A First Attempt at Constructing Genetic
Programming Expressions for EEG Classification

César Estébanez, José M. Valls, Ricardo Aler, and Inés M. Galvén

Universidad Carlos III de Madrid,
Avda. de la Universidad, 30, 28911, Leganés (Madrid), Spain
{cesteban, jvalls, aler, igalvan}@inf.uc3m.es

Abstract. In BCI (Brain Computer Interface) research, the classifica-
tion of EEG signals is a domain where raw data has to undergo some
preprocessing, so that the right attributes for classification are obtained.
Several transformational techniques have been used for this purpose:
Principal Component Analysis, the Adaptive Autoregressive Model, FFT
or Wavelet Transforms, etc. However, it would be useful to automatically
build significant attributes appropriate for each particular problem. In
this paper, we use Genetic Programming to evolve projections that trans-
late EEG data into a new vectorial space (coordinates of this space being
the new attributes), where projected data can be more easily classified.
Although our method is applied here in a straightforward way to check
for feasibility, it has achieved reasonable classification results that are
comparable to those obtained by other state of the art algorithms. In
the future, we expect that by choosing carefully primitive functions, Ge-
netic Programming will be able to give original results that cannot be
matched by other machine learning classification algorithms.

1 Introduction

Within the Machine Learning field, there are many domains where the main
difficulty is not to determine the proper algorithm to be applied, or even select-
ing the most relevant attributes. In these cases, the attributes available in raw
data are not the most significant for classification, and new attributes have to be
constructed. This is usually called feature induction or constructive induction [T
2. B]. The brain computer interface (BCI) is a domain where raw data has to
undergo some preprocessing, so that the right attributes for classification are
obtained. In BCI research, several transformational techniques have been used
to obtain high classification accuracy (over 90%): Principal Component Analy-
sis [, the Adaptive Autoregressive Model [5], FFT or Wavelet Transforms [6],
etc. Intuitions, empirical results, and knowledge about the domain is what lead
researchers towards using these methods. However, it would be useful to auto-
matically build significant attributes appropriate for every kind of signal and
classification task.

Genetic Programming (GP) is an evolutionary technique for evolving sym-
bolic programs [7]. Most research has focused in evolving functional expressions,

-

Cita bibliográfica
Artificial Neural Networks: Biological Inspirations, ICANN 2005. Berlin, 2005, p. 665-670. (Lecture notes in computer science; 3696)

but using loops and recursion have also been considered [§]. Evolving circuits are
also among the successes of GP [9]. In this paper, we intend to use GP to evolve
expressions that project original data, which is expressed in coordinates of a
space with N dimensions, to a new space with M dimensions (where M << N).
Here, we consider two-class classification problems. We expect that by finding
the right projection, it will be possible to separate data linearly (approximately)
in the projected space.. The secondary goal is to project data into a smaller
space: This way, the dimensionality of the problem is reduced and a new set
of attributes is obtained. This new emergent-attributes represent the relevant
information needed for classification. They also can reveal non-observable rela-
tionships between the original attributes, improving the understanding of the
problem. Fitness of each projection is determined by computing the degree of
linear separation of data in the projected space. This has been implemented as
a linear perceptron. Our motivation for using GP is that the set of primitives
GP uses for building hypothesis is a parameter of the algorithm. Other machine
learning algorithms work with pre-defined primitives like node-comparisons in
ID3 or neurons in ANN. GP allows to include the most relevant primitives for
the domain, although this selection requires sometimes a long trial-and-error
process.

The final aim of our research is to obtain results that cannot be obtained by
directly applying other machine learning methods. This paper is a first shot at
using GP for this purpose. Therefore, results obtained in this paper correspond
to the most straightforward and simple approach, that will test the feasibility of
GP, and can be used as a base to compare (and improve) future research.

This paper is organized as follows. Section Bl introduces Genetic Program-
ming. Section] describes our approach. Section H] reports the experiments car-
ried out. And finally, Section Bl draws the main results of the paper and prepares
for future research.

2 Genetic Programming

Genetic Programming (GP) is an evolutionary technique designed to generate
programs automatically [7]. It has three main elements:

— A population of individuals. In this case, the individuals are computer pro-
grams.

— A fitness function. It is used to measure the goodness of the computer pro-
gram represented by the individual.

— A set of genetic operators. In GP, the basic operators are reproduction,
mutation, and crossover.

The GP algorithm enters into a cycle of fitness evaluation and genetic oper-
ator application, producing consecutive generations of populations of computer
programs, until a good enough individual is found. Every genetic operator has
a probability of being applied each time we need to generate an offspring indi-
vidual for the next generation. Also, GP has many other parameters, the most

2

important ones being the size of the population (M) and the maximum number
of generations (G).

3 The Approach

We will learn from a set E of n examples expressed in a space U of N dimensions.
Our objective is to be able to represent the examples in the space V, of M
dimensions, and in which the examples will be linearly separable.

As we already have seen, Our method have two different applications: on one
hand, the improvement of classification tasks by means of a transformation of
the dataset; on the other hand, the reduction of dimensionality by constructing
new attributes that are as good, at least, as the original ones.

Our method uses standard GP to evolve individuals made of M subtrees (as
many of dimensions of the projected space V). Then, data is projected from
U to V by means of applying the individual to the original data. Fitness is
computed by measuring the degree of linear separation after the projection. The
system stops if a 100% linear separation has been achieved or if the maximum
number of generations is reached. Otherwise, the system outputs the individual
that separated better the training data.

For the implementation of our application, we have used Lilgp 1.1, the soft-
ware package for Genetic Programming developed in Michigan State University
by Douglas Zongker and Bill Punch, members of the group GARAGe (Genetic
Algorithms Research and Applications Group) (http://garage.cse.msu.edu/).

Terminal and Function Set

In our problem, terminal set will be formed by the attributes of the problem
expressed in coordinates of U (ug,us...,un), and by Ephemeral Random Con-
stants [7].

The set of functions to use is difficult to determine: it must be sufficient
for, along with the set of terminals, being able to express the solution to the
problem, but they must not be too many as for uselessly increase the search
space. Of course, for different domains, different terminal and function sets will
be more appropriate. In this case, we have tried with just arithmetic functions
(+7 T, /)

In the future, we would like to explore better grounded, domain-oriented sets
of functions, like FFT or wavelet transforms.

GP Individuals

Instead of having individuals work with vectorial data and return a vector of
M dimensions, every individual will contain M subtrees, using the same set
of functions and terminals, that will be ran independently. Thus, a projection
consists of a series of trees labelled (vg,v1...,upr) that represent combinations of
all the terminals (ug,u;...,un) and functions.

Genetic Operators

In our approach, we use the three genetic operators typically used in GP. Repro-

duction chooses an individual and copies it verbatim into the new population;
3

Mutation chooses an individual and a subtree, then the subtree is deleted and re-
placed with a randomly generated subtree; and Crossover selects two individuals,
a subtree is selected on each individual, and the subtrees are swapped.

The Fitness Function

We already have introduced the basic mechanism of the fitness function. It takes
the examples expressed in space U, project them using the GP individual, and
obtain the examples expressed in space V of M dimensions. Next, a classification
algorithm is applied to the projected data. In this case, we have choosen to apply
a Simple linear Perceptron. The Perceptron is run for 500 cycles (experimentally
we have checked that this is more than enough). If the SP converges, the pro-
jection would be producing a linear separation of the data and it would be the
solution to the problem. If the SP does not converge, the fitness assigned to the
individual is the number of examples that the SP has been able to correctly
classify in the best cycle. We choose the punctuation of the best cycle because
if projected data is not linearly separable, the SP will oscillate. Storing the best
value guarantees stability of the fitness value. This way, fitness is gradual enough
and has the resolution necessary to be able to exert a real selective pressure.

If the method does not find a linear (or nearly linear) classification of the
examples in the space V', we can change the number of dimensions desired for
V and launch the method again. As we already have stated, our main goal is to
find a linear separation of examples and, in order to achieve this, it is possible
for our application to increase M to values greater than N. However, in BCI
research, the original number of dimensions N is usually very large, so it does
not make sense to increase them in the new space V. This is the reason for not
documenting in this paper the possibility of a M value greater than N.

4 Experiments

This section describes our first experiments using the NIPS 2001 Brain Com-
puter Interface Workshop dataset [I(J]E This dataset was recorded from a normal
subject during a no-feedback session. The subject sat in a normal chair, fingers
in the standard typing position at the computer keyboard. The task of the sub-
ject was to press with the index and little fingers the corresponding keys in a
self-chosen order and timing.

The classification task is to create a classifier to predict which of the two
fingers the user intends to use (before pressing the key).

For validation purposes, we have divided the dataset into a training and a
test set, containing 412 (80%) and 102 (20%) instances respectively. Due to the
long runs required by GP, crossvalidation was not feasible. We took the raw
data and selected the 20 last instants of every channel. Allegedly, these instants
are more relevant for the classification because they are closer to the time the
person makes the decision. Therefore, as there are 27 channels, the initial space
has N = 27 % 20 = 540 dimensions. The goal is to project this data to a space

! http://liinc.bme.columbia.edu/competition.htm

Table 1. Summary of experiments carried out

Experiment Population Generations Max

size Nodes
GP1 1000 500 200
GP2 3000 500 70
GP3 3000 500 40

with M = 3 dimensions where data can be classified linearly. Table [[l summa-
rizes the 3 experiments carried out in this paper. It displays details about the
population size, the maximum number of generations, and the maximum size
allowed for the evolved expression (the latter is meant to limit overfitting).

Table 2. Summary of best/median test results for experiments GP1, GP2, and GP3

Experiments % Test
GP1 (best) 87.5/83.175
GP2 (best) 94.2/86.54
GP3 (best) 94.2/87.5

SMO 93.3
Simple logistics 96.2
ANN 95.1

For every experiment in Table[I] the GP system was run 6 times. The best and
median results for every experiment on the test set are summarized in Table
Other machine learning approaches have also been tested on the same data. SMO
(support vector machine) and Simple Logistic Regression come from the Weka
package, using default parameters. They both performed very well in relation to
other Weka algorithms. ANN is a backpropagation neural network.

In summary, the best GP individual (94.2%) obtains comparable results to
the other systems tested. This result is positive, considering that this is prelim-
inary research, and that we have obtained an expression that projects from 540
to 3 dimensions, where almost linear classification can be carried out.

5 Conclusions

In this paper, we have applied Genetic Programming to evolve functions that
project data from spaces with N dimensions to spaces with M dimensions. The
main goal is that in the M-space, projected data can be classified linearly (or
close to). The secondary goal is to project data into a smaller space, so M << N.
This approach has been applied to classification of EEG data coming from a
Brain Computer Interface competition.

Here, we have applied a straightforward configuration, where the primitives
used by GP are arithmetic functions. Results are comparable or inferior to other

5

machine learning methods, but the dimensionality of the problem has been re-
duced from 540 to only 3. Yet, even for this simple approach and for the im-
portant reduction of the problem, we have obtained a projection that classifies
linearly the projected data with an accuracy of 94.2%. This shows that the ap-
proach has some merit, although our goal of evolving original expressions, better
than what can be achieved by traditional machine learning methods, or by hu-
man expertise, has not been achieved. In the future, we expect that by carefully
choosing primitive functions, known to perform well in the EEG domain, results
will be much improved.

Acknowledgements

This article has been financed by the Spanish founded research MCyT project
TRACER, Ref:TIC2002-04498-C05-04M.

References

1. Fawcett, T., Utgoff, P.: A hybrid method for feature generation. In: Proceedings
of the Eighth International Workshop on Machine Learning, Evanston, IL (1991)
137-141

2. Kramer, S.: Cn2-mci: A two-step method for constructive induction. In: Proceed-
ings of ML-COLT’94. (1994)

3. Pfahringer, B.: Cipf 2.0: A robust constructive induction system. In: Proceedings
of ML-COLT"94. (1994)

4. Hoya, T., Hori, G., Bakardjian, H., Nishimura, T., Suzuki, T., Miyawaki, Y., Fu-
nase, A., Cao, J.: Classification of single trial eeg signals by a combined principal
+ independent component analysis and probabilistic neural network approach. In:
Proceedings of the fourth International Symposium on Independent Component
Analysis and Blind Signal Separation (ICA2003). (2003) 197-202

5. Schlogl, A.: ”The Electroencephalogram and the Adaptive Autoregressive Model:
theory and applications”. Shaker Verlag (2000)

6. Felzer, T.: On the possibility of developing a brain-computer interface (bci). Tech-
nical report, Technical University of Darmstadt, Germany (2001)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

8. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts (1994)

9. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Ge-
netic Programming I'V: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers (2003)

10. Blankertz, B., Curio, G., Miiller, K.R.: Classifying single trial eeg: Towards brain
computer interfacing. In: Advances in Neural Inf. Proc. Systems 14 (NIPS 01).
(2002)

6

