1,794 research outputs found

    An object-based codesign methodology.

    Get PDF
    The research into Codesign of Hardware and Software stems from the development of embedded systems, on which various systems restrictions are imposed. Typical restrictions can be the overall time (latency) to complete an assigned function and the space/power limits within the system. Although software can be used to undertake most tasks in an embedded system, ASIC (Application Specific Integrated Circuits) hardware components sometimes have to be recruited to meet the system constraints. Designing the restricted embedded system with both software and hardware components in it involves the analysis of not only individual hardware/software components but also their mutual influences. Using co-design principles, the approach is to consider both hardware and software from a coherent viewpoint.This thesis presents the results from our research project in the area of Codesign of Hardware and Software. In this project, we investigated previously published codesign approaches and their methodological supports. The investigation has identified shortcomings and problems with the existing codesign methodologies. A new object-based codesign approach (Co-PARSE) is thus developed in this project, which is supported by successive phases, guidelines, and techniques. This methodology offers a coherent design framework for real-time embedded systems and incorporates the criteria of system performance and hardware cost. Tools have been developed to facilitate the use of the methodology. Within the methodology, a high-level system modeling and specification approach has been developed and formalised in the Co-BSL (Codesign Behavior Specification Language). The means of transforming Co-BSL specifications to C and VHDL implementations is defined, and a library of VHDL components provided. The thesis documents the partitioning approach taken within the methodology and proposes a new multi-layered bus architecture as a basis for more flexible and efficient implementations. A means of simulating the performance characteristics of this architecture under different configurations is provided, and examples of simulation results are presented. A new embedded system (the Radio Data Computing System) is designed and simulated in the Co-PARSE methodology and simulation results analysed. The thesis concludes with an evaluation of the work carried out in the project and proposals for extending the results obtained in future research.The major contributions reported in this thesis can be summarised as follows. First, the unified system specification means has been designed, which is embodied in the Co-BSL. It captures overall dynamic aspects and performance constraints in the system under development. This high-level specification language is independent of implementation and does not bias the designer towards the use of hardware or software components at this early stage. Second, within Co-PARSE, the target architecture of the system under development has been exploited to improve the system performance and at the same time to reduce hardware cost. This novel concept has been realised by the introduction of an asynchronous bus protocol and the multi-layer bus communication structure. Third, in order to evaluate the strength and practicability of the Co-PARSE methodology, an extensive case study has been carried out. The new RDC (Radio Dada Computing) System has been designed in the proposed codesign approach. Codesign phases are subsequently applied and the guidelines and tools that are specially developed in support of the methodology are fully utilized

    Generic Pipelined Processor Modeling and High Performance Cycle-Accurate Simulator Generation

    Full text link
    Detailed modeling of processors and high performance cycle-accurate simulators are essential for today's hardware and software design. These problems are challenging enough by themselves and have seen many previous research efforts. Addressing both simultaneously is even more challenging, with many existing approaches focusing on one over another. In this paper, we propose the Reduced Colored Petri Net (RCPN) model that has two advantages: first, it offers a very simple and intuitive way of modeling pipelined processors; second, it can generate high performance cycle-accurate simulators. RCPN benefits from all the useful features of Colored Petri Nets without suffering from their exponential growth in complexity. RCPN processor models are very intuitive since they are a mirror image of the processor pipeline block diagram. Furthermore, in our experiments on the generated cycle-accurate simulators for XScale and StrongArm processor models, we achieved an order of magnitude (~15 times) speedup over the popular SimpleScalar ARM simulator.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    An evolutionary approach to the use of petri net based models : from parallel controllers to Hw/Sw codesign

    Get PDF
    The main purpose of this article is to present how Petri Nets (PNs) have been used for hardware design at our research laboratory. We describe the use of PN models to specify synchronous parallel controllers and how PN specifications can be extended to include the behavioural description of the data path, by using object-oriented concepts. Some hierarchical mechanisms which deal with the specification of complex digital systems are highlighted. It is described a design flow that includes, among others, the automatic generation of VHDL code to synthesize the control unit of the system. The use of PNs as part of a multiple-view model within an object-oriented methodology for hardware/software codesign is debated. The EDgAR-2 platform is considered as the reconfigurable target architecture for implementing the systems and its main characteristics are shown

    Automatic generation of hardware/software interfaces

    Get PDF
    Enabling new applications for mobile devices often requires the use of specialized hardware to reduce power consumption. Because of time-to-market pressure, current design methodologies for embedded applications require an early partitioning of the design, allowing the hardware and software to be developed simultaneously, each adhering to a rigid interface contract. This approach is problematic for two reasons: (1) a detailed hardware-software interface is difficult to specify until one is deep into the design process, and (2) it prevents the later migration of functionality across the interface motivated by efficiency concerns or the addition of features. We address this problem using the Bluespec Codesign Language~(BCL) which permits the designer to specify the hardware-software partition in the source code, allowing the compiler to synthesize efficient software and hardware along with transactors for communication between the partitions. The movement of functionality across the hardware-software boundary is accomplished by simply specifying a new partitioning, and since the compiler automatically generates the desired interface specifications, it eliminates yet another error-prone design task. In this paper we present BCL, an extension of a commercially available hardware design language (Bluespec SystemVerilog), a new software compiling scheme, and preliminary results generated using our compiler for various hardware-software decompositions of an Ogg Vorbis audio decoder, and a ray-tracing application.National Science Foundation (U.S.) (NSF (#CCF-0541164))National Research Foundation of Korea (grant from the Korean Government (MEST) (#R33-10095)

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices

    Full text link
    Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scientific discoveries. To support domain scientists, we have developed hls4ml, an open-source software-hardware codesign workflow to interpret and translate machine learning algorithms for implementation with both FPGA and ASIC technologies. We expand on previous hls4ml work by extending capabilities and techniques towards low-power implementations and increased usability: new Python APIs, quantization-aware pruning, end-to-end FPGA workflows, long pipeline kernels for low power, and new device backends include an ASIC workflow. Taken together, these and continued efforts in hls4ml will arm a new generation of domain scientists with accessible, efficient, and powerful tools for machine-learning-accelerated discovery.Comment: 10 pages, 8 figures, TinyML Research Symposium 202

    A partition methodology to develop data flow dominated embedded systems

    Get PDF
    Comunicação apresentada no International Workshop on Model-Based Methodologies for Pervasive and Embedded Software (MOMPES 2004), 1, Hamilton, Ontario, Canada, 15-18 June 2004.This paper proposes an automatic partition methodology oriented to develop data flow dominated embedded systems. The target architecture is CPU-based with reconfigurable devices on attached board(s), which closely matches the PSM meta-model applied to system modelling. A PSM flow graph was developed to represent the system during the partitioning process. The partitioning task applies known optimization algorithms - tabu search and cluster growth algorithms - which were enriched with new elements to reduce computation time and to achieve higher quality partition solutions. These include the closeness function that guides cluster growth algorithm, which dynamically adapts to the type of object and partition under analysis. The methodology was applied to two case studies, and some evaluation results are presented
    corecore