11,809 research outputs found

    A framework for qualitative communications using big packet protocol

    Get PDF
    In the current Internet architecture, a packet is a minimal or fundamental unit upon which different actions such as classification, forwarding, or discarding are performed by the network nodes. When faced with constrained or poor network conditions, a packet is subjected to undesirable drops and re-transmissions, resulting in unpredictable delays and subsequent traffic overheads in the network. Alternately, we introduce qualitative communication services which allow partial, yet timely, delivery of a packet instead of dropping it entirely. These services allow breaking down packet payloads into smaller units (called chunks), enabling much finer granularity of bandwidth utilization. We propose Packet Wash as anew operation in forwarding nodes to support qualitative services. Upon packet error or network congestion, the forwarding node selectively removes some chunk(s) from the payload based on the relationship among the chunks or the individual signiicance level of each chunk. We also present a qualitative communication framework as well as a Packet Wash directive implemented in a newly evolved data plane technology, called Big Packet Protocol (BPP)

    A Framework for Qualitative Communications Using Big Packet Protocol

    Get PDF
    In the current Internet architecture, a packet is a minimal or fundamental unit upon which different actions such as classification,forwarding, or discarding are performed by the network nodes.When faced with constrained or poor network conditions, a packet is subjected to undesirable drops and re-transmissions, resulting in unpredictable delays and subsequent traffic overheads in the network. Alternately, we introduce qualitative communication services which allow partial, yet timely, delivery of a packet instead of dropping it entirely. These services allow breaking down packet payloads into smaller units (called chunks), enabling much finer granularity of bandwidth utilization. We propose Packet Wash as a new operation in forwarding nodes to support qualitative services. Upon packet error or network congestion, the forwarding node selectively removes some chunk(s)from the payload based on the relationship among the chunks or the individual significance level of each chunk. We also present a qualitative communication framework as well as a Packet Wash directive implemented in a newly evolved data plane technology,called Big Packet Protocol (BPP)Comment: Accepted in NEAT workshop, ACM SIGCOMM, August 2019, Beijing, Chin

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    A Framework for Quality-Driven Delivery in Distributed Multimedia Systems

    Get PDF
    In this paper, we propose a framework for Quality-Driven Delivery (QDD) in distributed multimedia environments. Quality-driven delivery refers to the capacity of a system to deliver documents, or more generally objects, while considering the users expectations in terms of non-functional requirements. For this QDD framework, we propose a model-driven approach where we focus on QoS information modeling and transformation. QoS information models and meta-models are used during different QoS activities for mapping requirements to system constraints, for exchanging QoS information, for checking compatibility between QoS information and more generally for making QoS decisions. We also investigate which model transformation operators have to be implemented in order to support some QoS activities such as QoS mapping

    Global state, local decisions: Decentralized NFV for ISPs via enhanced SDN

    Get PDF
    The network functions virtualization paradigm is rapidly gaining interest among Internet service providers. However, the transition to this paradigm on ISP networks comes with a unique set of challenges: legacy equipment already in place, heterogeneous traffic from multiple clients, and very large scalability requirements. In this article we thoroughly analyze such challenges and discuss NFV design guidelines that address them efficiently. Particularly, we show that a decentralization of NFV control while maintaining global state improves scalability, offers better per-flow decisions and simplifies the implementation of virtual network functions. Building on top of such principles, we propose a partially decentralized NFV architecture enabled via an enhanced software-defined networking infrastructure. We also perform a qualitative analysis of the architecture to identify advantages and challenges. Finally, we determine the bottleneck component, based on the qualitative analysis, which we implement and benchmark in order to assess the feasibility of the architecture.Peer ReviewedPostprint (author's final draft

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    • …
    corecore