11 research outputs found

    Singularity Analysis of Lower-Mobility Parallel Manipulators Using Grassmann-Cayley Algebra

    Get PDF
    This paper introduces a methodology to analyze geometrically the singularities of manipulators, of which legs apply both actuation forces and constraint moments to their moving platform. Lower-mobility parallel manipulators and parallel manipulators, of which some legs do not have any spherical joint, are such manipulators. The geometric conditions associated with the dependency of six Pl\"ucker vectors of finite lines or lines at infinity constituting the rows of the inverse Jacobian matrix are formulated using Grassmann-Cayley Algebra. Accordingly, the singularity conditions are obtained in vector form. This study is illustrated with the singularity analysis of four manipulators

    A general method for the numerical computation of manipulator singularity sets

    Get PDF
    The analysis of singularities is central to the development and control of a manipulator. However, existing methods for singularity set computation still concentrate on specific classes of manipulators. The absence of general methods able to perform such computation on a large class of manipulators is problematic because it hinders the analysis of unconventional manipulators and the development of new robot topologies. The purpose of this paper is to provide such a method for nonredundant mechanisms with algebraic lower pairs and designated input and output speeds. We formulate systems of equations that describe the whole singularity set and each one of the singularity types independently, and show how to compute the configurations in each type using a numerical technique based on linear relaxations. The method can be used to analyze manipulators with arbitrary geometry, and it isolates the singularities with the desired accuracy. We illustrate the formulation of the conditions and their numerical solution with examples, and use 3-D projections to visualize the complex partitions of the configuration space induced by the singularities.Preprin

    Singularity of cable-driven parallel robot with sagging cables: preliminary investigation

    Get PDF
    International audienceThis paper addresses for the first time the singu-larity analysis of cable-driven parallel robot (CDPR) with sagging cables using the Irvine model. We present the mathematical framework of singularity analysis of CDPR using this cable model. We then show that, besides a cable model representation singularity, both the inverse and forward kinematics (IK and FK) have a singularity type, called parallel robot singularity, which correspond to the singularity of an equivalent parallel robot with rigid legs. We then show that both the IK and FK have also full singularities, that are not parallel robot singularity and are obtained when two of the IK or FK solution branches intersect. IK singularity will usually lie on the border of the CDPR workspace. We then exhibit an algorithm that allow one to prove that a singularity exist in the neighborhood of a given pose and to estimate its location with an arbitrary accuracy. Examples are provided for parallel robot, IK and FK singularities. However we have not been able to determine examples of combined singularity where both the IK and FK are singular (besides parallel robot singularity)

    Diseño e implementación de una plataforma robótica tipo delta

    Get PDF
    El objetivo principal de esta investigación es diseñar e implementar un prototipo de un robot Delta, solucionando los problemas de espacio de trabajo reducido y gran número de singularidades, optimizando las dimensiones de sus eslabones para maximizar su espacio de trabajo y su destreza. Adicionalmente, se desarrollan los modelos cinemáticos directo e inverso y se implementan en una interfaz gráfica de usuario para controlar los movimientos del robot desde un computador.Pregrad

    Numerical computation and avoidance of manipulator singularities

    Get PDF
    This thesis develops general solutions to two open problems of robot kinematics: the exhaustive computation of the singularity set of a manipulator, and the synthesis of singularity-free paths between given configurations. Obtaining proper solutions to these problems is crucial, because singularities generally pose problems to the normal operation of a robot and, thus, they should be taken into account before the actual construction of a prototype. The ability to compute the whole singularity set also provides rich information on the global motion capabilities of a manipulator. The projections onto the task and joint spaces delimit the working regions in such spaces, may inform on the various assembly modes of the manipulator, and highlight areas where control or dexterity losses can arise, among other anomalous behaviour. These projections also supply a fair view of the feasible movements of the system, but do not reveal all possible singularity-free motions. Automatic motion planners allowing to circumvent problematic singularities should thus be devised to assist the design and programming stages of a manipulator. The key role played by singular configurations has been thoroughly known for several years, but existing methods for singularity computation or avoidance still concentrate on specific classes of manipulators. The absence of methods able to tackle these problems on a sufficiently large class of manipulators is problematic because it hinders the analysis of more complex manipulators or the development of new robot topologies. A main reason for this absence has been the lack of computational tools suitable to the underlying mathematics that such problems conceal. However, recent advances in the field of numerical methods for polynomial system solving now permit to confront these issues with a very general intention in mind. The purpose of this thesis is to take advantage of this progress and to propose general robust methods for the computation and avoidance of singularities on non-redundant manipulators of arbitrary architecture. Overall, the work seeks to contribute to the general understanding on how the motions of complex multibody systems can be predicted, planned, or controlled in an efficient and reliable way.Aquesta tesi desenvolupa solucions generals per dos problemes oberts de la cinemàtica de robots: el càlcul exhaustiu del conjunt singular d'un manipulador, i la síntesi de camins lliures de singularitats entre configuracions donades. Obtenir solucions adequades per aquests problemes és crucial, ja que les singularitats plantegen problemes al funcionament normal del robot i, per tant, haurien de ser completament identificades abans de la construcció d'un prototipus. La habilitat de computar tot el conjunt singular també proporciona informació rica sobre les capacitats globals de moviment d'un manipulador. Les projeccions cap a l'espai de tasques o d'articulacions delimiten les regions de treball en aquests espais, poden informar sobre les diferents maneres de muntar el manipulador, i remarquen les àrees on poden sorgir pèrdues de control o destresa, entre d'altres comportaments anòmals. Aquestes projeccions també proporcionen una imatge fidel dels moviments factibles del sistema, però no revelen tots els possibles moviments lliures de singularitats. Planificadors de moviment automàtics que permetin evitar les singularitats problemàtiques haurien de ser ideats per tal d'assistir les etapes de disseny i programació d'un manipulador. El paper clau que juguen les configuracions singulars ha estat àmpliament conegut durant anys, però els mètodes existents pel càlcul o evitació de singularitats encara es concentren en classes específiques de manipuladors. L'absència de mètodes capaços de tractar aquests problemes en una classe suficientment gran de manipuladors és problemàtica, ja que dificulta l'anàlisi de manipuladors més complexes o el desenvolupament de noves topologies de robots. Una raó principal d'aquesta absència ha estat la manca d'eines computacionals adequades a les matemàtiques subjacents que aquests problemes amaguen. No obstant, avenços recents en el camp de mètodes numèrics per la solució de sistemes polinòmics permeten ara enfrontar-se a aquests temes amb una intenció molt general en ment. El propòsit d'aquesta tesi és aprofitar aquest progrés i proposar mètodes robustos i generals pel càlcul i evitació de singularitats per manipuladors no redundants d'arquitectura arbitrària. En global, el treball busca contribuir a la comprensió general sobre com els moviments de sistemes multicos complexos es poden predir, planificar o controlar d'una manera eficient i segur

    Development of Two Cooperative Stewart Platforms for Machining

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Formal-Numerical Approach for Robust In-Workspace Singularity Detection

    No full text
    corecore