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Abstract

This thesis paper details the development of a simulator for modeling the assembly
of ceramic structures on a computer of workstation size. Determination of amorphiz-
ability of non-periodic structures is a difficult problem in materials science. In order
to address this, a simulator was developed that utilizes a simple mass-spring model to
represent structure, and from this derives topological properties useful in determining
stability. Application of the local rules theory of Berger et al. allows for a significant
increase in performance over slower molecular dynamics based methods.

The paper covers various aspects of the simulator's design and use. First, it gives
background information about ceramic compounds and their topological representa-
tion, describes the theory of local rules, and explains how the theory motivates the
development of the simulator. Then, it describes the constraints used in designing
the simulator. Next, it details the implementation of the simulator itself including
the user interface, its functionality, as well as the underlying algorithms. Following
an evaluation of the simulator, the paper then provides several sample applications.
Finally, it draws some conclusions about the simulator and discusses possible future
improvements.

Thesis Supervisor: Bonnie Berger
Title: Samuel A. Goldblith Associate Professor of Applied Mathematics
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Chapter 1

Introduction

In recent years, as nuclear power grows in popularity, there has been an increased

effort to find adequate materials for the long-term storage of nuclear waste. These

materials have structures that allow them to remain stable even when exposed to

disordering radiation. Ceramics such as periodic crystals and aperiodic glasses are

excellent candidates and are being studied extensively. In the case of crystalline

materials, stability can be measured by amorphizability - how easily a crystal is made

aperiodic after exposure to radiation. Glasses, however, are by nature aperiodic, so

their stability is more difficult to determine. Methods such as X-ray crystallography

are not so informative for aperiodic materials. Instead, we take a more topological

approach and examine the network of connections between the atoms comprising a

glass. We will show how certain characteristics of these networks can provide much

insight into physical properties of the compound.

Previous work involving hand modeling has provided valuable insights into aperi-

odic networks [20, 7] and proved the usefulness of a topological model. Topological

analysis can predict amorphizability in crystalline networks as well. Dove et al. [4]

studied what they refer to as "rigid unit modes" to differentiate between flexible and

non-flexible topological networks, the latter being less stable. Jacobs and Thorpe [10]

developed an algorithm to determine "floppy modes" in structures, areas that are

easier to amorphize. Finally, Gupta and Cooper [6] developed a method known as

elementary constraint counting that predicted relative amorphizabilities of crystalline
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structures.

Recently, a theory of local rules was developed by Berger et al. [2] to help describe

the assembly of icosahedral virus shells. It states that both periodic and aperiodic

structures can be assembled using a set of rules that only describe how components

interact with their local neighbors. It has already been used to model viral shell

malformations and other aperiodic structures. Although it has been applied to the

topologically "two-dimensional" shell surface, local rules theory can also be applied

to the three-dimensional volume in which glass amorphization takes place.

This thesis paper describes the development and evaluation of a new local rules

based simulator for the study of silica compounds. Chapter 2 provides background

information necessary for understanding the motivation and theory behind the devel-

opment of the simulator. Chapter 3 discusses design specifications for the function-

ality, performance, and portability of the simulator. Chapter 4 describes, in detail,

how the simulator was implemented and discusses some of the algorithms involved.

Chapter 5 evaluates the simulator and determines how well it has met the design

specifications. Chapter 6 gives examples of some of the applications of the simulator.

Finally, Chapter 7 draws several conclusions about the thesis project and suggests

potential future improvements.
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Chapter 2

Background and Definitions

This chapter describes the problem of determining the stability of ceramic compounds

and how it motivates the development of a "local rules" based simulator. Section 2.1

describes the tetrahedral network representation of ceramic structures and how it

leads to a topological model. Section 2.2 describes the local rules method of growing

ceramic compounds. Section 2.3 provides the motivation for this thesis project.

2.1 Tetrahedral Networks

In order to develop a topological model of ceramic networks, we must examine their

physical structure. Since much of this thesis deals with silica glasses we will focus our

attention on silicon based compounds. In the case of Si0 2 , Si 3 N4 , and SiC crystals

the X-Si-X bond angles (X=O, N, or C) are perfectly tetrahedral. Hence, we can

describe our model as a network of vertex sharing tetrahedra. In SiO 2, an oxygen is

shared between two tetrahedra at each vertex. Similarly, in Si3N4, a nitrogen is shared

between three tetrahedra at each vertex, and in SiC, a carbon is shared between four

tetrahedra. The connectivity of these networks is illustrated in Figure 2-1. This

model is simpler than an atom based network and allows for faster growth simulation

and topological analysis.

Several formal definitions are required in order to understand the topological prop-

erties of a network; we use those of Marians and Hobbs [18]. A ring is a connected
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sequence of either edges or tetrahedra (nodes); formally, a ring in a network is a

closed path where each node on the path appears exactly once. For vertex-sharing

tetrahedra, rings through the edges of the tetrahedra and rings through the center

of the tetrahedra (nodes) are topologically equivalent; the former must be defined to

exclude the tetrahedra themselves (i.e., no more than one edge of a tetrahedron can

be part of a ring). A local cluster of a node n is the union of all nodes that are in some

primitive ring (defined below) of node n. A collision cascade is the sequence of events

including breaking bonds and rotating and translating nodes following a disordering

event. A collision cascade computation terminates when the structure has once again

reached its lowest possible energy state.

We use Marians' [20] definition of a primitive ring which states that a ring in a

network is primitive if at least one of the two paths between any pair of nodes of the

ring is a minimal path. This is effectively the same definition adopted by Goetzke

and Klein [5], although their terminology differs from ours (they define as a "ring"

what we call a primitive ring, and a "cycle" to be what we call a ring.)

SiO 2  Si 3N4  SiC

[SiO 4] [SiN 4] [SiC 4] or [CSi 4]

f = 0 f = -1.5 f =-3

Figure 2-1: Vertex-sharing schemes for SiO 2 , Si3 N4 and SiC.

Once a network is generated one can easily derive its topological properties from

the connectivities of the tetrahedra. The network may be described mathematically

as a regular graph with tetrahedra represented by nodes and connections to other

tetrahedra represented by edges. Periodic networks have a regularly repeating ar-

rangement of nodes, whereas aperiodic networks do not have this property.
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2.2 Local Rules

Before one can create a topological model for a compound, it is necessary to first

simulate the growth of the physical model it derives from. Previously, researchers

used molecular-dynamics simulations to create accurate models of silica compounds

[24]. Although this approach yields good results, finding accurate model parameters

is difficult, and the simulations are computationally expensive and time-consuming.

Alternatively, we can apply local rules theory to this problem.

Local rules were first used to develop a language to help describe and simulate

the assembly of icosahedral virus shells [2]. The study of virus shell structure and

assembly is crucial for understanding how viruses reproduce and how anti-viral drugs

might interfere with assembly of virus shells. One of the most notable aspects of

virus shells is their highly regular structure: they are generally spherical and possess

strong symmetry properties without being periodic; almost all human viruses (e.g.,

rhinovirus, poliovirus, herpesvirus) and many plant and animal viruses are icosahe-

dral. These icosahedral shells are constructed of repeated protein subunits-or coat

proteins-which surround their condensed DNA or RNA genomes. A given shell usu-

ally consists of hundreds of copies of one protein, but sometimes copies of two or three

different proteins.

At first glance, the assembly of the viral shells seems easy to understand because

the structure is so regular. In fact, it has been difficult to determine the actual

pathway through which the subunits interact to form a closed shell composed of

hundreds of subunits; in icosahedral viruses this has been particularly difficult to

explain because very often the same protein occurs in non-symmetric positions.

The theory of local rules can also explain several anomalies, such as the poly-

omavirus shell structure and spiraling malformations [1, 2]. It can also be used to

model other malformations and possible aperiodic structures as a result of changing

various model parameters [23].

Berger and Muir [21, 2] developed a "toolkit" to model virus shell assembly on

a Silicon Graphics Indigo 2 computer. The toolkit has been used to explore the
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tolerance margins of these shells and possible deformities that may result. The binding

interactions and angles of the shell proteins can be varied up to 8% randomly in every

direction and roughly the same shell is produced; however, if a hexagon occurs in place

of a pentagon, then spiraling occurs. Schwartz and Berger [22] have also developed a

parallel implementation on the Thinking Machines CM-5 computer that substantially

speeds up the algorithm. The eventual goal of this work is to develop a computer

simulation that allows biologists to view and interfere with the virus assembly process

on screen, a process which, like restructuring following radiation-induced disorder,

cannot be observed directly in nature.

Recently, Schwartz, et al. have built a kinetics based model of virus shell assem-

bly [23]. The result was the development of a new simulator that allowed for more

realistic modeling of viral shell assembly, providing a tractable middle ground between

abstract local rules modelling and more low-level molecular dynamics modeling. It

provided the user with more versatility in modeling the different variations on local

rules and the way in which they were implemented. It allowed the user to specify

many physical properties of the model such as the bond strengths and energies, as

well as the size, shape, mass, and bond configuration of individual particles. In ad-

dition, the new simulator provided a model for conformational switching, allowing a

protein to shift its configuration probabilistically.

The parallels to the problem of understanding the assembly of ceramic networks

are strong, and the methodologies are already well explored. Several differences in the

analogy, however, present concerns which must be addressed. First, viral shell assem-

bly takes place on a topologically "two-dimensional" surface, whereas amorphization

takes place within a three-dimensional volume. On the other hand, the surface is

closed in three-dimensions and not initially constrained to be, and Marians [19] has

shown the importance of two-dimensional subnetworks in the three-dimensional struc-

ture of network solids. Second, in the more abstract local rules simulation, energy

minimization is accomplished with simple spring constant response. This may seem

overly simplistic compared to the empirical potentials and three-body interactions

employed in molecular-dynamics simulations (e.g. [24]), but it must be remembered
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that such codes do not assume a priori information about coordination units which

we know to exist in such assemblies. In fact, minimization of overall bond-length

deviation proved a useful approach for the study of the results of bond-switching as

an initial approach to structural collapse during amorphization of quartz [11].

2.3 Motivation

Earlier hand-assembly exercises involved constructing physical models [19, 18]. Much

of this kind of modeling can now be done directly on a computer of workstation size,

owing to advances in both computer hardware and fast computational algorithms.

Because performing topological analysis by hand on the more complex structural

modifications of silica is extremely tedious and difficult to verify, we needed to estab-

lish computer-based algorithms to erect models of each of the crystalline polymorphs

so that analysis could be performed without error and with a significant increase in

speed. The need for these algorithms motivated us to build a computer simulator

that would complete results from earlier hand-counting of crystalline polymorphs [19]

and allow us to explore the structural limits of these polymorphs.
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Chapter 3

Design Specifications

This chapter describes the requirements the simulator must meet in order to be a

useful tool for ceramic network assembly and stability analysis. Section 3.1 describes

the functions the simulator must be able to execute. Section 3.2 describes performance

requirements of the program. Finally, Section 3.3 describes portability requirements

of the simulator.

3.1 Functionality

Given a set of local rules, the simulator must be able to assemble the ceramic net-

work that derives from these rules. The simulator represents the network as a simple

mass-spring model with polyhedral nodes as masses and internodal connections as

springs. Starting from either an initial user-defined node or from a previously as-

sembled structure, the simulator proceeds by adding one node at a time until a

user-specified maximum number of nodes is reached. Ideally, nodes are added to the

structure in an order that ensures symmetry to prevent the formation of unbalanced

high-energy structures.

In addition, the simulator should be able to perform various statistical computa-

tions on an assembled structure. First, it must be able to compute primitive rings

through a given node and from these compute a local cluster as defined in Sec-

tion 4.5.2. Second, it must be able to calculate the density of the completed structure.

13



Third, it must be able to calculate the distribution of bond angles of both Si-X-Si and

X-Si-X angles (X = 0, C, or N). Finally, it must be able to calculate the distribution

of distances between all pairs of atoms. These statistics are necessary to accurately

determine the amorphizability of a compound.

Another requirement of the simulator is that it must have a user interface that is

easy to use yet versatile enough to allow for a wide range of simulation parameters.

This can be accomplished by ensuring that more commonly used functions are easily

accessible, in the main menu for instance, leaving more esoteric functions in submenus.

For instance, functions to load rules files and assemble structures should be easier to

access than functions to adjust the maximum recursion depth for the ring finding

algorithm. In addition, the simulator must allow the user to visualize assembled

structures in a clear and natural three-dimensional graphics format.

3.2 Performance

Performance requirements must also be considered when designing the simulator.

There is no set limit to how long the program can take to finish a simulation. However,

the purpose of using local rules was to provide a much faster alternative to molecular

dynamics based simulations. In order to be useful, our simulator must be significantly

faster. More specifically, we should be able to assemble structures on the order of a

thousand nodes per hour on a single workstation-sized machine.

In addition, we must ensure that an increase in speed is not offset by a significant

decrease in accuracy. Local rules allow us to bypass many of the complex molecular

dynamics computations in which error accumulation is an issue. Our simulator need

only focus on correct application of local rules when deriving new nodes and accu-

rate minimization of energy as the structure grows. The complexity of the numerical

methods used will be determined by the speed requirements. Slower, simpler algo-

rithms may suffice as long as accuracy is not compromised. Simpler time-stepping

algorithms, for instance, may be used over more advanced forward and backward

Euler methods if error does not increase between steps and if simulations still finish
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within the required time. In addition, the simulator must ensure that basic physical

laws are not violated. For instance, springs must not intersect and steric constraints

must be enforced at tetrahedral corners.

Finally, the user interface and the graphics display should come second to the

computation of a structure. The simulator should not check for user input or update

the interface while a simulation is running so that every processor cycle can be dedi-

cated to performing assembly calculations. For the same reason, the user should have

the option of not updating graphics during assembly.

3.3 Portability

Another goal of the project is to make the simulator available to the widest audience

possible. First, it should be platform independent. The code should compile without

problems on any UNIX-based machine. Second, the program should be able to run

simulations on machines without a three-dimensional graphics output device, i.e. on

any machine besides the SGI. This can be accomplished by simply not displaying

graphics on such machines and ensuring other aspects of the program still function

correctly. Finally, in order to incorporate the program into a web server, it should

support a command line interface and should produce output in the three-dimensional

VRML format. Web browsers with VRML support can then view the output directly

within the application.
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Chapter 4

Implementation

This chapter describes the basic components of the simulator in detail and provides

an overview of the major algorithms used.

4.1 Polyhedron Abstraction

The basic unit in every simulator model is the polyhedral node (also simply referred

to as a node, and not to be confused with a vertex) which consists of an atom located

at the center of a regular polyhedron and four atoms located at each of its vertices.

See Figure 4-1. The parameters that can vary between models include the center

atom type, the vertex atom type, the vertex degree (the number of other nodes that

can connect at a vertex), and the polyhedron degree (the number of vertices in the

polyhedron). In addition, for a given model the user can define multiple node types

and how they attach to each other.

Each polyhedral node has an associated data structure containing information

needed during a simulation. This includes the coordinates of the center of the node,

vectors to each of its corners from the center, rotation vectors, its polyhedral degree

and maximum number of neighbors, optimal bond angles with each of its neighbors,

and pointers to each of its neighbors. Much of this information is derived from the

local rules detailed in the next section, and it is used for breadth first growth as

discussed in Section 4.5.1.
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Vertex

Figure 4-1: Definition of vertex and node.

4.2 Local Rules

In this section we show how we have adopted the local rules-based approach dis-

cussed in Section 2.2 for rapid self-assembly of crystal structures and adapted many

of the codes developed for self-assembly of virus shells, using tetrahedra as the build-

ing blocks instead of protein units, with several modifications. Whereas virus shell

formation requires that proteins form a basically spherical shell (with topologically

two-dimensional rules governing assembly), we have to provide rules governing con-

nections in three dimensions. On the other hand, the surface is closed in three di-

mensions and does not have to be initially constrained to be so. Unlike the bounded

virus shell which is all surface, topologically three-dimensional structure models need

to be large enough that surface properties do not dominate.

We first explain how to generate a set of rules governing the self-assembly of a

tetrahedral crystalline network and how simulated growth of the crystal is effected

using these rules. The approach is applicable to other network structures, with coor-

dination polyhedra other than tetrahedra, but we will limit ourselves to tetrahedral

networks with no more than three neighbors at each corner. The rules must provide

instructions of the following sort:

* Number of types. This instruction informs the simulator how many types

of inequivalent tetrahedra exist; each type, while still geometrically identical

to all other tetrahedra, follows its own set of rules. It is sometimes convenient

to identify more than one of a type when, in fact, all tetrahedra are topologi-

cally identical; for example when chirality is present or because it is easier to

17
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conceptualize the self-assembly with more types.

" Connectivity. This instruction defines the type of polyhedron in terms of

the number of vertices (in this case "4" for a tetrahedron) and the number of

additional polyhedra connected per vertex (in this case "1", "2 , or "3" for 0,

N, and C respectively).

" Orientation of the initial node. We define arbitrarily a canonical orientation

of the regular tetrahedron, inscribed in a unit cube centered at the origin, with

vertices designated 0, 1, 2, 3 at the four cube corners defined by Cartesian

coordinate vectors [-0.5, -0.5, 0.5], [-0.5, 0.5, -0.5], [0.5, 0.5, 0.5] and [0.5, -0.5,

-0.5]. A rotation is applied to this tetrahedron to define the orientation of the

initial node, defined by rotations about the x, y, z axes of the unit cube.

" Rules for each vertex. For a given vertex, this instruction informs the sim-

ulator about the relative orientation and type of the neighboring tetrahedra to

which this vertex connects, as well as the vertex designation of those neighbors

whose vertices it then shares.

In summary, given an initial tetrahedron, we need to know the rules governing

the interactions at each vertex. With vertex-sharing silicas, for instance, the rules for

each vertex will dictate the position of one neighboring tetrahedron.

When adding new nodes, the transformation matrix associated with a given node's

neighbor is applied to a copy of that node to rotate and translate it into the correct

position. In a sense, a clone is made of the parent node and then transformed relative

to the parent. In addition, three dimensional arrays also store information about a

neighbors' node types and corner numbers. The local rules also indirectly specify the

optimal bond angle and torque angle between a given node and each of its neighbors.

The simulator calculates these angles by actually growing a temporary structure with

a root node of the current node type and then adding each of the neighbors while

measuring the resulting bond angles.

Local rules are also used during growth to attach pre-existing nodes together.

When two nodes are within a sufficient distance from each other, the simulator checks

18



their types and determines whether or not they can attach to each other under their

local rules. In addition, during optimization steps, nodes are transformed relative to

each other to insure the bond angles between them are as close to the optimal bond

angles as possible.

Keatite
3
4 1 0 41 41

REGULAR REGULAR REGULAR

z 45 y -24 ; x -20 z 45 ; z 45 y -24

1 0 z 180; 0 0 z 180; 1 1 z -90 y 180;

1 2 z 90; 2 0 y 180 z 90; 1 3 y 180
0 3 z 90 ; 0 1 z -90 ; 2 3 z 90

0 2 z -90; 2 1 y 180; 2 2 z -90;

Figure 4-2: Local rules for assembly of keatite, using three node types correspond-
ing to two inequivalent tetrahedron environments (shaded, unshaded). The arrow
represents a four-fold spiral out of the plane of the illustration.

Figure 4-2 demonstrates how rules are derived for keatite and shows excerpts from

its corresponding rules file. A more detailed description of the format of rules files is

given in Section 4.4.1.

4.3 The Graphical User Interface

4.3.1 Buttons

The user interacts with the simulator through a graphical user interface. The main

window is shown in Figure 4-3. It consists of a rules box and twenty buttons which
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Figure 4-3: Main window of the graphical user interface.

control the simulation. The function of each of the components is explained in this

section.

The rules box simply displays the name of the primary rules set being used in the

current simulation. Any operations performed that do not ask the user to specify a

rules set will use the ones displayed in the rules box.

The first row of buttons beneath the rules box are used to control the user's

viewpoint within the graphics display. The "rot x", "rot y", and "rot z" buttons rotate

the viewpoint around each of the three coordinate axes. In addition, the "recenter"

button is used to return the viewpoint to the default position along the positive y-axis

with the positive z-axis pointing upwards and the positive x-axis pointing to the left.

The next row contains the ring viewing buttons which are only useful after a local

cluster has been computed. The "first ring" button displays the first ring in the local

cluster, and the "next ring" and "prev ring" buttons cycle through the rest of the

rings.

The bottom row contains the "highlight" button, which displays the current struc-

ture with underbound nodes highlighted in green, as well as the "regrow" button

which draws only the regrow region on the graphics displays after a collision cascade

has been computed.

The "new rules" button allows the user to read in a new set of rules. These rules

will affect only new nodes added to the existing structure and will not change the

rules associated with nodes that are already present. This is useful for the simulation
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of collision cascades which require two sets of rules, one for the original structure and

another for the regrow region. The simulator searches for rules files in the current

directory as well as the "rules" subdirectory.

The "save" button writes the contents of the current simulation to a data file,

including the simulations parameters, the location and states of all of the nodes, their

corresponding adjacency matrix, and the rules associated with each node. The button

first prompts the user for a file name before continuing. The "load" button reads in

a data file and updates the graphics display to show the newly loaded simulation. By

default, the simulator saves and loads files from a subdirectory with the same name

as the currently loaded rules set.

The "grow" button adds nodes to the simulation using the currently loaded rules

set. It first prompts the user for the number of nodes to add before continuing. The

"grow +1" button is very similar to the "grow" button except that it does not prompt

the user and it adds only one node to the simulation. This is useful for a step-by-step

visualization of a simulation.

The "kill/regrow" button begins a collision cascade simulation. First, the user is

prompted for the size of the regrow region. Then, the nodes in the regrow region are

disturbed randomly before being allowed to reattach. These nodes are subjected to

the last rules set loaded before the "kill/regrow" button was pressed.

Figure 4-4 shows the sub-window of the "options" button. This sub-window con-

tains various simulation parameters that the user can change. These include the

turning on or off of graphics, optimization, spinodal decomposition during regrowth,

and VRML output. In addition, the user can set various constants such as the spring

constant, depth of search for rings, optimization threshold, radial distribution func-

tion (RDF) radius, bond lengths, and molar masses.

The "statistics" button brings up a sub-window listing various operations that

can be performed on the simulation. The "node number" button will create a local

cluster for the node entered into the text box. The "sample size" button will create

local clusters for a random sampling of nodes with the sample size specified in the text

box. Furthermore, the "distances" button will calculate RDF distances for a random
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Figure 4-4: The options (left) and stats (right) sub-windows.

sampling of nodes. The "bond stats" button will calculate a variety of statistics such

as the bond angle distribution, bond lengths, and the number of underbound nodes.

Finally, the "density" button will calculate the approximate density of the current

structure.

The last two buttons, "clear" and "quit" perform the obvious operations of de-

stroying the current structure and exiting the program.

4.3.2 Graphics Display

The graphics display provides the user with a three-dimensional visual representation

of the simulation. Each node is represented by a shaded yellow polyhedron, except

for the root node which is shaded red and underbound nodes which are shaded green.

However, during local cluster ring displays, the color scheme changes slightly. Nodes

in the local cluster will be shaded light blue and the currently highlighted ring will
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be dark blue. In every display, springs which connect polyhedra at their corners will

always be represented by red lines.

The graphics in the simulator are produced using the OpenGL graphics library.

OpenGL is available on a variety of platforms and allows for very portable code

without a loss in graphics quality. In addition, the simulator allows the user to

disable graphics so that it is still possible to run simulations on platforms that lack

the proper support.

Although the graphics display is very useful for visualizing simulations, it does

act as a bottleneck during the simulation, especially when one is dealing with large

structures. The simulator may have to wait for the graphics to be displayed before

continuing calculations. To solve this problem, the user can disable the graphics

display before a simulation is run and then re-enable the display once it is complete.

4.4 Data Files

The simulator uses three types of data files: rules files, grow files, and VRML files.

Rules files define each node type, describe how they interact, and set up an initial

node. Grow files contain the entire state of a simulation and can be used to interrupt

a simulation and resume it at a later time. VRML files are similar to grow files

except they only contain enough data to reconstruct a graphical representation of

the simulation, and they are only readable by VRML browsers and OpenInventor

compatible viewers. Data such as simulation parameters, adjacency information, and

rules are not saved with VRML files. This section describes each file type and provides

an overview of their implementation.

4.4.1 Rules Files

Figure 4-5 illustrates a rules file for growing idealized quartz. The first line tells the

simulator how many node types there are, where each node-type represents locally-

identical tetrahedra (in this case, there is only one type, type "0", because every

tetrahedron in quartz follows identical rules). The second line gives the basic network
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0 = 155.60

Figure 4-5: Local rules for assembly of idealized quartz, depicting the canonical orien-
tation of the initial tetrahedron and the assembly scheme for first five tetrahedra,with
x-axis horizontal, y-axis vertical, z-axis orthogonal to the plane of the illustration.

connectivity; "4 1" signifies a structure in which each subunit has four vertices and

each vertex seeks one neighbor (equivalently, two tetrahedra meet at each vertex).

The third line indicates whether the polyhedron is regular (if it is not, we must

additionally specify the initial coordinates of its vertices). The fourth line specifies

any rotation applied to the initial canonical node resolved into rotations about x, y

and z (in this case, there are none). The remaining lines specify rules for each vertex.

The first of these provides rules for vertex 0 (in this case, vertex 0 is connected to a

tetrahedron of type 0 at its vertex 1). Then the rotation applied to that neighboring

tetrahedron is explicitly given (in the example, vertex 0 is connected to vertex 1

rotated 60' around z).

4.4.2 Grow Files

Grow files are binary files and are, therefore, not directly readable by a text viewer.

This is done in order to conserve disk space and to allow for faster saving and loading

of files. The first element of a grow file is the version number of the simulator used

to create it. This information is used by the simulator to insure that the grow file is

compatible with the current version. The version number is followed by information

about the nodes, such as the number of node types, the polyhedron degree of each

type of node, the number of neighbors at each corner, and the number of nodes. Next
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is a listing of every node and all of the information associated with each one. This

includes such information as the node's location and the rules associated with the

node. After this, the grow file contains a listing of the adjacency information which

specifies how each node connects to its neighbors. This is followed by the listing of

the kill region nodes, if any, and finally the pre-computed distance matrix, if it exists.

4.4.3 VRML Files

VRML files provide an easy way to export the graphics displayed by the simulator to

other viewers. They contain VRML code that describes the location and orientation

of each node in the simulation and no other information. The VRML files can be read

by any VRML 1.0 compatible viewer, which includes all VRML browsers as well as

OpenInventor compatible viewers. To create VRML output files, the VRML option

must be checked in the options menu.

4.5 Major Algorithms

4.5.1 Breadth First Growth

New nodes are added to the structure in breadth first order. That is, the corners of

older nodes are filled before corners of the newer nodes, similar to the way a breadth

first search of a tree checks all of the nodes on one level before moving down to the

next level. For instance, assume the simulator is currently working on the parent node

A, which has four unfilled corners. It would first try to fill all of node A's corners

before attempting to fill the corners of any of its children. This breadth first order

insures that the growing structure is well balanced and symmetric, and it models how

glass is believed to grow in nature.

The breadth first growth is actually implemented by a queue which initially con-

tains just the root node. This node is then removed and each of its corners are

checked to see if they can attach to nearby nodes. Since this is the first node, it will

not have any neighbors, thus new nodes are added to each of its corners. These new
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nodes are then added to the end of the queue. The first node in the queue is then

removed and each of its corners are checked for neighbors. If none exist, then nodes

are added to each of its corners. These new nodes are then added to the end of the

queue, and the next node is removed form the head of the queue. This process is

continued until either the queue is empty or the maximum number of nodes has been

reached. During the processing of nodes, some problems may arise. For instance, no

neighboring nodes may exist near an unfilled corner of a node, and there may not

enough room to add a new node. In this case, nearby bonds may have to be broken

and reattached to accommodate the new node. A detailed explanation of the breadth

first growth algorithm is given here in pseudocode:

queue is initialized to empty

if no nodes exist in the structure

add new node to queue

else

for each node i in the structure

if node i has an unfilled slot

add node i to queue

end

end

end

while queue is not empty

remove node i from the head of the queue

for each corner j of node i

for each slot k of corner j

if k is empty

try to attach a nearby node

if no nearby node could be attached

add a new node to node i at slot k

if successfull

add the new node to tail of queue
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else

try to break and reattach to a nearby node

end

end

optimize the structure

end

end

end

end

4.5.2 Ring Finding and Local Clusters

As stated earlier, we use Marians' [20] definition of a primitive ring which states that

a ring in a network is primitive if at least one of the two paths between any pair of

nodes of the ring is a minimal path. This definition yields directly the following simple

approach to finding the local cluster. First, we enumerate all rings which include n.

This enumeration can be achieved by conducting a breadth-first search (enumeration

of closest nodes first) from node n and finding all simple paths terminating at node

n, where a simple path has no node appearing more than once. We confirm that a

ring is primitive as follows: For each pair of nodes on the ring, we ascertain that the

graph distance between them is equal to the minimum ring distance between the two

nodes (there are two paths between each pair of nodes on a ring). By eliminating all

non-primitive rings, what remains is the local cluster for node n.

Goetzke & Klein [5] suggest an efficient algorithm for determining all the (primi-

tive) rings in a network, which proceeds as follows:

1. Compute a distance matrix such that the graph distance between nodes i and

j appears in row i, column j. They suggest computing these distances by

computing all pairs of distance 1 (first neighbors), then all pairs of distance 2,

then all pairs with distance 3, and so on until all possible pairs are analyzed.
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2. Fix an edge e and perform step 3 (below). Remove e from the graph. If fewer

than three edges remain, finish. Otherwise, examine the distances in the new

graph; if a distance between the two nodes is greater than their distance in the

previous graph, change the respective value in the distance matrix to the value

"infinite." Repeat step 2.

3. Determine all rings containing e. Start with rings of length 3 and stop if length

(2d + 2) has been reached (where d is the maximum distance in the distance

matrix, also called the diameter of the graph). For determination of rings with

length A, the following procedure is used: Mark one of the two nodes of the

fixed edge e as a starting point; choose an arbitrary node not yet considered

with distance A/2 to the starting point. Try to find two distinct paths between

the chosen node and the starting-point, alternating step-by-step from one path

to the other.

Since we would rather concentrate on what Goetzke & Klein refer to as "rings of

interest," we let the user define the maximum length of a ring to search for (where

maximum length < 20 appears reasonable). Also, instead of computing all the rings

in the entire structure, we simply compute the local clusters for individual nodes (in

other words, we ignore step 2 and do only step 3). Our algorithm then proceeds as

follows:

1. Define Ni(n) to be the number of nodes of graph distance i to node n. For

a chosen n, compute an all-pairs distance matrix of size D x D, where D =

EZi...d Ni(n) and d is half the user-specified maximum ring length. The D x D

matrix includes all-pair distances for nodes within distance d of node n. We

may use an all-pairs shortest path algorithm of our choice; we chose a variation

of Dijkstra's algorithm for simplicity [3].

2. Find a ring containing n. This is done by performing a breadth-first search

from n back to n; if the search is longer than the longest ring of interest, start

a new search. Ascertain that this ring is primitive by comparing the shortest
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ring distance between each pair of nodes to their actual shortest distance as

computed in Step 1. If it is primitive, enqueue the ring.

In Step 1, we have generally restricted our "rings of interest" to length 15, which

means d = 8, so this step is rather fast. In our Step 2, enumerating all rings is related

to the square of the size of the local neighborhood D (sum of all the nearest neighbors

up to Nd). Eliminating rings that are not primitive takes time related to the square

of the length of the ring (to look up the distances of all pairs on the rings).

In Step 3 of Goetzke & Klein's algorithm, they use a time-saving technique. They

offer that enqueuing all the rings and then dequeuing all that are not primitive is too

expensive, so they look for primitive rings as they go. Whereas, the technique they

use certainly finds only primitive rings, it may fail to find all primitive rings. The

discrepancy arises because, in considering a ring of length A, they find the "chosen

point" at distance A/2 from the starting point. They then find two non-intersecting

paths of length A/2. There is, however, allowance in the definition of a primitive ring

for one path on the ring to be larger than the shortest path distance. It is not clear

how their procedure will find these rings as well (for example, for another chosen edge

e in a future iteration of their Step 3), whereas ours does because we enumerate all

rings for each node in turn.

4.5.3 Local Distance Matrices

We refer to the variable sized all-pairs distance matrix described in Step 1 above as

a local distance matrix (LDM). It is very similar to a normal distance matrix except

in the way that it is calculated and in the amount of information that it contains.

An LDM only contains enough information to calculate a local cluster for a single

test node. More specifically, it contains the distances between the test node and

all other nodes that are reachable through a breadth first search to a user specified

depth. Since every primitive ring through the test node is a subset of this set, no more

information is needed than is contained within an LDM. The decrease in execution

time when using LDMs in place of a global distance matrix is significant and allows
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for a constant order of growth in time with respect to the size of the structure.

4.5.4 Density Calculations

The simulator uses two methods for computing density. The first method simply sam-

ples several spherical regions within a structure and averages the densities computed

within each one. This method is very fast without much loss in accuracy. The second

method computes a convex hull around the entire structure and then computes the

enclosed volume and mass, and from this the density. This method, although slower

and less accurate, is useful for computing the density of an entire structure (not just

regions within it). The method is less accurate because it is extremely difficult to

compute the convex hull of extremely porous structures.

4.5.5 Optimization

The simulator uses a simple spring model to represent the forces between nodes. Each

node is connected to each of its neighbors with a single spring. During each step of

optimization the springs are relaxed and allowed to exert various forces on the nodes.

The basic forces are translational forces, rotational forces, bending forces, and twisting

forces. The virus shell assembly simulator, which essentially modeled networks in two

dimensions, required fewer springs to model the various interactions between nodes.

For instance, nodes in the virus shell simulator were modeled as spheres without

any associated orientation information; whereas, in the glass simulator, nodes are

represented as three-dimensional tetrahedra that are rotated around the x-, y-, and

z-axis by a fixed amount. Additional rotational forces are required to ensure that

nodes are properly oriented. The translational force exerted by a spring pulls the

center of mass of a polyhedral node along the spring's axis. The translational forces

applied to each of the node's corners are averaged and applied to the center of the

node, changing only its position but not affecting its orientation. The rotational

force exerted by a spring rotates the node around its center allowing its corner to get

closer to its neighbor. These forces are also averaged and rotate the node accordingly.
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The bending forces do not result directly from the springs. Rather, they are forces

created to push bond angles between adjacent nodes closer to the optimal bond angle

determined by the rules. The bending force can be thought of as a force exerted

by a bent spring that is trying to return to its original low energy state. Finally,

the twisting forces are forces that attempt to push the torque between two nodes

connected by a spring to an optimal torque angle that has already been computed

from the rules.

Since the polyhedral nodes are abstractions of physical structures they are subject

to several constraints. Most importantly, the polyhedron represented by an individ-

ual node must remain rigid during the course of a simulation. In addition, the angle

formed by two neighboring polyhedra is limited by both a minimum and a maximum

value, since bonds cannot bend past certain thresholds. Finally, due to steric con-

straints polyhedra cannot overlap or intersect each other. The simulator ensures that

none of these constraints are violated during the course of an experiment.

As mentioned earlier in Section 4.5.1, during growth there is sometimes not enough

room for a new node to be inserted. In this case, nodes near the current parent node

must be broken apart and reattached to either the parent node or other nearby nodes.

This procedure involves searching for a pair of nodes whose point of attachment

is closest to the parent node's current corner. These nodes are then broken apart

and one of them is reattached to this corner. The other node can either attach to

another corner of the parent node or it can rejoin the breadth first growth queue and

later attach to another free node. This breaking and reattaching greatly reduces the

number of underbound nodes when growing an irregular glass structure and during

collision cascades. The optimization algorithm is summarized here in pseudocode:

while total spring energy > threshold

for each node i in structure

for each corner j of node i

for each slot k of corner j

calculate forces on slot k of corner j of node i

apply forces to node i and move it accordingly
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place node i in the correct bucket

end

end

end

calculate total spring energy of structure

end

The forces acting on a given slot are calculated as follows:

dir is the translational force vector

torqs is the array of rotational torque vectors

initialize dir to the zero vector

initialize torqs to empty

add a radial expansion force to dir if performing a collision cascade

if slot is not empty

get node i connected to slot

if spring to node i is too long then break it and return

calculate offset to node i from slot

add a force proportional to offset to dir

calculate torque vector resulting from offset and add to torqs

determine optimal bond angle by averaging angles from both nodes

calculate torque vector needed to reach optimal bond angle

add it to torqs

calculate torque vector needed to reach optimal twist angle

add it to torqs

perform a nearest neighbor search from current slot

for each node j in nearest neighbor list

for each corner k of node j

if k is within repulsion threshold and all of its slots are full

calculate torque needed to repulse slot from corner k
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add it to torqs

else if k has an empty slot

calcualte torque needed to attract slot to corner k

add it to torqs

end

end

end

end

4.5.6 Buckets and Nearest Neighbor Search

A time consuming step during growth and optimization is searching for nodes that

are within a certain distance of a given node. Initially, this was accomplished by

calculating the distance to every node in the structure and checking whether or not

it was within the required threshold. However, as structures get very large, the time

required to perform this calculation grows very quickly. To solve this problem, the

simulator implements buckets, sub-divisions of the simulation workspace which keep

track of every node within its region. Buckets were also used in virus shell assembly

for performance increase [2]. Using buckets, to find neighboring nodes, the simulator

only needs to search neighboring buckets instead of searching the entire structure.

This allows for a nearest neighbor search time that grows linearly with the size of the

structure. A single bucket is implemented by the following structure:

structure {
size: integer

list: array of nodes

} Bucket

The global variables b-width, b-height, and b-depth determine the dimensions

of the three-dimensional array containing all of the buckets in the simulation. In
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addition, the global variable b-size determines the dimensions of the cubical volume

of each bucket. When a node is added to the structure it is assigned to the bucket

containing the space which the node is in. The actual insertion of the node into the

bucket is accomplished by adding the node to the bucket structure's list element

and incrementing its size element.

Buckets allow for extremely fast nearest neighbor searches, on the order of 0(1).

The actual algorithm used to find the nodes near a node n is given here:

let r be the search radius from node n

let buckets be the array containing all buckets intersected by

a sphere s of radius r centered at node n

for each bucket b in buckets

for each node i in b

if the coordinates of node i are within sphere s

add i to nearest neighbor list

end

end

end

return nearest neighbor list

4.5.7 Collision Cascades

Collision cascades simulate the effects of irradiation on a structure. The simulator

performs collision cascades using two different methods. The first method, recrystal-

lization, removes all the nodes within the affected region and then adds new nodes to

the boundary until the vacuum is filled. New nodes are added according to a different

set of rules from those used to grow the original structure. A common action sequence

that a user might follow is to first grow a large structure using rules set A, remove a

fifth of the nodes located in the center of structure, load a new rules set B, and then

regrow the deleted nodes. A decription of the recrystallization algorithm follows:
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queue is initialized to empty

for each node i in the irradiated region

for each corner j of node i

for each slot k of corner j

if the node attached at slot k is outside the irradiated

region and it is not already in queue then add it to

queue

end

end

end

end

for each node i in the irradiated region

remove node i from structure

end

while queue is not empty

remove node i from the head of the queue

for each corner j of node i

for each slot k of corner j

if k is empty

try to attach a nearby node

if no nearby node could be attached

add a new node to node i at slot k

if successfull

add the new node to tail of queue

else

try to break and reattach to a nearby node

end

end

optimize the structure

end
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end

end

end

for each node i in the structure

if node i has an unfilled slot then add it to the queue

end

while queue is not empty

remove node i from the head of the queue

for each corner j of node i

for each slot k of corner j

if k is empty

try to attach a nearby node

if no nearby node could be attached

try to break and reattach to a nearby node

end

optimize the structure

end

end

end

end

The second method of performing collision cascades is spinodal decomposition.

This method involves disturbing the nodes in the irradiated region by breaking all

bonds and randomly rotating and offsetting nodes. Then, the nodes are allowed to

move and reattach themselves using a different rules set until all bonds are reformed.

The algorithm used for spinodal decomposition is as follows:

for each node i in the irradiated region

disturb node i by translating and rotating it slightly

end
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queue is initialized to empty

for each node i in the structure

if node i has an unfilled slot then add it to the queue

end

while queue is not empty

remove node i from the head of the queue

for each corner j of node i

for each slot k of corner j

if k is empty

try to attach a nearby node

if no nearby node could be attached

try to break and reattach to a nearby node

end

optimize the structure

end

end

end

end

for each node i in the structure

if node i has an unfilled slot then add it to the queue

end

while queue is not empty

remove node i from the head of the queue

for each corner j of node i

for each slot k of corner j

if k is empty

try to attach a nearby node

if no nearby node could be attached

try to break and reattach to a nearby node

end
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optimize the structure

end

end

end

end

The best method to use for collision cascades varies between structures and it is

up to the user to decide which is better.
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Chapter 5

Evaluation

This chapter assesses how well the implementation meets the requirements specified

in Chapter 3. Section 5.1 evaluates how well the simulator meets the functionality

requirements. Section 5.2 evaluates how well the simulator meets the performance

requirements. Section 5.3 evaluates how well the simulator meets the portability

requirements.

5.1 Functionality

The simulator meets all of the functional requirements specified in Chapter 3. It

models a ceramic network as a mass-spring system, adds nodes according to a given

set of local rules, and constantly minimizes the energy of the structure as it grows.

It successfully grows all compounds for which rules were defined, including crystal

and glass forms of quartz, cristobalite, moganite, keatite, coesite, tridymite, silicon

carbide, and silicon nitride. Figure 5-1 shows the results from running two simulations

of #-cristobalite growth. The first structure is a crystal of #-cristobalite, and the

second is an amorphous version grown using deviant rules. The simulation ensures

balanced structures by adding nodes in a breadth first manner, i.e., all of the vertices

of an existing node are filled before those of a new node.

In addition, the simulator performs all required statistical computations. These

include the calculation of primitive rings and local clusters, densities, and bond angle
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a
Figure 5-1: Comparison of 200-node models of (a) #-cristobalite and (b) cristobalite-
like glass. The darker tetrahedron represents an underbound node.

and length distributions. The simulator calculated primitive rings using standard

algorithms except for the use of several local distance matrices in place of one global

distance matrix for efficiency. Densities were computed using two different methods.

The first method involving the calculation of a convex hull was not as accurate as

averaging the densities of randomly distributed spheres within the structure, so the

later was used in the final version of the simulator. Table 5.1 and Figures 5-2 and 5-3

show the results of various statistical calculations performed on silica compounds.

The user interface consists of two parts: a control window with buttons for per-

forming functions and setting options and a graphical output window for displaying

structures as they are assembled. The interface adequately satisfies the requirements

of ease of use and versatility by placing buttons for the most commonly used functions

on the top-level of the control window and placing buttons for less commonly used

functions in lower sub-menus. For instance, to load a new rules file, the user need only

click on the "new rules" located on the main menu, but to change the spring constant

the user must first select the options button and then alter the spring constant field.
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Figure 5-2: Partial radial density functions (RDFs) for 0-0 (top), Si-O (middle)
and Si-Si (bottom) correlations in the quartz-like a-SiO 2 model with 50 initial node
offset from idealized quartz. The Si-O and 0-0 plots have been displaced vertically
by 2 and 4 units respectively. The correlation variations closely follow correlation
histograms for idealized crystalline quartz.

5.2 Performance

Figure 5-4 summarizes performance results from several speed tests. The graph shows

that growth time is linear with size when optimization does not take place. Linearity

is achieved through the use of buckets which allow for constant-time nearest neighbor

searches that are needed for assembly. Optimized growth time, however, is expo-

nential with size. This can be explained by the additional spring force calculations

needed at each time step. As the structure grows linearly in size, the total number

of spring force calculations grows exponentially. When the number of nodes in a
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Figure 5-3: X-Si-X bond angle distributions for amorphous structures.

structure exceeds approximately 4000 nodes, the simulator will fail to meet the speed

requirement of 1000 nodes per hour. However, with the use of parallel algorithms,

faster processors, and more efficient algorithms this limitation can be removed as

described in Section 7.2.

To test accuracy, results were compared to actual values determined from labo-

ratory experiments. Table 5.2 shows a comparison of densities derived from the sim-

ulator with actual densities observed in nature. Model densities very closely match

actual densities, satisfying the accuracy requirements of the simulator.
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Assembly Time vs. Structure Size
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Figure 5-4: Comparison of calculation speed between amorphous (optimized) and

crystalline (unoptimized) structures of varying size. The rate of growth of calculation

time is linear when optimization is off, but it is exponential when optimization is on.

5.3 Portability

The simulator meets all specified portability requirements. It compiles on a variety

of platforms including Silicon Graphics, Sun, DEC, and Intel based machines. On

machines without 3D graphical devices (i.e., all machines except for Silicon Graphics),

the graphics are not displayed but all computations can still be performed. Aside from

graphics, there are no differences between platforms.

In addition, the simulator can produce output in the form of VRML files which

can later be incorporated into a web interface.
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Polymorph Node Si-O-Si 6 Ave Si-O-Si 60 Model Density
I__ x 10 3kg/m 3

ideal-Cristobalite 0 180 180 1.92
#-Cristobalite 0 148 148 2.17
a-Cristobalite 0 145.3 145.3 2.33
ideal-Tridymite 0 180 180 1.92
HP-Tridymite 0 138.8 (3), 180 149.5 2.22
x-Tridymite 0 123.7 (3), 180 137.8 2.54
ideal-Quartz 0 155.6 155.6 2.37
/-Quartz 0 150.9 150.9 2.51
a-Quartz 0 143.6 143.6 2.77
Keatite 0 147.8, 150.5 (2), 164.0 154.6 2.61

1 147.8 (2), 164.0 (2)
ideal-Moganite 0 143.6 152.7 2.24

1 180 (2), 143.6 (2)
/3-Moganite 0 139.8 (2), 146.5 (2) 149.5 2.39

1 139.8, 148.5, 165.9 (2)
a-Moganite 0 125.2 (2), 143.9 (2) 137.5 2.72

1 125.2, 143.9, 146.3 (2)
Coesite 0 140.9, 144.7, 148.9 (2) 150.8 2.82

1 144.7, 148.9 (2), 180

#-Si 3 N4  0 109.5, 120, 125.1x 2 119.8 3.29
a-Si3 N4  0 110.6, 114.2, 117.2, 118.1

118.2, 118.4, 119.6, 124.9

1 111.7, 113.1, 116.8, 120.3
120.6, 122.2, 123.0, 124.9

118.3 3.22
2 110.5, 115.6, 116.9, 117.3

117.8, 117.8, 117.8, 124.8

3 111.7, 113.1, 117.1, 117.7
117.9, 118.4, 119.6, 124.5

O-SiC 0 109.5 109.5 3.21
a-SiC , 0 109.5 109.5 3.24

Table 5.1: Si-X-Si Angles and Densities for Rules-Generated Crystal Polymorphs
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Polymorph Model Density Actual Density
x10 3 kg/m 3  x10 3 kg/m 3

a-Cristobalite 2.33 2.33
#-Cristobalite 2.17 2.21

a-Quartz 2.77 2.65
#-Quartz 2.51 2.53
a-Si3 N4  3.22 3.20

#-SisN4 3.20 3.20
a-SiC 3.24 3.22
#- SiC 3.21 3.22

Table 5.2: Densities for Silicas Modeled
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Chapter 6

Applications

This chapter demonstrates the usefulness of the simulator and provides two example

applications. Section 6.1 demonstrates how the simulator can be used to perform

local cluster analysis of compounds. Section 6.2 shows how it can also be applied to

experiments in amorphization.

6.1 Local Cluster Analysis

One advantage of using a computer over hand modeling is that a computer can locate

primitive rings much more quickly and with more accuracy. With hand modeling,

rings can only be identified by tedious inspection and even when a ring is found, it is

difficult to determine if it is primitive. Using the algorithms described in Chapter 4

a computer can compute rings almost instantaneously.

Global ring distributions are not enough to describe the full topological properties

of structures and cannot differentiate between them. A more useful description of the

topology is the local cluster of a node within the structure (see Section 4.5.2). Just

as the unit cell can differentiate local symmetries between crystals, the local cluster

can differentiate local topologies in both crystals and non-crystalline structures. In

this application, we will examine the local clusters of various crystals and glasses

and use them to differentiate between compounds and gain insight into their physical

properties.
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Cristobalite

29 nodes
12 6-rings

Tridymite

27 nodes
12 6-rings

Figure 6-1: Local clusters for cristobalite and tridymite. Both of the clusters contain
12 6-rings through the center node, but differ in number of tetrahedra. One 6-ring is
highlighted in each cluster.

Figure 6-1 shows local clusters for tridymite and cristobalite. These two poly-

morphs of silica are very similar in structure. In each structure, the tetrahedra are

structurally equivalent, i.e., the local cluster is the same regardless of which tetra-

hedron is chosen. Each of their local clusters contain 12 6-rings, two through each

edge or 12 through each node. Only the size of the cluster distinguishes the two com-

pounds: tridymite contains local clusters with 27 nodes, while cristobalite contains

local clusters with 29 nodes.

63 nodes

40 8-rings
6 6-ings

Figure 6-2: The local cluster of quartz, comprising 63 nodes and containing 40 8-rings
and 6-rings. A convoluted 8-ring is highlighted.

Quartz and keatite are also interesting to examine. The local cluster for quartz is
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Node 0: Node 1:

43 nodes 31 nodes

5 7-rings 4 7-rings

3 5-rings 4 5-rings

6 8-rings 4 8-rings

Figure 6-3: The two local clusters of keatite, corresponding to the two inequivalent
tetrahedron environments. Both contain odd 5- and 7-rings, in addition to 8-rings.
Two 7-rings are highlighted.

shown in Figure 6-2. Quartz contains local clusters of size 63 composed of 6 6-rings

and 40 8-rings. It is interesting to note the correlation between the higher density of

quartz with the presense of more 8-rings. The longer 8-rings allow for more folding

and leads to denser packing of tetrahedra. Keatite is structurally much different from

quartz. It has two types of local clusters corresponding to different tetrahedral types.

They are shown in Figure 6-3. The first cluster contains 3 5-rings, 5 7-rings and

6 8-rings, and the second contains 4 5-rings, 4 7-rings and 4 8-rings. The presence

of 5- and 7-rings in keatite, a crystal, is surprising because odd-membered rings are

commonly associated with aperiodic compounds.

This application demonstrates the usefulness of a computer simulation over hand

modeling. The local clusters derived above were computed nearly instantaneously

using the simulator. Hand modeling would have required hours of tedious visual

examination to compute just one local cluster, with no guarantee of accuracy. The

simulator allows researchers to focus more on the theoretical implications of local

clusters rather than on their actual computation.
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6.2 Amorphization Experiments

Another application of the simulator is to model a disordering event such as radiation

which can transform a periodic crystal into a structure with amorphous regions. How

well a material is able to propogate this disorder and keep tetrahedral distortion at a

minimum is an indication of its stability. Although experiments were run on a variety

of substances, the results from only two of the simulations are presented here.

4,y

(a) (b)

Figure 6-4: The results from a-cristobalite regrown using #-cristobalite rules. (a) is
the entire resulting structure and (b) is only the regrown region.

In each experiment, a model comprising 2000 tetrahedra was assembled using a set

of local rules. Then a region of 400 nodes was disrupted via spinodal decomposition

(see Section 4.5.7) and allowed to reform according to another set of local rules. In

the first experiment, the disordered region of a-cristobalite was regrown using #3-
cristobalite rules, and in the second experiment, the disordered region of a-SiC was

regrown using the same set of ar-SiC rules. The results of these experiments are shown

in Figures 6-4 and 6-5. Stretched springs (represented by lines) between tetrahedra

represent distortions resulting from regrowth.

Disorder was propagated easily in the case of a-cristobalite. The resulting struc-

ture had very few underbound nodes and showed very little tetrahedral distortion.
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Regrown region:

Figure 6-5: Cascade simulation for a a) 2000 tetrahedra of a-SiC in which b) the
embedded central 400 tetrahedra have been disordered and rebonded using a-SiC
rules. Many underconnected tetrahedra (darker) and large remanent optimization
spring segments remain.

This can be explained by the independence of inter-tetrahedral Si-O-Si angles from

each other and from the O-Si-O intra-tetrahedral angles [12]. By contrast, SiC could

not acceptably propagate disorder. The resulting structure was substantially under-

connected with a large amount of tetrahedral distortion. This is most likely the result

of a strong interdependence of the four Si-C-Si angles at each vertex and an overall

lack of topological freedom in the structure.
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Chapter 7

Discussion

7.1 Conclusions

In this thesis paper we have described the development of a simulator for the mod-

eling of ceramic structures. The simulator meets all of its design specifications and

provides useful information about the structure and stability of various silicon-based

compounds (glass and glass-like). It assembles compounds at a much faster rate than

similar molecular dynamics based simulators, and confirms the topological properties

of structures that were previously analyzed through slower hand modeling experi-

ments. In addition, it provides a simple user interface and displays its results on an

interactive three-dimensional display. All of these features of the simulator together

provide a very useful tool for materials scientists who wish to explore various struc-

tural properties of ceramic compounds. The simulator provides an alternative to more

expensive and time-consuming laboratory experiments, and it provides information

that may be otherwise impossible to gather in a physical setting.

This project raises an important point: brute force methods such as molecular

dynamics simulations may not always be the best way to approach a complicated

problem like glass assembly. Instead, it may prove more useful to make approxi-

mations in areas of the model that do not require much accuracy. For instance,

the simulator obtained correct results even though it modeled complicated binding

interactions between atoms as simple springs. In addition, instead of relying on com-
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plicated molecular interactions to model the addition of new atoms, the simulator

relied on a set of local rules to determine how new atoms would be oriented. Al-

though these rules were derived from pre-existing empirical data, possibly even from

molecular dynamics experiments, they only had to be determined once. As a result,

the same work is not repeated between experiments.

Although the simulator has many advantages over actual laboratory experiments,

we must keep in mind that it is in the end performing a simulation. All computer

simulators are based on theory, and as a result they make many approximations to the

real world and rely on various simplifying assumptions. Since in most cases, theory

differs from practice one must be extremely cautious when using results from the

simulator. They should be confirmed in the laboratory before being put to practical

use. The simulator should be used as a tool to aid in laboratory work rather than as

a replacement for it.

7.2 Potential Improvements

One potential improvement to the simulator is the implemention of parallel algo-

rithms. Optimization of an assembled structure could be accomplished faster by

splitting the work among several processors. This is feasible since there is little in-

terdependence between non-adjacent regions. Large network optimization problems

such as this are very conducive to parallelization and would see a vast improvement

in speed. A parallel implementation of virus shell assembly on a CM-5 machine has

already demonstrated substantial speed increases [22].

Adding kinetics to the existing model is another potential improvement. The

success of kinetics has already been demonstrated by the virus shell assembly simu-

lator of Schwartz, et al. [23]. Kinetics represent a tractable middle-ground between

abstract local rules and more physical molecular dynamics. It provides some of the

computational advantages of local rules, as well as the physical accuracy of molecular

dynamics.

Another area which could be improved is network optimization. Currently, simple
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time-stepping algorithms are used to converge on a minimum energy solution. More

advanced Newton and Euler numerical methods could be used which would require

much less work to reach the same solution. There is a tradeoff, however, between

speed and complexity of the algorithms.

Furthermore, the user interface has several limitations that need to be addressed.

First, the current simulator does not allow direct manipulation of the 3D model in

the display window. Instead, it relies on buttons to indirectly rotate the structure. In

addition, the user interface does not provide a utility to assist the user in construct-

ing rules files. Determining the initial offsets and rotations is a very difficult task

and, therefore, needs to be simplified. Finally, there is currently no world wide web

interface to the simulator. The construction of a web page would make the simulator

available to a much greater audience and would also allow the design of the HTML

based user interface to be independent from the core of the simulator.

The simulator has already demonstrated potential as a useful tool for material sci-

entists interested in analyzing the amorphization properties of periodic and aperiodic

glasses. With these and other improvements, it may one day be used to uncover new

facts about glasses that could never have been learned through regular laboratory

experiments or molecular dynamics simulations.
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