186 research outputs found

    Solar-powered aquaponics prototype as sustainable approach for food production

    Get PDF
    This paper presents the establishment of a solar-powered aquaponics prototype as a sustainable, cost effective and environmentally sound approach for food production. In this study, a prototype bench top aquaponics rig with an integrated 20 W solar panel were fabricated for the cultivation of red Hybrid Tilapia (Oreochromis spp.) and leaf mustard (Brassica juncea). The size of the fish tank is about 29.5L and serves as the base for the setup. Additionally, the hydroponic grower compartment (0.45 m (L) � 0.32 m (W) � 0.13 m (H)) was stacked on top of the fish tank and was filled with LECA media bed for the plant growth. Two important operating parameters were studied. First, the amount of energy produced by the solar panel and the energy consumption by the water pump used in the setup. Secondly, the resultant effects from fish cultivation and plants growth on the water qualities and nitrification effi�ciency of the aquaponics unit. The aquaponics unit was operated for a month and the values of pH, tem�perature, and ammonia level were measured to be within the range of 6.4–7.2, 27.1–31.7 �C, and 1 mg�L�1 , respectively. Survival rate for fish was about 75% with specific growth rate (SGR) of 3.75% per day and food conversion ratio of about 1.15. A slight nutrient deficiency was evident and plants showed a healthy growth with height gain as high as 5 cm was achieved. Despite raining season, our data shows that the energy produced via 20 W solar panel enabled the unit to run at night without depending on local electricity for nearly two hours. Clearly, a larger solar panel is needed for longer operation. Nevertheless, the study has proven the potential of operating a low cost aquaponics setup using renew�able energy for a sustainable food production method

    Coordination of Mobile Mules via Facility Location Strategies

    Full text link
    In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors' downtime and the mules' traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team's performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors' downtime but is inefficient in terms of the mules' travel distance. A k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc

    Correlation Clustering Based Coalition Formation For Multi-Robot Task Allocation

    Full text link
    In this paper, we study the multi-robot task allocation problem where a group of robots needs to be allocated to a set of tasks so that the tasks can be finished optimally. One task may need more than one robot to finish it. Therefore the robots need to form coalitions to complete these tasks. Multi-robot coalition formation for task allocation is a well-known NP-hard problem. To solve this problem, we use a linear-programming based graph partitioning approach along with a region growing strategy which allocates (near) optimal robot coalitions to tasks in a negligible amount of time. Our proposed algorithm is fast (only taking 230 secs. for 100 robots and 10 tasks) and it also finds a near-optimal solution (up to 97.66% of the optimal). We have empirically demonstrated that the proposed approach in this paper always finds a solution which is closer (up to 9.1 times) to the optimal solution than a theoretical worst-case bound proved in an earlier work

    SEBUAH MODEL BERBASIS PENGETAHUAN UNTUK PENGENDALIAN FORMASI SISTEM ROBOT MAJEMUK

    Get PDF
    Study of multi-robot system has been popular in recent years. This system is able to reduce processing time of some processes, the cost and complexity of the system. However, multi-robot system also has some problems. One of the problems faced by these systems is how to control robots in a certain formation when carrying out its functions. Several methods have been offered to resolve the existing problems. This study tries to offer a method to solve the problem, by modeling the multi-robot systems and implement a control system in order to maintain a specific formation. The study attempted to use a controller based on knowledge base system. Model is developed using MATLAB software and simulated to determine the performance. Several experiments are conducted to determine the movement of the robot and its ability to maintain a specific formation. From the experiments it can be said that the modeling of multiple-robot system has been reliable. In addition, formation control actions have also been running well, although there should be further development

    Sistem Multi-robot Denngan Nxt Mindstorms Robot Menggunakan Bluetooth

    Get PDF
    Teknologi dan aplikasi robot terus berkembang secara cepat. Pada dekade ini, telah terjadi pergeseran yang signifikan pada bidang fokus penyelidikan tentang robot dimana para peneliti mulai mengarahkan arah penelitiannya, dari investigasi sistem robot tunggal kepada koordinasi sistem multi-robot. Hal ini dikarenakan sistem multi-robot memiliki beberapa kentungan. Dalam konteks sistem multi-robot, komunikasi sistem multi-robot menjadi bagian yang signifikan. Penelitian ini mengimplementasikan komunikasi pada sistem multi-robot menggunakan teknologi Bluetooth. Sistem multi robot NXT Mindstorms telah dirancang. Robot ini dilengkapi oleh dengan sistem komunikasi berbasis Bluetooth. Beberapa pergerakan telah diujikan. Dapat dikatakan bahwa robot NXT Mindstorms hasil rancangan mampu melakukan pergerakan dasar, yaitu: pergeralan lurus, belok kanan dan belok kiri. Pengujian performansi sistem multi robot dirancang dalam bentuk dua buah formasi, yaitu: berurutan dan berdampingan

    Distributed and Centralized Task Allocation: When and Where to Use Them

    No full text
    Self-organisation is frequently advocated as the solution for managing large, dynamic systems. Distributed algorithms are implicitly designed for infinitely large problems, while small systems are regarded as being controllable using traditional, centralised approaches. Many real-world systems, however, do not fit conveniently into these "small" or "large" categories, resulting in a range of cases where the optimal solution is ambiguous. This difficulty is exacerbated by enthusiasts of either approach constructing problems that suit their preferred control architecture. We address this ambiguity by building an abstract model of task allocation in a community of specialised agents. We are inspired by the problem of work distribution in distributed satellite systems, but the model is also relevant to the resource allocation problems in distributed robotics, autonomic computing and wireless sensor networks. We compare the behaviour of a self-organising, market-based task allocation strategy to a classical approach that uses a central controller with global knowledge. The objective is not to prove one mechanism inherently superior to the other; instead we are interested in the regions of problem space where each of them dominates. Simulation is used to explore the trade-off between energy consumption and robustness in a system of intermediate size, with fixed communication costs and varying rates of component failure. We identify boundaries between regions in the parameter space where one or the other architecture will be favoured. This allows us to derive guidelines for system designers, thus contributing to the development of a disciplined approach to controlling distributed systems using self-organising mechanisms
    corecore