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motifs we can harvest, but we still lack tools to combine them into larger proteins. Here I explore two
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build an interactive search engine for connecting chemical fragments together. Protein fragments built using
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dissect structural variations in two-component systems in order to extract general principles for engineering
interfacial flexibility between modular four-helix bundles. These bundles exhibit large scissoring motions
where helices move towards or away from the bundle axis and these motions propagate across domain
boundaries. Together, these two approaches form the beginnings of a multiscale methodology for connecting
reusable protein fragments where there is a constant interplay and feedback between design of atomic
structure, secondary structure, and tertiary structure. Rapid iteration, visualization, and search glue these
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ABSTRACT 

 

CONNECTABLE COMPONENTS FOR PROTEIN DESIGN 

Gabriel B. Gonzalez  

William F. DeGrado 

Protein design requires reusable, trustworthy, and connectable parts in order to scale to 

complex challenges.  The recent explosion of protein structures stored within the Protein Data 

Bank provides a wealth of small motifs we can harvest, but we still lack tools to combine them 

into larger proteins.  Here I explore two approaches for connecting reusable protein 

components on two different length scales.  On the atomic scale, I build an interactive search 

engine for connecting chemical fragments together.  Protein fragments built using this search 

engine recapitulate native-like protein assemblies that can be integrated into existing protein 

scaffolds using backbone search engines such as MaDCaT.  On the protein domain scale, I 

quantitatively dissect structural variations in two-component systems in order to extract general 

principles for engineering interfacial flexibility between modular four-helix bundles.  These 

bundles exhibit large scissoring motions where helices move towards or away from the bundle 

axis and these motions propagate across domain boundaries.  Together, these two approaches 

form the beginnings of a multiscale methodology for connecting reusable protein fragments 

where there is a constant interplay and feedback between design of atomic structure, secondary 

structure, and tertiary structure.  Rapid iteration, visualization, and search glue these diverse 

length scales together into a cohesive whole. 

  



vi 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGMENTS ............................................................................................................ IV 

ABSTRACT ................................................................................................................................... V 

TABLE OF CONTENTS ............................................................................................................. VI 

LIST OF TABLES ........................................................................................................................ IX 

LIST OF ILLUSTRATIONS ........................................................................................................ X 

CHAPTER 1 - INTRODUCTION .............................................................................................. 1 

1.1 – Overview of protein design ............................................................................................................. 1 

1.2 – Rational and irrational protein design ............................................................................................. 2 

1.3 – Designability .................................................................................................................................... 3 

1.4 – Connecting motifs ............................................................................................................................ 4 

1.5 – Project Summary ............................................................................................................................. 6 

CHAPTER 2 – A REAL-TIME ALL-ATOM STRUCTURAL SEARCH ENGINE FOR 
PROTEINS .................................................................................................................................... 8 

2.1 – Abstract ........................................................................................................................................... 8 

2.2 – Introduction .................................................................................................................................... 8 

2.3 – Design and Implementation .......................................................................................................... 11 

2.3.1 – Overview ....................................................................................................................................... 11 

2.3.2 – Forward Index ............................................................................................................................... 11 

2.3.3 – Structural pages ............................................................................................................................ 14 

2.3.4 – Structural Words ........................................................................................................................... 15 

2.3.5 – Tokenizing Words .......................................................................................................................... 16 

2.3.6 – Database ....................................................................................................................................... 19 

2.3.7 – Alignment and RMSD .................................................................................................................... 20 



vii 

 

2.3.8 – Streaming Results .......................................................................................................................... 21 

2.3.9 – Data Set ......................................................................................................................................... 21 

2.4 – Results ........................................................................................................................................... 22 

2.4.1 – Building Motifs .............................................................................................................................. 22 

2.4.2 – Assembling Larger Fragments ....................................................................................................... 23 

2.4.3 – Connecting Hot Spot Residues ...................................................................................................... 25 

2.5 – Discussion ...................................................................................................................................... 26 

2.5.1 – User friendliness ........................................................................................................................... 26 

2.5.2 – Speed............................................................................................................................................. 27 

2.5.3 – Potential Applications ................................................................................................................... 28 

2.5.4 – Generalizing protein search .......................................................................................................... 28 

2.6 – External resources ......................................................................................................................... 28 

2.7 – Acknowledgments ......................................................................................................................... 29 

2.8 – Supporting Information ................................................................................................................. 29 

CHAPTER 3 – PHOQ, A HISTIDINE KINASE, SIGNALS ACROSS THE MEMBRANE 
USING A SCISSORING MECHANISM ................................................................................... 35 

3.1 – Abstract ......................................................................................................................................... 35 

3.2 – Introduction .................................................................................................................................. 35 

3.3 – Results ........................................................................................................................................... 39 

3.3.1 – Comparison of disulfide crosslinking efficiency to homologous crystal structures ...................... 41 

3.3.2 – Multi-state Bayesian modeling ..................................................................................................... 45 

3.3.3 – Structural variation between signaling states ............................................................................... 57 

3.4 – Discussion ...................................................................................................................................... 62 

3.5 – Materials and Methods ................................................................................................................. 66 

3.5.1 – Plasmids ........................................................................................................................................ 66 

3.5.2 – Cell propagation ............................................................................................................................ 67 

3.5.3 – Envelope preparations .................................................................................................................. 67 

3.5.4 – Crosslinking reactions ................................................................................................................... 67 

3.5.5 – Western blotting and analysis ....................................................................................................... 68 



viii 

 

3.5.6 – Sequence-structure threading and model manipulation .............................................................. 69 

3.5.7 – Multi-State Bayesian Modeling ..................................................................................................... 69 

3.5.8 – Quantitative Structural Analysis .................................................................................................... 74 

3.10 - Acknowledgments ........................................................................................................................ 77 

CHAPTER 4 – DISCUSSION ................................................................................................... 78 

4.1 – Connecting designable atomic substructures ................................................................................. 78 

4.1.1 – Mixed initiative ............................................................................................................................. 80 

4.1.2 – Importance of speed and interactivity .......................................................................................... 81 

4.2 – Connecting protein domains .......................................................................................................... 82 

4.2.1 – Signal transduction by helix bundle repacking .............................................................................. 83 

4.3 – Multiscale, connectable protein design ......................................................................................... 83 

BIBLIOGRAPHY ....................................................................................................................... 86 

 

  



ix 

 

LIST OF TABLES 

Table 1 - Default Motif Set. ............................................................................................................ 29 

Table 2 - Search Parameters for all figures. ................................................................................... 32 

Table 3 – Least-squares fitting of a sinusoidal function to the crosslinking efficiency of PhoQ and 
the inter-residue distances of PhoQ, HtrII and Af1503 crystal structures. .................................... 42 

Table 4 - Properties of the clusters with population greater than 3% found with 1-state, 2-state 
and 3-state modeling ..................................................................................................................... 49 

Table 5. The largest quantified changes between pairs of correlated helices in two-component 
domains.......................................................................................................................................... 60 

Table 6 - Parameters used for domain fitting. ............................................................................... 75 

 

  



x 

 

LIST OF ILLUSTRATIONS 

Figure 1 - Subdivision of protein structures. .................................................................................. 13 

Figure 2 - Incremental assembly of a motif. .................................................................................. 22 

Figure 3 – Building a tertiary interaction. ...................................................................................... 24 

Figure 4 - Finding backbones compatible with hot spot residues. ................................................ 25 

Figure 5 - Structural representations of PhoQ. .............................................................................. 37 

Figure 6 - Comparison of the crosslinking efficiency with structural models. ............................... 40 

Figure 7 - Analysis of the fractional crosslinking of PhoQ residues. .............................................. 44 

Figure 8 - Representation and score. ............................................................................................. 46 

Figure 9 - Analysis of the most populated cluster found in 2-state modeling. .............................. 47 

Figure 10 Phenotypic changes in response to Cys mutations in PhoQ. ......................................... 53 

Figure 11 - Comparison of crosslinking efficiency for the periplasmic helix under different 
conditions. ..................................................................................................................................... 56 

Figure 12 - The six degrees of motion in the order they are applied to fit any given helix ........... 59 

Figure 13 - Cation-binding, acidic patch movements predicted by the Bayesian multi-state 
modeling. ....................................................................................................................................... 64 

Figure 14 - Scissoring motions across several two-component domains. ..................................... 65 

Figure 15 - Measured differences between equivalent helices in two component systems. ....... 76 

 



1 

 

CHAPTER 1 - Introduction  

1.1 – Overview of protein design 

Proteins can be likened to nature’s microscopic robots, powering the majority of chemical and 

mechanical processes at the molecular level [4].  Nature’s ubiquitous use of proteins testifies to 

their utility, and the better we can harness their power the more precisely we can control and 

orchestrate a wide variety of biological or chemical processes in exquisite detail. 

There already exist several commercial applications of proteins, such as (A) transplanting 

existing natural proteins to new host organisms, such as in GMO food, (B) using proteins in a 

non-natural environment, such as textile processing [95], detergents [73], and biocatalysis [8], 

or (C) incorporating them into medical therapeutics, such as antibodies [13].  Additionally, 

several new commercial applications may emerge in the near future, including medical 

diagnostics [10], bio-ethanol production [64], vaccine delivery [84], drug delivery [102], and 

metabolic engineering [50]. 

The scientific state of the art has progressed even further.  Many research groups have made 

great strides in designing large-scale super-molecular protein architectures, such as protein 

crystals [58] and symmetric polyhedra [53], switchable proteins [54], and highly potent catalysts 

[89].  However, as these efforts grow in complexity the reliability of the design process 

decreases, and the even successful and renowned research labs such as the David Baker group 

can go through tens of designs on their more challenging projects [28].  This presents an 

expensive and intimidating prospect for newcomers to the field who wish to break new scientific 

ground. 
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Unlike software programs, proteins are difficult to “debug” when things go wrong.  A 

programmer can connect a software debugger and to a failed program to get a detailed portrait 

of the programs’ internal state in order to diagnose problems.  In contrast, a protein 

biochemist’s diagnostic tools are more limited: they may run a gel and hypothesize why their 

protein expression product migrates at the wrong size, assuming that it expresses at all.  As 

pitfalls accumulate it becomes increasingly difficult to systematically avoid them and we should 

devise new ways to stem the tide of “bugs” in order to improve the quality assurance of the 

protein design process. 

1.2 – Rational and irrational protein design 

Rational protein design is one approach that aims to solve the reliability problem that plagues 

protein design.  This school of thought began as an attempt to understand the first principles 

underlying protein form and function [78] so that we can predict with confidence which designs 

will succeed and which designs will fail with less trial and error. 

The opposite of rational design is “irrational design”, which emphasizes large-scale exploration 

of an enormous number of potential solutions, the great majority of which are expected to fail.  

Directed evolution exemplifies this approach, where researchers generate large libraries of 

protein mutants and using a high-throughput screen or selection process to discriminate which 

mutants possess a functional property of interest [5].  However, I use a definition of irrational 

design which is intentionally broad to also include high-throughput computational screens [55] 

as well.  Like directed evolution, these computational screens emphasize trial and error over 

understanding, although one can try to reverse engineer the numerous outcomes to uncover 
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new first principles for rational design.  Both computational and in vitro screens can produce a 

large number of variations on a successful design which can provide detailed information about 

what role individual mutations play [101,106]. 

All irrational approaches share the same disadvantage: we cannot explore complex designs 

easily.  For example, mutating ten positions within a protein chain to ten possible residues each 

requires screening 1010 possible combinations, which pushes the limits of phage display 

selections [91].  Even then, such large selections are not as desirable as lower throughput 

screens which can provide more accurate measurements of fitness, but at significantly reduced 

library sizes (typically at most 104 variants) [36].  Similarly, testing all of these variants 

computationally within a week would require that our selection algorithm must not take longer 

than 60 microseconds to run for each design we wish to test. 

These limitations restrict brute-force searches to testing incremental changes to a protein rather 

than designing large pieces at a time.  Designing on the ten-residue scale is appropriate for fine-

grained details such as a protein’s active site or a protein binding interface, but you cannot 

design a medium-sized protein of over 100 residues from scratch this way and you need an 

alternative approach to fill in the remaining bulk of the protein, either by reusing natural 

scaffolds [28] or by building new scaffolds de novo [57]. 

1.3 – Designability 

My thesis explores an alternative approach to designing proteins that builds proteins by 

connecting “designable” protein components together.  A designable protein fragment is 

defined as a structural element that is more tolerant of mutation or diverse structural contexts 
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and the concept of “designability” dates back to simple lattice models of proteins which showed 

that multiple diverse sequences would independently converge on the same structure [62].  We 

call such a recurring structural motif designable since we can select from many possible 

variations on the motif, making it more amenable to design.  A testament to the designability of 

natural protein scaffolds is Dahiyat and Mayo’s redesign of a zinc finger domain scaffold to a 

completely new sequence which still produced the same tertiary structure [20]. 

The growing size of the Protein Data Bank (PDB) and increases in computational power provide 

an opportunity to harvest designable building blocks from a large repository of deposited 

protein structures, currently numbering over 95,000 entries.  Grigoryan et al. took this approach 

of reusing natural protein components when they designed a viral-like protein coating for 

nanotubes by incorporating designable helix-helix interactions using the MaDCaT search engine 

[39].  Previously, the reusable unit of protein design was an entire protein domain, but MaDCaT 

opened the door to reusing smaller interactions between secondary structure elements. 

We can consider even smaller reusable units of design by studying conserved atomic-level 

motifs.  The Erebus protein search engine [87] allows one to search for conserved atomic 

substructures in order to assess how abundant they are within nature, although this has not yet 

been applied towards protein design. 

1.4 – Connecting motifs 

Identifying designable structural elements does not suffice to solve the protein design problem.  

Each designable element is only a piece of the puzzle and we must provide a structured way to 

stitch them together into a complete protein. 
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Grigoryan et al. succeeded in designing their viral coating for carbon nanotubes by also layering 

three-fold symmetry on top of two designable helix-helix interactions to generate a complete 

six-helix bundle.  However, this approach does not generalize to proteins that are non-

symmetric or whose asymmetric unit is larger than a few designable motifs. 

Similarly, Erebus cannot be easily used for designability purposes because there is no way to 

easily connect conserved small atomic substructures into a unified whole.  This is even more 

problematic on the atomic scale because one cannot apply symmetry to an atomic-level motif to 

build an entire protein.  Moreover, these designable atomic substructures have tighter 

geometric, chemical, electrostatic requirements than designable secondary structure 

interactions, which makes them more difficult to connect.  A hydrogen bond distance in an 

atomic-level motif may vary by tenths of an Å [93], whereas a helix-helix interaction may vary in 

crossing distance by over 1 Å [97]. 

Additionally, we must also be able to combine multiple heterogeneous designable structural 

elements in order to generate novelty.  If we restrict ourselves to only incorporating one or two 

designable interactions then we limit ourselves to plagiarizing existing proteins.  Knowledge-

based design cannot be really considered de novo design until it can weave together many 

disparate elements from unrelated protein structures. 

I term this the “connectable protein design” problem: how to combine designable protein 

components on multiple length scales into a unified protein without steric clashes, chemical 

mismatches, or other geometric conflicts.  Solving this problem would greatly generalize the 

applicability of knowledge-based design. 
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1.5 – Project Summary 

My thesis approaches the connectable protein design problem by exploring two separate 

approaches to combining reusable protein components together with as few conflicts as 

possible.  The first approach operates at the atomic scale and the second approach operates at 

the protein domain scale. 

In Chapter 2, I solve connectability at the atomic level by creating an interactive workflow for 

piecing together designable atomic substructures from proteins.  This workflow centers on an 

all-atom search engine that I built and integrated with molecular graphics software that allows 

users to interactively discover and incorporate these designable motifs into their protein 

blueprints. 

In Chapter 3, I study two-component signal transduction systems which frequently mix and 

match a limited set of domains in diverse ways to generate novel signaling proteins.  I use 

quantitative structural analysis to study the interfaces between these components and tease 

out the basis for their interfacial flexibility which permits such diverse inter-domain connections. 

The primary novel contributions of this thesis are: 

 An all-atom search engine that outperforms other search engines by over two orders of 

magnitude, built with technical innovations reusable by other search engines 

 The first integration of a protein search engine with molecular graphics software, both 

for building search queries and visualizing search results 
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 The first interactive and connection-based protein design methodology that bridges 

atomic interactions to tertiary structure 

 The identification of the structural basis for modularity and loose coupling for domains 

from two-component signal-transduction systems
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CHAPTER 2 – A Real-Time All-Atom Structural Search Engine for Proteins 

2.1 – Abstract 

Protein designers use a wide variety of software tools for de novo design, yet their repertoire 

still lacks a fast and interactive all-atom search engine.  To solve this, we have built the Suns 

program: a real-time, atomic search engine integrated into the PyMOL molecular visualization 

system.  Users build atomic-level structural search queries within PyMOL and receive a stream 

of search results aligned to their query within milliseconds.  This instant feedback cycle enables 

a new “designability”-inspired approach to protein design where the designer searches for and 

interactively incorporates native-like fragments from proven protein structures.  We 

demonstrate the use of Suns to discover protein motifs, interactively build larger protein 

fragments and identify scaffolds compatible with hot-spot residues.  

2.2 – Introduction 

Protein structural bioinformatics rapidly approaches a big data crisis as the last decade has 

witnessed a dramatic increase in protein structure depositions. In 1993 researchers had just 

over 23,000 searchable structures at their disposal in the Protein Data Bank (PDB), while today 

we have over 95,000.  This rapid structural expansion could inform protein design, structure 

determination, and structure prediction by providing numerous examples of native-like 

structural interactions in exquisite detail, but researchers lack high-powered computational 

tools to intelligently explore large structural data sets in detail. 

One of the first popular protein structural search tools developed for this purpose was Dali by 

Holm and Sander [41].  Dali uses distance maps formed by calculating pairwise α-carbon 
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distances to form a two-dimensional representation of a three-dimensional protein. Regions of 

similarity between two distance maps correspond to similar substructures in their respective 

proteins.  Holm and Sander used Dali to create the Families of Structurally Similar Proteins 

(FSSP) database [42], which aligns substructures across entries in the Protein Data Bank (PDB) to 

form families and subfamilies of common folds.  Researchers commonly use Dali to compare 

protein folds and infer homology [23,77,81]. 

The more recent MaDCaT search program [105] also uses α-carbon distance maps to search for 

similar protein backbone arrangements.  However, where Dali uses a heuristic approach to 

detect structural similarity, MaDCaT takes a query backbone structure or motif and finds 

globally optimal structural matches within an entire structural database.  This approach makes 

MaDCaT ideal for finding the best matches to frequently occurring motifs.  These “designable” 

motifs promise to be excellent design scaffolds, and MaDCaT applied this approach to design a 

viral-like protein coat for carbon nanotubes from designable interactions [39]. 

Both Dali and MaDCaT return results after a several minutes of searching.  For greater speed, 

Shyu et. al. developed ProteinDBS [88] in order to provide the first real-time protein backbone 

search. They use image processing techniques to extract a set of features from α-carbon 

distance maps and organize their structural database into a tree, allowing quick traversal and 

parallelism during searches.  These optimizations allow them to return search results nearly 

instantly, but they limit themselves to searching for backbone α-carbons. 
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We required an all-atom search engine to guide the protein design process, so that we could 

search for proteins with similar active sites or binding motifs, explore protein scaffolds that can 

host a specific motif, and discover atomic-scale supporting interactions. 

The state of the art for all-atom search is Erebus [87], which permits all-atom rigid substructure 

searches, but this is insufficient for our design purposes because we desired an interactive 

search process.  Several bottle-necks in the Erebus search workflow impede a fluid design 

process, including time-consuming assembly of search queries, long search delays, and a web 

interface for retrieving results. 

A truly interactive search tool must remove every single one of these bottlenecks to bring the 

feedback loop down from minutes to seconds and permit users to rapidly explore multiple 

design alternatives iteratively in atomic detail.  Improved speed and faster feedback lets 

researchers to ask more sophisticated questions, explore structures more intelligently, and use 

limited collaboration time more efficiently. 

The Suns protein search engine makes it easy to search and browse a database of protein 

structures at the atomic level.  To our knowledge, Suns is the first real-time all-atom structural 

search engine and also the first to integrate seamlessly into the popular molecular visualization 

program PyMOL, so that researchers to easily click on motifs of interest, click search, and view 

aligned results within a fraction of a second.  We expect Suns to inform and guide protein 

design, modeling, and structure determination by lowering the entry barrier to structural search 

so that it becomes a staple of every structural biologist’s toolbox rather than a tool limited to 

programmers. 
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2.3 – Design and Implementation 

2.3.1 – Overview 

Our structural search engine greatly resembles a web search engine, even though these two 

types of engines index different types of data: web search engines commonly index linear text 

strings whereas our search engine indexes three-dimensional protein structures.  Despite these 

differences, we still borrow many principles from web search engines [11] to improve search 

speed: 

1. Divide structures into structural “pages” (3-D volumes) analogous to web pages 

2. Divide these “pages” into structural “words” (chemical motifs) analogous to textual 

words 

3. Create a forward index that matches sets of structural words to structural pages 

4. Perform slower and more accurate filters after the fast forward index lookup 

5. Return only as many results as required to avoid unnecessary computation 

2.3.2 – Forward Index 

Web search engines derive much of their speed by preprocessing the data set using a forward 

index that matches words to web pages [11].  The search engine can then tokenize each query 

into words and consult the forward index to rapidly return all pages that contain every word in 

the user’s search query.  Protein search engines can copy this trick, but they must first decide 

what volume size corresponds to a “page” and what chemical motifs correspond to “words”. 
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Two opposing considerations constrain the choice of page and word size.  The forward index 

resolves pages solely by their word counts, so larger words and smaller pages lead to more 

unique word counts per page and improves the selectivity of the forward index.  However, users 

prefer the exact opposite: smaller words and larger page sizes increase the power and flexibility 

of user search queries.  Therefore, optimizing a structural search engine requires balancing user 

needs against the efficiency of the forward index. 

We select a compromise suitable for atomic-level search queries: we restrict structural pages to 

cubes approximately 15 Å wide and we define structural words to be connected chemical 

substructures ranging from 2 atoms (a hydroxyl) to 9 atoms (an indole ring) (Figure 1).  Our 

choice of page size assumes that larger structural patterns of interest can be reduced to a 

network of bridging local interactions below the 15 Å length scale.  Similarly, our choice of word 

size assumes that users will accept a modest restriction on search queries to groups of chemical 

motifs instead of groups of atoms.  Like web search engines, we permit searches for multiple 

disconnected words, allowing users to assemble complex queries from these simple chemical 

building blocks. 
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Figure 1 - Subdivision of protein structures.  (A) An interior page highlighted in red from a 
protein of unknown function (PDB ID = 2FSQ), illustrating the maximum scale of search queries.  
(B) Example words (chemical motifs) within the same page highlighted in yellow.  Pages are 15 Å 
x 15 Å x 15 Å cubes.  

The forward index is a nested data structure and the outer level data structure is an array whose 

elements are word indices, one for each word that suns understands: 

type PrimaryIndex = Vector WordIndex 

 

Each word index contains a list of all matches, ordered by number of matches: 

type WordIndex = Vector Matches 

type Matches = Set PageID 

 

 

The first element in the WordIndex vector consists of all pages that contain exactly one 

occurrence of the given word.  The second element consists of all pages that match the motif 

twice, and so forth. 
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Pages are grouped by number of matches so that Suns can rapidly eliminate pages that do not 

have a sufficient number of matches.  If the user searches for three carboxylic acids, then the 

search engine can immediately skip the first two elements of the WordIndex vector for 

carboxylic acids since they will be sets with fewer than three matches to carboxylic acids.  Then 

it folds all the remaining elements using set union to retrieve all pages with at least three 

matches. 

However, users can search for mixtures of diverse words, so to do this efficiently we query each 

word type independently and then take the intersection of all queries.  So if the user requests 

two hydroxyls and two carboxylates, then the search engine will split this into two subqueries.  

First, it will compute the set of all pages with at least two hydroxyls and then compute the set of 

all pages with at least two carboxylates.  Computing the intersection of these two sets identifies 

pages with that simultaneously contain at least two hydroxyls and at least two carboxylates. 

2.3.3 – Structural pages 

Suns partitions protein structures spatially into pages which non-overlapping cubes 

approximately 15 Å wide.  Search results must fit within one of these pages, meaning that the 

search engine does not return search results that span more than one page.  Non-overlapping 

pages were chosen for efficiency reasons, since overlapping pages would require an additional 

search step to remove duplicate search results contained entirely within overlapping regions. 

Protein atoms are partitioned into buckets by using a truncated Morton code [71].  First, the X, 

Y, and Z coordinates are converted from floating point numbers to 21-bit integers using the 

following formula: 
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𝑡𝑜𝐼𝑛𝑡(𝑣) = ⌊
221(𝑣 − 𝑣𝑚𝑖𝑛)

√2(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)
⌋ 

𝑣𝑚𝑎𝑥 = 9999.999 

𝑣𝑚𝑖𝑛 = −999.999 

𝑣𝑚𝑎𝑥 and 𝑣𝑚𝑖𝑛 are the upper and lower bounds, respectively, for X, Y, and Z coordinates in the 

Protein Data Bank file format.  𝑡𝑜𝐼𝑛𝑡 rescales every floating point coordinate in this range to a 

21 bit integer.  The √2 in the denominator is a fudge factor to adjust the final page sizes to be 

approximately 15 Å (the true dimension is 15.19 Å). 

An atom’s X, Y, and Z coordinates are combined into a 63 bit integer using bitwise interleaving of 

their binary integer representations, which corresponds to a Morton encoding of the three 

coordinates.  The index then assigns each atom to page by taking its Morton-encoded 

coordinate (the 63 bit integer) and dropping the 33 least significant bits.  The remaining 30 bits 

correspond to the atom’s page ID and multiple atoms can map to the same page ID because of 

truncation.  Truncating the Morton encoded coordinates has the effect of portioning atoms into 

cubes 15 Å wide that tile space. 

2.3.4 – Structural Words 

We specify structural words using PDB files, which contain the specific residue and atom types 

to match.  For example, one structural word consists of a single PDB file containing the Cα-Cβ-Cγ 

linker of phenylalanine.  When users search for the three-carbons in phenylalanine’s linker, their 

searches will not match tyrosine’s linker, nor will they match three connected ring carbons 
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within a phenylalanine.  This allows the search index to optionally resolve motifs that are 

otherwise chemically identical [15]. 

Structural words may also match more than one protein element, and in those cases we use 

multiple PDB files to specify the structural word: one PDB file per matching chemical motif.  For 

example, one motif we index is a carboxylate, specified using two PDB files: one for glutamate’s 

carboxylate and another for aspartate’s carboxylate.  User search queries for carboxylates will 

match either of these two groups. 

The choice of structural words is customizable and for our public-facing server we select a 

default set of substructures appropriate for general-purpose searches (Table 1).  The most 

important searchable substructure matches the four backbone atoms for any protein residue, 

which permits geometrically exquisite backbone searches that specify all backbone atoms and 

torsion angles.  We partition flexible residues such as lysine and methionine into two separate 

words, and also isolate important chemical moieties into their own words, such as imidazole and 

guanidinium groups.  Some chemical moieties are shared between residues, such as the 

hydroxyl group, which matches serine, threonine, and tyrosine.  However, every residue except 

glycine possesses at least one unique structural word so that users can restrict searches to a 

specific residue. 

2.3.5 – Tokenizing Words 

The search engine must tokenize protein structures into words in two separate locations.  First, 

the search engine must tokenizes the entire structural database into words since all search 

queries are specified in terms of words, not atoms.  Second, the search engine must tokenize 
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every incoming search request into words before it can retrieve matching words from the 

database. 

Before tokenizing, Suns converts protein structures to undirected graphs, with one graph per 

page in the structure.  Graph nodes are atoms and vertices are bonds, so graphs are sparsely 

connected since the maximum degree of any node is 4 (the maximum number of bonds per 

atom).  Also, since graphs are limited to atoms that fit within a single page they are small (fewer 

than 100 nodes/atoms). 

The tokenization algorithm is implemented as a monadic, recursive descent backtracking parser 

[18], so that it can use Haskell’s do notation as syntactic sugar for assembling parsing 

computations monadically.  Parsers are conventionally associated with tokenizing text, but 

monadic parsers in Haskell generalize to other data structures, such as chemical graphs, and 

Suns takes advantage of this generalization to simplify graph tokenization code. 

The monad used for parsing is a backtracking list monad enriched with state local to each 

branch of the search tree [47]: 

newtype ParseS a = 

    ParseS { unParseS :: StateT Structure [] a } 

    deriving (Monad, Alternative) 

 

The primitive parser takes two atom names as arguments, each of which uniquely identifies an 

atom within a specific residue type.  This parser matches any bond that bridges two such atoms, 
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removing the matched bond from the graph and returning the indices of the nodes that 

matched:  

pBond :: AtomName -> AtomName -> ParseS (Int, Int) 

 

If more than one bond matches then pBond branches one search path per potential solution.  If 

no bond matches then the current search path terminates and backtracks to try another 

potential solution.  Note that removing the matched bond does not interfere with other 

branches of the backtracking search because each branch of the search maintains a separate 

copy of local search state. 

The higher-level pMotif function builds on top of pBond, taking a motif graph as input and 

returning indices of a matching motif while simultaneously removing the matched motif from 

the protein’s graph.  pMotif invokes pBond as a subroutine once per bond found within the 

motif graph, incrementally checking that the connectivity of each newly matched bond is 

consistent with previously matched bonds: 

pMotif :: Structure -> ParseS (Vector Int) 

 

Like pBond, pMotif branches for every possible solution and backtracks if no solutions are 

found. 

The evalParseS function runs any parser (including bond parsers, motif parsers, or further 

derived parsers), converting the parser to a list of potential solutions: 
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evalParseS :: ParseS a -> Structure -> [a] 

 

This list of potential solutions is generated lazily [44], meaning that the algorithm only searches 

for as many solutions as we request, performing the minimal amount of computation necessary.  

Since Suns only uses the first solution the parsing algorithm usually does not explore all possible 

branches and defers unnecessary evaluation. 

2.3.6 – Database 

Our forward index is formally a record level inverted index, meaning that it only returns matches 

to pages, not to specific structural words within those pages.  We supplement the forward index 

with a custom in-memory database that stores two pieces of information necessary to complete 

the search.  First, the database stores correspondences between words in the forward index and 

atoms in each structural page.  Second, the database also keeps compact representations of 

every structural page suitable for returning as search results. 

The database is a single in memory nested data structure, where the top-level data structure is a 

vector with one element per page in the data set.  Each element contains the PDB ID code for 

the structure the page originated from, a vector of atoms within that page, and then a nested 

data structure containing all words found in that page: 

type SecondaryIndex = Vector (PDB, Vector Atom, Matches) 
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Matches are organized by words, words are organized by incidence, and each incidence is a list 

of integer indices into the page’s vector of atoms indicating which atoms that word comprises: 

    type Matches   = Vector Words 

    type Words     = Vector Incidence 

    type Incidence = Vector Int 

 

When the forward index produces a matched page, the secondary index remembers which 

atoms in that page correspond to the words advertised in the forward index.  Sometimes the 

page contains more instances of a given word than the user required, such as when the user 

searches for two peptide bonds, and the page contains five.  The page must try out every valid 

permutation of words that match the user’s query, and the forward index minimizes the number 

of permutations by prioritizing pages that most closely match or exactly match the minimum 

required word count. 

2.3.7 – Alignment and RMSD 

Suns uses the Kabsch algorithm [48] to rapidly align each permutation to the user’s search 

query.  The Kabsch algorithm requires an exact atom-for-atom correspondence between the 

user’s search query and a candidate motif, and Suns compiles this correspondence from 

precomputed atomic correspondences for each stored motif in the custom database.  After 

alignment, the search engine only returns search results that match the search query within a 

specified root-mean-square deviation (RMSD) cutoff. 
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For each result below the RMSD cutoff, Suns aligns the matching page to the search query and 

return the page as the search result.  If a page contains multiple matches Suns aligns each match 

separately and returns them as separate results.  This superimposes every search result and 

context on the original query for ease of visual comparison and downstream post-processing. 

2.3.8 – Streaming Results 

The search engine does no global ranking of results by RMSD.  This means that the search 

engine will immediately stream any result within the specified RMSD cutoff to the user, which 

allows the user to begin visualizing results before the search has completed, improving 

interactivity. 

Additionally, the search protocol requires the user to specify the number of desired results up 

front.  While the user may request an unlimited number of results in theory, in practice the 

search clients default to 100 search results, similar to how a web search engine will default to 10 

search results.  This allows the search engine to stop processing the request after supplying the 

specified number of results, which reduces server load. Also, the search engine may also 

optionally specify a search timeout to further reduce server load for users that request a large 

number of search results. 

2.3.9 – Data Set 

The public search engine uses PISCES [99] as the non-redundant protein structure data set, 

selecting a 20% sequence identity, 1.6 Å resolution, and 0.25 R-factor cutoff, which currently 

corresponds to 2058 chains.  The search engine’s available memory limits how many structures 
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it can index, and our stress tests on the largest PISCES data set (90% identity, 3.0 Å, 1.0 R-factor 

cutoff, 24,218 chains) required 89 GB of memory or 1 GB of memory per 272 protein chains. 

2.4 – Results 

2.4.1 – Building Motifs 

Suns lets users explore the “designable” space of protein motifs by expanding on small initial 

fragments, such as building a helix N-terminal capping motif beginning from a single 

guanidinium group.  One might begin by searching on the guanidinium fragment from an 

arginine, which recruits a cluster of nearby carboxylates forming a salt bridge with the arginine 

(Figure 2A).  Adding one of these carboxylates to the search query refines the motif further, 

revealing a preferred rotamer for the arginine when interacting with a carboxylic acid (Figure 

2B), and adding a preferred rotamer to the search query crystallizes a complete N-terminal 

capping motif (Figure 2C). 

 

Figure 2 - Incremental assembly of a motif.  (A) An initial search for a guanidinium fragment 
reveals a cluster of nearby carboxylates.  (B) Refining the search with one carboxylate from the 
results reveals a specific linker preference for both the aspartate and arginine involved in the 
salt bridge.  (C) Adding the most common linker for arginine and repeating the search reveals 
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that this salt bridge is part of an N-terminal capping motif.  Search queries are represented as 
thick sticks and search results are shown as thin lines.  Dashed lines highlight clusters in the 
search results, which are filtered to show the specific residue fragments of interest and 
neighboring water molecules within 3.0 Å as red spheres.  Search parameters and fragments 
listed in Table 2. 

The large number of close geometric matches to the final search query suggests that this is a 

highly “designable” motif.  Incremental searching allows users to rapidly explore and prototype 

designable native-like interactions like these with very little prior knowledge in protein folding 

or biophysics.  Moreover, a user can discover the motif by gradually refining a specification 

rather than specifying all the necessary interactions up front.  This benefits people who may not 

even know what designable interactions look like and simply wish to explore what options they 

have available. 

2.4.2 – Assembling Larger Fragments 

Users can build tertiary interactions for proteins as well.  To demonstrate this, we search for a 

valine from glucose binding protein and grow that into three small β strands with three residues 

per strand. 

Beginning from an interior valine from glucose-binding protein, we seed the two adjacent β 

strands with highly populated residue clusters on each side corresponding to a valine and 

tyrosine (Figure 3A).  To grow the three β strands in both directions, we search for pairs of 

residues at a time to identify new clusters of residues within the search results that we can 

insert into the sheet (Figure 3B).  The PyMOL search client permits a qualitative inspection of 

residue preference at selected positions by cycling through visualizing each residue type. This 
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process not only provides a rough measure of residue preference, but also reveals rotameric 

preference, the kind of detailed information that a sequence logo would not reveal. 

 

Figure 3 – Building a tertiary interaction.(A) Three strands are seeded by searching on a valine, 
which reveals two nearby clusters of valine and tyrosine.  (B) Strands are extended one residue 
in each direction by searching for pairs of residues (colored yellow), yielding clusters of potential 
inserts (colored green).  (C) The final backbone fragment (green) is fed to MadCaT, which 
identifies multiple compatible scaffolds.  One such scaffold (PDB ID=1E54, colored light grey) 
possesses many exact residue/rotamer matches to the assembled fragment (blue highlights) and 
many close matches (yellow highlights) that differ by a related residue (threonine to serine or 
valine to isoleucine) or by varying the rotamer.  

We repeat this process of iteratively searching for pairs of residues at a time and incorporating 

clusters from the search results until we assemble a native-like fragment of a sheet where 

almost every residue originates from a unique protein structure (two disconnected threonines 

were inadvertently drawn from the same structure).  This then provides α-carbon coordinates 

that we feed into the backbone search engine MaDCaT [39], which finds suitable scaffolds to 

incorporate this fragment.  One MaDCaT search result greatly resembles the β sheet built using 

Suns (Figure 3C).  This illustrates how the local search capabilities of the Suns search engine 
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complement existing coarse-grained search tools by bridging the gap between the world of 

smaller atomic interactions and the world of larger secondary-structure interactions. 

2.4.3 – Connecting Hot Spot Residues 

Suns can also be used to find scaffolds compatible with specified residues to provide an 

alternative implementation of the hotspot residue approach to design [28].  The user can select 

the hotspot of interest within PyMOL, search, and find all proteins in the PDB that position the 

given hot spot residues in the specified geometry. 

 

Figure 4 - Finding backbones compatible with hot spot residues.  (A) A Suns search at 0.7 Å 
RMSD cutoff for two hotspot residues previously identified by RosettaDock [38] for a 
hemagglutinin binder [28].  The majority of search results are helices that closely match the final 
designed protein.  The search query is shown in thick green sticks, the search result matches are 
shown as grey α-carbon traces, and the designed hemagglutinin binder is shown as a purple α-
carbon trace against a blue hemagglutinin surface.  (B) Searching for two threonine side chains 
at 0.6 Å RMSD cutoff reveals two backbone clusters that can connect them, one corresponding 
to an α helix (green) and the other corresponding to a β sheet (yellow).  The original search 
query is shown in thick yellow sticks. 

For example, Suns recapitulates the local backbone of a designed hemagglutinin binder [28].   

Figure 4A illustrates how searching for fragments of the original hotspot residues reveals a 
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prominent cluster of α helices matching the designed protein structure, indicating that the 

secondary structure of the interface could have been predicted solely from designability. 

Not every hotspot search will return a single solution for the backbone.  Sometimes searching 

for disembodied residues will reveal multiple distinct ways to thread the backbone between 

them (Figure 4B). 

2.5 – Discussion 

2.5.1 – User friendliness 

Suns greatly improves on existing search engines in terms of ease of use.  This encourages use 

among a broader scientific audience, particularly people who are not programmers.  Reducing 

the “activation barrier” to protein search encourages users to apply protein search in novel and 

previously unanticipated ways that may have never materialized had they been limited by the 

availability of collaborations to computational researchers. 

Ease of use also benefits non-scientists or students, who can now enjoy a private and unfiltered 

learning and discovery process.  Because of the low entry barrier, Suns can also be used as a 

teaching tool within the classroom to present general principles of protein biophysics.  An 

instructor can show how electron donors cluster around the ε-nitrogen of a tryptophan, or how 

water molecules form hydrogen bonds with the helical backbone on the soluble face of a helix. 

After all, it is one thing to be told that a structural element is a commonly recurring motif and it 

is another thing entirely to see with one’s own eyes 100 real examples of that motif from the 

PDB all superimposed on top of one another. 
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2.5.2 – Speed 

The Suns search engine greatly advances the state of the art in atomic substructure search 

speed.  These optimizations are reusable by other search engines, such as grouping elements 

into logical units so that a forward index can be employed or partitioning searchable spaces into 

local volumes to prevent combinatorial explosion of atomic configurations. 

This speed comes at a price: the most important optimization proved to be the coarse-graining 

of atomic substructures into groups of atoms corresponding to chemical motifs.  Suns differs 

from the Erebus search engine by not permitting searches for arbitrary atomic configurations 

and instead only allows searches for collections of motifs.  This motif-based approach allows 

Suns to improve the efficiency of its forward index, since motifs are more unique than atoms.  

For example, the indole ring of a tryptophan ring is highly unique thanks to the rarity of 

tryptophan, which allows the forward index to skip large volumes of protein structure that lack 

tryptophan.  On the other hand, if you view the indole ring as a nondescript bag of atoms (8 

carbons and a nitrogen) then this uniqueness is lost and the forward index cannot eliminate 

many structural regions. 

A useful avenue for inquiry would be to combine the best features of both Suns and Erebus.  It 

may be possible to let the user search for atomic subsets of chemical motifs, but under the hood 

the search engine supplies the entire motif to the forward index for the purpose of eliminating 

potential results.  If this worked, then it would combine the atomic granularity of Erebus with 

the search speed of Suns. 
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2.5.3 – Potential Applications 

Suns was originally built for protein design, but might prove useful to structural biologists.  They 

may be able to use Suns as a generalized PROCHECK [59] that can quickly assess if a given 

structural element was modeled accurately or not. 

2.5.4 – Generalizing protein search 

We initially built Suns to guide the protein design process, but we are releasing it as a general 

purpose search engine so that others may reuse it for applications we did not previously 

anticipate. 

Currently the public search engine only indexes protein structures.  We also plan to add support 

for ligand search queries so that Suns can be used for drug design.  While this paper describes a 

protein-specific application of the search engine, the underlying algorithm can be readily 

generalized to ligands and other macromolecules.  Such a generalized search could prove useful 

for drug discovery. 

2.6 – External resources 

The official web site for Suns: 

http://www.degradolab.org/suns/  

PyMOL plugin – Master branch: 

https://github.com/godotgildor/Suns 

PyMOL plugin – Version referenced in manuscript: 

https://github.com/godotgildor/Suns/commit/eed6b183097b6afb93c5336fb508f461eb9c9a8c 
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Command line search tool – Master branch: 

https://github.com/Gabriel439/suns-cmd 

Command line search tool – Version referenced in manuscript: 

https://github.com/Gabriel439/suns-cmd/commit/92c37b07b86e7e3136f732709eade5acb960adf0 

Search engine – Master branch: 

https://github.com/Gabriel439/suns-search 

Search engine – Version referenced in manuscript: 

https://github.com/Gabriel439/suns-search/commit/1100a3c12a34d1ba92f2531a4c1fdea0bb2339f5 
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2.8 – Supporting Information 

Table 1 - Default Motif Set. Default motifs indexed by the public server hosted at 
suns.degradolab.org.  (Motif Name): The common name for the motif.  (Residue and Atom 
Names): The atom names used to define the motif.  Some motifs may match multiple residue 
types, in which case all matching residues are listed with their corresponding atom names.  

Motif Name Residue and Atom Names 

Alanine Ala(Cα,Cβ) 
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Arginine Linker Arg(Cα,Cβ,Cγ,Cδ) 

Asparagine Linker Asn(Cα,Cβ,Cγ) 

Aspartate Linker Asp(Cα,Cβ,Cγ) 

Carboxamide Asn(Cγ,Oδ,Nδ), Gln(Cδ,Oε,Nε) 

Carboxyl Asp(Cγ,Oδ1,Oδ2), Glu(Cδ,Oε1,Oε2) 

Cysteine Cys(Cα,Cβ,Sγ) 

Glutamine Linker Gln(Cα,Cβ,Cγ,Cδ) 

Glutamate Linker Glu(Cα,Cβ,Cγ,Cδ) 

Guanidinium Arg(Cδ,Nε,Cζ,Nη1,Nη2) 

Histidine Linker His(Cα,Cβ,Cγ) 

Hydroxyl Ser(Cβ,Oγ), Thr(Cβ,Oγ), Tyr(Cζ,Oη) 

Imidazole His(Cγ,Cδ,Nδ,Cε,Nε) 

Indole Trp(Cγ,Cδ1,Cδ2,Cε1,Cε2,Nε,Cζ1,Cζ2,Cη) 



31 

 

Isoleucine Ile(Cα,Cβ,Cγ1,Cγ2,δ) 

Lysine End Lys(Cδ,Cε,Nζ) 

Lysine Linker Lys(Cα,Cβ,Cγ,Cδ) 

Methionine End Met(Cγ,Sδ,Cε) 

Methionine Linker Met(Cα,Cβ,Cγ) 

Peptide Bond All Residues(Cα,C,N,O) 

Phenylalanine Linker Phe(Cα,Cβ,Cγ) 

Phenyl Phe(Cγ,Cδ1,Cδ2,Cε1,Cε2,Cζ), Tyr(Cγ,Cδ1,Cδ2,Cε1,Cε2,Cζ) 

Proline Ring Pro(Cβ,Cγ,Cδ) 

Serine Linker Ser(Cα,Cβ) 

Threonine Linker Thr(Cα,Cβ,Cγ) 

Tryptophan Linker Trp(Cα,Cβ,Cγ) 

Tyrosine Linker Tyr(Cα,Cβ,Cγ) 
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Valine Val(Cα,Cβ,Cγ1,Cγ2) 

 

Table 2 - Search Parameters for all figures.  (Figure): The figure and sub-figure the selections and 
searches correspond to.  (Selection / {Search}): No braces indicates a saved selection referenced 
by searches. Braces indicate a search based in terms of previous selections of the form {sel1, 
sel2, …}.  “sc” indicates only the side-chain was taken from the previously saved selection and 
“bb” indicates only the backbone atoms were used.   (Structure): The PDB ID the selection 
originated from.  (Result ID): The search result serial ID number to disambiguate selections 
where there are multiple results from the same PDB ID.  (Chain): Chain the selection originated 
from.  (Residue): Residue selected.  (Atoms): Selected atoms.  (RMSD Cutoff): Root-mean-
squared deviation cutoff used for a given search.  With the exception of initial selections for 
each figure, all selections are derived from results returned from the preceding search query in 
the table.  †: Structure provided by the David Baker laboratory for their hot spot motif for the 
hemagglutinin binder [28].  

Figure Selection / 
{Search} 

Structure Result 
ID 

Chain Residue Atoms RMSD 
Cutoff (Å) 

2 1 2GBP N/A A Arg4 Cδ,Nε,Cζ,Nη1,
Nη2 

 

 {1}      0.2 

 2 3A6R 1 A Asp61 Cγ,Oδ1,Oδ2  

 {1,2}      0.2 

 3 3P02 0 A Arg325 Cα,Cβ,Cγ,Cδ  

 {1,2,3}      0.3 
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3A 4 2GBP N/A A Val88 Entire Residue  

 {4}      0.1 

 5 4ASM 0 B Val353 Entire Residue  

 6 2WUR 0 A Tyr92 Entire Residue  

3B {4bb,6bb}      0.2 

 7 2JCQ 1 A Thr151 Entire Residue  

 {4bb,7}      0.2 

 8 2JCQ 0 A Thr149 Entire Residue  

 {7sc,8bb}      0.5 

 9 3B34 0 A Thr37 Entire Residue  

 {5bb,8sc}      0.5 

 10 3SUU 0 A Asp102 Entire Residue  
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 {6bb,7sc}      0.5 

 11 3D9A 0 H Thr482 Entire Residue  

 {6bb,8sc}      0.5 

 12 3Q1I 0 A Thr561 Entire Residue  

4A 13 † N/A B Met503 Cγ,Sδ,Cε  

 14 † N/A B Phe504 Cγ,Cδ1,Cδ2,Cε
1,Cε2,Cζ 

 

 {13,14}      0.7 

4B {7sc,8sc}      0.6 
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CHAPTER 3 – PhoQ, a histidine kinase, signals across the membrane using a 
scissoring mechanism 

3.1 – Abstract 

All organisms signal across membranes to sense and adapt to external environments.  Bacteria 

signal across the membrane primarily using two-component systems (TCSs), consisting of a 

membrane-spanning sensor histidine kinase and a cytoplasmic response regulator.  In 

Salmonella enterica and other gram-negative bacteria, the PhoPQ TCS aids virulence by sensing 

cations, antimicrobial peptides, and low pH, yet little is known about what structural changes 

transmit the signal across the membrane.  Here, we built a model of PhoQ signal transduction 

using Bayesian inference, based on disulfide crosslinking data and homologous crystal 

structures.  We conclude that PhoQ inhabits two structurally distinct states that alternate via a 

scissoring motion.  These states differ in regions critical to signal transduction such as the 

membrane depth of the sensor’s acidic patch and the helical packing of the dimer interface.  A 

comprehensive structural comparison of homologous two-component domains indicates this 

scissoring transition also occurs in other TCSs, suggesting a general mechanism of signal 

transduction. 

3.2 – Introduction 

The PhoQ sensor histidine kinase belongs to a family of two-component signal transduction 

systems, which dominate signaling across prokaryotic membranes [92].  These systems respond 

to diverse environmental signals, such as low pH [32], small molecules [49,60], ions [33], and 

peptides [52], and regulate critical responses, such as ion transport and virulence [69].  A 

prototypical two-component system (TCS) includes a transmembrane sensor histidine kinase 
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(HK) and a cytoplasmic response regulator [65].  The periplasmic sensor responds to 

environmental signals by promoting autophosphorylation of a conserved histidine, followed by 

phosphotransfer to a conserved aspartate residue on its corresponding cytoplasmic response 

regulator.  Phosphotransfer activates the response regulator, which in turn modulates genetic 

response [80]. 

Although TCSs have been shown to be diverse [25], the topology of a canonical sensor HK 

(Figure 5A) consists of a periplasmic sensing domain flanked by two transmembrane (TM) 

helices, followed by one or more small domains, such as HAMP in PhoQ (named for the 

domain’s presence in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, 

and phosphatases) [30], and finally the kinase domain.  This domain is typically known as the 

dimerization and histidine phosphotransfer domain (DHp), which contains the substrate (a 

conserved histidine) for autophosphorylation.  The second part of this domain is a catalytic, ATP-

binding domain that mediates autophosphorylation and phosphotransfer reactions.  A 

functional histidine kinase is homodimeric (Figure 5B) with an extended dimer interface along 

the entire length of the molecule [35]. TCSs frequently reuse these domains, so mechanistic 

insights into PhoQ inform TCS signal transduction in general. 
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Figure 5 - Structural representations of PhoQ.  (A) Schematic of the topology of a PhoQ 
monomer. The numbers indicate residue numbers for E. coli PhoQ (UniProt: P23837). (B) Crystal 
structures used for structural comparison of each domain of PhoQ. The corresponding PDB ID is 
listed next to the structure. One monomer is color-coded and the other monomer is in grey. (C) 
A model of the first three domains of PhoQ: sensor, transmembrane (TM), and HAMP domains. 
The dimerization and histidine phosphotransfer domain (DHp) and ATP-binding domain (ABD) 
are added for clarity but were not modeled.  

Structural efforts have attempted to elucidate the mechanistic details of signal transduction 

spanning several domains from the periplasmic sensors to the cytoplasmic DHp domain, and 

several structures have been reported.  Crystal structures are now available for multiple 

domains of two-component and chemotaxis systems [2,22,27,103], including a structure of the 

periplasmic sensor domain of PhoQ [17].  NMR and X-ray structures have also been solved for 

HAMP domains as well as transmembrane regions [24,82].  Recently, a full length structure of an 
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engineered, cytoplasmic two-component sensor (lacking a TM domain) was determined [22], 

and the structure of the cytoplasmic region of VicK, from Streptococcus mutans, was reported 

[98].  Despite these advances, there remain several competing proposals for a unified 

mechanism of transmembrane signaling. 

Early studies on chemotaxis systems proposed a piston-like mechanism for signal transduction 

based on cysteine-scanning disulfide formation, mutagenesis, and crystallography [16].  In this 

model, a transmembrane helix signals across the membrane using a rigid translation orthogonal 

to the plane of the membrane [26], and later structural comparisons of the TorS TCS supported 

this hypothesis [70].  However, the measured displacements in the piston model are quite small 

in comparison to the length of the sensor HK protein itself or to the conformational changes 

expected to power a large rearrangement of the catalytic site.   

In contrast, studies on cytoplasmic signaling domains propose a gearbox model where helical 

rotations within a four-helix bundle change the packing interfaces between helices [45].  Other 

observed motions include inter-helical torqueing [22], helix-bending [98], or DHp domain 

cracking [19].  Another study posits a combination of these models [14].  However, all proposed 

mechanisms lack a crucial ingredient: structural evidence for these motions extending into the 

transmembrane domain.   

Critical to a membrane signal transduction model is a structural model of the TM portions of 

sensor HKs.  Three structures of monomeric HK transmembrane domains were recently solved 

using NMR of isolated domains in micelles [66].  All three of the reported structures are limited 

in their utility for modeling a physiological dimeric interface, and without structural analyses 
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from a bona fide HK TM domain the structural starting point is not obvious.  However, one 

crystal structure has been solved for the dimeric TM domain of a homologous protein: the HtrII 

sensory transducer [37].  A previous study utilized the HtrII X-ray structure as a model for the 

transmembrane domain in HKs [37], and we have also reported similarities between the TM 

domains of HtrII and PhoQ [34].  We demonstrated that the same pronounced water hemi-

channel observed in HtrII plays an important mechanistic role within PhoQ [34].   

Previously, we explored local changes in the TM domain by combining molecular dynamics 

simulations with disulfide crosslinking data [61].  To elucidate larger scale changes across the 

membrane, we incorporate new crosslinking data in the HAMP and juxtamembrane regions of 

PhoQ with previous data, and analyze it using multi-state Bayesian modeling [9,79].  This 

approach provides the first investigation into the structures of the two signaling states of PhoQ, 

which interconvert through a large scissoring motion.  Our subsequent quantitative structural 

analysis of additional TCSs also divulge large and recurring scissoring motions. Scissoring 

accounts for a greater proportion of observed motions than proposed piston-shift [16] or 

gearbox [24] signal transduction mechanisms. 

3.3 – Results 

We probed the TM domain and the neighboring HAMP and periplasmic domains of PhoQ using 

disulfide-scanning mutagenesis.  Building upon our previous analysis of the periplasmic helix at 

the dimer interface [35], new single cysteine residue mutations were introduced along the 

transmembrane helices and at selected positions within the HAMP domain (Figure 6A and B).  

Without the oxidizing environment of the periplasm, measuring the extent of disulfide bond 
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formation in these mutants required the presence of an oxidative catalyst, Cu(II)(1,10-

phenanthroline)3 (CuPhen).  For each residue in the predicted TM domain, we calculated the 

fraction of crosslinking from the measured intensities of covalent dimer and monomer bands on 

a Western blot. 

 

Figure 6 - Comparison of the crosslinking efficiency with structural models.  (A) PhoQ TM1-
periplasm-TM2 model in a lipid bilayer. The color-coded helical regions (blue-green-red, 
respectively) indicate where cysteine mutations were made.  An orange envelope marks the 
water hemichannel.  (B) PhoQ TM1-TM2-HAMP model in a lipid bilayer. Color-coding (blue-red-
cyan, respectively) is applied to the regions probed by cysteine mutations.  The water 
hemichannel is shown as in (A). (C) Inter-monomer distances between the dimeric structures of 
structural models for TM1-periplasm. The first TM helix is modeled from HtrII (PDB ID: 1H2S) 
and the periplasmic helix is from E. coli PhoQ (PDB ID: 3BQ8). The measured distances are 
between Cβ-Cβ’ of corresponding residues (or Cα-Cα’ for glycine). Black lines indicate linear fits 
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to each helical segment. (D) Inter-monomer distances between dimeric structures of structural 
models for TM2-HAMP.  The second TM helix is from HtrII, and the HAMP helix is from 
Archaeoglobus fulgidus (PDB ID: 2ASW). Distances and fits were done as in (C). (E) Crosslinking 
data from the full length PhoQ protein in a native membrane for cysteine mutants 22 through 
61. (F) Crosslinking data from the full-length PhoQ protein in a native membrane for cysteine 
mutants 192 to 226.  

3.3.1 – Comparison of disulfide crosslinking efficiency to homologous crystal structures 

The crosslinking efficiency should depend inversely on the distance between the reacting thiol 

groups [67], so in an initial modeling approach, we compared the measured crosslinking 

efficiency for all three domains against their individual structures or homologous structures.  To 

model a full-length PhoQ, we mapped the periplasmic crosslinking data on the crystal structure 

of the PhoQ periplasmic sensor, the transmembrane crosslinking data on the transmembrane 

structure of HtrII, and the cytoplasmic crosslinking data on the HAMP structure of Af1503 from 

Archaeoglobus fulgidus (Figure 5B).  These comparisons test how faithfully these individual 

domains represent the full-length structure of PhoQ (Figure 5C).  Importantly, the crosslinking 

data also adds new structural insight by spanning the intact juxtamembrane regions, which were 

not present in previous single domain structures.  

We compared the inter-residue distances in the transmembrane helical bundles of HtrII with the 

corresponding experimental crosslinking data (Figure 6).  The transmembrane four-helix bundle 

of HtrII and other HKs are oriented with the N-terminus of TM1 and the C-terminus of TM2 

directed towards cytoplasm.  The core of the HtrII bundle is well packed near the periplasm, but 

its helices kink and diverge slightly near the cytoplasm.  The crosslinking fractions agree 

qualitatively with this bipartite structure.  Near the periplasmic end of the bundle, we observe a 

periodic pattern of crosslinking efficiency, close to that seen for an ideal α-helix, which repeats 



42 

 

with a period of 3.6 residues.  Fitting a sinusoidal function to the data resulted in a period of 3.5 

residues for TM2 and 3.7 residues for TM1 (Table 3).  We computed a phase offset to determine 

if there was relationship between variation in crosslinking efficiency and the expected distance 

variation for an alpha helix.  

Table 3 – Least-squares fitting of a sinusoidal function to the crosslinking efficiency of PhoQ and 
the inter-residue distances of PhoQ, HtrII and Af1503 crystal structures. 

Helix Period1 Phase offset2 

PhoQ TM1 3.67 ± 0.13 
173° 

HtrII TM1 3.69 ± 0.03 

PhoQ TM2 3.53 ± 0.30 
168° 

HTrII TM2 3.67 ± 0.08 

PhoQ HAMP 3.53 ± 0.20 
153° 

AF1503 HAMP 3.54 ± 0.02 

1 Number of residues per repeat 

2 Differences in phase for the fitted sinusoidal waves between the 

experimental crosslinking data and the inter-monomer distance data (Cβ

-Cβ’ distance or Cα-Cα’ for Gly) taken from corresponding crystal 
structure 

 

There was little, if any, crosslinking observed in the cytoplasmic end of the bundle along the 

polar cavity of PhoQ (Figure 6E and F). Thus, the low degree of crosslinking near the cytoplasmic 

side of the bundle agrees with the presence of a water hemichannel, shown as solvent 

accessible surface in Figure 6A and B. However, the complete lack of crosslinking on the 

cytoplasmic side of PhoQ TM1 helices cannot be explained by the HtrII structure.  The lack of 

cross-linking suggests a larger separation in the PhoQ hemi-channel compared to that in HtrII.  

At the periplasmic side of the TM bundle, we observed that the TM1 helices crosslink as strongly 

as the TM2 helices, despite the TM2 helices being closer together in the HtrII crystal structure.  
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Taken together, these data indicate that HtrII is only an approximate model for the TM domain 

of PhoQ. 

The structure of the functional dimeric form of the periplasmic sensor domain has previously 

been determined [17] and validated in full-length PhoQ by disulfide crosslinking [35]. However, 

this structure is missing the short linker that connects TM1 to the N-terminal helix of the sensor, 

whereas our new crosslinking data does provide structural information in this region (Figure 6E). 

Interestingly, the crosslinking efficiency maintains a sinusoidal variation with a consistent phase 

through this linker (Figure 7A and B), suggesting that TM1 and the N-terminal helix of the sensor 

domain form a single uninterrupted helix. The similarity of their phases can be appreciated 

qualitatively by inspection of the data, or quantitatively by fitting the data for TM1 and the 

periplasmic helix to a sinusoidal function (Figure 7). The computed phases for the two structures 

match within experimental error. However, there is a small deviation at the junction of the two 

helices near residue 43, which might reflect a slight kink or bend in the helix as it emerges from 

the membrane. 
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Figure 7 - Analysis of the fractional crosslinking of PhoQ residues.  (A) Fractional crosslinking of 
PhoQ residues 20-62 (black lines with circles) are fitted using a sine wave over the regions that 
correspond to the domains of PhoQ (dashed lines) the colors are maintained from Figure 2: dark 
blue is the well-packed domain, red are residues that line the cytoplasmic cavity and green are 
the HAMP residues. These data demonstrate a right-handed helix (ω=3.62) for TM1 that is in 
phase with the previously reported data. (B) Representative western blots of PhoQ residues 
reported in A. Each lane represents the data point directly above it in A. Arrows on the right of 
the figure indicate 1) the crosslinked PhoQ dimer band 2) an E coli lysate band 3) PhoQ 
monomer band. (C) Fractional crosslinking of PhoQ residues 192-226 are fitted using a sine wave 
over the regions that correspond to the domains of PhoQ (dashed lines) the colors are 
maintained from Figure 2: dark blue is the well-packed domain, red are residues that line the 
cytoplasmic cavity and light blue is the HAMP.  These data demonstrate TM2 is a left-handed 
helix (ω=3.29) with a striking lack of continuity with the first HAMP helix due to a disturbance in 
the phase of the helix which arises from residue P208. (D) Representative western blots of PhoQ 
residues reported in (C). The numbering of the arrows on the right is identical to (B).  

Another short linker of unknown structure connects TM2 to the HAMP. This region corresponds 

to the cytoplasmic, divergent end of the bundle, resulting in reduced crosslinking over a 6-
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residue segment spanning residues 206-211. A conserved Pro residue at position 208 of PhoQ is 

likely to lead to a bend in the helix in this region [61,104]. The sine waves fitted to the 

crosslinking data within TM2 are out of phase with respect to the HAMP helix, suggesting the 

linker between these two regions either adopts a distorted helical or non-helical geometry 

(Figure 7C and D). 

3.3.2 – Multi-state Bayesian modeling 

We collected data on the full-length PhoQ protein in a native membrane, which was free to 

structurally fluctuate between signal transduction states.  Therefore, we do not assume that all 

crosslinking experiments necessarily probe a single structural state.  For example, one structural 

state cannot explain both high TM1-TM1’ crosslinking (residues 32-45) as well as high TM2-TM2’ 

crosslinking (residues 192-206) (Figure 6E and F) without introducing steric clashes.  

Consequently, we hypothesize the presence of multiple, distinct structural states in the sample. 

We used a multi-state Bayesian modeling of cysteine crosslinking data [9],  which 

simultaneously models several structures based on experimental and prior information (such as 

the available structural information), and infers additional parameters (e.g., uncertainty in the 

data, 𝜎0, and population fractions, 𝑤𝑖). 
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Figure 8 - Representation and score.  Each chain of PhoQ homodimer was divided into 6 rigid 
bodies (represented by a blue trace in one monomer) and 5 short intervening flexible segments 
(red traces). Rigid body segments are indicated by the corresponding residue ranges. Each 
residue was represented by a bead centered on its Cα atom. The score terms included the 
likelihood score for cysteine cross-linking data (yellow lines) as well as for template structure 
information (applied to the HAMP domain, light blue circle), a statistical potential to enforce the 
correct stereochemistry of the flexible segments, the VEz  potential to account for the membrane 
environments (applied to TM region, grey box), the layer restraint to anchor residue F17 to inner 
leaflet (black lines), and the excluded volume.  

 

We divided the PhoQ dimer into 6 rigid bodies for each monomer, for a total of 12 rigid bodies 

in the dimer (Materials and Methods and Figure 8).  A coarse-grained representation of PhoQ 

was used, in which each residue is modeled as a bead centered on the Cα atom. The 

conformations of the dimer were explored without imposing any symmetry between the two 

chains, using a Gibbs sampling scheme relying on a Monte Carlo algorithm enhanced by Replica 
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Exchange [79]. The sampled models were clustered based on the predicted cross-linked 

fractions. Thus, members of the same cluster predict similar data, although they might be 

structurally different, especially in regions that are not restrained by the data (Figure 9 and 

Figure 8). 

 

Figure 9 - Analysis of the most populated cluster found in 2-state modeling.  Backbone ribbon 
representation of the cluster representative of: (A) sensor domain in State-1; (B) TM domain in 
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State-1 as viewed from the sensor domain looking into the cytoplasm; (C) HAMP domain in 
State-1; (D) sensor domain in State-2; (E) TM domain in State-2, viewed from periplasm looking 
into the cytoplasm; (F) HAMP domain in State-2. The cluster structural variability is represented 
by the transparent density volumes calculated using the VMD VolMap tool [46] . The color-
coding for (A-F) is as follows: periplasmic sensor helices (residues 45 to 61) are in green, the 
Mg2+-binding, acidic patch (residues 137 to 150) in magenta; the TM1 and TM2 helices of the TM 
domain are in blue and red, respectively; and the HAMP domain in cyan. (G) Overlay of model 
data, predicted by the highest likelihood model of the cluster (grey bars), and experimental 
cross-linked fractions, color-coded by the domain definition above.  

Below, we focus structural analysis on the most populated cluster, which corresponds to the 

peak with the greatest probability in the posterior probability distribution of states, given the 

cross-linking data and domain models. Cluster representatives and predicted cross-linked 

fractions for all clusters with a population greater than 3% are reported in Figure 8 and Table 4.  

To predict the minimal number of states that best explain the crosslinking data, the Bayesian 

approach was applied independently for 1, 2, and 3 states. 
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Table 4 - Properties of the clusters with population greater than 3% found with 1-state, 2-state 
and 3-state modeling: cluster population, average and best χ2 and likelihood score (-log 
p(D|M,I)). 

Number of states Cluster id Cluster population 
Center Best 

χ2 L χ2 L 

1 

1 0.16 0.85 -33.70 0.75 -46.64 

2 0.06 0.94 -30.47 0.79 -39.69 

3 0.05 0.91 -35.26 0.80 -43.99 

4 0.04 0.78 -43.38 0.66 -57.33 

5 0.03 0.79 -39.72 0.71 -50.21 

2 

1 0.12 0.65 -59.60 0.54 -67.78 

2 0.10 0.84 -29.91 0.70 -49.31 

3 0.06 0.73 -38.59 0.64 -57.11 

4 0.05 0.83 -31.29 0.69 -44.36 

5 0.04 0.71 -48.21 0.59 -61.72 

6 0.04 0.79 -26.59 0.69 -44.70 

7 0.04 0.77 -33.16 0.67 -44.82 

3 

1 0.16 0.79 -23.85 0.69 -43.50 

2 0.06 0.64 -48.47 0.55 -62.76 

3 0.06 0.84 -31.42 0.65 -53.75 

4 0.05 0.82 -16.56 0.73 -45.09 

5 0.04 0.76 -36.36 0.65 -51.36 

1 0.16 0.79 -23.85 0.69 -43.50 

2 0.06 0.64 -48.47 0.55 -62.76 
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3.3.2.1 – 1-state modeling. 

The cluster analysis of the sampled models (Table 4) revealed that the experimental data could 

not be fully explained by a single structure. The 1-state model was in good agreement with the 

predicted cross-linked fractions in the periplasmic side of TM1 (residues 13 to 45) and 

cytoplasmic side of TM2 (residue 205 to 215). However, the model does not match a large 

region of data with a high cross-linked fraction, the periplasmic side of TM2 (residues 195 to 

205). The reason is that a single structure cannot simultaneously reconcile high crosslinking on 

the periplasmic side of both TM1 and TM2. Instead, for the TM2 periplasmic region, the model-

predicted cross-linked fractions equal to zero. Therefore, in the 1-state model, proximity 

between the periplasmic region of TM2 and TM2’ is not observed due to steric exclusion by the 

TM1 and TM1’ helices. 

3.3.2.1 – 2-state modeling 

The most populated cluster of two states found by 2-state modeling explained crosslinking data 

better than 1-state modeling, as shown by the lower likelihood score (Table 4) and the improved 

agreement between the model and the data for the periplasmic TM2 region and surrounding 

residues (185-205) (Figure 9). The inferred population fractions of State-1 and State-2 were 

40.5% and 59.5%, respectively. The two states differ at the dimeric interface in the arrangement 

of the helices from every domain. 

For the periplasmic region, State-2 resembles the crystallographic structure of the PhoQ sensor 

domain (Cα RMSD = 3 Å), 3BQ8, previously proposed to correspond to the activated state [17]. 

In contrast, in State-1 the periplasmic helices are closer to a parallel configuration. The 
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periplasmic helices transition between a parallel (State-1) and a crossing configuration (State-2); 

this transition corresponds to a scissoring motion. A consequence of the scissoring motion is a 

displacement of the acidic patch (residues 145-154) in the periplasmic domain, from resting on 

the surface of the membrane in State-1 to a position deeper in the membrane in State-2.  

The scissoring motion of the periplasmic, interfacial dimer helices propagates into the TM 

domain. This motion is best seen on the periplasmic side of the TM bundle (top down view of 

helical bundle in Figure 9B and E), where the pairs of helices take turns displacing each other.  

State-1 predicts that the TM1 and TM1’ helices (blue) pack close and displace the TM2 and TM2’ 

helices (red), while in State-2 the TM2 and TM2’ helices move towards the center of the bundle 

and displace the TM1-TM1’ intersubunit helical contacts.  This displays how the scissoring 

motion propagates within the bundle, because the scissoring towards the bundle center of one 

helix pair causes the scissoring out of the other pair. The 2-state modeling explains the high 

crosslinking observed in the same region by postulating the existence of a mixture of states.  

For the TM domain in particular, the modeling added valuable insight. The cytoplasmic regions 

of both TM1 and TM2 show low crosslinking (thought to be due to a water pocket, colored 

orange in Figure 6A and B) and therefore were not as structurally constrained as regions that 

show more regular periodic crosslinking (periplasmic and HAMP helices).  

The large changes seen in the TM domains are coupled with smaller changes in the HAMP 

domains.  Specifically, the scissoring displacement seen in the TM domain is also observed for 

the HAMP helices. In State-1, the helix 1-helix 1’ distance is shorter than the helix 2-helix 2’ 

distance near the N-terminal end of the bundle; this relationship reverses in State-2 (Figure 9C 
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and F). Presumably, this conformational change is coupled to additional, previously 

characterized changes in the catalytic and DHp domains [2,27]. 

3.3.2.3 – 3-state modeling 

Models in the most populated clusters in 3-state modeling explain the data worse than those 

found by 1-state and 2-state modeling, as indicated by the average and best likelihood scores 

for the clusters (Table 4). The previously identified models were not found here because we 

imposed a lower bound of 0.2 on the individual population fractions 𝑤𝑖 (Materials and 

Methods).  

3.3.2.4 – Selecting the best model 

A single state model does not explain all the cysteine cross-link fractions, thus strengthening the 

hypothesis that the sample contains multiple conformations of PhoQ.  The 2-state model fits the 

data significantly better than either 1- or 3-state models.  The 2-state model suggests a 

reorientation of the periplasmic domain accompanied by a propagated scissoring movement 

through the TM and HAMP.  Therefore, the 2-state model is the most parsimonious explanation 

of the data. 

3.3.2.5 – Deviations between crosslinking data and the 2-state model 

While the 2-state model best fits the experimental observations, a few data points still could not 

be explained. In particular, isolated deviations were observed at residues 52, 195, 199, 208, 209, 

and 218 (Figure 9G).  These discrepancies can in principle originate from inaccuracies of the 

Bayesian model (including the forward model, noise model, sampling, and the assumed number 

of different states) or the representation of the system. To discriminate between these 
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possibilities, we investigated the phenotypes of the cysteine mutants, by measuring 

transcriptional activity at low and high Mg2+ concentration (Figure 10), as described previously 

[68]. 

 

Figure 10 Phenotypic changes in response to Cys mutations in PhoQ.  We assessed the activity of 
Cys mutants by the Miller assay [68]. TIM206 (mgtA::lacZ ΔphoQ) cells were transformed with a 
plasmid encoding PhoQ and a Cys mutation at a single position. Mutation to Cys was tolerated 
at most positions. Positions known to have a critical function also have no activity when 
mutated (e.g., 202). Many positions where the Bayesian model does not explain the data 
(residues 195,208, 209, and 218) also do not respond to Mg2+. 

The mutants P208C and L209C have low β-galactosidase activity at both high and low 

concentrations of Mg2+.  By contrast, the wild-type protein activity changes 2-5 fold between 

these Mg2+ concentrations.  Interestingly, a kink in TM2 occurs between P208 and L209 in an MD 

model of the TM domain of PhoQ [61], suggesting this region is a fulcrum of movement.  For 
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these positions, we hypothesize that these cysteine mutations abolish signal transduction 

because they tamper with the helical kink.   

Similarly, F195C and L218C showed low activity at both Mg2+ concentrations. Both mutants are 

positioned to break the chain of signaling because they lie in transition areas between domains:  

residue F195 is between the periplasm and the TM, while L218 is in the loop between the TM 

and HAMP. For F195C, the helical period between experimental and model data is shifted, which 

indicates a potential helical rotation in that region (residues 195 to 199).  This portion of TM2 

was modeled as a rigid body extending from 194-205, but the discrepancy suggests that two 

rigid bodies or a flexible chain might be more appropriate representations for this region. For 

L218C, this mutation was part of the loop region unconstrained by existing crystal structure 

data, which could account for why the model did not accurately predict its crosslinking.   

Residue 52, on the other hand, shows activity similar to wild-type at low Mg2+, but does not 

agree with the 2-state model.  Because this mutant has reasonable activity data, we focused on 

the crosslinking data and observed an unusually broad peak of high crosslinking for residues 50-

52, which is inconsistent with the helical period seen in the crystal structure (PDB ID: 3BQ8).  

This discrepancy encouraged us to repeat the previously published crosslinking experiments for 

a portion of the periplasmic helix at the dimer interface.  In this region, disulfide crosslinks occur 

spontaneously and do not require the aid of an oxidant like CuPhen, as is required for HAMP and 

TM domains.  The previous periplasmic crosslinking experiments [35] used long, overnight 

incubations in LB medium.  However, when we incubated for shorter periods of time (to avoid 

spurious crosslinks) in minimal medium (for precise control of Mg2+ concentration), we found 
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that residue 50 has not crosslinked nearly as much as residue 51 and that the extent of 

crosslinking of residue 52 was dependent on the Mg2+ concentration (Figure 11).  The reduced 

crosslinking for both residues improves agreement with an ideal helical period (Figure 11, black 

dotted line).  This indicates that the Bayesian analysis had identified an artifact in the data, 

corresponding to a cross-link that stabilizes a non-native conformation occurring only after a 

long incubation time.  
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Figure 11 - Comparison of crosslinking efficiency for the periplasmic helix under different 
conditions.  (Left axis) Green curve is original crosslinking data [35]. Blue and red curves are new 
data collected in minimal media at mid-log growth.  Error bars represent the standard deviation 
of triplicate experiments. (Right axis) Black dotted line is a sinusoid fit to the inverse, fractional 
inter-monomer distances as measured between Cβ-Cβ’ (or Cα-Cα’ for Gly) of 3BQ8, represented 
by black diamonds.  

In summary, Bayesian modeling helped us rationalize flaws originating from artifactual disulfide 

formation (residue 52), inactive constructs (residues 208 and 209), representation inaccuracies 

(residue 195), and loop regions not sufficiently constrained by structural data (residue 218).  In 
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traditional modeling, these points would be considered as outliers and removed from the data 

set. In the Bayesian framework, such a manual intervention is not necessary because an 

uncertainty parameter is associated to each data point, thus allowing those points that are not 

consistent with the bulk of the data to be properly down-weighted in the construction of the 

model. Instead, the 2-state model motivated additional functional experiments to explain the 

large differences between the observed and predicted data. 

3.3.3 – Structural variation between signaling states 

The 2-state model proposes conformational changes between State-1 and State-2 larger in 

amplitude and more closely related to a scissoring motion than the anticipated motions from 

the piston and gearbox models [16,27].  To test whether or not the scissoring motion is unique 

to PhoQ, we quantified the structural variability among the known structures of two-component 

HK domains.  A number of crystallographic and NMR structures of dimeric HK domains are 

available, and we selected the 4-helix bundles where each dimer contributes two helices.  We 

also required that domains had multiple structures in multiple conformations, to be able to infer 

movement from the crystal structures (Table 5).  First, we examined the structures used to 

propose the original piston shift and gearbox motion models.  The piston shift was originally 

described based on the aspartate sensor, Tar [16], while the gearbox model was based on HAMP 

structures including a HAMP(Af1503)/DHp(EnvZ) chimera [27].  Next, we also quantified the 

structural variability seen in the citrate sensor domain in the presence and absence of citrate 

[49], as well as the DesK DHp structures believed to represent different signaling states [2].  To 

compare the structural variability in these two-component domains, we identified pairs of 



58 

 

symmetry-related helices likely to be relevant to signal transduction, either as judged by the 

original authors [16,27] or by virtue of the helices connecting adjacent domains. 

We describe the changes in helix orientation by relying on six independent degrees of freedom 

that define a convenient coordinate system.  Two degrees of freedom match previous signaling 

models; a translational motion parallel to the bundle axis (“height”=𝑧) corresponds to the piston 

model, and a rotation about the helix axis (“helix phase”= 𝜓) corresponds to the gearbox 

model.  The remaining four degrees of freedom are helix tilt towards the bundle axis (“towards 

tilt”=𝜑1), helix tilt perpendicular to the “towards tilt” (“sideways tilt”=𝜑2), radial displacement 

from the central bundle axis (“radius”=𝑟), and global rotation of individual helices relative to 

their neighbors around the central bundle axis (“bundle phase”=𝜃) (Figure 12).  We classify 

radial displacements (𝑟) and towards tilt (𝜑1) as scissoring motions. 
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Figure 12 - The six degrees of motion in the order they are applied to fit any given helix:  ψ: first 
rotation about Z axis; φ1: rotation about Y axis; φ2: rotation about X axis; r: translation along X 
axis; z: translation along Z axis; θ: second rotation about Z axis.  

To compare contributions of each change, we measured the variation along each degree of 

freedom and normalized all measurements to displacements.  For every pair of helices, we 

defined the two largest changes contributing to the total RMSD variation in Table 5.  For each of 

the displacements in the table, two distances are given (e.g. Tar Sensor largest motion, 𝜑2: 

2.5/2.3 Å).  Those distances correspond to a measurement of change in each of the dimers that 
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make up the 4-helix bundle (e.g., the largest difference between two symmetry-matched helices 

in chain A was 2.5 Å, and 2.3 Å refers to the same in chain B).   

Table 5. The largest quantified changes between pairs of correlated helices in two-component 
domains. 

Domain 

Chains/ 

Residues 

Largest change 
(Å) 

2nd largest 
change (Å) PDB IDs 

Tar Sensor  (A,B)/ 

(42-57) 

sideways tilt 

(𝜑2) 

2.5 / 2.3 

height 

(𝑧) 

1.8 / 1.6 

1MJW, 1LIH, 

1VLS, 1VLT, 

1WAS, 1WAT, 

2ASR, 2LIG 

Citrate 
Sensor 
(CitA*) 

B/ 

(12-25, 45-
51) 

radius 

(𝑟) 

5.5 / 5.2 

bundle phase 

(𝜃)  

3.8 / 4.4 

1P0Z, 2J80 

AF1503 
HAMP 

helix 1  

(A,B)/ 

(280-297) 

towards tilt 

(𝜑1) 

2.1 / 1.7 

helix phase 

(𝜓) 

1.7 / 1.8 

2LFR, 2LFS, 

3ZRV, 3ZRW, 

3ZRX 

AF1503 
HAMP 

helix 2  

(A,B)/ 

(310-328) 

towards tilt 

(𝜑1) 

2.1 / 1.4 

radius 

(𝑟) 

1.7 / 1.4 

same as above 

EnvZ DHp  (A,B)/ 

(333-345) 

sideways tilt 

(𝜑2) 

3.1 / 2.4 

towards tilt 

(𝜑1)  

1.6 / 2.1 

same as above 

DesK DHp  (A,B)/ 

(182-198) 

helix phase 

(𝜓)  

3.2 / 3.2 

radius 

(𝑟) 

3.0 / 2.7 

3EHF, 3EHH, 

3EHJ, 3GIE, 

3GIF, 3GIG 

DesK DHp (A, B)/ 

(224-238) 

radius 

(𝑟) 

2.4 / 2.9 

towards tilt 

(𝜑1) 

1.5 / 2.4 

same as above 

Piston (𝑧) and gearbox (𝜓) degrees of freedom are shown in red to illustrate that these are not representative of 
TCS signal transduction in general. 

* Both helices from chain B were measured because all of the displacement was limited to that chain. 

 

The quantified changes for the aspartate sensor domain agree well with the qualitative 

observations of a “swinging piston” [16] or torque [22] mechanism of signal transduction.  For 
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the Tar sensor helix in both chains A and B, sideways tilt (𝜑2) contributes the greatest 

displacement, followed by piston shift (𝑧). 

However, the HAMP(Af1503)/DHp(EnvZ) chimera is more complex than suggested by the 

proposed gearbox model.  For helix 1 of chains A and B of the HAMP domain, helix phase 

changes (𝜓) feature prominently, agreeing with the gearbox mechanism. However, swinging 

toward the bundle axis (𝜑1) contributes even larger changes.  In contrast, helix 2 of chains A and 

B features little helical rotation (𝜓) and instead primarily rotates away from the bundle axis (𝜑1) 

and also translates outward (𝑟).  We observe a similarly pronounced sideways swinging rotation 

(𝜑2) in chains A and B of the first helix of EnvZ DHp domain, which outweighs other changes, 

including helix phase changes (𝜓).  These data indicate that gearbox rotations do not fully 

explain the structural variation between signaling states. 

Moreover, similar changes were observed for the DesK DHp domains.  Lateral translations 

consistently dominate, with the exception of a single pair of helices in DesK, where gearbox 

rotations dominate and lateral translations come in a close second.  Even larger lateral 

translations appear in CitA, although one of the structures in the analysis (PDB ID: 1P0Z) may not 

be truly representative of the native dimeric state. 

In six out of the seven domains we studied, one of the two largest changes is either a radial 

displacement (𝑟) or towards tilt (𝜑1), both indicative of scissoring, with infrequent contributions 

from a piston translation or a gearbox rotation.  However, this does not necessarily rule out the 

possibility that the relatively small gearbox and/or piston shift motions might propel the larger 

changes in other degrees of freedom.  
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3.4 – Discussion 

We present a model of HK signal transduction through the membrane, the first to utilize 

structural data taken from the full-length, dimeric protein in a native membrane. We generated 

this model using disulfide scanning mutagenesis and existing homologous crystal structures. 

Disulfide scanning mutagenesis allowed us to study the full-length protein in its native 

membrane environment, without relying on isolated domains in micelles or other membrane 

mimetics.  We found good agreement between the crosslinking data and existing structures of 

water-soluble HAMP, TM, and periplasmic domains, indicating that the isolated domain 

structures are good models for the corresponding domains within the full-length protein in a 

native membrane environment as well as that the cross-linking data is accurate. The crosslinking 

data are almost 180° out of phase with distances derived from homologous crystal structures 

(Table 3), which is expected because crosslinking efficiency decreases over greater distances. 

The crosslinking data covers the juxtamembrane regions connecting the TM domain to the 

sensor and HAMP domains (Figure 6).  These data provide the first evidence for an 

uninterrupted helix spanning TM1 to the N-terminal helix of the sensor domain.  Additionally, 

the crosslinking data spanning the TM2-HAMP boundary indicates a possible interruption, which 

may be either a kinked helix or a disordered linker connecting the two domains.  This 

interrupted structure may be necessary to form the previously described water hemichannel on 

the cytoplasmic face of the TM 4-helix bundle [34]. 

Bayesian modeling revealed that the crosslinking experiments likely probed two structural 

states.  We in fact anticipated at least two states for the following two reasons.  First, PhoQ 
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must respond to its environment by relying on a thermodynamic equilibrium between its two 

signaling states, a prediction that is consistent with the two modeled states predicted to be 

present in the sample in similar proportions (40.5% State-1 and 59.5% State-2).  Experimental 

data also supports signaling states near equilibrium, where we see a degree of activation of only 

2-5 fold in low Mg2+ concentrations.  These results are in agreement with the EPR studies of Trg 

from E. coli, which identified a dynamic and loosely packed transmembrane domain [6]. Second, 

only two structural states could explain conflicting crosslinking data within the TM domain, 

where TM1-TM1’ crosslinks are sterically inconsistent with TM2-TM2’ crosslinks. 
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Figure 13 - Cation-binding, acidic patch movements predicted by the Bayesian multi-state 
modeling.  (A) Electrostatic surface representation of the two states of the acidic patch as it 
moves out of (State-1) and in to (State-2) the membrane bilayer. Surface made with UCSF 
Chimera [75].  (B) Schematic “scissor lift” mechanism of signal propagation.  

These two alternative conformations suggest large displacements of the sensor domains that 

insert or remove the divalent cation-binding acidic patch within the membrane (Figure 13A). 

This change is coupled to scissoring transitions in the sensor, transmembrane, and HAMP 
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domains, resembling a “scissor lift” mechanism of signal propagation (Figure 13B).  The 

modeling predicts large conformational rearrangements in the transmembrane domains, 

resembling a lateral scissoring change (Figure 9B and E), where two opposing helices move 

inward and displace the other two opposing helices which move outward, a pattern which we 

summarize in Figure 14A.  We observed similar scissoring motions across several two-

component systems (Figure 14B-D).  This universal scissoring between distinct conformations 

was seen in the sensor, HAMP, and DHp domains; furthermore, these motions are consistent 

with the torque motion proposed recently for the blue-light sensing HK, YF1 [22]. Even the 

HAMP domain, in which the gearbox model was discovered, exhibits the same large lateral 

changes, as mentioned briefly in the original publication [24]. 

 

Figure 14 - Scissoring motions across several two-component domains.  (A) A helix bundle 
scissors if two opposing helices move inward and the other two opposing helices simultaneously 
move outwards.  (B) Citrate sensor domain, residues 12-25 and 45-51 (Green: 1P0Z, Red: 2J80).  
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(C) HAMP domain from AF1503-EnvZ chimera, residues 283-297 (Green: 2L7H, Red: 2Y21).   (D) 
DesK DHp domain, residues 182-198 and 224-238 (Green: 3GIG, Red: 3EHH).  

We place these qualitative observations on a more quantitative footing by measuring the 

variation between pairs of structures along six orthogonal degrees of freedom representing: 1) 

gearbox rotation about the helix axis; 2) piston shifts that vertically displace helices; 3 & 4) tilting 

towards and perpendicular to the bundle axis; 5) radial displacement of the helix from the 

bundle axis; and 6) rotation of the individual helices relative to the others about the bundle axis.  

In every examined case, we find that these domains, including the 2-state model, are not purely 

described by one pure motion, yet the tilting and radial displacements are a dominant change in 

almost every two-component domain that we analyzed (Table 5). 

We conclude that while the piston shift and gearbox rotations do contribute to conformational 

adjustment, they do not provide a complete picture of signal transduction.  A large, lateral 

scissoring mechanism plays a critical role in PhoQ signaling, exists in many other TCS signaling 

domains, and may be a universal way of connecting domains and transmitting signals in these 

systems. 

3.5 – Materials and Methods 

3.5.1 – Plasmids 

pTrcTIMPhoQHIS was a gift from the lab of Dr. Mark Goulian at the University of Pennsylvania.  

pACYCPhoQa-3DHIS was created as described previously [34]. 
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3.5.2 – Cell propagation 

For crosslinking reactions in the transmembrane and HAMP domains, cells were grown on LB 

agar or in LB medium at 37°C.  For the periplasmic mutants, cells were grown in MOPS minimal 

medium [72] at 37°C. 

3.5.3 – Envelope preparations 

A fresh streak of cells was plated onto an LB plate containing 100μg/mL ampicillin. 16 hours 

later, colonies were picked by sterile loop and used to inoculate 5mL LB + 100μg/mL ampicillin.  

Cultures were grown at 37°C for 24 hours with vigorous shaking (220 rpm) and pelleted by 

centrifugation at 3700 x g for 10 minutes at 4°C. Cells were washed by resuspension in 30mM 

Tris, pH 8 and pelleted as above.  Afterwards, cells were treated with 20% sucrose in 30mM Tris, 

pH 8 for osmotic shock and 10mg/mL lysozyme to remove the cell wall.  After 30 minutes 

incubation at 4°C, the cell envelopes were resuspended in 3mL 3mM EDTA, pH 8 and sonicated 

briefly to disrupt membranes.  The samples were spun at 16000 x g for 30 minutes at 4°C to 

pellet membranes.  The membrane fraction was resuspended in 200μL of 2mM Tris, pH 7.5 and 

stored for use at -80°C. 

3.5.4 – Crosslinking reactions 

To crosslink cysteine residues in the transmembrane and HAMP domain, it is necessary to 

provide an oxidizing reagent. The oxidative catalyst, Cu(II)(1,10-phenanthroline)3 (CuPhen) is a 

small, membrane-permeable reagent that efficiently catalyzes disulfide bond formation in the 

membrane [63]. We combined a 10μL sample of cell envelopes with 10μL of buffer containing 

2mM or 0.2mM CuPhen for a final concentration of either 1mM or 0.1mM.  Reactions were 
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allowed to proceed for 30 minutes at room temperature.  Reactions were stopped by the 

addition of 20mM N-Ethyl Maleimide (NEM) and 20mM EDTA, and reactions were spun at 

16,000 x g at 4°C to concentrate membranes.  For the periplasmic domain mutants, we used the 

natural oxidizing environment of the periplasm to promote disulfide bond formation. 

3.5.5 – Western blotting and analysis 

Oxidized membranes were reconstituted in 20μL of loading buffer (Invitrogen LDS buffer with 

8M urea and 0.5M NEM) and heated for 10 minutes at 70°C. 5μL of sample were loaded onto 

either a 7% or 3-8% gradient Tris Acetate gel (NuPage®, Invitrogen). Proteins were separated by 

electrophoresis and were dry transferred to a nitrocellulose membrane (iBlot®, Invitrogen). For 

crosslinking reactions in the transmembrane region, membranes were washed with TBST buffer 

(10mM Tris, pH 7.5, 2.5mM EDTA, 50mM NaCl, 0.1% Tween 20) and blocked with 3% BSA in 

TBST. PhoQ was probed using a penta-His antibody (Qiagen). The His antibody was probed with 

HRP-conjugated sheep anti-mouse IGg (Pierce). Proteins were visualized by exposure to ECL 

reagent (Amersham, GE health sciences) for 1 minute and exposure to film for 30-60 seconds. 

For crosslinking reactions in the periplasmic region, membranes where blocked with TBST and 

1% BSA (SNAP i.d.®, Millipore), then probed with penta-His HRP conjugate (Qiagen).  Pixel 

density histograms were generated using the ImageJ software, freely available from the NIH [1], 

and crosslinking efficiency was determined using the ratio of crosslinked dimer to total visible 

protein (dimer/(dimer+monomer)).  
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3.5.6 – Sequence-structure threading and model manipulation 

To generate electrostatic maps, we threaded PhoQ’s sidechains on to our 2-state models using 

Scwrl [12] and minimized the side-chain using Rosetta fast-relax [51].  Structure visualization 

and manipulation was performed using PyMol molecular viewer (Schrodinger). 

3.5.7 – Multi-State Bayesian Modeling 

The modeling and analysis were carried out with the open source Integrative Modeling Platform 

package (IMP; http://www.integrativemodeling.org) [3,83]. IMP can construct structural models 

of macromolecular protein complexes by satisfaction of spatial restraints from a variety of 

experimental data . 

3.5.7.1 – Representation of the system and initial model 

We generated a Cα model of the PhoQ dimer by assembling the models of HAMP, TM, and 

periplasmic domain. A comparative model of the HAMP domain dimer was created by using as a 

template the dimeric HAMP-DHp fusion A291V mutant (PDB ID: 3ZRW). A comparative model of 

the TM monomer was built by using as a template the two helices in the crystal structure of HtrII 

(PDB ID: 1H2S), corresponding to residues 23-82 of chain B, as a template. The model of the TM 

dimer was then obtained by applying the crystallographic C2 symmetry about the dimer axis, 

observed in 1H2S.  The dimer models of the three domains were positioned relative to each 

other into an initial dimer model of the whole PhoQ using UCSF Chimera [75], subject to the 

polypeptide chain connectivity between the three domains in each monomer (Figure 8). For the 

subsequent sampling, each monomer was decomposed into 6 rigid bodies and 5 short 

intervening flexible segments. Rigid bodies included the following segments: 13-41 (TM1), 45-

184 (periplasmic rigid body), 194-205 (N-terminus of TM2), 208-217 (C-terminus of TM2), 220-

233 (N-terminal HAMP domain rigid body), and 245-265 (C-terminal HAMP domain rigid body). 

TM2 was divided into two rigid bodies due to a potential kink at P208. The two chains of the 

PhoQ dimer were sampled without enforcing any symmetry. 
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3.5.7.2 – Bayesian model of cysteine crosslink data 

The Bayesian approach [40] estimates the probability of a model, given information available 

about the system, including both prior knowledge and newly acquired experimental data. When 

modeling multiple structural states of a macromolecular system, the model 𝑀 includes a set 𝑋 

of N modeled structures {𝑋𝑖}, their population fractions in the sample {𝑤𝑖}, and the additional 

parameters {𝛼𝑛} defined below. Using Bayes theorem, the posterior probability 𝑝(𝑀|𝐷, 𝐼) of 

model 𝑀, given data 𝐷 and prior knowledge 𝐼, is 

𝑝(𝑀|𝐷, 𝐼) ∝  𝑝(𝐷|𝑀, 𝐼) ⋅ 𝑝(𝑀|𝐼)  

where the likelihood function 𝑝(𝐷|𝑀, 𝐼) is the probability of observing data 𝐷, given 𝑀 and 𝐼; 

and the prior 𝑝(𝑀|𝐼) is the probability of model 𝑀, given 𝐼. To define the likelihood function, 

one needs a forward model 𝑓(𝑋) that predicts the data point that would have been observed 

for structure(s) 𝑋, and a noise model that specifies the distribution of the deviation between the 

observed and predicted data points. The Bayesian and likelihood scores are the negative 

logarithm of 𝑝(𝐷|𝑀, 𝐼) ⋅ 𝑝(𝑀|𝐼) and 𝑝(𝐷|𝑀, 𝐼), respectively. 

3.5.7.2.1 – Forward model 

The forward model [9] predicts the cross-linked fraction of cysteine pair 𝑛 after a reaction time 

𝑡, for a mixture of N states {𝑋𝑖}: 

𝑓𝑛({𝑋𝑖, 𝑤𝑖}) = ∑ 𝑤𝑖

𝑁

𝑖=1

(1 − 𝑒−𝛼𝑛 𝜌(𝑟𝑛)) 
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where 𝛼𝑛 = 𝑘𝑛 𝑡 is the product of the unknown intrinsic reaction rate of cysteine pair 𝑛 and the 

total reaction time. 𝜌(𝑟𝑛) is an efficiency term that depends on the distance 𝑟𝑛 between the 

cysteine Cα atoms and it is computed by considering (i) the uncertainty in the position of the 

residue centroids along the main chain due to the limited precision in determining the position 

of the residues, (ii) the cost of having a disulfide bond geometry far from the ideal one, and (iii) 

the reduction of the reaction volume due to the presence of proximal components and 

moieties. 

3.5.7.2.2 – Likelihood function 

The likelihood function 𝑝(𝐷|𝑀, 𝐼) for dataset 𝐷 = {𝑑𝑛} of 𝑁𝑋𝐿  independently measured cross-

linked fractions is a product of likelihood functions for each data point. Because the cross-linked 

fractions vary between 0 and 1, we modeled the noise with a normal distribution truncated to 

this interval. The likelihood for data point 𝑑𝑛 can thus be written as: 

𝑝(𝑑𝑛|{𝑋𝑖, 𝑤𝑖}, 𝛼𝑛, 𝜎𝑛) = 𝑍−1exp (−
[𝑑𝑛 − 𝑓𝑛({𝑋𝑖, 𝑤𝑖})]2

2𝜎𝑛
2 ) 

where the uncertainty 𝜎𝑛 shapes the likelihood function and 𝑍 is the normalization factor. To 

account for varying levels of noise in the data, each data point has an individual 𝜎𝑛.  

Furthermore, to encode template structure information for the HAMP dimer domain (residues 

235-263), a likelihood function with log-normal noise was defined based on the distances 𝑟𝑗𝑘 

between all Cα atoms that are below 8 Å in the template (PDB code 2Y20): 
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𝑝(𝑟𝑗𝑘|{𝑋𝑖}, 𝜎𝐻) = ∏ 𝑍−1exp (−
log2 𝑟𝑗𝑘/𝑟𝑗𝑘,𝑖

2𝜎𝐻
2 )

𝑖

, 

where 𝑟𝑗𝑘,𝑖 is the distance between atom 𝑗 and 𝑘 in the modeled structure 𝑋𝑖  and 𝜎𝐻 is the 

uncertainty. 

3.5.7.2.3 – Prior Information 

The prior on a structure is defined as 𝑝({𝑋𝑖}) ∝ exp (− ∑ 𝑉(𝑋𝑖)𝑖 ) where 𝑉 is a sum of spatial 

restraints: 𝑉 = 𝑉𝑒𝑥𝑐𝑙.  𝑣𝑜𝑙. + 𝑉𝐶𝛼 𝑏𝑜𝑛𝑑𝑠 + 𝑉𝐶𝛼 𝑎𝑛𝑔𝑙𝑒𝑠 + 𝑉𝐶𝛼 𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 + 𝑉𝐸𝑧 + 𝑉𝑙𝑎𝑦𝑒𝑟. 

The excluded volume restraint Vexcl.vol. was implemented as a pairwise hard-sphere repulsive 

potential, where the volume of each Cα particle equals the volume of the corresponding amino 

acid residue [76]. The bond, angle, and dihedral terms VCα bonds, VCα angles, and VCα dihedrals, 

respectively, are statistical potentials that enforce the correct stereochemistry, as well as the 

correct secondary structure propensity, of the flexible backbone [see Supplementary 

Information]. The VEz potential [85] was used to model the membrane environment. 

Furthermore, residues F17 of the two PhoQ chains were confined inside a layer representing the 

inner leaflet of the membrane, by using a flat bottom harmonic restraint acting on the z 

coordinate between -17 Å and -13 Å, Vlayer.  

Crosslinking data was collected in three separate experiments for the periplasmic, membrane, 

and cytoplasmic domains. We used three 𝛼𝑛 parameters to model experimental variation 

between these three data subsets. The priors for 𝛼𝑛 are bounded uniform distributions: the 

lower bound was determined by the highest observed fraction in the subset and the upper 
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bound by the highest detectable fraction. The priors for 𝜎𝑛 are unimodal distributions [90]: 

𝑝(𝜎𝑛|𝜎0) =
2𝜎0

√𝜋𝜎𝑛
2 exp (−

𝜎0
2

𝜎𝑛
2), where 𝜎0 is an unknown experimental uncertainty; the heavy tail 

of the distribution allows for outliers. The priors for 𝑤𝑖 were uniform distributions over the 

range from 0 to 1, with the constraint ∑ 𝑤𝑖 = 1𝑖 . Furthermore, a lower bound at 0.2 was 

enforced on each 𝑤𝑖 to avoid visiting conformations already sampled at smaller N values.  A 

Jeffrey’s prior 𝑝(𝜎𝐻) = 1/𝜎𝐻 was used for the uncertainty parameter of the likelihood used to 

incorporate template structure information. 

3.5.7.3 – Sampling 

A Gibbs sampling scheme based on Metropolis Monte Carlo [79] enhanced by replica exchange 

was used to generate a sample of coordinates {𝑋𝑖} as well as parameters 𝛼𝑛 and 𝑤𝑖 from the 

posterior distribution of a given number of structures (N). The moves for {𝑋𝑖} included random 

translation and rotation of rigid parts (0.15 Å and 0.03 radian maximum, respectively), random 

translation of individual beads in the flexible segments (0.15 Å maximum), as well as normal 

perturbation of the parameters 𝛼𝑛 and 𝑤𝑖. To facilitate the sampling of the posterior 

probability, we eliminated its dependence on the uncertainties 𝜎𝑛 by numerical marginalization 

(Sivia and Skilling, 2006). 

Analysis.  The set of sampled models {𝑀𝑗} were clustered [21] based on the value of the 

forward model 𝑓𝑛(𝑀), using the following data-based metric:  

||𝑀1 − 𝑀2||
2

=
1

𝑁𝑋𝐿
∑

[𝑓𝑛(𝑀1) − 𝑓𝑛(𝑀2)]2    

𝜎𝑛,1
2 + 𝜎𝑛,2

2

𝑁𝑋𝐿

𝑛=1
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where 𝜎𝑛,𝑗  is the inferred measurement error associated with data point 𝑛 in model 𝑗, and 𝑁𝑋𝐿  

is the total number of crosslinks. A cutoff of 0.05 was used. In multi-state modeling, data-based 

clustering is preferred to structure-based clustering (e.g., using Cα-RMSD as the distance metric) 

because it reflects the degeneracy of models that would generate the same data and because it 

provides a natural way of mixing 𝑋𝑖, 𝑤𝑖, and 𝜎𝑛
𝐸 that is not possible in structure-based clustering. 

Because the sample is drawn from the posterior distribution, the cluster population is 

proportional to the average posterior probability of its members. We focused our analysis on 

the clusters with a population greater than 3%. The structural model precision of a given cluster 

was defined as the median of the RMSD distribution calculated on all pairs of cluster members. 

3.5.8 – Quantitative Structural Analysis 

We gathered structures from two-component systems with multiple structures of the same 

domain, listed in Table 5.  For each domain, we define the bundle axis by first selecting two pairs 

of equivalent residues, one from each chain, calculating the α-carbon to α-carbon vector 

between those two residues for both chains, and then summing these two vectors to create the 

axis vector.  We define the bundle axis vector for one structure (the first PDB ID in each table 

row) to be the z axis, arbitrarily specify an x axis orthogonal to the z axis, and define the y axis 

perpendicular to x and z, using a right-handed coordinate system.  We then align the remaining 

domains to the first structure using CEAlign [86] along the domain boundaries listed in Table 6. 
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Table 6 - Parameters used for domain fitting. 

Domain Protein Organism Domain 
Boundary 

Helix Residues 
(Aligning Residues) 

Aligning 
Residues 

Sensor 
domain 

Tar S. typhimurium 42-174 42-57, 155-174 50,61 

Sensor 
domain 

CitA K. pneumoniae 6-129 12-25,45-51 15,23 

HAMP Af1503 A. fulgidus 279-328 280-297,310-328 284,295 
DHp EnvZ S. flexneri 335-385 333-345,373-385 383-376 
DHp DesK B. subtilis 191-232 182-198,224-238 187,198 

 

We fit each helix to a straight ideal helix (2.3 Å α-carbon radius, 3.6 residues/turn, 1.5 Å 

rise/residue) and extract six geometric parameters that define the helix’s position and 

orientation by fitting a sequence of six motions (Figure 12) using the Levenberg-Marquardt 

algorithm from the GNU scientific library [29] (10-4 absolute tolerance, 10-4 relative tolerance, 

maximum 20 iterations).  For each helix and for all six motions, we measured the maximum 

variation (range) of the fitted parameter.  We normalize all rotations to distances by converting 

degrees to subtended arcs using a radius equivalent to the distance of an ideal β-carbon at a 

helix endpoint from the focal point of the rotation.  This corresponds to an arc radius of 4 Å for 

rotations about the helix axis and an arc radius of (1.5 Å x (# of helix residues) / 2) for tilting 

motions.  The full set of calculated displacements is given in Figure 15. 
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Figure 15 - Measured differences between equivalent helices in two component systems.  Each 
chart corresponds to a single set of domains referenced by domain type (e.g. Sensor or HAMP) 
and protein (e.g. AF1503 or EnvZ).  Each chart groups the differences by direction, with four 
measured differences per direction, one for each helix in a four-helix bundle: H1A) Helix 1  - 
Chain A, H1B) Helix 1 – Chain B, H2A) Helix 2 – Chain A, H2B) Helix 2 – Chain B.  All 
measurements are calculated maximum displacements along each degree of freedom for an 
ideal β-carbon at a helix endpoint.  
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CHAPTER 4 – Discussion 

I approached the problem of connectable protein design using as few simplifying constraints as 

possible.  This means that I explored solutions that did not impose symmetry on the protein, did 

not limit designs to pure assemblies of α-helices, and did not assume a minimum size scale of 

interest.  All of these assumptions would have simplified the problem, but would have greatly 

narrowed the applicability of connectable protein design. 

Connectable protein design moves beyond simply cataloguing designable motifs, but instead 

focus on tools and principles for joining them together to generate correct protein structures 

with as few conflicts as possible.  This would then combine the best of two worlds: the reliability 

and robustness of battle-tested natural protein components with the novelty and flexibility of de 

novo protein design. 

In Chapter 2, the Suns atomic search engine addressed connectability on the atomic scale, 

where chemical and steric constraints are precise and there is very little leeway to engineer in 

flexible and reusable interfaces.  In Chapter 3, I studied connectability on the protein domain 

scale by structurally analyzing two-component systems to understand how they implement 

reusable and modular signal transduction interfaces. 

4.1 – Connecting designable atomic substructures 

The Suns search engine provides the first method for interactively connecting designable atomic 

fragments together into a larger whole.  This greatly improves the utility of these atomic motifs, 

which are small, inflexible, and difficult to customize.  Without Suns a protein designer would 
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have great difficulty discovering other compatible motifs that can be correctly integrated into an 

existing design while satisfying all covalent, electrostatic, and steric constraints. 

Fragments built from search queries automatically get internal bond lengths and angles correct 

and avoid internal steric clashes since they all derive from natural protein structures.  Even 

larger protein fragments pieced together from many small searches, as in Figure 3, one can still 

preserve this conflict-free property.  However, this is not automatic; when searching for a 

designable motif to fill a spatial region, one must carefully select search queries that include 

existing chemical motifs likely to sterically or electrostatically interact with that region. 

Search results also return a extra information that can guide the user and inform the connection 

process, since they preserve the immediate surroundings of all matches.  This allows the user to 

discover fortuitous electrostatic interactions, supporting hydrogen bond networks, and 

hydrophobic packing interactions that were not part of their original search query.  These are 

the kinds of useful interactions that an automated connection workflow might ignore, but that a 

human might find meaningful. 

The Suns search engine makes this iterative connection workflow feasible through improved 

search speed and careful integration with molecular graphics software.  Without these two 

improvements the time investment of connectability-based design becomes prohibitive at the 

atomic level. 
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4.1.1 – Mixed initiative 

The Suns search engine is the first tool that mixes human intelligence with machine intelligence 

when designing interactions at the atomic scale.  This allows a human to engage in a “dialog” 

with the computer throughout the entire process.  This is known as a “mixed initiative” [43], 

where man and machine switch back and forth between taking the initiative, and contrasts with 

the traditional division of labor in protein design where the high-level specification is usually 

done entirely by humans and then handed off to a computer to implement.  This division of 

labor leaves no opportunities for the computer to assist the human in the high-level design of 

the protein nor does it permit the human to assist the computer in the discovery of solutions. 

The Suns search engine breaks down this barrier in both directions.  The machine can now open 

up a window to the Protein Data Bank for the user, digesting large numbers of protein 

structures to provide a visual summary suitable for human consumption.  This informs the user 

what designable interactions are available and compatible with their current blueprints, 

informing the specification process.  In the other direction, Suns lets the human guide the 

implementation process by selecting what permutations of motifs to connect and test.  This 

takes advantage of the human mind’s power to deftly explore large, combinatorial solution 

spaces using efficient heuristics, in the same way that FoldIt uses human ingenuity to solve 

protein folding more efficiently [51]. 

Suns also blurs the division between specification and implementation.  The traditional protein 

design process emphasizes a “waterfall” approach where information flows in one direction 

from specification to implementation.  In contrast, Suns lets the protein designer interleave the 
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specification and implementation, discovering new motifs to incorporate as they virtually grow 

their protein. 

4.1.2 – Importance of speed and interactivity 

The Suns search engine introduces the notion that greater speed is itself a source of scientific 

novelty.  When a tool takes hours to use then users will contemplate workflows that use such a 

tool once.  If a tool takes seconds to use then users can begin to experiment with new 

workflows that invoke the tool repeatedly with constant iteration and feedback. 

For example, if the atomic search pipeline could be improved to be even more efficient and 

compute all results within 16 milliseconds or less then this would open up the possibility of 

concurrently viewing search results in real-time while manipulating a protein structure.  Clusters 

of potential matches would appear or disappear fluidly as the user continuously varied a bond 

length or angle.  Similar improvements to secondary or tertiary structure search would allow 

one to view preferred backbone clusters fade in and out of view while experimenting with 

different orientations of one helix packing against another helix. 

Innovations in the Suns search engine could potentially be used to improve the speed of the 

MaDCaT search engine, such as tokenizing searchable elements.  Speed gains in MaDCaT would 

encourage an interactive workflow when studying secondary or tertiary structure, improving the 

ease of connecting designable interactions on a larger length scale.  Additionally, integrating 

MaDCaT with PyMOL would allow users to seamlessly switch between both Suns and MaDCaT, 

promoting easier flow of information between both programs. 
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4.2 – Connecting protein domains 

Protein domains provide more opportunities for engineering loosely coupled and flexible 

interfaces, because there is more material to work with and customize.  Two-component 

systems exemplify this interfacial flexibility, where diverse domains can be assembled in varying 

permutations to generate functional signal transduction chains.  Scientists have successfully 

recreated chimeras between two-component systems and chemoreceptors that signal correctly, 

such as the Tar-EnvZ [96], Trg-EnvZ [7], Tar-Tap [100], and Dcu-EnvZ [31] hybrids, which is a 

testament to how modular they are. 

These loose couplings are made possible by four helix bundles that repack in a motion 

resembling scissoring, where one pair of opposing helices moves inward and the other pair 

moves outward.  In PhoQ, we observe that the transition between the transmembrane domain 

and the HAMP domain is not a single continuous helix, yet still transmits the signal correctly.  

This suggests that perhaps scissoring preserves interfacial flexibility and loose coupling by not 

relying on the presence of a continuous helix bridging signal transduction domains. 

However, I do not mean loose coupling in the sense of structural flexibility.  Zhu and Inouye 

demonstrated that the interface between two-component domains can be very sensitive to 

changes in helical phase caused by inserting or deleting a single residue [107].  Instead, I use 

loose coupling in the sense of modularity, that we can splice in new components at well-defined 

junction points (such as regions of high sequence homology) to generate novel permutations of 

function. 
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4.2.1 – Signal transduction by helix bundle repacking 

Two-component signal transduction highlights how repacking of four-helix bundles can be used 

as a mechanism for introducing structural variability within protein interfaces in a controlled 

manner.  Scissoring motions within a four-helix bundle limit helices to move along large and 

predictable trajectories towards or away from the bundle axis, making them ideal candidates for 

transmitting conformational change along otherwise flexible connections. 

These repacking motions can be quite large, on the scale of 3 Å.  This might make them less 

sensitive to noise from background structural fluctuations, which usually exhibit root-mean-

square fluctuations of 1 Å or less [74].  This may be a general principle for high-fidelity signal 

transduction across domain boundaries, where transmitted motions must be large to avoid 

spurious signaling events. 

4.3 – Multiscale, connectable protein design 

Throughout this thesis I explore a “multiscale” approach to connecting components, which 

mixes together solutions at different length scales.  For atomic-scale protein design I built a 

protein search engine in order to discover and incorporate atomic substructures with correct 

chemistry, ideal electrostatic interactions, and no steric clash.  For protein design on the 

secondary or tertiary structure scale I combine the Suns search engine with MaDCaT to discover 

host scaffolds compatible with smaller substructures built using Suns.  On an even larger scale I 

approach the problem from a different angle and studied reusable natural domains from two-

component systems which are sufficiently large to accommodate modular and flexible 

interfaces. 
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Designing at different length scales can be thought of as the protein design analog of multiscale 

modeling of biological systems [94].  We incorporate information at several different length 

scales simultaneously: the choice of secondary structure might impact our choice of possible 

atomic substructures, and, vice versa, our choice of atomic structure might feed back into our 

choice of secondary structure.  Similarly, both would affect scaffold scaffold selection. 

For multiscale protein design to work there must be a clear way for information to flow between 

different length scales, just as in multiscale modeling.  In Chapter 2, my thesis explored one such 

flow of information by taking small fragments generated by Suns and coarse-graining them into 

α-carbon traces suitable for MaDCaT searches.  The next step would be to explore if we could 

efficiently transition in the opposite direction by first selecting a scaffold using a MaDCaT search 

and then switching to Suns by converting α-carbon traces to atomic representations using Scwrl 

[56] and then using Suns to refine and locally mutate key substructures of interest. 

There must also be a bridge between atomic / secondary structure to tertiary structure.  This 

can be solved by the curation of protein domains that express well, fold robustly, and crystallize 

easily.  Then Suns or MaDCaT searches could restrict themselves to matches from this curated 

set to greatly ease the experimental component of protein design.  The David Baker research 

group has already made progress in this area by curating a set of domains that successfully 

express in E. coli, form monomers, and lack disulfide bonds [28], and these could form the basis 

of such a curated set. 

All of these minor transitions and barriers switching between diverse tools should be removed 

before we can truly consider the multi-scale design problem solved.  This calls for better 
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integration of scientific software with molecular graphics software to facilitate cross-pollination 

of design methodologies. 

These approaches still need to be validated experimentally to see if reusable components 

identified this way fold as predicted, even when connected with unnatural partners.  This 

technique has been proven for designable tertiary interactions found using MaDCaT [105] , but 

has not yet been proven for designable atomic level interactions generated by Suns.  

Experimentally establishing that designability works on the atomic scale would open up low-

level protein design to a much broader and audience of non-scientific and non-technical users. 
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