2 Integration into the Web Infrastructure

The integration of our MDTE within NinSuna can
be tested at http://ninsuna.elis.ugent.be/
Media, which is the media repository of NinSuna. In
this subsection, we illustrate how the NinSuna platform
is steered by the MDTE, by means of describing a work-
flow of different scenarios user agents could follow.

Accessing the metadata8 of a NinSuna media resource
is already steered by the MDTE. More specifically, based
on the hard constraints applying to the usage environ-
ment that is trying to access the media resource, only
the PDCs are shown to the user. For instance, accessing
the metadata page of a media resource on NinSuna with

7 http://linkeddata.org/
8 By writing text/html, application/rdf+xml, or text/turtle

in the HTTP Accept request header.

http://foo.com/media?maxBandwidth=1000
http://foo.com/media?maxBandwidth=1000
ue:availableBandwidth
http://ninsuna.elis.ugent.be/Media
http://ninsuna.elis.ugent.be/Media
http://linkeddata.org/

9

Listing 1.8. Redirecting devices to the best fitted version

1 GET /Media/test HTTP/1.1
Host: ninsuna.elis.ugent.be
Accept: video/*
User-Agent: Mozilla/5.0 (Linux; U; Android 2.3.4; de-

de; Nexus S Build/GRJ22) AppleWebKit/533.1 (
KHTML, like Gecko) Version/4.0 Mobile Safari
/533.1

5
HTTP/1.1 307 Temporary Redirect
Server: NinSuna/2.0
Location: /Media/test.mp4?track=1;3
Content-Length: 0

10 Content-Type: video/mp4

an iPhone will not show any RTSP or RTMP links, be-
cause these protocols are not supported on the iPhone.
The rating for each PDC is also shown and is calculated
according to the algorithm explained in Sect. 5.2.

Directly accessing the best fitted version of a media
resource9 is also possible. An example of such a request
is shown in Listing 1.8. The MDTE, deployed on the
NinSuna platform, picks the highest ranked PDC and
redirects the user agent to that PDC. In this example,
the user agent is redirected to an MP4 containing tracks
1 and 3 and delivered over HTTP.

Note that for HTTP adaptive streaming protocols
(such as Apple’s HTTP Live Streaming), the MDTE
does not pick the highest ranked PDC. Instead, all PDCs
are described within the manifest, according to the spec-
ifications of the HTTP adaptive streaming protocol.
This way, a user agent can seamlessly switch between
the various PDCs, according to the varying usage envi-
ronment conditions.

7 Conclusions and Future Work

In order to anticipate the huge diversity in usage envi-
ronments on the one hand and the multiple possibilities
for media delivery on the other hand, we introduced a
formalized, semantic media decision taking engine. The
latter is capable of ranking possible media delivery con-
figurations, based on context information consisting of
characteristics of the requested media, server capabil-
ities, and the usage environment. The MDTE is fully
driven by formalized rules, expressed in N3Logic, ap-
plying hard constraints to exclude PDCs and soft con-
straints to rank PDCs. The ranking algorithm is based
on a ranking function with support for weights and affin-
ity parameters for each property combination. Finally,
we illustrated how the MDTE can be deployed inside
NinSuna, a media delivery server targeted at media on
the Web.

Future work consists of investigating other places
within the network to deploy the MDTE. For instance,
deploying the MDTE in a user agent would result in
an easier and more detailed collection of context infor-
mation about the usage environment. The MDTE could

9 By writing video/* in the HTTP Accept request header.

be deployed within user agents supporting HTTP adap-
tive streaming in order to decide when to switch from
one quality version to another. Other future work con-
sists of introducing a self-learning component inside the
MDTE. More specifically, the MDTE must be able to
learn the weight and affinity parameters by itself, based
on feedback from the user agent. This way, its decisions
would gradually be improved.

8 Acknowledgments

The research activities as described in this paper were
funded by Ghent University, the Interdisciplinary Insti-
tute for Broadband Technology (IBBT), the Institute
for the Promotion of Innovation by Science and Technol-
ogy in Flanders (IWT), the Fund for Scientific Research-
Flanders (FWO-Flanders), and the European Union.

References

1. http://wurfl.sourceforge.net/

2. Eye deep taxonomy benchmark results, http://

eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt

3. Berners-lee, T., Connolly, D., Kagal, L., Scharf, Y.,
Hendler, J.: N3Logic: A logical framework for the World
Wide Web. Theory and Practice of Logic Programming
8(3), 249–269 (2008)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic
Web. Scientific American 284(5), 34 (2001)

5. De Roo, J.: Euler proof mechanism, http://eulersharp.

sourceforge.net/

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., Berners-Lee, T.: RFC 2616: “Hypertext
Transfer Protocol – HTTP/1.1,” Available on http://

www.w3.org/Protocols/rfc2616/rfc2616.html.
7. Gearon, P., Passant, A., Polleres, A. (eds.): SPARQL 1.1

Update. W3C Working Draft, World Wide Web Consor-
tium (May 2011)

8. Herranz, L.: Integrating semantic analysis and scalable
video coding for efficient content-based adaptation. Mul-
timedia Systems 13, 103–118 (2007)

9. Hutter, A., Amon, P., Panis, G., Delfosse, E., Ransburg,
M., Hellwagner, H.: Automatic adaptation of streaming
multimedia content in a dynamic and distributed envi-
ronment. In: Proceedings of IEEE International Confer-
ence on Image Processing (ICIP 2005) (September 2005)

10. ISO/IEC: 21000-7:2004 Information technology – Mul-
timedia framework (MPEG-21) – Part 7: Digital Item
Adaptation (October 2004)

11. Klyne, G., Carrol, J.J.: Resource description framework
(RDF): Concepts and abstract syntax. W3C Recom-
mendation (Feb 2004), http://www.w3.org/TR/2004/

REC-rdf-concepts-20040210/

12. Köhncke, B., Balke, W.T.: Preference-driven personal-
ization for flexible digital item adaptation. Multimedia
Systems 13, 119–130 (2007)

13. Lee, W., Bailer, W., Bürger, T., Malaisé, V., Michel,
T., Sasaki, F., Söderberg, J., Stegmaier, F., Strassner, J.
(eds.): Ontology for Media Resources 1.0. W3C Working
Draft, World Wide Web Consortium (March 2011)

http://wurfl.sourceforge.net/
http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt
http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/ TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/ TR/2004/REC-rdf-concepts-20040210/

10

14. López, F., Mart́ınez, J.M., Garćıa, N.: A model
for preference-driven multimedia adaptation decision-
making in the MPEG-21 framework. Multimedia Tools
and Applications 53, 181–211 (May 2011)

15. Lum, W.Y., Lau, F.C.M.: A Context-Aware Decision
Engine for Content Adaptation. IEEE Pervasive Com-
puting 1, 41–49 (July 2002)

16. McGuinness, D., van Harmelen, F. (eds.): OWL Web
Ontology Language: Overview. W3C Recommendation,
World Wide Web Consortium (February 2004), http://

www.w3.org/TR/owl-features/

17. Mukherjee, D., Delfosse, E., Kim, J.G., Wang, Y.: Op-
timal Adaptation Decision-taking for Terminal and Net-
work Quality-of-service. IEEE Transactions on Multime-
dia 7(3), 454–462 (June 2005)

18. Osmun, T.: Euler Eye installation, demo, and deep tax-
onomy benchmark, http://ruleml.org/WellnessRules/

files/WellnessRulesN3-2009-11-10.pdf

19. Prangl, M., Szkaliczki, T., Hellwagner, H.: A Framework
for Utility-based Multimedia Adaptation. IEEE Trans-
actions on Circuits and Systems for Video Technology
17(6), 719–728 (June 2007)

20. Szwabe, A., Schorr, A., Hauck, J., Kassler, A.: Dynamic
Multimedia Stream Adaptation and Rate Control for
Heterogeneous Networks. Journal of Zhejiang University
SCIENCE A 7, 63–69 (2006)

21. Troncy, R., Mannens, E., Pfeiffer, S., Van Deursen, D.
(eds.): Media Fragments URI 1.0. W3C Working Draft,
World Wide Web Consortium (March 2011)

22. Van Deursen, D., Van Lancker, W., De Bruyne,
S., De Neve, W., Mannens, E., Van de Walle, R.:
Format-independent and Metadata-driven Media Re-
source Adaptation using Semantic Web Technologies.
Multimedia Systems 16(2), 85–104 (2010)

23. Van Deursen, D., Van Lancker, W., De Neve, W., Pari-
daens, T., Mannens, E., Van de Walle, R.: NinSuna: a
Fully Integrated Platform for Format-independent Mul-
timedia Content Adaptation and Delivery based on Se-
mantic Web Technologies. Multimedia Tools and Appli-
cations – Special Issue on Data Semantics for Multimedia
Systems 46(2-3), 371–398 (January 2010)

24. Van Deursen, D., Van Lancker, W., Van de Walle, R.: On
Media Delivery Protocols in the Web. In: Proceedings of
the IEEE International Conference on Multimedia and
Expo 2010. pp. 1028–1033. Singapore (July 2010)

25. Van Lancker, W., Van Deursen, D., Mannens, E., Van de
Walle, R.: Harmonizing Media Annotations and Media
Fragments, submitted to the 2011 Workshop on Multi-
media on the Web

26. Vetro, A., Christopoulos, C., Ebrahimi, T.: Universal
Multimedia Access. IEEE Signal Processing Magazine
20(2), 16 (March 2003)

27. Wireless Application Protocol Forum: UAProf User
Agent Profiling Specification (2001)

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://ruleml.org/WellnessRules/files/WellnessRulesN3-2009-11-10.pdf
http://ruleml.org/WellnessRules/files/WellnessRulesN3-2009-11-10.pdf

	Semantic Media Decision Taking using N3Logic

