1,569 research outputs found

    A first attempt at constructing genetic programming expressions for EEG classification

    Get PDF
    Proceeding of: 15th International Conference on Artificial Neural Networks ICANN 2005, Poland, 11-15 September, 2005In BCI (Brain Computer Interface) research, the classification of EEG signals is a domain where raw data has to undergo some preprocessing, so that the right attributes for classification are obtained. Several transformational techniques have been used for this purpose: Principal Component Analysis, the Adaptive Autoregressive Model, FFT or Wavelet Transforms, etc. However, it would be useful to automatically build significant attributes appropriate for each particular problem. In this paper, we use Genetic Programming to evolve projections that translate EEG data into a new vectorial space (coordinates of this space being the new attributes), where projected data can be more easily classified. Although our method is applied here in a straightforward way to check for feasibility, it has achieved reasonable classification results that are comparable to those obtained by other state of the art algorithms. In the future, we expect that by choosing carefully primitive functions, Genetic Programming will be able to give original results that cannot be matched by other machine learning classification algorithms.Publicad

    Development of a web application for processing Neuroimaging data in the Cloud. Application to Brain Connectivity

    Get PDF
    Neuropsychiatric disorders, or mental disorders, have long been known to be a major cause of burden to society and it is estimated that one in every four people worldwide will be affected by one of these conditions during their lifetime. The diagnosis of these conditions is based on a set of subjective criteria and on the experience of physicians and is therefore highly prone to error. Alcohol Use Disorder (AUD) is one such disorder with particularly devastating consequences to both individual and society, representing a total of 5.1% of the global burden of disease and injury. As image classification methods improve, reaching near-human capabilities, and research on brain physiology continues to advance and allow us to better understand brain structure and function through novel methods such as Brain Connectivity analysis, ingenious approaches to medical diagnosis can be envisioned. Furthermore, as new technologies allow the world to be more connected and less dependent on physical machinery, there is an interest in bringing this vision to both healthcare and biomedical research, through technologies such as Cloud computing. This work focuses on the creation of an intuitive Cloud-based application which uses the image classification algorithm Convolutional Neural Network (CNN). The application would then be used to classify Electroencephalography data to diagnose AUD, in particular using Brain Connectivity metrics. The created application was successfully developed according to the objectives, proving to be simple to operate but effective in the use of the CNN algorithm. However, due to the environment used, it showed high processing times which hamper the training of CNN classifiers. Classification results, while not conclusive, show indication that the employed metrics and methodology may be of use in the context of neuropsychiatric disorder diagnosis both in a research and clinical context in the future. Finally, discussion and analysis of these results were performed so as to drive forward the research into this methodology

    European Research in Mathematics Education I, volume 2

    Get PDF
    International audienc

    Neurological and Mental Disorders

    Get PDF
    Mental disorders can result from disruption of neuronal circuitry, damage to the neuronal and non-neuronal cells, altered circuitry in the different regions of the brain and any changes in the permeability of the blood brain barrier. Early identification of these impairments through investigative means could help to improve the outcome for many brain and behaviour disease states.The chapters in this book describe how these abnormalities can lead to neurological and mental diseases such as ADHD (Attention Deficit Hyperactivity Disorder), anxiety disorders, Alzheimer’s disease and personality and eating disorders. Psycho-social traumas, especially during childhood, increase the incidence of amnesia and transient global amnesia, leading to the temporary inability to create new memories.Early detection of these disorders could benefit many complex diseases such as schizophrenia and depression

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Classification of EEG and fNIRS signals from Completely Locked-in State Patients for a Brain-Computer Interface communication system

    Get PDF
    People suffering from complete motor paralysis with no severe deficiency in cognitive abilities, syndrome called Completely Locked in State (CLIS), remain aware of their surroundings without being able to interact and communicate in any way. In this context, the only possibility of communicating is by the techniques of Brain-Computer Interface. In this work, the focus is on the features extraction and selection on EEG and fNIRS signals and, finally, on the combination of the two to develop a system capable of classifying affirmative and negative answers from users in CLIS. The analysis considers the data collected in 4 visits to one patient. The choice to focus on a single case was made because the psychophysical considerations on the state of the patient are fundamental interpreting the results and the author of this work had the opportunity to participate directly in some acquisition. Offline analysis led to good results in the classification of fNIRS signals. Once again, using EEG signals it was not possible to successfully classify yes/no answers. Finally, the combination of EEG and fNIRS features did not improve the performance of the system.ope

    Evolutionary dynamics, topological disease structures, and genetic machine learning

    Full text link
    Topological evolution is a new dynamical systems model of biological evolution occurring within a genomic state space. It can be modeled equivalently as a stochastic dynamical system, a stochastic differential equation, or a partial differential equation drift-diffusion model. An application of this approach is a model of disease evolution tracing diseases in ways similar to standard functional traits (e.g., organ evolution). Genetically embedded diseases become evolving functional components of species-level genomes. The competition between species-level evolution (which tends to maintain diseases) and individual evolution (which acts to eliminate them), yields a novel structural topology for the stochastic dynamics involved. In particular, an unlimited set of dynamical time scales emerges as a means of timing different levels of evolution: from individual to group to species and larger units. These scales exhibit a dynamical tension between individual and group evolutions, which are modeled on very different (fast and slow, respectively) time scales. This is analyzed in the context of a potentially major constraint on evolution: the species-level enforcement of lifespan via (topological) barriers to genomic longevity. This species-enforced behavior is analogous to certain types of evolutionary altruism, but it is denoted here as extreme altruism based on its potential shaping through mass extinctions. We give examples of biological mechanisms implementing some of the topological barriers discussed and provide mathematical models for them. This picture also introduces an explicit basis for lifespan-limiting evolutionary pressures. This involves a species-level need to maintain flux in its genome via a paced turnover of its biomass. This is necessitated by the need for phenomic characteristics to keep pace with genomic changes through evolution. Put briefly, the phenome must keep up with the genome, which occurs with an optimized limited lifespan. An important consequence of this model is a new role for diseases in evolution. Rather than their commonly recognized role as accidental side-effects, they play a central functional role in the shaping of an optimal lifespan for a species implemented through the topology of their embedding into the genome state space. This includes cancers, which are known to be embedded into the genome in complex and sometimes hair-triggered ways arising from DNA damage. Such cancers are known also to act in engineered and teleological ways that have been difficult to explain using currently very popular theories of intra-organismic cancer evolution. This alternative inter-organismic picture presents cancer evolution as occurring over much longer (evolutionary) time scales rather than very shortened organic evolutions that occur in individual cancers. This in turn may explain some evolved, intricate, and seemingly engineered properties of cancer. This dynamical evolutionary model is framed in a multiscaled picture in which different time scales are almost independently active in the evolutionary process acting on semi-independent parts of the genome. We additionally move from natural evolution to artificial implementations of evolutionary algorithms. We study genetic programming for the structured construction of machine learning features in a new structural risk minimization environment. While genetic programming in feature engineering is not new, we propose a Lagrangian optimization criterion for defining new feature sets inspired by structural risk minimization in statistical learning. We bifurcate the optimization of this Lagrangian into two exhaustive categories involving local and global search. The former is accomplished through local descent with given basins of attraction while the latter is done through a combinatorial search for new basins via an evolution algorithm
    • …
    corecore