

A Framework for Quality-Driven Delivery
in Distributed Multimedia Systems

B. Kerhervé1, K.K. Nguyen2, O.Gerbé3, B.Jaumard4

 1Université du Québec à Montréal
kerherve.brigitte@uqam.ca

2Université de Montréal
nguyenkk@iro.umontreal.ca

3HEC Montréal
olivier.gerbe@hec.ca

4Concordia University
bjaumard@ciise.concordia.ca

Abstract

In this paper, we propose a framework for Quality-
Driven Delivery (QDD) in distributed multimedia
environments. Quality-driven delivery refers to the
capacity of a system to deliver documents, or more
generally objects, while considering the users
expectations in terms of non-functional requirements. For
this QDD framework, we propose a model-driven
approach where we focus on QoS information modeling
and transformation. QoS information models and meta-
models are used during different QoS activities for
mapping requirements to system constraints, for
exchanging QoS information, for checking compatibility
between QoS information and more generally for making
QoS decisions. We also investigate which model
transformation operators have to be implemented in
order to support some QoS activities such as QoS
mapping.

Keywords – Quality of Service (QoS), Quality-Driven

Delivery (QDD), distributed multimedia system.

1. Introduction
Most applications today handle large amount of

multimedia content, which is distributed across network.
Multimedia applications can be classified based on four
dimensions: the task they perform, the type of media they
involve, the situation of operation (e.g., geographical
dispersion of users) and the behavioral characteristics of
users (e.g. user expectations, skills) [15]. The system
architecture supporting such applications is
heterogeneous, consisting of a large number of client
machines, database servers, video servers or other
specific servers, all interconnected through
communication networks. These complex environments
require the integration of system management mechanisms
providing system scalability, application adaptation and
quality of service (QoS) support [4].

QoS support was initially introduced in the field of
telecommunication networks and multimedia systems
[Aur98] and led to proposals for management strategies
aimed at deciding whether and controlling how multimedia
streams can be delivered to the user under some
constraints. Generally these constraints are exp ressed in
terms of system performance relative to media delivery and
synchronization. The system then works to deliver the
specified level of service and for that purpose transforms

the users’ requirements into various constraints mainly
targeted to the transport system [9][12].

More recently it appears that QoS should be
considered from a broader perspective and addressed in
the context of internet applications and distributed and
wireless computing [1]. We believe that new approaches
and proposals should position the user at the center of the
process allowing the expression of non-functional
requirements concerning performance as before, but also
concerning cost or more generally the quality of the
delivered information. We can then talk about quality-
driven delivery (QDD) where the quality requirements
expressed by the user are taken into account in the
different steps of the delivery [8]. In such a context, all the
components of the distributed multimedia system have to
contribute to offer QDD and each of them should include
specific mechanisms to support QDD locally and to
provide information for global, distributed decisions
relative to QDD. Such decisions can take different forms
such as resource allocation decisions, content-based
adaptation rules or query-routing decisions.

In this paper, we propose a general framework for QDD
in distributed multimedia environments. Although most of
the discussion is conducted in the multimedia area, the
application of this framework is not limited to multimedia
delivery. It is intended to be applicable to most
applications that require to deliver objects. For example, it
can be applied to distributed database management
systems, where the database server is expected to send
(deliver) a query result (an object) to the user.

For this QDD framework, we propose a model-driven
approach where we focus on QoS information modeling
and transformation. QoS information models and meta-
models are used during different QoS activities for
mapping requirements to system constraints, for
exchanging QoS information, for checking compatibility
between QoS information and more generally for making
QoS decisions. We also investigate which model
transformation operators have to be implemented in order
to support some QoS activities such as QoS mapping.

The rest of the paper is organized as follows. Section 2
presents the principles and activities for QDD and
positions our approach in the context of video delivery
services. Section 3 describes the different QoS parameters
that compose our QoS information models. Section 4
presents the transformation performed on the information
models. Section 5 discusses some experimental results of
using QDD approach for making QoS decisions.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archipel - Université du Québec à Montréal

https://core.ac.uk/display/9537146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Quality –Driven Delivery Services
Quality-driven delivery refers to the capacity of a

system to deliver documents, or more generally objects,
while considering the users expectations in terms of non-
functional requirements. To support QDD, mechanisms
have to be integrated into the service or the application in
order to adapt the quality of service to the user’s
requirements. Some approaches have been proposed for
multimedia application adaptation, more specifically for
adaptation to the technical infrastructure used for
accessing multimedia objects [14]. Most of the exis ting
approaches and mechanisms are more oriented towards
resource allocation than user-perceived quality. We
believe that it is time to consider maximizing the user-
perceived quality as a main objective of application
adaptation. Since the user-perceived quality can be
influenced by several factors, we claim that all these
factors should be integrated in a theoretical framework
being the kernel of an adaptation engine. All the quality
information involved in the adaptation process should be
collected, integrated and managed in a homogeneous
manner.

2.1 A Video Delivery Service

To illustrate the principles of QDD, we take the
example of a video delivery service where users specify
their quality preference according to three dimensions: the
language of the audio sequence and the size and the frame
rate of the video. The following figure presents a
simplified view of this service. We identify three main
modules: the quality information manager (QIM), the
decision engine (DE) and the adaptation and delivery
engine (ADE).

Quality
Information
Manager

Decision
Engine

Adaptation
and Delivery

Engine

Application components
User Quality Information

Media Quality Information
Resource Quality

Information
Figure 1: Components of a Video Delivery System

The QIM is in charge of collecting, storing, integrating
and providing access to the quality information (QI) used
by the decision engine. This information can be classified
into three different categories: user QI describing the
preferences and requirements of the user in terms of
quality level; media QI describing the characteristics of the
video sequences and finally resource QI describing the
characteristics of the resources, such as user equipment,
servers or network connections.

The decision engine, located at the center of the
system, is in charge of making QoS decisions allowing the
video delivery under the constraints specified by the
users and/or concerning the available resources. Such
decisions can be centralized [16] or distributed [13] and

may lead to content adaptation, resource allocation or
resource adaptation.

The ADE is responsible for executing the plan
produced by the decision engine. The ADE interacts with
the different components of the system (encoder, video
server, network) to finally deliver the video sequence to
the user.

As an example, we consider that the network
bandwidth is decreasing, leading to a QoS violation.
Different decisions can then be taken:

a) Content optimization: a possible content
optimization technique is compressing the data content or
changing the video codec.

For example, [2] proposes a technique replacing GIF
images by JPEG images that may reduce transmission
overload more than eight times. [19] presents a
classification of content optimization techniques
including: i) information abstraction for reducing
bandwidth requirement, ii) data prioritization for providing
different QoS levels, iii) modality transformation for
transforming content adaptively to a particular device, iv)
data transcoding for enabling universal access using
pervasive computing device, and v) purpose classification
for eliminating redundant information.

b) Resource allocation: a possible resource allocation
decision is using RSVP to reserve more bandwidth on the
path from server to client.

Actually, allocation and re-allocation are fundamental
methods to address QoS violation problems. According to
IETF (Internet Engineering Task Force), resource
allocation is the first motivation in attempting to provide
QoS over Internet by the Integrated Services model [5]
served for setting up path and reserving resource in the
network. In the context of multimedia network with
multiple components, resource allocation is a multi-
dimensional problem which should be addressed using the
resource information profile, the application requirements
and utility functions [17].

c) Resource adaptation: resource adaptation can lead
to changing the network’s path or the video server.

QoS adaptation is used to maintain, as long as
possible, the service level agreement built at the
negotiation phase and can be realized at the client or
server side. During QoS violation, QoS adaptation is done
transparently in real-time, in such a way that the system’s
transition takes place from one state to another one in
order to provide the requested level of service.

It appears that resource allocation and adaptation can
be combined to provide QoS in distributed systems [6].
Since an optimal decision is not easy to obtain, we believe
that all the QoS dimensions have to be considered and
that the decision engine should take the user requirements
as the ultimate optimization objective.

3. Modeling Quality Information
In this section we describe quality information models

for QDD services. The quality information models we
propose are the kernel of quality information managers
that have to be developed for QDD services. In this
section, we describe the different elements of our models
and Figure 2 presents them with a UML-like diagram.

3.1. Quality Informations

Quality information (QI) comes from different sources
and can be heterogeneous. For example, QI associated to
video objects can differ depending on the encoding format
and the standard used to describe associated metadata.
The monitoring tools used to collect QI about the service
level of the system components can also produce
heterogeneous information. In these two cases, we can
see that there is a need for homogenization and integration
of QI.

There is also a need for extension and adaptation of QI
models as well as for tools allowing description,
integration and translation of QI sets coming from
different sources and represented using different
formalisms or standards. This problem is similar to the
problem of data migration or schema translation in the field
of metadata management for data warehouses and web
portals. For QDD, we are interested in a subset of
metadata describing the quality of objects, data sources or
resources. To solve the problem of data migration and
schema translation, database researchers have recently
proposed an approach based on model management [3].
They propose to address the problem of data migration
and translation from a higher level of abstraction and to
work on models rather than working on data. This
approach would lead to the development of a generic
infrastructure for managing models and to the introduction
of model operations for integration and translation of data.

We believe that QI management for QDD is a good
candidate for model management, because not only are we
concerned by integration and translation of quality
metadata but also because QDD is provided in a
distributed and heterogeneous environment where
monitoring tools are fully platform-dependant.

A QI model is built with the concept of quality
dimension. Quality dimensions are used to describe
objective or subjective characteristics relative to the
quality level of the different actors of a delivery service or
the quality level expected by the user. Subjective
characteristics refer to the quality level perceived by the
user while objective characteristics refer to a measurable
quality level. An example of a quantitative dimension is
network_delay. This quality dimension is objective and
can be measured using monitoring tools for
communication networks. An example of a subjective
dimension can be response_time with the values:
(unacceptable, bad, good, excellent). This dimension is
qualitative since the possible values depend on the
perception or the interpretation of the user.

A quality dimension takes its values in a definition
domain. These values are used to build expressions
associated to dimensions. Expressions can be the
declaration of a value: for example network_throughput =
1MB or the declaration of a constraint such as 2ms <=
response_time <= 5ms.

Actor Quality
Model

Quantitative
Requirement

ServiceUser Actor

mapped

specifies
specifies_for

supported_by

1,11,n
0,n

1,1 1,1

0,n

ReqElt

0,n

Qualitative
Requirement

ModelElt

0,n

Qualitative
Quality Model

instOf

instOf

Expression
1,1

ReqElt

0,n

1,1

Qualitative
Dimension

Quantitative
Dimension

Transformation

0,1
1,n

0,n

1,1

0,n
0,n

Value

1,1

1,1

1,11,1 0,n

Quality
Level

LevelElt ModelElt
instOf

instOf

Domain

other

1,1

concerns

access

ModelElt

0,n

Quantitative
Quality Model

1,1

concerns
1,11,1

1,1

concerns

1,1

1,1

instOf

1,1

1,1
original

1,1
original

1,1

derivation

original

derived
0,n

original
1,1

0,n
derived

instOf

Transformation

0,n

0,n

1,n0,n

1,1 1,1

0,n0,n

1,n

1,1

0,n

1,1

0,n 0,n

derivationderivation

derivedderived
0,n0,n

derivation

Figure 2: A UML diagram for QoS information model

3.2. Quality Information Models

The quality information, built with the concept of
dimension, is modeled in quality information (QI) models.
QI models describe the structure of quality information
and allow the reuse, transformation and extension of
existing models. QI models are composed of model
elements, each of them describing a quality dimension. QI
models can be User Quality Model, Actor Quality Model
or Core Model [8].

The model elements of a User Quality Model describe
the dimensions used to specify the expected quality level.
We make a distinction between Qualitative Quality Model
where the dimensions included in the model are qualitative
dimensions, and Quantitative Quality Model where the
dimensions are quantitative dimensions.

The model elements of an Actor Quality Model
integrate the quality dimensions along which is described
a quality level. We make a distinction between Media
Quality Model built with the dimensions used to describe
the quality level of an object to be delivered, and Resource
Quality Model describing the quality level offered by a
system comp onent (communication network, database
system, video server, user’s device etc…).

Figure 3 presents the class hierarchy for Quality
Information Model for the Video Delivery Service.

4. Model transformation
Model transformation allows the expression of

relationships between the concepts of different quality
information models. These relationships are defined on the
quality dimensions and used to transform instances of a
source model to instances of a target model.

The heterogeneity of QoS information between
different layers and services can be dealt with different
types of transformation through mapping operations.
Mapping operations are essential for making QoS decision
or information exchange. We identify two types of
mapping, vertical and horizontal, used respectively for
transforming information between layers and exchanging
information between services of the same layer. From the
point of view of QDD, these two types of mapping have to
be implemented by the mapping between quality
information models.

4.1. Vertical Mapping

Traditionally, four layers are used in QoS architectures
[12]: the user layer, the service layer, the system layer, and
the resource layer. In our general framework, User Quality
Models correspond to the user and service layers. Actor
Quality Models correspond to system and resource layers
and are specialized to Network and Video Server Quality
Models. The mapping between layers can be therefore
modeled by different mappings between information
models:

- from service layer to system layer: the projection of
user requirements to system dimensions, performed by the
translation of a User Quality Model in terms of an Actor
Quality Model.

- from system layer to resource layer: by mapping
Actor Quality Models to Network or Video Server Quality
Models.

4.2. Horizontal Mapping

Mapping is also considered to respond to the needs of
information exchange or service portability. While the
vertical mapping is mostly used for layering architectures,

the horizontal mapping is particularly useful for
component-oriented architectures [10] where each system
component acts as a black box with predefined
input/output information. Services running on multiple
platforms may also need horizontal mapping. In [11], the
authors provided a sort of horizontal mapping to transform
IP Diff Serv. specification into ATM QoS levels. In the
context our QDD framework, the transformation between
two platforms can be modeled by the mapping between
instances of the corresponding quality information
models.

Horizontal mapping can also be used to express that
some decisions have equivalent impacts on the whole
service. For example, increasing the video caching
capacity or the network transmission rate can both lead to
reduce the video rebuffering time. Therefore, the video
rebuffering time can be expressed in terms of either
network dimensions or server dimensions. From the user’s
point-of-view, these two resources (e.g. network and
video server) are interchangeable and that could be
described with the help of an horizontal mapping rule.

4.3. Mapping rules

Mapping activity is based on mapping rules, which
explain how destination parameters are obtained from
source parameters. Our mapping model classifies mapping
rules into two categories:

- function-based rule: is basically a mathematical
formula, often created using interpolation methods,

- table-based rule: is characterized by a lookup table,
often defined by user or developer but as well built
using experimental tests. A lookup table contains a
limited number of entries by which a set of output
values can be obtained from the input values.

4.3.1. Function-based mapping rules.

Function-based mapping is characterized by the
accuracy and ease of implementation. The transport layer
packet rate, inter-arrival time and end-to-end-delay can be
expressed in terms of the delay, jitter and packet loss
dimensions of the Network Quality Model using the
function-based formulas provided by [9].

4.3.2. Table-based mapping rules.

Unfortunately, the number of function-based mapping
rules is limited since building and validating a mapping
function are usually a big challenge. Thus generally we do
not have a sufficient number of function-based rules for
realizing all the mappings in the system. This difficulty led
us to use table-based rules as an alternative method. Table
1 shows an example of a table-based rule for mapping
MOS to network bandwidth requirements [7]. While a
function-based rule can be used in a wide range of
applications or environments (i.e. packet rate calculation
can be used in all the TCP/IP applications), a table-based
rule is only valid within pre-defined working conditions, or
within relatively stable states of a real system. This
drawback is nevertheless limited since QoS is generally

Figure 3: Quality information models of Video Delivery
Service (VDS)

User QualityModel

VDS QoS Quality
Model

Actor Quality Model

Network
Quality Model

Video Server Quality
Model

PSNR

MOS

Synchroni-
zation

Delay

Jitter

Packet
Loss

Encoding
Quality
Model

Memory
Quality
Model

System
Quality
Model

Delay

Supported
Codecs

CPU

Threads

File
control

Utilization

Caching

Error

Frame Rate

Waiting
time for

rebuffering

addressed in the context of a pre-defined application or
system, such as the video delivery service previously
presented.

MPEG-2

MOS*

Bandwidth
(Mbps)

4.0 5.62
4.1 6.00
4.2 6.47
4.3 7.07
4.4 7.88
4.5 8.99
4.6 10.65
4.7 13.37
4.8 18.64
4.9 33.18

Table 1: Mapping from MOS to network bandwidth
requirement

5. Experimentation and discussion
Based on our QDD framework, we conducted

experiments for a video delivery service in the context of a
QoS controllable environment, where a perturbator is
implemented for handling some of the system QoS
parameters. QoS decisions can be produced based on the
client behavior which is observed in terms of the video
frame rate, the image and audio quality as well as the re-
buffering time. Our ultimate objective consists in building
a set of rules covering all the possible mappings of user
specification into dimensions of system components.
These mapping rules are later used to make optimal
decision concerning resource usage or adaptation
strategies.

The behavior we observed at the client side is reported
in Table 2. In this table, the first column represents the
QoS parameter subject to change, the second column
shows the treatment we applied to the parameter
(increasing or decreasing), the third column describes the
behavior observed at the client side, the fourth column
explains the possible QoS decisions we can choose
alternatively and finally the last column represents the
QoS decisions in a optimal order (for our experimental
environment).

Since traditional QoS approaches mainly focus on the
communication network [20], when a QoS violation occurs,
the preferred decisions are usually related to the network
configuration (i.e. bandwidth re-allocation or server re-
configuration). With our QDD approach, we take into
account the QoS information of the overall system in order
to make optimal decisions. For example:

- When delay is increasing, resulting in decreasing the
video transmission rate, QoS decisions can be:

o To allocate more bandwidth on the existing path.
This costly decis ion is usually chosen in a
provider-oriented QoS architecture;

* MOS - Mean Opinion Score

o To change the current transmitting server (or
changing path). This decision requires further
QoS information about the video servers in the
system, but that may be worthy if the violation
comes locally and uniquely from current server;

o To change transmitting codec. This decision
requires that QoS information about video codecs
should be taken into account, but the overhead
may be smallest.

- When jitter is increasing, resulting in video smooth
layout , QoS decisions can be:

o To increase temporary buffers of the transmitting
servers or on-path network equipments. This
decision is often costly;

o To increase the receiving buffers at client side.
This decision is quite simple but needs further
QoS information about client side.

- When packet loss rate is increasing, resulting in poor
video image/audio quality, QoS decisions can be:

o To change transmission protocol (e.g. UDP to
TCP since TCP is more reliable). Impacts of this
decision on the client and server are important;

o To change transmitting codecs (e.g. some codecs
are more sensible to loss than others [18]). This
decision is simpler, but requires QoS information
about video codecs and selection algorithms
should be implemented.

- When the caching time is increasing, resulting in
video rebuffering, QoS decisions can be:

o To allocate more bandwidth so that the
transmission rate is increasing. This decision is
costly;

o To increase the buffer capacity on the client side.
This decision is simple but needs a negotiation
with user.

o To change the video codec, that can lead to a
smaller size of audio/image frame but also reduce
video quality.

6. Conclusion

In this paper, we have introduced a general framework
for Quality-Driven Delivery (QDD) in distributed
multimedia environments. This framework follows a model-
driven approach where we focus on QoS information
modeling and transformation in order to take into account
the contribution of all the system components for
satisfying user’s demands. We have presented the QoS
information models and investigated different model
operations to be implemented in order to support QoS
activities. We also discussed about the experimentation of
our QDD approach for video delivery service. In this
discussion, we explained how optimal QoS decisions can
be produced while taking into account the contribution of
the different system components.

7. References
[1] Abdelzaher, T., Shin, K., Bhatti, N., “User-Level QoS-

Adaptive Resource Management in Server End-Systems”,
IEEE Transactions on Computers, Vol. 52, No. 5, May 2003.

[2] T. F. Abdelzaher, N. Bhatti, “Web Content Adaptation to
Improve Server Overload Behavior”, Computer Networks,
Amsterdam, Netherlands, 1999.

[3] Bernstein, P., “Applying Model Management to Classical
Meta Data Problems”, First Biennial Conference on
Innovative Data Systems Research (CIDR 2003), USA, Jan.
2003, 209-220.

[4] Bochmann G., Kerhervé B., Lutfiyya H, Salem M, Ye H.,
“Introducing QoS to Electronic Commerce Applications”,
The 2nd International Symposium on Electronic Commerce
(ISEC) , Hong-Kong, April, 2001.

[5] R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin,
“Resource ReSerVation Protocol (RSVP) -Version 1
Functional Specification”, RFC 2205, Sept. 1997.

[6] I. Foster, A. Roy, V. Sander, “A Quality of Service
Architecture that Combines Resource Reservation and
Application Adaptation”, 8th International Workshop on
Quality of Service, 2001.

[7] Fukuda, K., Wakamiya, N., Murata, M., Miyahara, H.
“Effective Algorithms for Multicast Video Transport to
Meet Various QoS Requirements”, IEICE Trans.Commun.,
vol. E81-B, no. 8, 1599-1607, Aug. 1998.

[8] Gerbé, O., Kerhervé, B. Srinivasan, U. , “Model Operations
for Quality-Driven Multimedia Delivery”, International
Conference on Conceptual Structures, ICCS 2003, Dresden,
Germany, July 21-25, 2003.

[9] Huard J.-F., Lazar A. A, “On End-to-End QoS Mapping”, In
Proceedings of the International Workshop on QoS, May
1997, 303-314.

[10] Krishnamurthy, Y., Kachroo, V., Karr, D., Rodrigues, C.,
Loyall, J., Schantz, R., and Schmidt, D, “Integration of QoS-
enabled distributed object computing middleware for
developing next-generation distributed applications”, In

Proceedings of the ACM SIGPLAN Workshop on
Optimization of Middleware and Distributed Systems
,Snowbird, UT, June 18, 2001.

[11] Lai, C., Tang, C., Chang, W., “Services mapping between
Diffserv architecture and ATM”, Taiwan Academic Network
Conference, Taiwan, 2001

[12] Li, B., Kalter, W., Nahrstedt, K, “A Hierarchical Quality of
Service Control Architecture for Configurable Multimedia
Applications”,Jour. of High Speed Networks, IOS Pres, 2001.

[13] S. Lima, P. Carvalho, and V. Freitas, “Distributed Admission
Control for QoS and SLS Management”, Journal of Network
and Systems Management - Special Issue on Distributed
Management, 12(3), September 2004.

[14] Margaritis, M., Polyzos, G., “Adaptation Techniques for
Ubiquitous Internet Multimedia”, Wireless Communications
and Mobile Computing Vol.: 1, 2, 4/6 2001,. 141 - 163

[15] Miras, D., “Network QoS Needs of Advanced Internet
Applications”, Internet2 - QoS Working Group, 11/2002.

[16] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, “QoS-Aware
Middleware for Ubiquitous and Heterogeneous Environments
“, IEEE Comm. Magazine, vol. 39, no. 11, pp. 2-10, 2001.

[17] Ragunathan Rajkumar, Chen Lee, John Lehoczky, Dan
Siewiorek, “A Resource Allocation Model for QoS
Management”, IEEE Real-Time Systems Symposium , 1997.

[18] Robustelli, L., S. Loreto, A. Fresa, M. Longo, D. Spinelli,
“Prototype of an Adaptive Voice Coder for IP Telephony”,
International Conference on Software, Telecommunications
and Computer Networks – SoftCom 2003, October 7-10,
2003, Split Dubrovnik (Croatia), Ancona, Venice (Italy), pp.
859-863.

 [19] Shaha, N., Dessai, A., Parashar, M., “Multimedia Content
Adaptation for QoS Management over Heterogeneous
Networks”, International Conference on Internet Computing,
Nevada, USA, Computer Science Research, Education, and
Applications (CSREA) Pres, pp 642 – 648, 6/2001.

[20] D. Schmidt, D.Levine, and C. Cleeland, “Architectures and
Patterns for High- performance, Real-time CORBA Object
Request Brokers”, In Advances in Computers, Marvin
Zelkowitz, Ed., Academic Press, 1999.

Parameter Treatment Client behaviour Possible QoS decisions QoS delivery

(reordering decisions)

↑

Transmission rate ↓

1.Allocate more bandwidth
2.Change video server
3.Change video codec

1.Change video codec
2. Change video server
3. Allocate more bandwidth

Delay

↓ Transmission rate ↑ Not considered

↑ Video sequence smooth ↓ 1.Increase server buffer
2.Increase client buffer

1. Increase client buffer
2.Increase server buffer

Jitter
↓ Video sequence smooth ↑ Not considered

↑ Image/audio quality ↓ 1.Change protocol UDP→TCP
2.Change codec

1.Change codec
2.Change UDP→TCP

Packet

loss
↓ Image/audio quality ↑ Not considered

↑ Rebuffering time ↓ Not considered

Caching ↓ Rebuffering time ↑ 1.Allocate more bandwidth
2.Increase client buffer
3.Change video codec

1. Increase client buffer
2. Change video codec
3. Allocate more bandwidth

Table 2: Changing network QoS parameters and making QoS decision (↑ : increasing, ↓ : decreasing)

