Our Future Engineers Can Bridge the
Software/Hardware Paradigm Chasm

Dirk Stroobandt

Electronics and Information Systems Department, Ghent University
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
email: Dirk.Stroobandt@elis.UGent.be

Abstract

Traditionally, hardware designers and software de-
velopers are educated in totally different ways, which
is already prevalent in the use of the words “designers”
and “developers.” The claim in this paper is that we
have to remove this distinction and bridge the chasm
between the two worlds. This is necessary because cur-
rent systems require a mixture of software and hard-
ware design to fully embrace the possibilities offered
in modern chip technologies. On the other hand, mod-
ern technologies are experiencing severe problems that
effectively will halt Moore’s law in the way we are used
to it. Technology scaling no longer offers clock speed
improvements and the microprocessor world is rapidly
moving towards multi-core systems. This trend actually
offers new opportunities for unifying the hardware and
software paradigms as exploring fine grain, low level
parallelism will be the name of the game in both worlds.
In this unification process, reconfigurable systems may
play a significant role.

1. INTRODUCTION

Most computer science (CS) departments at major uni-
versities originally were split from a much older elec-
tronics engineering (EE) department. The enormous
boost in computer science research brought by micro-
electronics industry and for sure the introduction of the
Personal Computer rightfully stirred a movement to-
ward the separate discipline of computer science. Some
schools, however, decided to keep the two disciplines
tied closer together in an Electronics and Computer Sci-
ence (ECS) Department. Nowadays, this actually turns

This paper is based on experiences from teaching two courses
at Ghent University, Belgium: “Design Methodology for Complex
Systems” and “Hardware/software Co-design.”

out to be a very interesting constellation for cross-disci-
pline research and teaching.

Whatever the administrative subdivision, fact is that
the clear division between hardware (ASIC) design (tra-
ditionally more prevalent in EE departments) and soft-
ware design no longer holds. Current systems are a
mixture of the two. There are several reasons for this
evolution:

e Moore’s law has enabled ever more powerful sys-
tems on the same die area. The doubling of the
number of transistors per unit area every tech-
nology generation allowed designers to put more
functionality on a single chip, even to the amount
that it is no longer manageable. This leads to
the infamous design gap as the number of de-
signers or the time needed for a large design can
no longer keep up with Moore’s law. In order
to further improve productivity, the only solution
is to reuse big existing designs and combining
these. This is called IP (Intellectual Property)
Reuse. Where this combination of chips” to a
complete system used to be done at the board
level, it is now possible at the chip level, leading
to a System-on-Chip (SoC) design methodology.
In such a SoC, scheduling and arbitration are be-
coming more important, bringing software issues
to the hardware designer’s world.

e In microprocessor architectures, Moore’s law has
often been translated as “the clock speed of the
system doubles with technology generation.” This
was true until the end of the 1990’s but then came
the time when the interconnect delay started dom-
inating the overall delay in chips (Figure 1). In-
deed, while transistors get faster when they are
scaled down in size, the interconnects between
them get slower as both the resistance and capac-

e 5t Dlely
(Fanou)

-—utal]
(Gaales)

1 [~ =Gl Wi Repaaen

=$—Gbbal wo Repeater

Ralative Delay

Process Technology Node (nm)

Figure 1. Interconnect delay inversely scales with tech-
nology generations thus leading to a halt to processor
speedup by simply scaling the technology (figure cour-
tesy of Dennis Sylvester).

itance of the wire increase. Once the wire delay
starts to dominate, one can no longer thrust on
scaling alone to improve microprocessor speed.
On top of that, the scaling itself is slowing down
and there are so many technological barriers to
further scaling that many researchers predict the
end of processor speed improvement really soon.
Microprocessor companies therefore lay all their
eggs in the basket of multi-core systems. To ob-
tain sufficient performance improvement, hard-
ware accelerators are getting more and more a ne-
cessity.

e With the increase in compute power, also the ap-
plications are getting more demanding. Ubiqui-
tous computing is becoming the name of the game
and people are starting to expect access to high
quality multimedia data (especially video) every-
where. This puts an enormous pressure on mul-
timedia hardware systems and requires the use of
specialised architectures and the exploitation of
massive parallelism. Again, hardware accelera-
tion is needed and hardware blocks need to co-
exist with a software oriented environment.

e The advent of reconfigurable hardware (FPGAs)
has enabled much of the above trends as it has
provided a much more flexible hardware infras-
tructure that can co-exist and cooperate with a
software architecture more easily. At the same
time, the very simple FPGA architectures of the
past (containing an array of similar simple cells)
has evolved into much more hybrid arrays of logic
blocks, memory blocks, multipliers and other DSP

blocks, making the FPGA more efficient for the
complex tasks it is required to do. The introduc-
tion of first soft-cores and later full-fledged hard-
ware computing cores on the FPGA chips really
brought hardware/software co-design to the heart
of reconfigurable systems.

Given the strong link between hardware and soft-
ware design in today’s systems, university education
should focus on hardware/software co-design and train
new electrical engineers and computer scientists in this
new cross-disciplinary domain. In this paper, I will
present the first steps towards such education at Ghent
University in Section 2. Section 3 will then focus on
the main issues that I deem important in designing a
system: exploring the trade-offs between all the imple-
mentation choices the ever expanding design space has
to offer. As explained in Section 4, the main driving
force behind combining hardware and software design
methodologies (and courses) is the need to find and ex-
ploit low-level parallelism. With that, and Section 5, I
will conclude.

2. TEACHING HARDWARE/SOFTWARE
CO-DESIGN IN PRACTICE

At Ghent University in Belgium, we have adopted the
Bachelor/Master structure which resulted from the Bol-
ogna/Sorbonne meetings that changed much of Euro-
pean education. All over Europe, a 3-2-3-structure will
be implemented: 3 years of Bachelor studies, 2 years for
the Masters degree and (not yet implemented) 3 years
for obtaining a PhD. The change from a 2+3 structure to
this new structure was the ideal time to evaluate our ex-
isting curricula and propose some changes. In the Fac-
ulty of Engineering at Ghent University these changes
were rather fundamental and the entire curriculum was
set up from scratch. The basic ideas behind our engi-
neering studies remained however:

1. A strong focus in the Bachelor on the mathemat-
ical background needed in the Masters.

2. A focus on learning to reason and solving prob-
lems unknown before, as well as to “think out of
the box.”

3. A broad base of domains rather than a narrow fo-
cus.

Within these boundaries, several proposals were made
to reorder the study trajectories. At some point, the idea
was to base the trajectories on application domains such
as ICT, Multimedia and Embedded Systems but in the

end pretty much the old structural divide between “elec-
tronics” and “computer science” prevailed. However,
within these trajectories, several options are offered (as
main subjects):

e For the Master of Electrical Engineering:

— Main Subject: Electronic Circuits and Sys-
tems

— Main Subject: Information and Communi-
cation Technology

e For the Master of Computer Science Engineering:

— Main Subject: Software Engineering

— Main Subject: Information and Communi-
cation Technology

— Main Subject: Embedded Systems

The Master of Electrical Engineering contains the
two classical domains of Circuits and Systems and ICT,
both of which have a strong industrial relevance in Bel-
gium. These are more hardware-oriented and also con-
tain courses on the technology and design of computer
chips and ASICs. In the Master of Computer Science
Engineering, however, the Main Subjects are more di-
verse. The Software Engineering option is really fo-
cused on managing large software projects. There is
also an ICT option which is more focused on network
traffic and the software side of ICT than in the electron-
ics master. The real new option here is the one on Em-
bedded Systems which was specifically targeted at the
hardware/software interface. This was intended to ad-
dress the need for a more modern education at the fore-
front of the technical evolutions. Unfortunately, as this
option was formed within the Master on Computer Sci-
ence, it inherited all of the main software courses that
are common for all computer science options. Hence,
courses also include Design of Distributed Software,
Software Architecture, Queueing Theory, Information
Theory, Design of Multimedia Applications and Multi-
media Networks. Only Advanced Computer Architec-
ture, Compilers, Complex Systems Design Methodol-
ogy, and Hardware/Software Codesign are courses that
are really on target. This has fielded some complaints
by students who specifically chose this option to learn
more about the hardware issues, only to find that two-
thirds of the main courses are still software-oriented.
For this reason, a re-evaluation of the Embedded Sys-
tems option is being considered.

I strongly believe that a major issue in any embed-
ded systems program is to find the right balance be-
tween hardware and software. As we already have a
stronger software side in the courses at Ghent Univer-
sity, I tend to focus on the hardware part much more

in the two courses I teach: Complex Systems Design
Methodology and Hardware/Software Codesign. The
first course focuses more on the inital system design
steps of specification, architecture evaluation and hard-
ware/software partitioning (see Figure 2), while the lat-
ter course really targets the hardware design methodol-
ogy as well as some specific hardware/software issues
such as the use of real time operating systems.

For completeness, I list the chapters addressed in
both courses I teach:

e Complex Systems Design Methodology

1. Embedded systems, System-on-Chip and
platform-based design
System specification techniques
Architectures for complex systems
Exploring the design space
The importance of interconnects
The importance of embedded memory

Predicting performance

®©® Nk wDN

Interfaces and interface design
e Hardware/Software Codesign

Design methodology and architectures
High level VLSI Design

Logic Synthesis and Physical Design
Power management on circuit level
Testing of digital systems

RTOS

Code optimization for embedded systems

Power management at system level

e U o

System-level testing

Although the course on Hardware/software co-de-
sign has grown from an earlier course on VLSI Design,
the focus now is much more on reconfigurable design,
especially in the labs.

Labs are more important than theory in any design
course. Indeed, students can only learn the intricacies
of hardware design by hands-on experience. Hence, we
specifically paid attention to setting up enough labs for
the students. With the much appreciated help from my
Ph.D. students, we have opted for closely guided labs
in which all the system design steps get attention. Es-
pecially in the Hardware/software co-design course, we
go through the different steps of designing a concrete
system, in this case a Viterbi coder. This is synthesized
for real FPGA hardware.

System specification :

Architecture exploration |

Early estimates before
implementation details
are known!

Platform design |

Hardware/software partitioning |

Analog|
design

HW
Digital HW design |

High level synthesis |

Logic design

Component
selection

SW

Software

Communication compilation

Interface
synthesis

Physical design |

| Simulation and Verification

Testing

Figure 2. The design methodology for designing complex systems.

The main purpose of both courses is to introduce a
different way of reasoning about problems to software-
trained students. The hardware approach requires a more
structural view on a problem, emphasizing the inher-
ent parallelism. In the majority of courses, however,
students have only been confronted with the procedu-
ral (algorithmic) way of thinking. Even though object-
oriented programming and aspect-oriented programming
have found their way in the courses, these are not fo-
cused on parallelism in the first place. For most com-
puter science students, this structural view is completely
new. I will come back to this issue in Section 4.

3. IT’S ALL ABOUT TRADE-OFFS

One of the things I feel students should learn is that
there is no single embedded systems design method-
ology. Desiging always is a matter of making trade-
offs. Depending on the problem at hand, the perfor-
mance features wanted and the available options in the
design space, a completely different solution might be
suggested for two designs that are intrinsically very sim-
ilar. This may seem “natural” to people designing sys-
tems, it makes teaching system design very difficult.
Also in teaching, choices have to be made on what to
teach and how. In the last three years, I have tended to-
wards trying to give as broad an overview as possible,
spending a lot of time listing, and explaining about, var-
ious problems and their multitude of solution options.

Yet, this is a bit boring, and not only for the students.
So I believe a good practical example is needed to show
in more detail how designing could be done. But what
is a good example? I am still looking for one. Also, as
time is limited, explaining such an example in detail in-
variably means there is less time left for exploring other
options, thus limiting the scope of the course. Again,
there is a trade-off to be made here.

In teaching about the trade-offs, a number of issues
are important to address:

e One of the most important aspects in making trade-
offs, is the choice of performance measures. A
good trade-off can only be made when the right
questions are asked and the right objectives are
set. Any course on embedded system design must
therefore, in my opinion, spend enough time on
explaining what performance measures are most
important today (power, cost, time-to-market, la-
tency, bandwidth, and area are the major ones).
Not only should students know why these are im-
portant, also the impact of current technologies
on these performance measures is important.

e One of the critical issues is the design level at
which trade-offs are made. In the first design
stages, the design description is very abstract. Yet,
one immeadiately is confronted with very impor-
tant design decisions on the architecture of the
system. In this architecture exploration step, not

a lot is known about the details of the final im-
plementation (as the idea is exactly to abstract
most of this away). This leaves a lot of imple-
mentation choices for later but it also means it is
hard to say something about the relative perfor-
mance of the solutions to choose from. There-
fore, very early high-level performance estima-
tions are paramount. The estimates at this level
will not be very accurate (how could they be when
almost nothing is known in detail yet?) but they
should give a good relative appreciation of the so-
lutions in order to retain the right architectures.
In my view, this is relatively uncharted terrain
where more research would be welcome. The es-
timations also changed a lot over time as almost
all performance parameters nowadays are depen-
dent on interconnect parameters rather than the
computing elements themselves. Interconnect es-
timation hence became an active field of research
since the end of the 1990’s [1, 2, 3, 4].

After (and sometimes during) architecture explo-
ration, one also has to decide which parts of the
problem will be handled by software and which
parts should be taken care of by a hardware com-
ponent. This hardware/software partitioning again
induces a very important trade-off, that of flexi-
bility versus computing strength (time needed to
perform a certain task). Although some people
believe there is nothing much to gain in this area,
I still have to see the first software/hardware par-
titioning tool that can automatically decide on the
hardware/software boundary without the need for
extensive simulation. I think there are opportu-
nities left for research here. Also, not all issues
have been taken into account in the past. Time
to complete a computation always has been an
important factor (and still is) but the partitioning
tools should also consider power, area, cost, etc.

Another aspect in architecture exploration is the
trade-off between flexibility and performance. The
full performance (in terms of speed, power, area,
etc.) can only be obtained with custom-made hard-
ware (an ASIC) but this comes at a high cost as
the hardware is fixed for a single task and there
is no flexibility to change tasks. At the other ex-
treme, using a classical microprocessor offers full
flexibility as this is programmed and can basi-
cally perform all (algorithmic) tasks. However,
the processor is optimized to perform well for av-
erage tasks, not for the specifc one at hand. FP-
GAs fill a whole lot of the space in between these
two extremes. Their (re)configurablity still leaves

enough flexibility while the hardware-oriented de-
sign approach actually allows a good performance.
With dedicated hardware blocks (such as multi-
pliers) the performance of FPGAs is improved
significantly and the introduction of soft and hard
cores on the FPGAs enables a fully flexible pro-
grammable solution as well. The choice for a
reconfigurable component therefore still leaves a
lot of implementation options on the table. This
makes reconfigurable platforms ideally suited not
only for designing systems, but especially for ed-
ucational purposes.

4. THE FORGOTTEN PARADIGM:
PARALLELISM

There used to be a big chasm between the way in which
computers were programmed (in an algorithmic way,
using procedural languages) and the way hardware was
designed (structurally, using parallelism and hardware
description languages — HDLs). Software engineers and
hardware engineers therefore speak a different language.
Of course it is true that there have been many attempts
to introduce more parallelism in computers (remember
the transputers of 30 years ago) and in software. But
these attempts still stay intrinsically sequential in na-
ture and the limited amounts of course-grain parallelism
found today is nothing compared to the massive use of
fine-grain parallel structures in hardware design. How-
ever, with the unavoidable trend towards multi-core sys-
tems, also software engineering will have to embrace
low-level, fine-grain parallelism much more tightly. One
may argue that parallel computation is not the holy grail
(remember Amdahl’s law?) but then again the amount
of parallel processors we are talking about today is mul-
tiples of what people could dream of earlier. Hence the
parallelism we should exploit in software projects may
no longer be the thread-level parallelism but rather the
massive low-level parallelism that is also exploited in
hardware design. This is a very interesting evolution as
it actually conjoins both paradigms into a single one.
Hence, in the future, there simply should no longer be a
chasm between software and hardware engineers!

This likely does not make things easier. Program-
mers are still used to procedural thinking. A paradigm
shift as described above will (and should) not occur
overnight. But if we want our students to be ready for
tomorrow’s challenges, I believe we should train them
in exploiting low-level parallelism structurally, whether
they major in computer science or hardware design. And
it is not that such a shift hasn’t happened before. Object-
oriented programming is getting worldwide acceptance
because it is the only way in which large software pro-

jects can be managed. This programming paradigm is
based on modularity (which includes a kind of paral-
lelism). But the goal was not to introduce parallelism
so it will not suffice in our new world. Also aspect-
oriented programming (even newer and less adopted)
implies some kind of parallelism but again the main
concern here is the separation of concerns, not the par-
allelization itself.

Although the main focus should be on the concepts
(including finding and manipulating Data Flow Graphs),
a big concern in the massively parallel paradigm is the
design language to be used. HDLs have much better
facilities for describing parallel behaviour but they lack
the benefits of modern software languages (such as ob-
ject orientation, refactoring facilities, etc.). The design
community still has not decided on what language is
best fit for describing both software and hardware (is
it SystemC, SystemVerilog, ...?). The requirement to
exploit low-level parallelism adds another dimension to
this discussion. Fact is that the designer should be re-
leaved from as much burden as possible. Once a good
description framework is found, tools will be needed to
(semi-)automatically translate this description in multi-
core software or in a hardware description to be imple-
mented. A few examples of such tools are being devel-
oped [5, 6, 7] at various institutions. There is a lot of
research left here and it is hard to include the newest
research results in teaching. But a good start would be
to change the fundamental way of thinking towards a
structural massively parallel paradigm. And this can be
done right now. In this respect, it is interesting to note
that papers and classes at the last Embedded Systems
Conference (ESC) (April 2007) suggest that hardware
and software development are practically one and the
same in terms of code generation.

I believe the role of Reconfigurable Computing is
not to be underestimated in this paradigm shift. In or-
der to get a “feeling” about the low-level parallelism,
students will have to test their gained knowledge on
practical examples wich can easily be done on FPGA
hardware.

5. CONCLUSION

Hardware designers are used to thinking about systems
structurally, with parallel flows of information handling.

Software developers are more acquainted with a pro-
cedural view and the sequential execution of instruc-
tions. However, with the strong drive toward multi-
core systems (in the near future with hundreds of cores),
massive parallelism will also be the main design goal
in developing software. Hence both worlds will actu-
ally grow towards using the very same paradigm. It is
therefore high time we bridge the chasm between hard-
ware design and software development and start edu-
cating our electrical engineering and computer science
engineering students with the same basics.

References

[1] D. Stroobandt, A Priori Wire Length Estimates for Digital
Design. Boston/Dordrecht/London: Kluwer Academic
Publishers, 2001.

[2] D. Stroobandt, “Tutorial: A priori system-level intercon-
nect prediction: Rent‘s rule and wire length distribution
models,” in Proceedings of the 2001 International Work-
shop on System-Level Interconnect Prediction, P. Christie,
J. Davis, and D. Sylvester, Eds. Rohnert Park: ACM
Press, 4 2001, pp. 3-21.

[3] D. Stroobandt, “Guest editorial : System-level intercon-
nect prediction,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 10, no. 2, p. 175, 4 2002.

[4] D. Stroobandt, “Recent advances in system-level inter-
connect prediction,” IEEE Circuits and Systems Society
Newsletter, vol. 11, no. 4, pp. 1; 4-20; 48, 2000.

[5] P. Faes, M. Christiaens, and D. Stroobandt, “Mobil-
ity of data in distributed hybrid computing systems,” in
Proceedings of the 21st International Parallel and Dis-
tributed. Long Beach, CA, USA: IEEE Computer Soci-
ety, 1 2007, p. op CD.

[6] H. Devos, K. Beyls, M. Christiaens, J. Van Campenhout,
and D. Stroobandt, “From loop transformation to hard-
ware generation,” in Proceedings of the 17th ProRISC
Workshop, Veldhoven, 11 2006, pp. 249-255.

[7] P. Faes, M. Christiaens, D. Buytaert, and D. Stroobandt,
“FPGA-aware garbage collection in Java,” in 2005 Inter-
national Conference on Field Programmable Logic and
Applications (FPL), T. Rissa, S. Wilton, and P. Leong,
Eds. Tampere, Finland: IEEE, 1 2005, pp. 675-680.

