1,577 research outputs found

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    IVSPlat 1.0: an integrated virtual screening platform with a molecular graphical interface

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The virtual screening (VS) of lead compounds using molecular docking and pharmacophore detection is now an important tool in drug discovery. VS tasks typically require a combination of several software tools and a molecular graphics system. Thus, the integration of all the requisite tools in a single operating environment could reduce the complexity of running VS experiments. However, only a few freely available integrated software platforms have been developed.</p> <p>Results</p> <p>A free open-source platform, IVSPlat 1.0, was developed in this study for the management and automation of VS tasks. We integrated several VS-related programs into a molecular graphics system to provide a comprehensive platform for the solution of VS tasks based on molecular docking, pharmacophore detection, and a combination of both methods. This tool can be used to visualize intermediate and final results of the VS execution, while also providing a clustering tool for the analysis of VS results. A case study was conducted to demonstrate the applicability of this platform.</p> <p>Conclusions</p> <p>IVSPlat 1.0 provides a plug-in-based solution for the management, automation, and visualization of VS tasks. IVSPlat 1.0 is an open framework that allows the integration of extra software to extend its functionality and modified versions can be freely distributed. The open source code and documentation are available at <url>http://kyc.nenu.edu.cn/IVSPlat/.</url></p

    A Geometric Approach for Deciphering Protein Structure from Cryo-EM Volumes

    Get PDF
    Electron Cryo-Microscopy or cryo-EM is an area that has received much attention in the recent past. Compared to the traditional methods of X-Ray Crystallography and NMR Spectroscopy, cryo-EM can be used to image much larger complexes, in many different conformations, and under a wide range of biochemical conditions. This is because it does not require the complex to be crystallisable. However, cryo-EM reconstructions are limited to intermediate resolutions, with the state-of-the-art being 3.6A, where secondary structure elements can be visually identified but not individual amino acid residues. This lack of atomic level resolution creates new computational challenges for protein structure identification. In this dissertation, we present a suite of geometric algorithms to address several aspects of protein modeling using cryo-EM density maps. Specifically, we develop novel methods to capture the shape of density volumes as geometric skeletons. We then use these skeletons to find secondary structure elements: SSEs) of a given protein, to identify the correspondence between these SSEs and those predicted from the primary sequence, and to register high-resolution protein structures onto the density volume. In addition, we designed and developed Gorgon, an interactive molecular modeling system, that integrates the above methods with other interactive routines to generate reliable and accurate protein backbone models

    TechNews digests: Jan - Mar 2010

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Connectable Components for Protein Design

    Get PDF
    Protein design requires reusable, trustworthy, and connectable parts in order to scale to complex challenges. The recent explosion of protein structures stored within the Protein Data Bank provides a wealth of small motifs we can harvest, but we still lack tools to combine them into larger proteins. Here I explore two approaches for connecting reusable protein components on two different length scales. On the atomic scale, I build an interactive search engine for connecting chemical fragments together. Protein fragments built using this search engine recapitulate native-like protein assemblies that can be integrated into existing protein scaffolds using backbone search engines such as MaDCaT. On the protein domain scale, I quantitatively dissect structural variations in two-component systems in order to extract general principles for engineering interfacial flexibility between modular four-helix bundles. These bundles exhibit large scissoring motions where helices move towards or away from the bundle axis and these motions propagate across domain boundaries. Together, these two approaches form the beginnings of a multiscale methodology for connecting reusable protein fragments where there is a constant interplay and feedback between design of atomic structure, secondary structure, and tertiary structure. Rapid iteration, visualization, and search glue these diverse length scales together into a cohesive whole

    A simulator for the topological modeling of ceramic structures using local rules

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 54-56).by Vinay Pulim.M.Eng

    NOVEL ALGORITHMS AND TOOLS FOR LIGAND-BASED DRUG DESIGN

    Get PDF
    Computer-aided drug design (CADD) has become an indispensible component in modern drug discovery projects. The prediction of physicochemical properties and pharmacological properties of candidate compounds effectively increases the probability for drug candidates to pass latter phases of clinic trials. Ligand-based virtual screening exhibits advantages over structure-based drug design, in terms of its wide applicability and high computational efficiency. The established chemical repositories and reported bioassays form a gigantic knowledgebase to derive quantitative structure-activity relationship (QSAR) and structure-property relationship (QSPR). In addition, the rapid advance of machine learning techniques suggests new solutions for data-mining huge compound databases. In this thesis, a novel ligand classification algorithm, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps (LiCABEDS), was reported for the prediction of diverse categorical pharmacological properties. LiCABEDS was successfully applied to model 5-HT1A ligand functionality, ligand selectivity of cannabinoid receptor subtypes, and blood-brain-barrier (BBB) passage. LiCABEDS was implemented and integrated with graphical user interface, data import/export, automated model training/ prediction, and project management. Besides, a non-linear ligand classifier was proposed, using a novel Topomer kernel function in support vector machine. With the emphasis on green high-performance computing, graphics processing units are alternative platforms for computationally expensive tasks. A novel GPU algorithm was designed and implemented in order to accelerate the calculation of chemical similarities with dense-format molecular fingerprints. Finally, a compound acquisition algorithm was reported to construct structurally diverse screening library in order to enhance hit rates in high-throughput screening

    An Introduction to Programming for Bioscientists: A Python-based Primer

    Full text link
    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in the biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a 'variable', the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.Comment: 65 pages total, including 45 pages text, 3 figures, 4 tables, numerous exercises, and 19 pages of Supporting Information; currently in press at PLOS Computational Biolog

    GP0.4 from bacteriophage T7: in silico characterisation of its structure and interaction with E. coli FtsZ.

    Get PDF
    BackgroundProteins produced by bacteriophages can have potent antimicrobial activity. The study of phage-host interactions can therefore inform small molecule drug discovery by revealing and characterising new drug targets. Here we characterise in silico the predicted interaction of gene protein 0.4 (GP0.4) from the Escherichia coli (E. coli) phage T7 with E. coli filamenting temperature-sensitive mutant Z division protein (FtsZ). FtsZ is a tubulin homolog which plays a key role in bacterial cell division and that has been proposed as a drug target.ResultsUsing ab initio, fragment assembly structure modelling, we predicted the structure of GP0.4 with two programs. A structure similarity-based network was used to identify a U-shaped helix-turn-helix candidate fold as being favoured. ClusPro was used to dock this structure prediction to a homology model of E. coli FtsZ resulting in a favourable predicted interaction mode. Alternative docking methods supported the proposed mode which offered an immediate explanation for the anti-filamenting activity of GP0.4. Importantly, further strong support derived from a previously characterised insertion mutation, known to abolish GP0.4 activity, that is positioned in close proximity to the proposed GP0.4/FtsZ interface.ConclusionsThe mode of interaction predicted by bioinformatics techniques strongly suggests a mechanism through which GP0.4 inhibits FtsZ and further establishes the latter's druggable intrafilament interface as a potential drug target

    Solution Structure and Phylogenetics of Prod1, a Member of the Three-Finger Protein Superfamily Implicated in Salamander Limb Regeneration

    Get PDF
    Prod1 is a cell-surface molecule of the three-finger protein (TFP) superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules..The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be correlated with the absence of the Prod1 gene
    • …
    corecore