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Abstract

This paper proposes an automatic partition methodologgrgd to de-
velop data flow dominated embedded systems. The targeteathe is
CPU-based with reconfigurable devices on attached boardsich closely
matches the PSM meta-model applied to system modelling. M\ flo®/
graph was developed to represent the system during thdipartig process.
The partitioning task applies known optimization algonith - tabu search
and cluster growth algorithms - which were enriched with redements to
reduce computation time and to achieve higher quality giartisolutions.
These include the closeness function that guides clustevtbralgorithm,
which dynamically adapts to the type of object and partitimder analy-
sis. The methodology was applied to two case studies, and seatuation
results are presented.

Keywords: partitioning, hardware/software co-design, PSM metateho
tabu search, cluster growth

1 Introduction

This paper describes an automatic partition methodologgnted to develop data
flow dominated, medium complexity and real time embeddeterys, where a
processing element coupled to FPGA/CPLD board(s) [1] forecanfigurable ar-
chitecture [2]. Since this architecture includes hardvesr@ software components,
the present work applies the hardware/software codesiguigsn.

Partitioning is an NP-complete optimization problem thsdigns system ob-
jects to the target architecture components and defindsiitss time (scheduling),
to achieve the designer objectives quantified by a costifum§8]. The partition
process converts an unified and uncommitted system repatisento a multi-part
representation committed to the target architecture comms. The present ap-
proach performs a functional, inter-component and autiznpattition.

The partition task is part of a development methodology tbaers all phases
of systems development [4]. It is based on an operationaloagp [5], it runs
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at a high abstraction level and it takes advantage of thecobjeented modelling

paradigm to reduce complexity and design time. Common teablgriented ap-
proaches, it uses multi-view modelling to describe the abjethe dynamic and
the functional perspectives of systems. Following an djpmral approach, an
executable specification is developed, which runs througteteof refinements
and transformations to achieve a system implementationerélompared to the
methodology followed by the MOOSE approach [6], the progasethodology

has some advantages: (i) the state transition diagrams)(&€Deplaced by PSM

models [7], which allow adequate handling of the system aibjeoncurrency,

(i) implementations follow an iterative approach, rejagcthe traditional cascade
design flow and (iii) the partition is automatically perfard) without requiring

additional expertise from a codesign professional.

To evaluate this partition methodology, a prototype tood waplementedpar-
TiTool, and its capabilities were compared to other approachié®yfog the struc-
ture introduced in [8]. Here, two sets of features are grdupe comparison pur-
poses: the modelling support and the implementation stippbe first identifies 3
axis: the application domain (control, data or data+cdyttbe type of validation
(simulation or co-verification) and the modelling style ifinmmyeneous or hetero-
geneous). Figure 1 shows wheyarTiToolfits in the graph and how it relates to
other approaches. Most approaches adopt homogeneouslinpdgyle, where
the only allowed validation method is simulation. Systemes described with a
software oriented language (C, a C variant, Occam or C++nhdnaadware ori-
ented language (VHDL, Verilog or HardwareC). The proposgalr@ach is part of
a development methodology that uses heterogeneous nmgddliican be applied
to data and control systems, but it is oriented to data flowidated systems. In
the present stage of the evolution, it does not allow cdfication.

To compare the support available to implement the systentsmiltiple com-
ponents, figure 2 also uses 3 axis: the support to synthdwziaterface between
components, the supported target architecture and thenatitm degree of the
partition process. A reasonable number of approaches ¢Gkif®], Cosmos [10],
CoWare [11] or Polis [12]) does not execute partition autiicadly. None of the
approaches completely supports the automatic partitidnttaa synthesis of inter-
faces. In the proposed approach the partition process @ratic and the infor-
mation required to synthesize the interface between coemgsrcan be extracted
from the detailed model used to estimate communicationiosetCurrentparTi-
Tool prototype implementation does not support yet more thamuaeprocessor,
due to the target evaluation architecture. However, a R&DKlis being prepared
to merge this project with current adaptive load and datadglng in parallel and
distributed systems [13].

The paper is organized in 4 sections. Section 2 describgsdipesed partition
methodology, namely the formal description of the pantifwocess, the approach
followed to model the system and its internal represematioe construction and
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improvement of partition solutions with cluster growth aatiu search algorithms
and the metrics estimation required by the evaluation fanst Section 3 presents
the prototype system used to validate the partition metloggovalidation — target
architecture and applied tool — and summarizes the caseestadd the obtained
results. Section 4 closes with conclusion remarks and titres for future work.
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2 Partition methodology

The presentation of the partition methodology starts withformal description of
the partition process. Given an unified representationhf@isiystem (see below, in
system modellingthe partition process generates a description for eatiponent

of the target architecture to be used on the implementafitimecsystem. To reach
this goal, the set of objects on system description must Widedi into a series
of disjunct sub-sets that will be assigned to the differemmhponents of the target
architecture. The task that divides the set of objects opssthis guided by the
target architecture constraints and the design requiremén the present work,
the objects represent program-states or variables froraytstem PSM model. A



formal definition of the partition process follows below.

Given the set of object® = {01, 09, ..., 0,} that models the system func-
tionality, the set of constraint§'ons = {c1,co,...,cn} and the set of require-
mentsReq = {r,r2, ..., 7, } that define the feasibility and the quality of the par-
tition alternatives to be generated, the partition proggswerates several sub-sets
(or partitions)Hy, ..., Hyp, S1, ..., Sns, WhereH; € O, S; C O, {H;}i=1.nn U
{Sj}jzlnns =0,H;n Sj =@, H;N H, = @ (with £ = 1..nh andk # 7) and
S;N S = (withl = 1..ns andl # j).

The selection of a partition solution, among all that weralgred by the par-
tition algorithm, implies a cost functio,,s;. This function uses the sub-sets
of objects assigned to hardwafé = {H1, ..., H,,}, the sub-sets of objects as-
signed to softwares = {Si, ..., Sns}, the set of constraint§'ons and the set of
requirementdieq to return a value that measures the solution quality. Thatite
partition algorithm is defined by the function

PartAlg(H, S, Cons, Req, Feost()) Q)

returning H’ and S’ that verifies

Feost(H', S',Cons, Req) < Feost(H, S, Cons, Req) 2)

when the applied cost function returns the minimum valuecuitide best par-
tition solution circumstances.

The value generated by the cost function is obtained froimagtd metrics,
related to the system constraints and requirements.

To execute the partial tasks needed by the partition protdessnodules iden-
tified in figure 3 were used. Beyond the module that perfornesabnversion
between the models used externally and internally by thétipar process, the
developed partition methodology includes partition ailipons (constructive and
iterative), evaluation functions (closeness and cost) ramttics estimators. The
following sections describe the modelling that is relevfantpartition and the par-
tition itself, with emphasis on the applied algorithms awmdleations functions and
briefly presenting the metrics estimation.

2.1 System modelling

In related approaches, the uncommitted systems are commondielled with
meta-models such as CDFG [14] [15], DFG [16], FSM [17], Peét [18], CSP
[19], an extended version of a previous meta-model [20],amrabination of these
meta-models [6]. In spite of the meta-model diversity, maggiroaches transform
the uncommitted system model into a flow diagram representafThe type of
objects handled during the partition process is consttabnethe selected meta-
model, and the several approaches may present quite aediffgranularity, as a
conseguence of using distinct meta-models.
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The PSM meta-model was selected to describe the systems giatlition
process interface, which combines an HLL/HDL meta-modéhwiCFSM [7].
PSM adequately supports complex embedded systems maglsilice it includes
the best features from both meta-models: behaviouralteigyaconcurrency, state
definition, support to handle algorithmic and data compyexiehaviour comple-
tion, possibility of including exception handling and a gjnical representation.
Besides, modelling with PSM is a very intuitive task. Thesgest limitations of
PSM are the lack of structural hierarchy and automatic sappdormally validate
the models. In the present approach, the VHDL language Wasted to describe
variables and leaf program-states. VHDL allows an expéinil elegant modelling
of communication and synchronization among concurrenvites.

A PSM model is described by an hierarchical set of progratest where a
program-state represents a computation unit that at a givencan be active or
inactive. A PSM model may include composite or leaf progistates. A compos-
ite program-state is defined by a set of concurrent or sei@i@nbgram-substates,
and a leaf program-state is defined by a block of code on thgechprogramming
language. If the program-substates are concurrent thegllaaetive at the same
time; if they are sequential, just one program-substatebeaactive at a certain
time.

On a composite program-state, the order by which sequemtigtam-substates
get active is determined by the directed arcs connecting.tHehere are two type
of directed arcs: arcs that represent a transition whenuibgtate activity is termi-
nated and simultaneously the condition associated witlatbdecomes true, and
arcs that represent a transition immediately after the ifiondassociated with the
arc becomes true. A transition on a directed arc means thaatbet substate will
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become active.
To represent a PSM model textual and graphic notations caisdwzb

Internal representation

To describe systems during the partition process a CFG tygia-model was de-
veloped: the PSM flow graph or simply PSMfg. The most relevaguirement
of the internal representation, not included on the PSM muidel requirement
list, is the possibility of associating the information gested during the partition
process with the system model objects.

The motivations that lead to the development of a new metdeinaere the
need to automate the partition process and the availabiiiglibrary with graphic
and computational support to edit graphs - LEDJ®1]. By means of a set of
adaptations applied to the editor of generic directed ggaptal the associated data
structure, it was possible to obtain the computational sttfgp operate on PSMfg
graphs. The goals to achieve with the performed adaptatiens: (i) to customize
the graphic characteristics of the nodes, generating thef sede types that will
be presented ahead; (ii) to increase the nodes and edgd¢iefiatity, in agreement
with its type; and (iii) to introduce constraints on the nt@nnection between the
different types of node.

A PSMfg model is an acyclic, directed and polar graph, regovesd by &G =
{V, E'} data structure that includes the list of nodéand the list of edge&’. The
graph is acyclic when no paths on the graph are closed, itestaéid because each
edge has a single direction and it is polar because it insltwle nodes, one to enter
and the other to exit from the graph, from which all other reodee successors and
predecessors, respectively [22].

The meta-model of the PSMfg represents the semantic of therR&a-model
and all the information needed by the partition processh agcthe metrics es-
timate and the assignment of objects to partitions. To obtie granularity of
the objects handled during the partition process, the PSivHigh must be able
to represent the program-states structure. Since thegmogtates functionality
is described with VHDL, the PSMfg graph supports the follogviconstructs of
the VHDL language: the parallelism associated with praegsthe conditional
construct i f ... el sif andcase),the cycle whi | e andf or) and the
constructs that suspend procesSeai t ) .

The nodes of a PSMfg graph represent the variables and tigegpnestates of
a PSM model, with the same or a thinner granularity, and tlaeg ssociated with
them information that is relevant to the partition processnely:

¢ which patrtition the graph node was assigned;

¢ which partitions the designer establish as being forbiddethis node;

SLibrary of Efficient Data types andlgorithms.



¢ the required information to estimate the area occupied eyh#drdware and
the system performance, which refers to metrics like thetfanal units, the
storage elements or the interconnection elements areziiables read/written
by the program-state associated with the node, the conqutite, the
time spend on communication with others program-statet@ekecution
frequency.

The different node types the PSMfg meta-model uses are thase(i) define
the entry/exit point of the system graph; (ii) indicate wdtre (parallel) processes
begin/end; (iii) define the begin/end of a conditional comndt (iv) represent the
control part of a cycle; (v) force a waiting cycle; (vi) agsene or more signals
necessary to a waiting cycle; (vii) represent a variablel @iii) do not fit in any
of the previous types.

The edges, representing the control flow between nodes, dss@riated a
branch probability (relative to the source node) and a label

2.2 System Partitioning

In the present work, partitioning is a two-step processcdinpute an initial parti-
tion solution with a constructive algorithm and (ii) sucsigsly improve it with an
iterative partition algorithm.

A constructive algorithm

The analysis of several constructive partition algorithinegaled that: (i) the appli-
cation of an exhaustive algorithm is not feasible since hdeds an unacceptable
computation time; (ii) the cluster growth and hierarchichlstering algorithms
create the partition solutions in distinct ways, but pradigentical results; (iii) the
ILP* methods generatgptimasolutions, do not require the application of an itera-
tive optimization algorithm, but they demand a very high pomation time and its
formulation is hard to achieve; and (iv) PACE [23] and GCLP4Rjorithms, be-
ing strongly specific, are not attractive to be adapted t@thsent work. Since the
solutions generated by the constructive algorithm feedténative improving pro-
cess, its quality can be kept in a lower value. Thus, it wascsetl a constructive
algorithm with a light implementation, the cluster growtbQ) algorithm. Al-
though the optimization heuristic of the CG algorithm istgimple, the capacity
to generate solutions with quality is determined by thecetibcloseness function.
The process of creating a solution begins with the selectfahe seed object
for each partition. To select the partitions seed object, ethods were imple-
mented: (i) random selection, (i) manual assignmen), ¢dimbination of random
selection with manual assignment and (iv) selection bageith@ communication
among partitions. The manual assignment can be used to thaticobjects are
assigned to an implementation for which they are clearly dzantlidates. Having
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selected the seed object for each partition, the clustevtralgorithm assign the
remaining objects to the best possible partition. The bagition is chosen by the
closeness function defined in equation 5 of section 2.3.

An iterative algorithm

Simulated annealing [20] [18] [24] [25] is among the most coomly used iterative
partition algorithms, but it is also frequent to use geneticlution [8], implemen-
tations of the Kernighan/Lin algorithm [26] [27], tabu sefaf24] [25] and spe-
cific algorithms. The evaluation of these algorithms haswshihat Kernighan/Lin
algorithm has a limited capacity to avoid local minimum oé tbost function,
the simulated annealing algorithm presents a strongenpaktd¢han greedy and
Kernighan/Lin algorithms to achiewvaptimasolutions, but the computation time is
very high, and the tabu search algorithm decreases the datigputime bound-
ing the search for partition solutions to the neighbourhobthese solutions. The
genetic evolution algorithms reduce the design space nfficeestly, but the ca-
pacity of convergence to the optimum partition solutiomigiior. Having in mind
that the primary goal of partitioning is to find partition gstbns with quality, tabu
search and simulated annealing were selected for theiie@bcess. A thorough
study was carried out with tabu search algorithm, and thalteeare presented in
this paper.

The tabu search method (TS) can be seen as an extension ot#heséarch
strategies, where a new solution is found on the neighbautlod the present so-
lution, applying a well defined set of rules [28] [29]. Whem titerationn of the
search process tries to minimize the cost funcfipf, (P, ), the new solutiorP,,
is selected from the neighbourhodd P,) of the present solution, applying an op-
timization criterium. In general, the criterium exprestes objective of selecting
the best solution present on the neighbourhood. The neighbod of solution?,,
can be defined by the set of all the alternatives that resutt the application of a
rule that modifies the characteristics or attribute$’gf On the hardware/software
partition problem, the transition from the present solutioa solution on its neigh-
bourhood occurs when at least one object is moved from it®gtpartition to a
target partition, ending in a new solution. It is frequentandware/software parti-
tion problem to evaluate a high number of partition alteuest which means that
to find a solution with quality it is necessary a computatiometequally high. To
avoid that all the alternatives present on the current soluteighbourhood are
evaluated, it is implemented a list with candidate solwgjdhis way, only a partial
neighbourhood of the current solution is evaluated.

Although the tabu search is a local search strategy that bi¢ to stop in
local minima ofF,.,, its policy embodies other features. This strategy was dame
tabu search since in every iteration parts of the designespee forbiddene. g,
some solutions are considered tabu. To reach this goaklivesearch implements
a flexible memory structure that supports several searetegies, like avoiding
local minima. The flexible memory includes short term (STMhg term (LTM)



and medium term components (MTM). The short term componargdased on
the history of most recently visited solutions, the longrteromponents are based
on the most frequent solutions and the medium term compsrastoriented to
solutions with quality and influent solutions. Using thigoinmation it is possible
(i) to diversify the search, in order to escape the local mai(ii) to intensify the
search, to reinforce the convergence for the absolute mimirand (iii) to avoid
cycles during the search.

To avoid a cycle during the search, the ldsvisited solutions are saved on
the tabu list. While a solutio®,, is on the tabu list, it is forbidden. This way, the
search will not return, at least durirgiterations, to a visited solution. The size of
the tabu list, or the tabu tenure, is determinant to the &awlwf a search, since it
influences the restrictions applied to the design space#mbe searched. For this
reason, the more restrictive is a tabu, the less must benitsde The performed
experiments resulted in the following recommendation:aibjects and moves tabu
tenure must be 5 to 10% of the number of objects on the systeariggon.

The temporary exclusion of solutions does not result satelydvantages for
the tabu search method. The disadvantages arise when radjty golutions, the
goal of searching, are excluded from the search. To ovettad&enconvenient
caused by the high quality solutions exclusion, TS methal& la mechanism
that allows to withdraw the tabu classification of a solutiaesuming it may be
a solution with quality. This mechanism is called aspimataiterium. They can
be defined aspiration criteria by objective, by directiorsedrch and by influence
[28].

The tabu search algorithm iteratively tries to improve thevigled partition
solution, assembles all the components that participathesearch and controls
its evolution. The implemented algorithm [2] is a modifiedsien of the one dis-
cussed in [29]. Namely, it only searches a partial neighhood of the present
solution, it has a richer set of evolution strategies to wmgdien there are no eligi-
ble solutions with quality, and it applies a more efficienpmovement when none
of the moves improves the cost of the present solution. &ardighbourhood
searching, decreases the computation time per iteratioa fagtor close to the
number of partitions, but the design space exploitatioess complete. Since the
partial neighbourhood contains the best solutions, iti@uced an intensification
element on the search.

The tabu search algorithm runs until a predefined numbeettibns is reached
and each search runs while a predefined number of iteratithewy improving
the best solution is not exceeded. The number of iteratioasdan be executed
without improving the partition solution should not be heit too high - to avoid
wasting iterations around a local minimum - nor too low - torease the possibility
of converging to a local (or absolute) minimum of the costction.

On every iteration of the search process, the partial neigtitood of the
present solution is analysed and the move to be executedeaelbcted from
one of the following ordered alternatives:



(1) The move that generates the largest improvement on ttigigra solution
cost and that obeys one of the following conditions: it istabu or it is tabu
but can be executed due to an aspiration criterium;

(2) The move that is not tabu and leads to the smallest iner@ashe partition
solution cost; the cost of the solutions that result fromrttowes is decreased
by the application of a hegative improvement;

(3) The “least” tabu move, the least frequent move, the mbee in the past
resulted in the best cost variation or the move of the obJett $tays longer
in the same partition.

At the end of every iteration the performed move, the invensee and the
moved object are classified as being tabu, the history istagdaith the informa-
tion about the move and the moved object, the moves and shipgmi tenure, the
best solution found and the number of iterations are updated at the end of a
search, a new initial solution is generated.

Experimental results show that, at the beginning of eaaltbetne information
saved on the history of moves and moved objects must be rétherwise, the
capacity of converge to the optimum solution is reduced;esiine improvement
used on the second move alternative, proportional to thebrurmof iterations an
object is not moved, would regularly select every object.

Applying all types of tabu classification can be very resitrecto the search. A
subset of tabu classifications was selected, which de@ebhsalimension of the
neighbourhood to be searched, helps to avoid cycles andnidbgdace excessive
restrictions to the search. The following tabu classifaradiwere selected: (i) move
a given object from a source partition to a target partiti@ihall moves of a given
object; and (iii) the inverse (move) of the move that origitbethe present solution.

The implemented TS method includes two types of aspiratierizim: (i) by
objective, when the first alternative selects a move witHityuthat is classified as
being tabu; and (ii) a default criterium, when the third altgive selects the “least”
tabu move.

The implemented memory structure registers the historyediopmed moves
and the history of moved objects. For each performed moeehigtory of moves
saves the source and target partitions, the tabu tenure XS# execution fre-
guency (LTM) and the achieved cost variation (MTM); for easbved object, it
saves the tabu tenure (STM), the frequency of move (LTM) nitmaber of itera-
tions an object remains on the same partition (LTM) and tineged cost variation
(MTM).

It was implemented a neighbourhood with a simple structimeesa neigh-
bourhood with a complex structure would increase greattydbmputation time.
While on a partition problem withhOb; objects andh Part partitions, the size of
the simple neighbourhood is0bj * (nPart — 1), on a generic complex neigh-
bourhood, where each iteration executes a seriesMdbpves moves, the number
of alternatives that make up the neighbourhood is definedhéeguation 3. The
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value defined by this equations is much higher the numbete@ifatives on a sim-
ple neighbourhood. A complex neighbourhood favours therdification on the
search, which means an increased capacity to avoid therfdnahum but also an
increased difficulty to converge to the optimum partitiofugon.

nObj!
nMoves! x (nObj — nMoves)!

©)

size(V) = (nPart — 1)"Moves 4 CZ]?{Z{J&S = (nPart — 1)"Moves

The partial neighbourhood, or the list of candidate sohgjaonsidered on ev-
ery iteration of the TS algorithm is a subset of the preseltisn neighbourhood,
with a size that remains fixed during all the search procedsgnals the number
of system objects. ThewPart — 1) moves per object that define the neighbour-
hood were decreased to only one move per object on the paeiigihbourhood,
decreasing the computation time by a factor close to the euwipartitions. The
subset of moves that define the partial neighbourhood is mjadhg the best move
for each object of the system description. The best movescemputed by a func-
tion identical to the closeness function of the cluster ghoalgorithm .., on
equation 5).

Part of the TS algorithm potential is consequence of exegseveral searches,
each one with a different initial solution. The method usedenerate the initial
solution of the searches combines two strategies: inteasn - the new initial
solution results from the best evaluated partition sofuticand diversification -
the assignment of a significant percentage of objects isfieddiaccording to the
long term memory. The rule is to execute the least frequentesidbut after a
number of searches without improving the best solutionctiwéce can be to move
the least frequently moved objects to a randomly selectetitipa. The random
selection reinforces the diversification on the searchefsihat the percentage of
moved objects is a parameter of the algorithm, it is poss$dtontrol the relation
between the intensification and the diversification apptiedhe generation of a
new initial solution. The suggested value for the percanti#pbjects to be moved
is 20%.

The implemented algorithm includes the following intersifion elements:

¢ to create the list of candidate solutions with the higheslity solutions
present on the current solution neighbourhood;

¢ to create the initial solution for a new search based on tls¢ damluated
solution;

¢ to select, for third evolution alternative of the TS algnit, the move that in
past resulted in the best cost variation;

and the following diversification elements:
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o to apply, on the second evolution alternative of the TS dtigor, a cost
improvement based on the number of iterations the objentsired in the
last partitionPy, they were assigned\{I M Py); this improvement, described
by equation 4, strongly favours the move of the objects thathat moved
regularly, since they have a higlil M P; thus, the search is directed to less
explored zones and a diversification component is introdlacethe search;

_ NIMP,
nObj

4)

improvement(Py) =

¢ to create the initial solution of a new search moving a paeganof the least
frequently moved objects or a percentage of objects seleatelomly (after
a number of searches);

© to select, as the third evolution alternative of the TS atgor, the least
frequent move or move the object that remains longer on tme gertition.

2.3 Evaluation functions

This section describes the evaluation functions (closeaed cost) that guide the
partition algorithms (constructive and iterative) on theation and improvement
of partition solutions.

Closeness function

The best partition used to assign the objects, on evenittaraf the constructive
partition process, is chosen by the closeness functionatkfimequation 5.

Fva'r (Mcoml)
Fproz = f FpusSw(Mcmply Mcmp27 McomQ) (5)
Fpus(A]\la'reay McomZ)

where M om1 (Meom2) represents the communication intensity among a vari-
able (program-state) and the program-states (variabtesgreed to the partition,
Memp1 (Memp2) is the software (hardware) computation time of a progréates
and M,..., is the area occupied by all the variables and program-statigned to
the partition. TheF,,, function is used on variables assignment andfgr., s
andF),m,, functions are used on the program-states assignment. @nreeenent
of the constructive process, tifg,.,, function measures the closeness among the
object to be assigned and the objects previously assigneakctopartition.

If the object to be assigned is a variable that is a bad catedidahardware,
meaning that the area it occupies in hardware exceeds a didifini¢, the F,,,
function suggests an assignement to software. If the arialmot a bad candidate
to hardware, it is assigned to the partition that presemsitpher communication
intensity with this variablee.g, to the partitionp that presents the best.,,,1[p]
value.
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When a program-state is being assigned, ifihgr.,s., function indicates that
software is the best partition to assign it, the progrartestaimmediately assigned
to software. Otherwise the best hardware partition is s&tloy F},. 7., @ function
that is more appropriated to distinguish the assignmerteadtfferent hardware
partitions.

For example, the metrid/.,,,,; used to select the best partitiprto assign a
variablev, is computed with equation 6. The communication intensify,,; [p]
simply measures the number of times the varialikeread/written by the program-
states assigned to the partitipn

Meom[p] = Z rdV (0).nRd(v) * 7dV (0).pRd(v) * FN(0) +
o€ (rdO(v)Np)
Z wrV (o). nWr(v) * wrV (o).pWr(v) * FN (o) (6)

o€ (wrO(v)Np)
where

o rdO(v) (wrO(v)) is the set of program-states that read (write) the variable
v,

o rdV (o) (wrV (o)) represents the set of variables read (written) by the progr
stateo;

o rdV(o).nRd(v) (wrV (o).nWr(v)) is the number of times the variablds
read (written) by on every execution;

o rdV (0).pRd(v) (wrV (o).pWr(v)) is the probability of variable to be read
(written) by o;

o FN(o) is the execution frequency of

Cost function

The cost function applied on the iterative partition pracesnsiders as being
optimum a partition solution that respects the target &chire constraints and
achieves the design requirements, as opposed to congjdesibeing optimum a
solution that uses the least hardware area and/or achlewy&gst performance. To
reach this goal the function includes a term, per consti@imequirement, whose
value is proportional to the degree this constraint or nregént is not observed on
the partition alternative (equation 7).

3
Feost(H,S,Cons, Req) = Y Ki* fi(M;,Cy) )

=1

where

o H (S) is the set of hardware (software) partitions;
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o Cons = {C4,C4} is the set of design constraints, wifty being the con-
straint applied to the area of the hardware partitions dath @/;) andC,
the constraint applied to the area of the respective contribl(M-);

o Req = Cj5 is the performance required from the systeWy];

o M is the set of metricd/;, whose constraint€’'ons and requiremenReq
apply to;

o K is the coefficient applied to the metrid;;

o fi(M;, C;) represents the contribution of the metfif; to the cost function
and it is defined by equation 8.

gy e MAX [excess(Mi[P}],C:) . 0], =12

M, €)= { MAX [excess(M3,Cs) , 0] , 1=3 ®

where

o M;[P;] is the value of metrid\/; for the hardware partitiod®;;

o C;[Pj], the value of the design constraifit applied to the hardware partition
P;, was replaced by’; on equation 8; on the considered target architecture,
the pairs (FPGA,CPLD) that implement the pair (DP,CU) of tiaedware
partitions include the same devices;

o the termexcess(m, c) is given by

m —cC

excess(m,c) = 9)

C

The estimates for the ared/{ and M>) are computed by partition, while the
estimate for performancé(s) is relative to all the system.

2.4 Metricsestimation

Metrics estimation aims to compare partition alternatiwekich requires a high
degree of fidelity rather than a high accuracy. However, éxjgsected that a high
accuracy corresponds to an equally high degree of fidelity.

The estimation operates on the system graph, modelled \Bithf§, considers
an hardware model (with data path and control unit), a seéwaodel (with a pre-
defined set of instruction types) and a communication mdaelifter-partition
communications). The code optimization performed by thamer - related to
pipelining, superscalarity and memory hierarchy - is messas a factor obtained
by simulation. This procedure is acceptable on most pamtiiroblems applied to
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embedded systems. One difference to a significant part cdgpbeoaches, is the
emphasis given to the estimation of metrics related to-ipéetitions communica-
tions.

To obtain accurate estimates, detailed models for the wsslirces were de-
veloped, especially the hardware and communication mpedat$ the estimation
runs in two abstraction levels: program-state and systeme.ificremental update
of the estimates and the estimation in two levels both helfetivease the compu-
tation time.

Low level estimates, which are used by the system level astisn are com-
puted at the program-state abstraction level, the comipuotaare performed once
per partition session and the estimates are more accuristimates for metrics rel-
ative to the system objects are computed at the programstal. Examples of
these metrics are the software and the hardware computaties, the area occu-
pied by functional units, multiplexers and variables, tad/written variables and
the program-states that read/write variables. To obtadsdlestimates, low level
metrics are required: these include the execution timesoéthihmetic/logic opera-
tors and the area occupied by multiplexers, arithmeti@logerators and memory
elements.

Atthe system level, metrics are estimated at a higher lewetlze computations
are repeated on every iteration of the partition processe ddtimates are less
accurate and, whenever possible, the estimates are sirpgbtad. The metrics
estimated at the system level are the system performanciham=dea occupied by
the data path and the control unit of the hardware partiti@ystem performance
is computed through explicit scheduling at the state-aglevel. By ignoring the
scheduling at the system level, the computation time isedsead and the obtained
performance tend to be over estimated.

The computation of the execution times follows a simplevgafe model, that
estimates computation time by type of executed instrucftbe built prototype
follows the 1A-32 architecture model) and considers themiaations performed
by the compilers as a factor obtained by simulation.

The developed hardware model focus on the area of a partitioich includes
the area of the data path - the functional units, the storkgeents, the intercon-
nection resources and the resources of the interface withr plartitions - and the
area of the control unit - the area of the state machine assolcwith the partition
data path, which includes the state register, the outpit bogd the next state logic.
Experimental results confirmed the state register as therdmmterm on the area
of the state machine, ranging from 60 to 80%.

The developed communication model defines the timings aaddkources
associated with the communication between partitions. mbdel supports the
register access communication mechanism, by polling aridtbyruption. At the
beginning of every search of the iterative partition pre¢estimates for commu-
nication times are computed. These estimates will be ugdabtenever an object
is moved from one partition to another one, but only for thevetbobject and/or
those objects that communicate with the moved objects.
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3 Validation of the partition methodology

The proposed methodology was validated on a CPU-basedeithie coupled to
a reconfigurable board (briefly described below), throughdase studies that rep-
resent data flow dominated embedded systems: one cleadgstingg a software
implementation, while the other is oriented for an hardwamglementation.

A quantitative evaluation compared automatically gemerablutions with man-
ually optimised hardware/software implementations, ingknto two main results:
the quality of the partition solutions (measured by fedisjand performance) and
the quality of the estimates (measured by accuracy/fidelitge methodology can
be further evaluated by its performanae, g, by the computation time needed
to generate the partition solutions and the support to imphe these solutions,
namely to synthesize the interface between partitions.

3.1 Prototype system

The prototype system applied on the partition methodolaglidation includes a
target architecture and a partitioning tool.

The considered target architecture contains a reconfitpupdditform (EDgAR-
2) and its host system. The EDgAR-2 board is an FPGA/CPLDdagstem,
with a PCl interface and fully in system programmable (ISR)[80]. The board
structure, shown in figure 4, contains an array of 4 pairst(obanit, data path),
called processor modules (PMs), which are 2-way intercctedewith dedicated
buses, forming a PM pipeline; they are also connected tofereift set of 8 lines
in the 32 bits PCI data bus. FPGAs implement the data pathiée WPLDs are
better suited to implement the control units.

The EDgAR-2 architecture was designed to directly acconateodinite state
machine with data patFSMD) model. Since the architecture implements several
concurrent FSMDs, it is suitable to map descriptions medelvith concurrent
FSMDs(CFSMD) [31], hierarchical concurrent FSMOHCFSMD) or program
state machingPSM) meta-models [32].

Although EDgAR-2 may not be considered a typical reconfiglgrdoard - it
is composed of both FPGAs and CPLDs, and it lacks on board RANS partic-
ularly adequate to validate a general purpose hardwatressef partition method-
ology due to these extra challenges.

The applied tool wagarT'iT ool, a framework based on the LEDA library [21]
and which allows the visualisation, edition and partittapof PSMfg graphs. This
framework also includes support to detect errors on thehgragtructure and to
visualise the output of the partitioning process. The mpgt of the operations
needed by the graphs visualisation and edition is suppbstetie classeSRAPH
andG aphW n of the LEDA library.
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Figure 4: The EDgAR-2 platform architecture.

3.2 Casestudies

The partition methodology was validated with a detailedysis of two case stud-
ies: the application of a Sobel filter to an image (convohitiand the DEScryp-
tography algorithm [33]; the first one is oriented for a saftevimplementation and
the latter suggests an hardware implementation.

The application of a Sobel filtef" (with X by Y pixels) to an imagd, runs
through two steps: (i) for every pixg}, :) of the original imagd, which colour is
I(y,1), an area with the filter size and centered on pxel) is convoluted with the
filter F', generating a new valugf (4, 4) for pixel (4,7) (equation 10); (ii) with the
minimum and maximum of the filtered imad¢, m(I f) andM (I f) respectively,
the filtered image is normalized to the colour range of thgioal image (1)),
generating the filtered and normalized imdge(equation 11).

~

IFG) = 3 3 TG~ L5 )+ i Ly ]+ K= FLK) (10)
k=0 Il=

i

() —
The implemented DES algorithm applies a set of transfoonatio the input
data (sample), which depend on these data and on the segrefTkés key is

DataEncryptionStandard.
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also altered during the different iterations of the encpoicess. Every sample to
encrypt goes trough an initial permutatié®, a set of transformations that depend
on the secret key and a final permutatiBi®, inverse ofl P (figure 5). The set of
transformations that depend on the secret key is defined bypenyption function

f and a key scheduling functioR'S.

The functionf includes the expansioh, the substitution tableS-boxand the
permutationP. The information generated by the initial permutatian is splitted
in two 32 bits halves: the least significant paR) (feeds functionf and the most
significant part ) is the input for an exclusive-OR operator. At the end of anthu
the two halves of the sample to encrypt are swapped and the isuepeated. The
algorithm evolves in 16 rounds, in order to “circulate” tlargple to be encrypted.

sample to
(defen)crypte
(64 bits)

(defen)crypted
sample

(64 bits)

Figure 5: Block diagram of the DES algorithm.

The key schedulindsS generates a 48 bits key for each of the 16 rounds of
the DES algorithm, through a linear combination of the 56 bécret key. Th& .S
module includes a permutatidPC'1, a register, a permutatioRC2 and a shift left
(right) operator, applied on the encrypt (decrypt) process

The dimension of the partition problem associated with leatiimples and the
parameters used on the resolution with the tabu searchthlgoare synthesized on
table 1. The high number of objects indicated for both exas 8 a consequence
of using explicit parallelism at the system description.

3.3 Experimental results

The best partition solution, generated by tabu search ®MBES example, as-
signs program-states and variables to partitiosd’(or HW1 to HW4) as it is
illustrated in figure 6. The objects in the upper part of theifigrepresent PSM
variables and the remaining objects are the PSM progratesstguivalents.
When the automatic partition solutions are compared withuafly optimized
hardware/software implementations, the measured peaitcen of the best auto-
matic partition solution reached 72 to 92% of the manual enmntation perfor-
mance, being superior on the cryptography example. Thesé#sean be improved
by detailing the estimation models and by tuning the graitylaf system model
objects, which will significantly increase the computattone. The different ex-
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Example Convolution Cryptography

dimension

N° partitions 5 5
N° objects 217 372
Parameter

N° iterations 43400 74400
nBest 300 400
pMoves 20% 20%
nRand 4 4
TTmove 20 25
TTiMove 18 22
TTos; 15 20

nBest - Number of iterations since the best partition solution fasmd.
pMoves - Percentage of objects to be moved when the initial solution
a new search is created.

nRand - Number of searches without improving the best partitidntimn
in order to execute “random” moves when creating the iniialution
of the next search.

TThove - Moves tabu tenure.

TT;nmove - INverse moves tabu tenure.

TTos; - Objects tabu tenure.

Table 1. Parameters used on the partition process with Huestarch algorithm.

periments done with the mentioned examples always endeagildle partition so-
lutions, e. g, solutions that respect the target architecture conssragnproof that
the applied closeness and cost functions correctly cotiteopartition process.

The accuracy and fidelity of the estimates for the perforraard for the area
occupied in hardware were also evaluated. The accuracg sigtem performance
estimates ranged from 82 to 98%, being higher on the cryppdgrexample due to
its lower complexity. A fidelity ranging from 83 to 100%, alstacoincident with
the accuracy range, suggests that the computed estimatediable. The accuracy
of the estimates for the area occupied by the hardwareipaditlata path was 92
to 99%, being identical on both examples. The accuracy ot#tienates for the
area occupied by the hardware partitions control unit rdrigem 89 to 96%, with
very close results on both examples. The obtained results #fat the control
unit area depends mainly on the state register area, thatririg proportional to
the number of states. For the whole set of metrics and examftie accuracy
and fidelity of the estimates were always above 82%, a vergnmding result. The
results obtained with the partition process are summaosedble 2.

When it was decided to compute accurate estimates, therpenice of the
partition methodology tool ended penalized. One way of owujrg the tool per-
formance is to optimize the estimation of the system exenuiime. The time
complexity O(nObj), expected for the tabu search algorithm, was experimgntall
proved. Since the computation time varies linearly withrinenber of objects on
the system description, on large sized systems the timaregto find the best
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Figure 6: PSMfg model illustrating the best partition smntfrom the TS algo-
rithm.

pa

rtition solution is high. However, in the majority of cas¢he first searches of

the partition process generate a solution with quality.

The support given by the partition methodology to the immatation of the

systems was also evaluated. The automatic synthesis oftdvéaice between par-
titions is a straightforward implementation that uses ta@drom the estimation

of
co

the area occupied by the resources of the interface batpasditions and the
mmunication time between partitions.
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Metric Convolution  Cryptography
(%) (%)

automatic vs manual solution performance 72 80-92
accuracy of performance estimates 82-83 97-98
fidelity of performance estimates 83 100

accuracy of areaHW(DP) estimates 98 92-99
accuracy of areaHW(CU) estimates 91 89-96

Table 2: Results obtained with the partition process.

4 Conclusions

The cluster growth constructive algorithm follows a sthaigptimization heuristic,
which proved to be able to generate solutions with qualitgemvguided by an
adequate closeness function.

The results from the performed experiments with tabu se@r&h) algorithm
recommend that objects and moves tabu tenure must be 5 to 1886 aum-
ber of objects on the system description. To decrease thewation time while
keeping the capacity to generate solutions with quality,ithplemented TS algo-
rithm only searches a partial neighbourhood, has a richteofsevolution strate-
gies, applies a more efficient improvement and includesheeriset of diversifica-
tion/intensification elements. To avoid the reduction &f dapacity of converging
to the optimum solution, the history of moves and moved dbjeuust be reset by
TS at the beginning of each search. A subset of tabu clag&ifisawas selected,
which decreases the computation time, helps to avoid cysidsdoes not place
excessive restrictions to the search. A neighbourhood avitimple structure also
helps to decrease the computation time. The goal of the aaostibn applied by
TS is to achieve the best partition solution with the avdélabsources.

To generate accurate estimates, while keeping the conutahe as low as
possible, the implemented estimation methodology (i) de¢siled models for the
hardware resources, (ii) runs in two abstraction levels @nduses incremental
updating.

The obtained results show that the best automatic solut@mn the TS algo-
rithm achieves 72 to 92% of the manual partition solutiorfgrenance. This is an
interesting result limited by (i) the optimizations inttagkd on the manual solution
implementation, (ii) the simple software estimation moaledi (iii) the fine gran-
ularity used with the objects. The different experimentsagis ended on feasible
partition solutions, which proves that the partition pggés adequately controlled
by the evaluation functions.

The accuracy of the performance estimates, the area of thepdéh and the
area of the control unit estimates, was respectively 82 6,32 to 99% and 89 to
96%. The estimates accuracy obtained with both exampleS,dyd convolution,
was very close. This consistence on the accuracy suggestmble estimation.
For all metrics and examples, the accuracy and fidelity ofatanates was al-
ways above 82%, an interesting result that in many casesawves the published

21



results.

The time complexityOQ(n), foreseen for the implemented TS algorithm, was
confirmed on the experiments performed withr7iTool. The time necessary to
compute the best partition solution is high, but in most sa#® of this time is
sufficient to find a solution that achieves a performanceectos90% of the best
solution.

The estimated data for the interface resources and the coration time,
simplifies the automatic synthesis of interfaces.

Some directions are being considered for future work: (gleation of the
methodology with more and differentiated case studiesaeiamore complex and
control dominated systems must be tested; (ii) integratfidhe methodology on a
broader one, which is used to develop concurrent systerhamianplemented on
a parallel, distributed and heterogeneous architectiiddmplementation of other
iterative algorithms — beyond TS and SA — where differenirogiation strategies
may lead to better results with some examples, to increasgdHition success;
(iv) optimization of the system performance estimation,jnprove the perfor-
mance of the partition methodology, strongly dependenthentime needed to
estimate this metric.
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