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To all those displaced from their homes
due to the conflicts of other men.

To those who face death for a chance at a life
without fear, only to be seen as a burden.
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Abstract

Neuropsychiatric disorders, or mental disorders, have long been known to be a major

cause of burden to society and it is estimated that one in every four people worldwide

will be affected by one of these conditions during their lifetime. The diagnosis of these

conditions is based on a set of subjective criteria and on the experience of physicians

and is therefore highly prone to error. Alcohol Use Disorder (AUD) is one such disorder

with particularly devastating consequences to both individual and society, representing a

total of 5.1% of the global burden of disease and injury. As image classification methods

improve, reaching near-human capabilities, and research on brain physiology continues

to advance and allow us to better understand brain structure and function through novel

methods such as Brain Connectivity analysis, ingenious approaches to medical diagnosis

can be envisioned. Furthermore, as new technologies allow the world to be more con-

nected and less dependent on physical machinery, there is an interest in bringing this

vision to both healthcare and biomedical research, through technologies such as Cloud

computing.

This work focuses on the creation of an intuitive Cloud-based application which uses

the image classification algorithm Convolutional Neural Network (CNN). The applica-

tion would then be used to classify Electroencephalography data to diagnose AUD, in

particular using Brain Connectivity metrics.

The created application was successfully developed according to the objectives, prov-

ing to be simple to operate but effective in the use of the CNN algorithm. However, due

to the environment used, it showed high processing times which hamper the training

of CNN classifiers. Classification results, while not conclusive, show indication that the

employed metrics and methodology may be of use in the context of neuropsychiatric dis-

order diagnosis both in a research and clinical context in the future. Finally, discussion

and analysis of these results were performed so as to drive forward the research into this

methodology.

Keywords: Convolutional Neural Networks, Cloud Computing, Alcohol Use Disorder,

Machine Learning, Brain Connectivity
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Resumo

Os distúrbios neuropsiquiátricos são das enfermidades com maior impacto mundial,

estimando-se que afectem uma em cada quatro pessoas durante a sua vida. O diagnós-

tico destas doenças é baseado num conjunto de critérios subjectivos e na experiência do

profissional de saúde que o conduz, estando sujeito a erro humano. O alcoolismo, um

destes distúrbios, é particularmente devastador, sendo o consumo de álcool responsável

por 5.1% do impacto causado por todas as doenças. À medida que os métodos de classi-

ficação de imagem melhoram e a investigação na área da fisiologia cerebral nos permite

compreender o funcionamento do cérebro através de métodos inovadores de análise de

Conectividade Cerebral, novas metodologias de diagnóstico clínico podem ser concebi-

das. Além do mais, a passo com a forma como novas tecnologias interligam o mundo e

reduzem a dependência em maquinaria física, surge o interesse em trazer esta visão ao

cuidado médico e à investigação biomédica com tecnologias como computação em Cloud.

Este trabalho foca-se na criação de uma aplicação em Cloud que seja intuitiva e use o

algoritmo de classificação de imagem Redes Neuronais Convolucionais. Esta aplicação foi

usada para classificar dados electroencefalográficos de modo a diagnosticar alcoolismo

usando métricas de Conectividade Cerebral.

A aplicação foi criada de acordo com as especificações, sendo muito intuitiva mas

também eficiente no seu uso do algoritmo pretendido. No entanto, devido ao ambiente

no qual foi implementado, sofre de um tempo de processamento que dificulta o treino de

redes. Os resultados da classificação de dados, apesar de não serem conclusivos, mostram

indícios de que as métricas e metodologia usadas poderão ser aplicadas num contexto

clínico e em investigação científica. Finalmente, discussão e análise dos resultados foram

realizadas de forma a desvendar potenciais direcções futuras para este trabalho.

Palavras-chave: Redes Neuronais Convolucionais, Computação em Nuvem, Alcoolismo,

Aprendizagem Automática, Conectividade Cerebral
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1
Introduction

1.1 Context & Motivation

Neuropsychiatric disorders, or mental disorders, have an enormous impact on the world

population [1–11]. Though the prevalence of these conditions varies widely between

countries [12] it is estimated that, during their lifetime, one in every four people will be

affected by a mental disorder [11]. According to the World Health Organization (WHO),

these disorders are the most important causes of global illness-related burden, accounting

for around one third of years living with disability among adults [10].

Studies have shown that mental disorders represent approximately 40% of the medical

burden for young to middle-aged adults in North America [4] and that each year over one

third of the European Union population suffers from mental illness, with the prevalence

of disorders of the brain estimated to be much higher and representing the largest part

of total disease burden in these countries [8].

Although many neuropsychiatric disorders may not present physical disabilities [13],

all of these conditions greatly decrease quality of life as they progress [7], with symptoms

invariantly leading to an inability to function as the disease progresses without treatment

[5]. Moreover, these disorders tend to strike earlier in life and have a longer if not indefi-

nite duration when compared to other classes of pathologies such as infectious diseases

[5, 6]. Furthermore, the relative low importance most of these diseases are given in terms

of government funding, especially in developing countries, leads to a spread in the preva-

lence of these conditions, which then unavoidably increases their socio-economic burden

[5].

Psychiatric disorders become more debilitating as they go without treatment and pre-

vent bearers from being able to work and support themselves, often forcing this task

upon a caregiver [1–3, 5–8]. Caregivers are also often prevented from holding a job due
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CHAPTER 1. INTRODUCTION

to the amount of burden placed upon them by the disease [5]. Studies have found that

caregivers often become depressed themselves, with caregiver burden for these condi-

tions far surpassing that of chronic diseases [1]. This demonstrates the toll psychiatric

disorders have upon society, as it has been shown that these conditions are among the

most burdensome not only to patients but also to caregivers and healthcare institutions

[1–8].

These conditions are also very frequently misdiagnosed, with currently employed

diagnostic methods suffering from subjectiveness and a high proneness to error [7, 14–

17]. Misdiagnosis of these conditions leads to a lack of proper treatment which itself

causes a worsening of symptoms [14–17].

Specifically alcoholism, formally defined as Alcohol Use Disorder (AUD), is a costly

and socially devastating mental disorder [13, 18–20]. Alcohol consumption degrades indi-

vidual health and heavily burdens society in terms of morbidity, mortality and disability

[18]. Alcohol is, in fact, one of the most commonly consumed addictive psychoactive

substances in the world [20], with its use being the cause of 5.9% of all world deaths (3.3

million per year) and a quarter of total deaths in the 20-39 year-old age group. Further-

more, its use brings significant economic and social losses not only to the individual but

to society as well, as 5.1% of the global burden of disease and injury is attributable to

alcohol consumption [19].

While nowadays research into the pathophysiology of neuropsychiatric diseases is con-

tinuously carried out, the mechanisms behind most of these conditions are still largely

unknown and being unravelled at a slow pace [21]. However, research using brain func-

tion analysis methods has shown that there is potential for a diagnosis application which

could be employed in a clinical context [21–25].

One of these methods relies on analysing the connections between different brain

structures from various perspectives [26]. Specifically studying the functional links that

exist in the brain, i.e. Functional Brain Connectivity Analysis, has proven to be an ef-

fective method in diagnosing and gauging the severity of brain-related disorders [25–

28].

Functional Brain Connectivity is, in fact, a widely studied concept as it can give

insight into how the brain’s neuron networks process information and how certain brain

processes are carried out [25–28].

Particularly, analysing Functional Brain Connectivity is a matter of data analysis and

has been applied to Functional Magnetic Resonance Imaging (fMRI), Electroencephalog-

raphy (EEG) and Magnetoencephalography (MEG) data using mathematical concepts that

allow the extraction of information regarding brain activity [26, 29]. EEG finds a use in

the analysis of Brain Connectivity and is of special interest in this context since its high

temporal resolution allows the study of the temporal dynamics of brain activity better

than other imaging techniques [29–33]. Notably, several neuropsychiatric disorders, in-

cluding AUD, have been found to show significant changes in functional connectivity and

this approach shows great promise in the study of these diseases [25–27, 34–36].

2



1.1. CONTEXT & MOTIVATION

While these methods allow to obtain large amounts of data, they mostly offer results

which may be complicated to subject to a direct human interpretation due to its high

dimensionality. Having a good metric which encodes brain activity that can be used in

diagnosis is of little value if result interpretation is difficult and may itself be subject to

human error. For that reason, Machine Learning (ML) algorithms are often employed

in these cases to offer not only automation but also to reduce subjectivity caused by

human interpretation, and may be needed in situations where a human view may not

fully encompass the full dimensionality of the data.

Besides its use in fields such as biometric recognition, gaming and marketing, ML has

also seen use in medicine, such as in decoding brain states through electrocortigraphic,

fMRI and scalp EEG data, with brain-computer interface technology being the driving

force for this advancement [37].

ML has, in fact, been used in a wide array of biomedical applications and has proven to

be a valuable tool in general healthcare [38], with notable uses including the classification

of electrocardiographic and auscultatory blood pressure to diagnose heart conditions

[39], identification of brain tumours from Magnetic Resonance Imaging (MRI) data [40],

extraction of metabolic markers [40], patient characterization [41], abnormality detection

in mammographies as aid to diagnosis [42], cancer prognosis and prediction [43] and in

the study of neuropsychiatric disorders [44].

Image processing is arguably the largest application of ML that has seen great advance-

ment in recent years [45]. With the development of modern medical imaging technologies,

the need for image classification programs increased tremendously and is today one of

the fastest growing fields of biomedical engineering [37].

Convolutional Neural Networks (CNNs), in particular, are one of the most advanced

types of ML algorithms and have been shown to achieve near-human performance ac-

curacies in image recognition tasks, and currently hold the best classification score of

the Modified National Institute of Standards and Technology (MNIST) database, with an

error rate of 0.21% [46]. CNNs find use in applications such as biometric identification

[45], programs that learn to replicate painters’ style [47], applications that extract high-

level human attributes such as gender and clothing [48], text classification [49], speech

recognition [50] and facial recognition [51]. It is also worth to note that Brain-Computer

Interface (BCI) is another field where the use of CNNs, in conjunction with EEG data, is

undergoing research and showing promise, with accuracy results reaching 95% in stim-

ulus response classification [52, 53]. Another relevant example of CNNs being used in

conjunction with EEG is in biometric recognition using resting-state EEG signals [54].

Healthcare applications of CNNs include classification of Alzheimer’s Disease pa-

tients from control subjects, reaching an accuracy result of 92% using EEG signal from

16 electrodes [55], segmentation of infant brain tissue in multi-modality MRI images [56]

and histological tissue classification [57]. CNNs have also been shown to achieve per-

formances comparable to expert radiologists in classifying radiological features (lumbar

inter-vertebral discs and vertebral bodies) from MRI images, with an accuracy of 95.6%

3
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[58]. Finally, the use of CNNs has shown that applying pattern recognition to the spatio-

temporal dynamics of EEG with Brain Connectivity metrics can be used for epileptic

seizure prediction [59].

Other particularly relevant use of ML in healthcare research are the development of

an application to classify alcoholics and non-alcoholics using EEG and Neural Networks

[60] and another using several different EEG analysis metrics to classify alcoholic and

epileptic patients from control subjects and thus achieving accuracies of over 90% [36].

Another technology of interest that is growing in use is Cloud Computing [61–64].

This technology allows data and applications to be remotely housed and run in remote

servers while providing many advantages in terms of computational resource scalability

and pricing [61–63, 65, 66].

While the Cloud paradigm is not yet widely employed in healthcare mainly due to

some aspects regarding security that still need resolving, it poses as a growing area of

research in medicine and shows promise to change the way data is handled in healthcare

[61–64].

The Cloud paradigm allows for several users to have access to the same data, allow-

ing for the sharing of information among several healthcare entities such as physicians

or between institutions [61–63, 65, 66]. This means Cloud computing can be used in

Telemedicine both as an e-health data storage platform and as a data processing platform

and can even be useful in emergency situations due to easy and fast data access [61, 62].

Patient monitoring is another application of the Cloud paradigm as physicians can

access physiological data stored in the Cloud to remotely monitor test results or ongoing

therapies [63], with this concept having been studied through the use of Electrocardio-

graphy (ECG) data [64]. Using the same concept, Cloud systems can also be employed

in patient self-management as an easy way to keep track of medical information and

exam results [61, 62]. Also, using the Cloud paradigm as a way to outsource healthcare

facility records and for remote data processing has shown to save money otherwise spent

on hardware investment and maintenance costs. Medical imaging is another field where

healthcare can benefit from the use of Cloud servers due to their remote storage and

processing capabilities as medical images tend to be resource-heavy [63].

With all the information and studies presented above taken into consideration, an

application could be envisioned which makes use of ML concepts, in particular capitaliz-

ing on the strength of image processing algorithms such as CNN, and Brain Connectivity

analysis (with EEG) as a computer-aided diagnosis tool. Moreover, developing the ap-

plication in the Cloud would allow users to remotely access it and not be restricted by

the hardware available to them, as well as provide a cost-effective platform flexible to

continuous development.

AUD, being a highly prevalent mental disorder was chosen to be the subject of analysis

of the aforementioned application. Furthermore, studies presented above support the

notion that Brain Connectivity analysis of AUD is feasible to use in an automatic classifier

and that taking an Image Processing approach to the problem can give interesting results
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due to the advanced capabilities of these algorithms, in particular CNNs.

1.2 Objectives

This thesis can be seen as having two main objectives.

The first objective is to create an intuitive Cloud-based application which allows the

user to create, train and employ a specialized ML classifier.

The application is to follow a set of pre-determined core principles:

• Due to the current strength and wide use of image processing technologies, the

application must follow an image processing paradigm, where the input data to be

processed consists solely in images, and as such employs the CNN algorithm.

• To capitalize on modern Cloud-based technologies and the possibility of remote

processing and removal of physical hardware restraints, as well as the possibility

of more cost-effective deployments, the application is to be housed and run on a

Cloud server.

• To allow its use in research and an easily adaptability to different contexts, it must

be designed so that it is simple to learn and use.

The second objective is to employ the aforementioned application to classify neuropsy-

chiatric data and thus evaluate metrics which could be used to automatically classify

non-healthy subjects from control ones. A few core principles were also set in this second

objective:

• Due to advantages of EEG in terms of ease of use and superior temporal resolution,

it was chosen to be the type of physiological data acquisition to be used.

• Due to the fact that its diagnosis is less subjective and due to the relatively high

availability of data, the disorder to be used in this work was chosen to be Alcohol

Use Disorder.

1.3 Thesis Overview

The present chapter focuses on the background context of this thesis and explores how

these concepts serve as motivation for the work that will subsequently be discussed. The

main objectives are underlined as pertaining to the context and motivations discussed

previously. This is intended to give the reader a broad scope of the different issues

involved in this work and how each of them interconnect to give rise to what will be

discussed in later chapters.

The remainder of this thesis is segmented in such a way to promote a more fluid

reading:
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• Chapter 2 presents the scientific concepts which were tackled in this work. A

great deal of focus was paid to CNN, as the development of the application and

analysis of results is greatly related to the intricacies of the algorithm. Furthermore,

the pathology of AUD was presented rather than neuropsychiatric disorders in

general. This is due to the fact that AUD is the only disorder in focus throughout this

work, though the research is embedded in the broader context of neuropsychiatric

disorders, as discussed in the present chapter.

• Chapter 3 is intended to introduce the tools used in this work. Here, a division is

made between those used in the context of application development and those used

in classification efforts. In the former, the computational tools such as programming

frameworks and the used Cloud environment are presented. In the latter, the used

datasets are detailed as thoroughly as possible. Data processing techniques and

classification parameters are also introduced.

• In Chapter 4, the developed application and classification results are presented and

discussed. Again, this chapter is divided such as to segment the created application

from the classification results so as to promote legibility. Both the application and

the classification results are analysed from different perspectives such that different

discussion topics arise and thus allowing a more complete analysis of the work and

not only an adequate evaluation of results but also the discovery of new directions

of research.

• Finally, in Chapter 5, the factors that posed obstacles to the performed research

are presented and discussed, followed by a contemplation of how the work can be

advanced in the future. To conclude, some final thoughts are shared in the interest

of bringing this thesis to a close.
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Theoretical Concepts

2.1 Alcohol Use Disorder

2.1.1 Definition & Pathophysiology

Alcohol Use Disorder (AUD), more commonly known as alcoholism, is a kind of Sub-

stance Use Disorder (SUD) characterized by the excessive consumption of alcohol [13].

The main feature of these disorders is a set of behavioural, cognitive and physiological

phenomena showing the persistent use of the substance in spite of the problems it causes,

with substance use taking on a higher priority than other matters that once held much

greater importance [13, 67].

Other important features of these disorders lie in the set of symptoms experienced

when substance use is discontinued, known as withdrawal, and in the intense desire or

urge for the substance that may occur at any time, also known as craving [13].

Unlike other drugs of abuse, alcohol does not interact with a specific receptor or target

system in the brain but rather forms complex interactions with multiple neurotransmit-

ter/neuromodulator systems [68]. As such, the full scope of chemical brain processes

triggered in the presence of alcohol is not yet fully understood, though several neuro-

transmitter systems are known to be linked to alcohol dependence [67, 69, 70].

The activation of neurons in the brain is regulated by excitatory and inhibitory neu-

rotransmission processes. While, under normal conditions, a balance exists between

excitatory and inhibitory neurotransmitters in the brain, exposure to alcohol leads to

a state of imbalance. In this imbalance, inhibitory processes are intensified as alcohol

enhances the effect of inhibitory neurotransmitters, the main ones of these being Gamma-

aminobutyric Acid (GABA) and Glycine, as well as that of inhibitory neuromodulators,

such as Adenosine [71]. This causes a decrease in anxiety and an overall state of sedation

[67, 71].
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It is this interaction with GABA, as well as other neurotransmitter systems and the

endogenous opioid system, that is thought to stimulate the release of dopamine from

cells in the Ventral Tegmental Area (VTA) to the limbic system, namely to the Nucleus

Accumbens (NAcc) and prefrontal cortex. This circuitry, also known as the brain’s reward

system, is associated with desire, motivation and reward-based learning and is thought to

play an important role in reinforcing evolutionary-beneficial behaviours. It is therefore

thought that this system plays an important role in developing addiction and is thought

to cause euphoria when consuming alcohol [68].

With long term exposure to alcohol, however, the brain begins to adapt by counterbal-

ancing its effects, in an attempt to restore equilibrium between excitatory and inhibitory

processes. As such, inhibitory neurotransmission is decreased and excitatory neurotrans-

mission is increased [71]. This state of compensated equilibrium is the mark of alcohol

dependence. It is important to realize that this shift in neurotransmission distribution is

only in equilibrium in the presence of alcohol. In the absence of alcohol, however, a new

state of reversed imbalance arises, leading to an increase in excitatory neurotransmission

and a decrease in inhibitory neurotransmission. This new unbalanced state is the basis of

withdrawal and causes symptoms such as seizures, delirium and anxiety and is character-

ized by an intense craving of alcohol as an attempt to restore neurotransmission balance

in the brain [71].

Heavy alcohol intake may lead to problems in nearly every organ system such as the

cardiovascular system (e.g. cardiomiopathy), the gastrointestinal tract (e.g. gastritis, liver

cirrhosis, pancreatitis), the skeletal system (e.g. osteoporosis, osteonecrosis) [13, 72] and

is known to affect most of the endochrine and neurochemical systems [18, 70]. Like other

SUDs, AUD has variable effects on the central and peripheral nervous systems and causes

aberrations in normal brain functions which, depending on the degree of addiction, may

not disappear after detoxification [13, 73]. Such effects include cognitive deficits, severe

memory impairment, and degenerative changes in the cerebellum [13].

2.1.2 Clinical Diagnosis

Diagnosis of AUD, or any SUD, is based on the pathological pattern of behaviours related

to substance use [13, 67]. There are eleven criteria to diagnose SUD, which can be grouped

into four categories [13]:

• impaired control

• social impairment

• risky use of the substance

• pharmacological criteria

8



2.2. ELECTROENCEPHALOGRAPHY

While analysis of urine or blood samples to measure blood alcohol concentration may

serve as evidence to confirm one or more criteria, diagnosis usually relies on asking ques-

tions regarding the subject’s experience with alcohol. To note that it is not required that it

be the subject to answer these questions, provided the answers come from reliable sources.

Besides diagnosing AUD, the number of confirmed criteria also allow a quantification of

the severity of the disorder, as the more criteria are verified, the higher the severity of the

disorder [13, 74].

Due to the fact that no empirical analysis is employed, this method of diagnosing

AUD and inferring its severity is considered subjective and frequent discussion arises

regarding its accuracy [74], especially when taking into consideration that the underlying

condition is highly heterogeneous in both etiology and phenotype [67]. This is common

to all neuropsychiatric disorders [13].

2.2 Electroencephalography

2.2.1 Introduction and Underlying Theory

Electroencephalography (EEG) is a technique that allows the collection of data pertaining

to the brain’s electrical activity [30, 75–77].

The neurons composing the brain work by moving charges to transmit information

to each other, in complex networks that encode brain function [30, 75, 76]. According

to Standard Electromagnetic Theory, a moving charge generates an electric field which

extends through space, decaying as distance to the charge increases. Thus, these small

currents generate electric fields which extend to the scalp. However, due to the small

magnitude of the currents produced by the activity of a single neuron, only the combined

simultaneous activity of several neurons can be detected as an electric potential at the

scalp [30, 75, 76]. As such, brain processes requiring the activity of a group of neurons

can be acquired and amplified for analysis [30, 77]. This is the basis of EEG.

Using electrodes with a conductive material allows for the resulting electric field at

the scalp to be read as an electric potential. This measurement can be stored and carried

out over time to acquire a dataset of varying electric potential at specific scalp regions.

The resulting data constitutes the EEG signal [30, 75–77].

Electrodes are placed in predetermined positions that depend on their amount and

in the used positioning system. The electrode number and configuration allows for the

customization of the acquisition parameters such as spatial resolution. The standard In-

ternational 10/20 electrode configuration is the most common but using more electrodes

involves using modified configurations to correctly place each one in the best position to

improve signal acquisition and reduce artefacts. Figure 2.1 shows the Modified Combi-

natorial Nomenclature, which features electrode positions from the International 10/20

System with a modification to designate the additional 10% electrode positions [78]. The
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placement of the electrodes can also be aided by special caps with markings of the elec-

trode placement positions [30].

Figure 2.1: Modified Combinatorial Nomenclature of the International 10/20 System.
Source: [78]

In the context of functional brain imaging, EEG can be seen to offer the following

advantages [30, 33, 75–77, 79]:

• It is safe, painless and non-invasive

• The collected data can be directly correlated to brain function

• High temporal resolution (millisecond range)

• Reasonable spatial resolution (centimetre range)

• Its measurement is less restricting in terms of movement

Of all these features, many of them are shared or even surpassed by other brain moni-

toring/imaging techniques but EEG’s greatest advantage is its unmatched temporal reso-

lution, which is orders of magnitude higher than other methods [30–33]. This is because

brain processes are dynamical both in space and in time and even though EEG pales,

for instance, in terms of spatial resolution when compared to fMRI [31], its spatial res-

olution is still in the millimetre/centimetre range for scalp EEG measurement, which is

still reasonable and can be controlled by adjusting electrode number and configuration
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[79]. Good temporal resolution, however, proves advantageous since capturing rapid

variations in neuron configurations is valuable in analysing brain function [30, 32, 33],

thus leading to the choice of EEG as the physiological signal to be used in this thesis.

2.2.2 Analysis of Brain Connectivity

Mapping the human brain has been a subject of interest for neuroscientists for over a

hundred years. However, there has been a recent interest in expanding this type of

analysis by describing how different regions of the brain interact with one another and

how these interactions depend on experimental and behavioural conditions [26].

The neuronal networks of the cerebral cortex follow two main principles of organi-

zation: segregation and integration. Anatomical and functional segregation refers to the

existence of specialized neurons and brain areas, organized into separate neuronal pop-

ulations or brain regions. These sets of neurons selectively respond to specific stimuli

and thus compose cortical areas responsible for processing specific features or sensory

modalities. However, coordinated activation of dispersed cortical neurons, i.e. functional

integration, is necessary for coherent perceptual and cognitive states, meaning these seg-

regated neuronal populations do not work in isolation but as a part of broader processes

[80]. In accordance, experiments have shown that perceptual and cognitive tasks result

from activity within extensive and distributed brain networks [80].

It is the analysis of these physical and functional connections between neurons and

neuronal populations that is denoted as Brain Connectivity analysis [26, 81].

When analysing brain connectivity, three different aspects can be discerned, each of

which is related to different aspects of brain organization and function [80, 82–84]:

• Structural Connectivity denotes the anatomical links between individual neurons

or neuronal populations [80, 82, 83] and, more specifically, refers to white matter

projections connecting cortical and subcortical regions of the brain. Analysis of

this connectivity depends therefore on the scale chosen, which can range from

local to inter-regional areas of the brain. Connections within the scale are thus

expressed as a set of undirected connections between different elements. This kind

of connectivity is thought to be quite stable on short (minute range) time scales,

though this may not be true for longer time scales due to brain plasticity [83, 85].

• Functional Connectivity, on the other hand, is a concept that refers to the devia-

tions from statistical independence between distributed and often spatially distant

neuronal populations [80, 82–84]. Unlike Structural Connectivity, Functional Con-

nectivity is greatly time-dependent, as functional connections (and therefore the

measured statistical patterns) change on multiple time scales due to the effect of

sensory stimuli. These fluctuations may occur in the millisecond range. It is, how-

ever, important to point out that Structural Connectivity plays a defining role in
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the possible patterns of Functional Connectivity that can be generated, as anatomi-

cal constraints play their part in shaping statistical dependence between neuronal

populations [83]. Being a statistical concept, analysis of Functional Connectivity

relies on statistical metrics such as correlation, covariance, spectral coherence, or

phase-locking [85]. Functional brain connectivity is a widely studied concept as it

can give insight into how the brain’s neuron networks process information and how

certain brain processes are carried out [25–28]. Several neuropsychiatric disorders

have been found to show significant changes in functional connectivity and this

approach shows great promise in the study of these diseases [25–27].

• Effective Connectivity consists in modelling directed causal effects between neural

elements to infer the influence one neuronal system has over another [83, 85]. As

such, models obtained are thought to represent a possible network configuration

that accounts for observed data and that therefore give insight into brain processes

[83, 86]. In Effective Connectivity analysis, techniques such as network perturba-

tions or time series analysis are employed [85].

Analysing functional brain connectivity is a matter of data analysis and has been

applied to fMRI, EEG and MEG [26], and this analysis can be performed considering or

not the temporal dynamics of the neural network [28]. Spatiotemporal functional analysis

is specially interesting in this case as many psychiatric diseases show evidence of changes

in functional connectivity with complex temporal dynamics [25–27].

As EEG has a high temporal resolution it allows the study of the temporal dynamics

of brain activity better than other techniques [30–33] and as such has been used in the

work described in this thesis. Furthermore, Pearson Correlation and Cross-Correlation

are Functional Connectivity metrics [85] that were used to analyse the data.

2.2.2.1 Pearson Correlation

Pearson’s Product Moment Correlation Coefficient, or Pearson Correlation, is a frequently

used method for determining the strength and direction of the linear relationship between

two variables [87, 88]. It can be calculated as such [87]:

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√[
n∑
i=1

(xi − x̄)2

][
n∑
i=1

(yi − ȳ)2

] (2.1)

where x and y represent the two variables whose relationship is being studied, x̄ and

ȳ are each variable’s average value, n is the number of data pairs between them and the

resulting coefficient rxy is a value between -1 and +1.

As previously stated, this coefficient allows to determine not only the strength of the

relationship between two variables but also its direction. The strength of the relationship
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is given by the magnitude of the coefficient such that values closer to +1 or -1 will denote

a stronger relationship while values closer to 0 will denote a very weak or random non-

linear relationship. The direction of the relationship, on the other hand, is given by the

sign of the coefficient, such that positive values imply a positive linear relationship (an

increase in one variable implies an increase in the other) and negative values imply a

negative linear relationship (an increase in one variable implies a decrease in the other)

[87, 88].

2.2.2.2 Cross-Correlation

The Cross-Correlation function is a method for determining the strength and direction of

the linear relationship between two variables as a function of the delay, or lag, between

them. For two discrete time-series variables x and y, it can be computed in the following

manner [59]:

Cx,y(τ) =


1

N − τ
N−τ∑
i=1

x(i) · y(i + τ), τ > 0

Cy,x(−τ), τ < 0
(2.2)

where τ denotes the lag between the signals and N is the number of samples of each

signal. Interpreting the resulting value is similar to interpreting the Pearson Correlation

Coefficient, except for the fact that the result only provides a correlation value for a certain

lag between the signals. By analysing a Cross-Correlation spectrum of two signals, i.e.

the plot of Cxy as a function of τ , it is possible to obtain information regarding the

relationship between the signals for each value of lag between them [87].

2.2.3 Brain Connectivity in Alcohol Use Disorder

Many psychiatric diseases show evidence of changes in functional connectivity with com-

plex temporal dynamics [25–27].

It has been shown that alcohol does alter brain function through changes in both

structural and functional connectivity [34, 89, 90]. Specifically, studies have found both

a decrease in functional connectivity between the left posterior cingulate cortex and

the cerebellum, and in local efficiency in the brains of subjects with AUD [34]. Also,

individuals suffering from AUD show greater and more spatially expanded connectivity

between the cerebellum and the postcentral gyrus, as well as restricted connectivity

between the superior parietal lobe and the cerebellum [89]. The brains of alcoholics also

show decoupling of synchronization between regions that are functionally synchronized

in controls [34] and alcoholics show weaker within- and between-network connectivity

[90] and hence evidence of abnormal connectivity [34, 89, 90].

These altered connectivity patterns are evidence of a neurological compensation mech-

anism, whereby the brain adopts new pathways to encode function so as to counteract

the deficits due to lesions caused by alcohol [34, 89, 91].
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2.3 Machine Learning

Machine Learning (ML) is a growing field and new applications are discovered on a regu-

lar basis. Nowadays, ML algorithms are used in fields such as Biometrics (e.g. face, speech

and handwriting recognition), search engines, fraud detection, marketing, economics and

gaming [92].

Machine Learning is defined as a branch of Computer Science involved in the creation

of algorithms which enable programs to learn autonomously [40, 92, 93]. It arose from

the need to create algorithms to solve problems too complex to program explicitly, there-

fore leading to an approach of creating programs which can generalize their procedure

independently of the type of task after experiencing a learning dataset, i.e. learn from

experience [40, 92].

Two fundamental ML paradigms can be identified [92, 93]: Supervised and Unsuper-
vised.

In Supervised Learning, the program is given a data denoted as a training set. Each

member of this data set is labelled according to different classes of data. The program

is then able to make inferences on a new set of data, denoted as a test set, based on the

information gathered from the training set. Another set can be considered, known as

the validation set, which can be seen as an additional test set, used to validate algorithm

performance analysis [92, 93].

Unsupervised Learning is similar to supervised learning with the difference that the

training set is not labelled, with the program still having to segment the test set data into

classes. This approach is much more complex than supervised learning but may come

with benefits related to training set independence [92, 93].

2.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a family of ML algorithms based on the operation

of biological nervous systems, such as the human brain. ANNs are comprised of several

basic computational units connected to each other in a layered network, resembling brain

neurons connected through synapses. Due to this analogy, these basic units are referred

to as artificial neurons and their connections as synapses [45, 94].

Due to the complexity of real neurons, the principle behind artificial ones represent

an abstraction to simpler theoretical models, therefore enabling their computational

representation with relative ease [45]. An artificial neuron is comprised of 3 components:

the inputs, the body and the outputs [94].

The body of the neuron represents its internal model, which can vary between neurons.

The general theoretical model of the artificial neuron is given by Equation (2.3) and is

illustrated in Figure 2.2 [95]:

y(x1,x2, ...,xN ) = f

 N∑
i=1

wi .xi + b

 (2.3)
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where xi represents the value at the ith neuron input out of N such inputs, wi is the

weight associated with the ith input, f represents the neuron transfer function, b is the

neuron bias and finally y is the value given at the neuron output [95].

Figure 2.2: Illustration of the artificial neuron model, with the corresponding biological
equivalent components. Source: [96].

In this way, a single processing unit of the network can receive multiple inputs, each

of them possessing an associated weight which determines its relative contribution to the

output result, with each neuron processing its inputs in a possibly unique way by using

different transfer functions. By networking several neurons it is possible to construct a

complex network with strong computational abilities [45, 94, 95].

These networks are based on a 3-layered architecture in which the first layer consti-

tutes the input layer, followed by a hidden layer and finally by a output layer, as shown

in Figure 2.3.

While the input and output layers are fairly self-explanatory, the hidden layer is more

complex. This layer receives the distributed input from the input layer and determines

how stochastic changes in its parameters affect the final result, which it then transmits

to the output layer. This is the basis for ML using ANNs. It is possible to have multiple

hidden layers, each of which learns from the data it receives from the previous layers.

This is commonly referred to as Deep Learning [51, 97].

Many types of ANNs exist, each with differences in the neuron models used and

network architecture elements. This work was focused on CNNs.

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of ANN typically used in image pat-

tern recognition [92]. They possess the same features as traditional ANNs in terms of

learning through parameter auto-optimization but allow the encoding of attributes spe-

cific to imaging data, leading to a reduction in total parameter count. This is important
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Figure 2.3: Example of a three layered ANN with one hidden layer, three inputs and two
outputs. Source: [96].

for network efficiency since it allows for a simpler and more specialized architecture and

also to deal with overfitting [45].

Every data element in a set can be seen as being comprised of distinguishing features

and random noise. Overfitting defines the situation where a classifier is so tuned to the

training set that it learned to use the random noise present in the set to achieve a better

performance. The result is a classifier with a great performance when classifying the

training set, but a poor performance on unseen data. This occurs when parameter count

greatly exceeds its minimum required amount. While this is unavoidable in some cases,

reduction of this effect is also important in order to minimize computational resources

allocated, which can be a restriction to program application, such as in cases of time or

memory limitations [45, 92, 97].

Using CNNs in image processing and hence greatly reducing the number of parame-

ters used in the neural net architecture leads to more time and memory efficient programs

while reducing overfitting and reaping the benefits given by the robust ML approach of

ANNs [97]. Furthermore, the hidden layers present in CNNs allow for deep learning

where several levels of abstraction from pixels to textures can be classified, thus showing

the power of this approach [48].

2.3.2.1 Convolutional Neural Network Architecture

As stated previously, CNNs were devised under the notion that inputs are comprised of

images. This leads to a more specialized architecture for this kind of data than that of

general ANNs [45].

The main difference between CNN and general ANN is that, in the former, neurons
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comprising each layer are separated into 3 different sets, each representing a dimension

of the input: height, width and depth [45]. In this sense, three basic concepts are used in

the CNN algorithm [97]:

• Local Receptive Fields

• Parameter Sharing

• Pooling

These concepts are realized in the special layers which compose the CNN architecture,

which will be discussed in detail:

• Convolutional Layers

• Pooling Layers

• Fully-Connected Layers

Convolutional Layers are the most important layers in the CNN architecture and are

in fact the core building block of these networks. They rely on the use of learnable filters,

or kernels. In the Convolutional Layer, dot products are calculated between the filter and

small regions of the input at different locations of the image. The filter is dragged across

the image, producing a 2-dimensional activation map showing the responses of the filter

at each location of the input image [45, 96].

The aforementioned principle of Parameter Sharing can be seen here, as each filter

does not change depending on the location it is used in the image, and thereby reducing

parameter count and ensuring that a certain feature is found in different locations in

the image. Furthermore, the fact that each neuron is connected only to a limited section

of the previous layer, given by each location the filter is applied at, is denoted as the

neuron’s Local Receptive Field. This concept also allows for an enormous decrease in

overall parameter count and model complexity [45, 96].

As these filters are learnable (i.e. their values are adjusted to improve classifier per-

formance), it can be seen that certain distinguishing features of the image will produce

stronger responses for each filter and non-distinguishing features will generate weaker

responses. It is important to note that, while the first Convolutional layer can be easy to

comprehend as it allows to determine simple changes in pixel intensity (e.g. sharp colour

changes), Convolutional layers that lie further forward in the CNN architecture operate

on the output of the previous layers, i.e. on these activation maps (therefore denoted

as the layer’s input volume). This allows the network to distinguish more complex and

widespread patterns in the input image, therefore making a CNN able to distinguish

simple and complicated features in an image [45, 96].

An important matter to bear in mind is the optimisation of this layer in regards to

processing images. By applying the filters only on certain locations of the input volume,
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the number of parameters required to define the network are greatly reduced, as opposed

to regular ANNs, where the input volume is fully connected to the layer input. This

allows for a smaller parameter count, thus reducing computational requirements and the

effects of overfitting [45].

A convolutional layer is defined by a set of parameters [45, 96]:

• Filter size - this corresponds to the dimension of the filters used in this layer.

Though these filters can have any 2-dimensional size, dimensions such as 3x3, 5x5

or up to 11x11 are typically used.

• Depth of the output volume - this corresponds to the number of filters that are

used in the layer, each searching for different features in the input volume.

• Stride - this denotes the amount of pixel shift between 2 consecutive filter applica-

tions.

• Zero-padding - this corresponds to the amount of zero-padding added to the bor-

ders of the input volume.

Pooling Layers are another important layer type in CNN architecture, applying the

aforementioned Pooling concept. A Pooling layer performs downsampling of its input vol-

ume along the spatial dimensionality. This greatly reduces model complexity and overall

parameter count, making Pooling Layers extremely important in any CNN architecture

[45, 96].

The pooling layer operates in a similar manner as the convolutional layer in the sense

that it also uses a filter which operates in certain locations of the image, locations which

are dictated by equivalent stride and filter size hyperparameters. Hence, this layer also

exhibits the concept of Local Receptive Field. However these filters are not learnable and

while in the convolutional layer a dot product is calculated at each location for several

filters, in the pooling layer a downsampling function is performed for a single filter. The

most common downsampling function is the max function, where the highest pixel value

among those encompassed by the filter is selected, though averaging the pixel values is

also another used approach (though much less common) [45, 96].

In terms of the size of the filter, very small filters (2x2 or 3x3) are usually preferred

due to the destructive nature of the pooling layer, though larger filter sizes may be used

[96].

Fully-Connected Layers are layers analogous to traditional ANNs where neurons

have full connections to all activations from the previous layer. The activation volume

resulting from a fully-connected layer can therefore be calculated by a simple matrix

multiplication with a bias offset. As such, in order to define a Fully-Connected Layer,

only the number of neurons in the layer is required [45, 96].

It is interesting to note that neurons in both Convolutional and Fully-Connected layers

perform a dot product with its inputs, the only difference between these layers being that
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the former has connections only to certain regions of its input volume, therefore justifying

the name of the Fully-Connected Layer [96].

Rectified Linear Unit (ReLU) Layers, though sometimes not listed as CNN layers

but rather as an optional operation of other layers, perform an elementwise activation

function, the most common of which is thresholding at zero, as seen in Equation (2.4)

[96]:

y =max(0,x) (2.4)

where x is the input, y the output and max defines the function which outputs the largest

of its input parameters.

In this work, ReLU operations are considered to be isolated layers since not doing so

would lead to a degree of ambiguity regarding the point in the architecture at which the

operation is performed (either before or after the associated layer). Considering it a layer

eliminates this ambiguity.

Unlike the other layers presented, this layer does not present any adjustable parame-

ters, but is used since it has proven to be a simple way to greatly increase training speed

and effectiveness without being too demanding in terms of computational resources [96].

After all the different layers which will process data, it becomes necessary to have a

manner in which the result of final layer is attributed to a class, i.e. the result is classified.

As such, a Score Function is used. Though not considered a layer, this is an indispensable

part of the network architecture [96].

The network’s score function denotes the operation that computes the class scores for

each prediction and is the final sequential element in a network. The 2 most commonly

used are the Support Vector Machine and the Softmax functions [96]. This work will

focus on the latter.

The Softmax function is a multiple class generalization of the binary Logistic Regres-

sion classifier. It is used to calculate a normalized probability score that the input belongs

to a certain class. Equation (2.5) describes this function [96]:

P (i) =
exi

K∑
j=1
exj

(2.5)

where K denotes the number of data classes, x is a K-dimensional vector containing

the output of the last network layer and P (i) represents the normalized probability that

the function input is classified as the class of index i. By expanding to all i = 1, ...,K

the probability distribution of for all classes is obtained, with the sum of all its indices

equalling one.
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2.3.2.2 Network Training

In order to train a CNN classifier, a few issues must be discussed to ensure training is

effective.

In every training round, it is necessary to gauge how well the model performs so that

it can adjust itself to improve performance. The algorithm used to perform this task is

called a Cost Function, or Loss Function. Many mathematical operations can be used to

this effect, but in this work we will focus on the Categorical Cross-entropy Cost Function,

which is a counterpart to the Softmax score function. It is computed using Equation (2.6),

with Equation (2.7) being used to compute the total cost [96]:

Li = − log


exyi
K∑
j=1
exj

 (2.6)

L =
1
N

N∑
i=1

Li (2.7)

where yi represents the true class of input image i and so the argument of the loga-

rithm is the Softmax function, as presented in Equation (2.5), outputting the probability

score obtained for the true class of image i. As such, Li represents the cost (or data loss)

associated to input image i, with L representing the average loss across all N training

set images. This value is representative of network performance, where more efficient

networks have a lower associated L. The training process is guided toward the purpose

of lowering this value, thus improving network performance [96].

In obtaining the model cost value, a technique must be employed to evaluate the

degree of improvements that must be made to the network. Gradient Descent is a tech-

nique that consists in computing the gradient of the Cost Function for each parameter

throughout the training process. This way, it is possible to gauge how each parameter is

affecting performance so that they can be adjusted accordingly, i.e. backpropagated [96].

Many variations of this technique exist but in this work Root Mean Square Propagation

(RMSProp) will be used, which is a very effective adaptive learning rate method [98]

where a moving average of the squared gradient is kept for each parameter. This process

is described by Equation (2.8) and Equation (2.9) [99]:

E[g2]t = γ ×E[g2]t−1 + (1−γ)× g2
t (2.8)

wt+1 = wt − gt
η√

E[g2]t + ε
(2.9)

where g denotes the gradient of the Cost Function and t denotes the training round

index, such that E[g2]t denotes the moving average of the squared gradient at training

round t. At each round, this moving average is updated according to Equation (2.8) so

that network parameters w can be updated according to Equation (2.9). Furthermore, γ
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defines the momentum term responsible for reducing oscillations in parameter optimiza-

tion and is usually set to 0.9, ε is the term responsible for decaying the moving average

value in parameter update and is usually set to 1× 10−6. Finally, the constant η, named

Learning Rate, is of particular interest as it dictates how strongly the gradient will affect

the parameter update, hence the name. In this case, it is suggested to be set to 0.001 [99].

The next issue that must be approached is the use of Regularization techniques. These

techniques focus on controlling the weight values so as to prevent the model from over-

fitting the data during training. There are several Regularization techniques which find

an application in CNN [96]:

• L2 regularization, or weight decay.

• L1 regularization

• Max norm constraints

• Dropout

In this work, the Dropout technique is used, as it is a very simple yet effective tech-

nique.

The Dropout technique consists in only keeping a neuron active with a certain prob-

ability p, and keeping it inactive otherwise. This process of activating/deactivating neu-

rons is repeated for each training round and for every neuron in the network [96].

Using Dropout, the network being trained will consist in a different configuration

in every training round (though maintaining its general architecture) and the weights

of each active neuron will adapt to their current configuration. While this may seem

counter intuitive, it can be compared to creating several similar networks and averaging

their classification results, which in itself is an effective technique to prevent a model

from overfitting. The difference, however, lays in the fact that a single network is being

trained, making this technique less computationally demanding [96].

The final issue is that of Weight Initialization. Before the first training round of

the network, weight values must have a starting value, which will then be adjusted as

the network is trained. These values must be sensibly initialized, as they determine the

point from which the network will progress through learning. If this starting point is not

appropriate, then the network may never perform well [96].

While initializing the weights to zero may seem like a simple solution that allows the

weights to be adjusted to both positive and negative values easily without compromising

the starting performance, it is actually a logical pitfall which compromises network per-

formance. This is due to the fact that every neuron will have the same starting conditions

and, as such, will be adjusted in the same way as training progresses, always comput-

ing the same output between themselves. As such, an appropriate weight initialization

scheme must introduce an element of asymmetry between the neurons [96].
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A more appropriate way to initialize the weights is to assign them small random

values. This method is called symmetry-breaking and allows the neurons to evolve in-

dependently throughout training as unique components of a complex network, and the

small magnitude of the values avoids compromising the starting state of the network.

Initializing the weights in this way also avoids the need to define an initialization scheme

for the bias values, as asymmetries are already avoided by the random weights, allowing

the bias to also evolve independently of each other [96].

2.4 Cloud Computing

2.4.1 Definition

According to the National Institute of Standards and Technology (NIST) [100]:

Cloud Computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.

Essentially, Cloud Computing denotes a kind of on-demand Internet-based computing

where users interact with the underlying Cloud infrastructure in 5 different deployment

models and 3 different service models [65, 66, 101], which will be discussed shortly.

The underlying Cloud infrastructure is composed of autonomous networked physical

and abstract components. The physical components denote the hardware and the abstract

ones denote the software which are the basis for the essential Cloud features presented

above [65, 66, 101].

NIST also specifies 5 essential characteristics for the Cloud model [100]:

1. The user can independently access the cloud resources without the need for human

interaction.

2. Cloud resources and services are available through standard network-accessing

mechanisms.

3. The Cloud resources are pooled to serve multiple users simultaneously, with re-

sources being dynamically assigned according to the needs of each user.

4. The Cloud capabilities are scalable and can be elastically expanded or contracted

according to user and system needs.

5. Resource use is optimized by the Cloud and its use is transparent.
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2.4.2 Deployment Models

NIST recognizes four different methodologies in which Access privileges to a Cloud en-

vironment can be granted, and as such four different Cloud Deployment Models can be

distinguished [100]:

• Public Cloud - The Cloud is accessible to the general public.

• Private Cloud - Cloud access is restricted to consumers or members of consumer

organizations.

• Hybrid Cloud - Cloud infrastructure is composed of multiple distinct Cloud in-

frastructures with varying deployment models. These infrastructures are bound

together to allow inter-Cloud operations.

• Community Cloud - Cloud access is shared between members of a community with

similar concerns of whatever kind. This model stands between that of the Public
Private clouds, as the access is not fully open but neither is it private.

2.4.3 Cloud Service Models

In the Cloud Computing model, there are three generally recognizable ways in which a

Cloud provider offers their service. These differing approaches are denoted as Service

Models [100]:

2.4.3.1 Software-as-a-Service (SaaS)

In this model, the user is given access to software placed on the cloud by the provider. This

way, the user can remotely access capabilities which he does not own and the provider

can enable that access without any product delivery. This is the more standard definition

of a Cloud service and the more commonly employed. The user is given access only to

the software and cannot control the underlying infrastructure, as the software should

be self-sufficient in the sense that it can manage Cloud resources to ensure its correct

function. SaaS is, therefore, browser interface software through a network to a Cloud [65,

66].

2.4.3.2 Platform-as-a-Service (PaaS)

In this model, the user is given remote computational capabilities to implement or cre-

ate software that can be implemented and run on the Cloud, but is not given access to

the underlying infrastructure, save being able to manage functionalities regarding the

deployment of the applications. This model usually entails providing a set of libraries

and Cloud programming functionalities to enable the creation of user applications to be

implemented on the Cloud [65, 66].
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2.4.3.3 Infrastructure-as-a-Service (IaaS)

In this model, the user is provided with the computational capabilities of Cloud hardware,

being able to fully manage the Cloud resources to set up programs and change system

specifications. The user cannot, however, access core Cloud functionalities. The purpose

of this model is to provide remote access to computational hardware without the need to

own it, but with all the customisation ability of possessing ownership [65, 66].
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3
Materials & Methods

3.1 Application

In order to develop a classifier, a ML framework which included CNN algorithms had to

be chosen. The chosen framework was Theano©.

3.1.1 Theano© framework

Theano© is an open-source Python library used for the purpose of efficiently defining,

optimizing and evaluating mathematical expressions involving multi-dimensional arrays.

It was created in 2008 and since then has seen continuous development and multiple

other frameworks have been built on top of it, including several State-of-the-Art ML

models [102].

Theano was designed to function both with a Central Processing Unit (CPU) or a

Graphics Processing Unit (GPU) and to facilitate the shift between them. Furthermore,

the advantage of using Theano lies in its optimization techniques, as it avoids redundan-

cies in computations, simplifies mathematical expressions, continuously tries to minimize

both memory use and errors that arise from hardware approximations [102].

Theano uses the Python programming language as an interface, taking advantage of

its widespread use in the scientific community. The popularity of this language comes

from the fact that it is both open source and was designed to be easily legible and compre-

hensible. This lead to numerous different libraries being built on top of Python, namely

NumPy and SciPy, which came to wide use in the scientific community. The use of this

language and the fact that Theano’s programming interface closely resembles NumPy, a

popular mathematical Python library, promotes its usability and has contributed to its

acceptance in the context of ML development [102, 103].
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The fact that Theano is completely accessible through the Python language provides

an advantage in the sense that, as long as Theano is correctly configured, one needs only

to focus on developing the application front-end in Python and thus more easily separate

the computational aspect of the application from the user interface. Furthermore, while

Theano is widely used in the ML context, it is not solely a ML application, but rather a

mathematical optimization one. This increases the advantages of using Theano in the

sense that the application will be easily expandable and new features not necessarily

involved in direct CNN development can be implemented [102].

To note that another ML framework was used: Caffe©, which is specialized in CNN

classification [104]. One feature that was developed, as will be discussed in a later chapter,

was a compatibility between this framework and the application. It was in this context

that Caffe was used, and hence the application does not employ it for network training

or classification of data.

3.1.2 Microsoft Azure®

Microsoft Azure® is a collection of integrated cloud computing services which can be

used to create, implement and manage applications resorting to the Cloud paradigm. It

provides all deployment models referenced in Section 2.4.3 and supports several pro-

gramming languages, tools and frameworks [105].

Due to the inherent intricacies involved in the installation of Theano, namely the

need to make changes in the file system, an IaaS approach was taken by making use

of the Azure Virtual Machine functionality, where a Cloud-based virtual machine is

used. Though following an IaaS approach, these environments come with a pre-installed

Operating System. To create the virtual machine the user needs to select the desired

computational capabilities of the environment, including pricing details.

Bearing in mind the license used, the chosen virtual machine featured a Linux Operat-

ing System with a 4-core CPU, 14 gigabytes of memory and local Solid-State Drive (SSD)

storage of 28 gigabytes. While virtual machines with more processing capabilities were

available, including access to GPUs, the available license limited the ability to choose one

such machine, and as such the most affordable virtual machine was chosen.

3.1.3 Flask© Microframework

While the classifier computations are handled by Theano, a user interface is required in

order to provide a means for users to interact with the application. For this purpose, the

Flask microframework was used.

Flask© is a web development microframework for Python based on Werkzeug© and

Jinja2©. It is usually referred to as a microframework due to its relative simplicity while

still maintaining extensibility and functionality. It allows the user to create websites

using the Python language and thus interface with any Python code [106].
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The fact that Jinja2 is incorporated into Flask is an especially advantageous feature.

Jinja2 is a designer-friendly template engine for Python, serving as an interface between

HyperText Markup Language (HTML) and Python [107]. This allows the application to

interact with the HTML code which will constitute the user interface, with the underlying

interface structure being handled by Flask [106, 107].

3.2 Classification

3.2.1 Datasets

Two datasets were used in this work. The first was MNIST, used only for validation of

the program and network architecture, and the second was the University of California,

Irvine (UCI) EEG dataset.

3.2.1.1 MNIST Database

The Modified National Institute of Standards and Technology (MNIST) database consists

in a training set of sixty thousand images and a testing set of ten thousand 28×28 images

of handwritten digits (0 to 9) [108, 109]. It is an often used standard for evaluating image

processing systems, especially in ML [110]. An example of an image from this database

can be seen in Figure 3.1.

Figure 3.1: Example of an MNIST image, representing the number 6. Source: [109]

Images in this database consist in a black (zero-valued) background and a centred

handwritten digit represented in white (maximum-valued). These images were created

from original binary images which were size-normalized to fit in a 20× 20 bounding box

while preserving their aspect ratio. The resulting images are, however, not binary as the

anti-aliasing technique used by the normalization algorithm lead to the appearance of

grey values. The centring of the images was done by translating the digits such that the

pixels’ centre of mass was itself centred [109].

This database is used as a means to validate both the application algorithm and the

network architecture used in this work, the latter of which is discussed in Section 3.2.3.

A subset of this database was used, which was composed of a training set of ten

thousand and a testing set of three thousand images. Each class of digits was equally

represented in the created subset.
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3.2.1.2 UCI EEG Database

The UCI Database is an open EEG database featuring time series recordings of alcoholic

and healthy control subjects using 64 scalp electrodes sampled at 256 Hz during 1 second.

It was obtained from the UCI Knowledge Discovery in Databases Archive at https://

kdd.ics.uci.edu/, to which it was donated in October 1999 [111].

A total of 122 male subjects were involved in data collection. All the subjects were

right-handed with normal or corrected vision. Of these 122 subjects, 77 were alcoholic

and 45 were deemed healthy and as such acted as controls (and henceforth will be referred

to as such) [112].

As per the alcoholic subjects, the mean age of the group was 35.83 years, with a stan-

dard deviation of 5.33 and a range of 22.3 to 49.8 years. These subjects were diagnosed

at the Addictive Disease Hospital in Brooklyn, New York where they were recruited and

reported heavy drinking for a minimum period of 15 years. Despite this diagnosis, all

subjects were detoxified and most of them had been abstaining from the consumption

of alcohol for at least 28 days at the time of data acquisition. This ensures no short-term

effects of alcohol use can be observed [112].

As per the control subjects, mean age was 25.81, standard deviation was 3.38 and age

range was 19.4 to 38.6 years. These selected subjects reported no history of personal or

family alcohol or drug abuse nor history of severe medical problems [112].

EEG data was sampled from 64 electrodes placed in accordance to the extended 10/20

International montage discussed in Section 2.2.1, with electrode impedance kept below

5 kΩ, an amplification gain of 10,000, bandpass filter between 0.02 and 50 Hz and, as

stated previously, a sample rate of 256 Hz [113].

During data acquisition, each subject was shown images from a subset of 90 pictures

of objects chosen from the Snodgrass and Vanderwart picture set [114] as visual stimuli.

These images represent simple objects which are easily recognizable and were presented

on a white background at the centre of a computer monitor such that they were approxi-

mately 5 to 10 cm in height and in width [112, 113].

Visual stimuli were presented in pairs. A first stimulus would be presented for 300

ms, followed by a fixed inter-stimulus interval of 1.6 s which then would be followed by

a second stimulus. This constitutes a trial. Following the end of a trial would be another

fixed interval of 3.2 s before another trial would commence. In this context, the first

stimulus for each trial is referred to as S1, and the second stimulus as S2. S1 was never

repeated as S1 for the same subject. However, S2 could be a repetition of S1, and in this

case S2 is named S2 match. In other cases, though, S2 would not be equal to S1 but would

be an image from a different semantic category, and as such be designated S2 non-match.

Whether S2 would match S1 or not was randomized in each trial, with half of the trials

featuring an S2 match stimulus and the other half an S2 non-match stimulus [113].

After the presentation of S2, the subject was tasked to press a mouse key on one hand

if the images matched or on the other if they did not, with hand designation for these
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two cases alternating across subjects. Response speed and accuracy were equally stressed

[113].

Many trials in the set contained errors, which were excluded from the dataset. How-

ever, given that each subject had a different number of excluded trials for each stimulus

paradigm (S1, S2 match and S2 non-match), some regularization had to be made. To note

that since some subjects had as little as 6 usable trials, simply taking 6 random trials per

subject would greatly decrease the number of images used. As such, calculations were

performed such that the number of images was maximized for each stimulus paradigm

while keeping an equal number of used trials per subject by finding the optimal number

of subjects to be used. To note that, due to the fact that there is a much larger amount of

alcoholics than control subjects, several alcoholics were excluded so that the number of

both was equal.

Furthermore, in order to train and test a network, training and testing sets must

be constructed from the available data. It was defined that the training set would be

constructed from approximately 70% of the data and that the remaining 30% would

constitute the testing set. However, since each subject is represented by multiple images,

care is needed to ensure all images from a single subject are present in the same set. This

step is intended to avoid each subject’s particular EEG features to be used to classify the

images. If this step were not taken, it is possible that the network would start to classify

not only alcoholism but the identity of each subject due to it finding subject-specific

EEG features. This segmentation into training and testing sets, as well as the amount of

subjects per paradigm, is detailed in Table 3.1.

Table 3.1: Training and Testing Set detail. This table shows how the training and testing
set were created from the data of the UCI Database. The training set is composed of
approximately 70% of the total number of subjects, while the testing set is composed of
the remaining 30%.

Stimulus Set # Alcoholics # Controls # Subjects
# Images

Per Subject
# Images

S1
Train 26 26 52 37 1924
Test 11 11 22 37 814
Total 37 37 74 37 2738

S2
match

Train 27 27 54 18 972
Test 12 12 24 18 432
Total 39 39 78 18 1404

S2
non-match

Train 25 25 50 18 900
Test 11 11 22 18 396
Total 36 36 72 18 1296

3.2.2 Image Creation Methodology

In order to classify the EEG signals using CNNs, images had to be constructed from the

data. Due to the fact that larger images imply longer training and classification times and
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that square images, i.e. images with an n×n size, optimize these durations especially if n

is a power of two, all images were made to be 64×64. This is especially relevant knowing

that 64 electrodes were used in signal acquisition. MATLAB® was used to process the

data into image form using the three ensuing methods:

3.2.2.1 Raw EEG Images

The first method used to construct the images consisted in using the data without any

processing. To note that, while this method is henceforth denoted as Raw, the signals

from the used dataset have been subject to the processing explained in Section 3.2.1 by

the creators of the dataset. As such, the employed nomenclature denotes that no further

processing was made in the scope of this work.

The first 64 samples of the EEG signal, corresponding to the first 64 ms of signal

acquisition, were used in the following structure:

• Each image represents a trial. Therefore, each subject will be represented by several

images, as detailed in Table 3.1.

• Each row represents a different electrode.

• Each column represents a different moment in time.

• Each pixel represents an acquisition sample for the electrode and time encoded in

the pixel’s position.

Each image was individually normalized such that its highest pixel value was given

the maximum colour value (white) and its lowest pixel value was given the lowest colour

value (black).

This method is not only used to see if the unprocessed EEG data can be used as a

valid diagnosis metric when using CNN but also to serve as a benchmark for the other

employed metrics. Comparing the results using this metric with those obtained with the

Brain Connectivity metrics can give insight into how reliable the use of Brain Connectivity

is in the diagnosis of AUD.

3.2.2.2 Pearson Correlation Images

In this method, the Pearson Correlation Coefficient was used. The following structure

was employed:

• Each image represents a trial. Therefore, each subject will be represented by several

images, as detailed in Table 3.1.

• Each row and column represent an electrode such that rows and columns with the

same index represent the same electrode.

30



3.2. CLASSIFICATION

• Each pixel represents the Pearson Correlation Coefficient between the signals given

by the electrodes encoded in the pixel’s position.

The constructed images were normalized so that the lowest possible value obtain-

able from the Pearson Correlation Coefficient calculation, −1, represented black and the

highest obtainable value, +1, represented white.

3.2.2.3 Maximum Cross-Correlation Images

In this case, the maximum value of the normalized Cross-Correlation spectrum between

the signals of two electrodes was used as a metric. Usage of this method was based on its

use by Mirowski et al. [59] and it is obtained with Equation (3.1):

MCCx,y = max
τ


∣∣∣∣∣∣∣∣∣

Cx,y(τ)√
Cx,x(0) ·Cy,y(0)

∣∣∣∣∣∣∣∣∣
 (3.1)

Similar to the interpretation of the Cross-Correlation in Section 2.2.2.2, this metric

indicates the strength of the linear relationship between two signals. This specific metric,

however, outputs the highest value of correlation between two signals for every lag. The

fact that the spectrum is normalized means the relative strength of the highest Cross-

Correlation value, in comparison with the rest of the spectrum, is obtained.

Therefore, if two electrodes possess a strong linear relationship at a certain delay

between them, the resultant value for this metric will be high. If, on the other hand,

the signals do not show a strong linear relationship for a certain lag between them, then

the spectrum will be flatter and, as such, the value obtained from this metric will be low.

Thus, this metric shows indication of whether a certain delay leads to a relatively stronger

linear relationship between the two signals.

The following data structure was employed:

• Each image represents a trial. Therefore, each subject will be represented by several

images, as detailed in Table 3.1.

• Each row and column represent an electrode such that rows and columns with the

same index represent the same electrode.

• Each pixel represents the Maximum Cross-Correlation between the signals given

by the electrodes encoded in the pixel’s position.

Due to the fact that the maximum value of the Cross-Correlation spectrum is being

used, values will always be positive. As such, each image was individually normalized

such that its highest pixel value was given the maximum colour value (white) and its

lowest pixel value was given the lowest colour value (black).
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3.2.3 Network Training Configuration

Due to the high duration of the training and testing processes, all trained networks pos-

sessed the same architecture and hyperparameters. The network architecture used was

based on Radford’s MNIST CNN classifier [115]. Prior to being used to classify EEG data

using the aforementioned metrics, it was used to classify the MNIST dataset in order to

validate the used architecture.

1. Convolutional Layer (32 filters)

2. ReLU Layer

3. Pooling Layer

4. Convolutional Layer (64 filters)

5. ReLU Layer

6. Pooling Layer

7. Fully-connected Layer (625 neurons)

All the convolutional layers feature filters of size 3x3, stride of 1 and no padding.

Pooling layers consist of 2x2 max pooling with stride 2. A Softmax classifier is used

and dropout is performed at Convolutional layers with 20% probability and at the Fully-

connected layer with 50% probability.

One thousand training rounds were used for every network. This number was chosen

due to early tests showing that it was large enough so that it allowed full convergence to

the final classification score while not being so large as to lead to overfitting.

3.2.4 Cross-Validation

The Monte Carlo cross-validation method was employed to validate the results. This

technique consists in randomly distributing the available data into training and testing

sets several times. The result of all tests are then averaged to get a mean accuracy score.

This method is particularly advantageous in comparison to other cross-validation tech-

niques, such as k-fold Cross-Validation, in the sense that it does not impose restrictions on

the sizing of the training and testing sets, therefore allowing more flexibility in network

training [116].

In such manner, five networks were created for each paradigm (S1, S2 match and S2

non-match) and each metric (Raw, Pearson Correlation and Maximum Cross-Correlation),

resulting in a total of 45 networks. As explained in Section 3.2.1.2, the full dataset

was divided into a training set containing approximately 70% of the data and a testing

set containing the remaining data. Mean accuracy score and its standard deviation are

computed and presented for each case.
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4
Results & Discussion

4.1 Application

The application was created and housed, as intended, in an Azure Cloud server and

features two main functionalities: the ability to create and train Convolutional Neural

Networks and the ability to employ an existing one for classification. In order to be

accessible to users, a website is used as a front-end.

In this section, the created application will be explored in detail. First, the guiding

principles behind the interface will be discussed, followed by the main structure of the

front-end website. A more detailed scope of the structure will be shown as the main

functionalities (network creation/training and classification) are presented. Next, a set

of specific relevant features of the application will be analysed, namely the possibility to

create networks with a custom architecture, the ability to import Caffe networks and the

data labelling strategy employed. Finally, the matter of processing time and the use of a

Cloud environment will be evaluated.

Beyond presenting these features, their relevance and importance will also be dis-

cussed and analysed.

4.1.1 Interface

Since the underlying application code is complex, a simple interface is an important and

relevant feature to be discussed. Due to the fact that the application front-end consists of

a website, the use of HTML and Cascading Style Sheets (CSS) provides the ability to create

appealing and adaptable visual elements. Also, the use of Jinja2 allows extensive changes

to the visual aspect of the website to be very simple, requiring only the modification of a

single file to make changes to all sub-pages of the website.
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Overall, the philosophy employed in the design of the website focused on simplicity

and clarity. No overly complex visual elements were used that could overburden the

interface and thus lead to confusion in its use. No distracting graphics are visible, buttons

are simple and easily distinguishable from the clear background, text is clearly visible

and font size is legible but not overwhelming. This can be seen in Figure 4.1.

That being said, simplicity in design does not presuppose reduced functionality, as

the interface was developed so that it is resizeable. The main advantage in this scalability

is in the fact that it is now appropriately usable in different sized screens, namely in

mobile devices.

This complements the advantage of using a Cloud in that the application can be run

from any machine that can support a web browser. As such, a user can take advantage

of a powerful and resource-intensive ML algorithm to classify data by running it on a

device which does not need to be computationally powerful and thus can even be a tablet

or a mobile phone.

Figure 4.1: Website Main Page. This includes a short introduction to the application and
a few relevant links. Links also exist to the Network Creation and Training, Classification
and Help sections.

4.1.2 Structure

Another important issue is structure. To facilitate use, a straightforward structure must

be in place so that the steps taken to access each functionality do not induce confusion

or difficult use. As such, care was taken in ensuring that each page the user enters

provides a clear path to the user’s intended feature or, if the case, provides clear and
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simple alternatives, always with the possibility to return to the main page. A broad scope

of the application structure can be seen in Figure 4.2.

Figure 4.2: Application Structure. Each box represents a sub-page and each arrow a
possible path. Though not represented, there is always the option to return to the Main
Page.

On the main page, seen in Figure 4.1, only 3 clear paths are available: “Create and

Train a CNN”, “Classify images with an existing CNN” and “Help”. The structure fol-

lowing the first two will be discussed in subsequent sections. The “Help” link leads to a

simple page with instructions and helpful tips on how to use the application.

The “Create and Train a CNN” route is fairly straightforward in that, apart from

having to provide some configuration parameters and datasets, the user cannot stray

from the path. Following the “Classify images with an existing CNN” path, the user

is confronted with the option to either use an existing network saved on the server or

to upload a Caffe model and then use it for classification. Again, this path and its sub-

paths follow a clear line of thought to reach the end result, making it difficult for users to

become confused or having trouble in understanding the application. This is intended to

make the program as user-friendly and as simple to use as possible.

While this represents an overview of the website structure, the specific steps that

must be taken in each aforementioned path will be discussed in subsequent sections.

4.1.3 Network Creation and Training

Creating a new network starts by prompting the user to choose how each data set (train

and test) will be retrieved: either loaded from saved sets in the server or uploaded by the

user. To note that if no sets are saved in the server, this prompt will be skipped and the

user will have to upload the sets to be used. The user interface for this section can be seen

in Figure 4.3.

Next, depending on the choice, the train and test set are either chosen from a list of

saved datasets on the server or a unique filename will be requested as well as a zip file
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Figure 4.3: Network Creation and Training - Datasets Retrieval Prompt. Using the radio
buttons the user can select to either load or upload each dataset. To note that, if either
no saved train or test datasets exist, that option will not be displayed. If neither train nor
test saved datasets exist, then this page will be skipped.

containing the data set. A unique network filename must also be provided to identify the

network so it is available for classification in the future. The network architecture must

also be encoded in the form of a line of text, which will be discussed in more detail in

Section 4.1.5. Finally, a number indicating the amount of training rounds to be performed

must be provided. The interface for this section can be seen in Figure 4.4.

In case the user does not submit a value/file to one or more of the fields in this page or

provides an invalid one (e.g. a file of incompatible format, an already existing filename,

an invalid network architecture) then, upon submission, the page will reload with an

indication of the error next to the appropriate field. As such, the user is not able to

perform invalid actions and will receive relevant feedback regarding the errors in the

information provided.

The final step before network creation is a simple confirmation prompt where the

data input by the user is shown so the user can confirm it or return to the previous page

in order to retype it before proceeding. The interface for this section can be seen in

Figure 4.5.

Once the network parameters are confirmed, the model will then be built. The appli-

cation starts by decompressing all the uploaded zip files containing the datasets and then

creates the network according to the specified architecture.

Afterwards, training can commence. The application will train the network on the

training set and subsequently classify the data using the test set. This composes a training
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Figure 4.4: Network Creation and Training - Network Parameters. Here the user enters
the network filename and architecture, the datasets (depending on the option chosen
previously) and the number of training iterations to be performed.

Figure 4.5: Network Creation and Training - Parameter Confirmation. Here, the user has
an opportunity to revise the network parameters input previously to decide whether to
proceed to network creation and training or retype the data.
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iteration, or round. Once the iteration is complete, the network is saved on the server

and the user receives feedback in the form of the network accuracy on the test set for that

round so the user can monitor the training process. Note that the test set is not used to

train the network, but merely to gauge its performance at the end of each training round.

After all training rounds are complete, the user receives a final accuracy and can then

return to the main page. The interface for this section can be seen in Figure 4.6. The

network which was created and trained is safely saved to the server under the filename

previously given by the user. In case any of the datasets were uploaded to the server they

too will be saved so they are available in the future.

Figure 4.6: Network Training Interface - example of a 3 round network training process.
The first line gives an indication that the application is constructing the network model
and, when completed, will add an indication that it is done. Then training will output a
table for every round that is performed, outputting the round index and the test accuracy
score for that round.

4.1.4 Data classification with an existing network

Users can also employ a pre-existing network to classify data. This can be done by either

using a network that is saved on the server (which was created using the application) or

by uploading a Caffe network. The interface for this choice can be seen in Figure 4.7. In

both situations, a set of images to be classified must be provided, though this set will not

be stored on the server to save storage space.

If loading an existing network, the user is presented with the list of networks stored on

the server to choose from and, as previously stated, must provide the data to be classified.

The user interface for this procedure is represented in Figure 4.8.
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Figure 4.7: Classification Page. In this page, the user can choose whether to load an
existing network from the server or to upload a Caffe network and use it for classification.

Figure 4.8: Network Loading Page. In this page the user can select a network from the list
of server-stored networks. Furthermore, the user can upload a set of images to classify
using said network.
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Subsequently, the network will classify the given data set and return classification

results for each element, highlighting the label with the best score for legibility. This

interface can be seen in Figure 4.9.

Figure 4.9: Classification Results Interface - here, the application outputs the classifica-
tion results for each image in the dataset. Each table corresponds to an image, with its
filename indicated on the top row and classification results for each label on the following
rows. For this case, the labels are the numbers 0 to 9. If labels were different, those labels
would appear instead, with the respective scores below. The best score is highlighted in
green, as well as the respective label.

This feature complements the ability to create and train networks. By using this

feature, it becomes possible to use a classifier which is accessible at all times to classify

new data. In fact, several classifiers can be stored and accessed through this feature,

allowing a user to build his/her own database of CNN classifiers.

If importing a Caffe network, the user must provide the prototxt and model files,

as seen in Figure 4.10. The former is a text file detailing network architecture and the

latter contains the network parameters. Before converting the network, the application

performs a validation on these files, and informs the user if the network architecture is

invalid or if the architecture given by the prototxt file does not match-up to the data in

the model file. If no error is found, the network is converted to the application’s native

format and is stored on the server for future use, and for this reason a filename is also

required. Once the network is converted and stored, classification proceeds normally,

with interface equalling that of native application networks, as seen in Figure 4.9.

The possibility of uploading a Caffe network and using it for classification is a use-

ful feature. Seeing as Caffe is a common framework for CNN classification, a user can

upload a network which was already trained elsewhere and have it on the server to clas-

sify data. An important caveat of this feature is that, since Caffe is a more specialized

framework, not all of its features are supported by the created application, with only the

layers available in the application (Convolutional, Pooling, ReLU and Fully-Connected)
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Figure 4.10: Caffe Network Upload Page. In this page the user can upload a Caffe net-
work by providing the network’s prototxt and model files. The user must also provide a
filename so as to save the network on the serve for future user.

being supported. Furthermore, Caffe features additional customizable features such as

different regularization techniques, score and loss functions which are not supported by

the application.

As can be seen, this compatibility is limited and further development of the applica-

tion would have to be done in order to improve upon it. On the other hand, as the applica-

tion is focused towards simplicity, the degree of integration between the two frameworks

would be reliant on the increase in complexity of the application. As it stands, the limited

compatibility is enough to allow a user with access to Caffe to train a network and then

upload it to the application in order to continue using it remotely in a Cloud environment,

provided care is taken to choose the network architecture accordingly.

4.1.5 Custom Network Architecture

Network architecture is an interesting feature that allows a great deal of customization

in the creation of CNNs. The user can create a network with a custom architecture by

providing a line of plain text which defines each sequential layer type and its parameters.

This line of text is encoded as such:
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LAYER_TYPE(param1, param2, param3, ...) ; LAYER_TYPE(param1, param2, ...); ...

where LAYER_TYPE is the name of the type of layer the user wishes to place and

param1, param2 and param3 represent the parameters of the specific type of layer. Each

layer declaration must be separated by a semi-colon and each layer’s parameters must be

encased in parenthesis and separated between themselves by a comma. To note that this

line of text is case and whitespace insensitive. The application supports the following

layers (layer types are in upper-case and parameters in lower-case for legibility purposes):

• CONV(output volume depth, filter size, padding, stride)

• POOL(mode, filter size, stride)

• FC(number of neurons)

• RELU()

These parameters correspond to those discussed in Section 2.3.2. The mode parameter

of the pooling layer represents the subsampling function to be employed by that layer and

can be either the maximum pooling function or average pooling function by inputting

either “max” or “mean” into the parameter, respectively. To facilitate use, default values

exist for most parameters, with only the first parameter of the Convolutional and Fully-

connected layers being required and, as such, default values being in place:

• Pooling mode defaults to max pooling.

• Filter size defaults to 3.

• Padding defaults to 0.

• Stride defaults to 1.

Also to note that, if no layer parameters are specified, the parenthesis can be omitted

for improved legibility. Hence, the ReLU layer can be declared without the parenthesis

and so can a Pooling layer if all values are chosen to be the default ones.

Several validation checks are made for Network Architecture. The application checks

whether the mandatory parameters in the Convolutional and Fully-Connected layers are

specified, if invalid arguments are given (e.g. negative numbers) or if Convolutional or

Pooling layers are declared after a Fully-Connected one. This last validation rises from

the fact that, since the Fully-Connected layer flattens the output, said output cannot be

used as input for a Convolutional or Pooling layer.

Development of this feature enables users to customize network architecture to suit

their needs, and thus better harness the power of the CNN algorithm.
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4.1.6 Data Labelling

A common way to label data is to have a separate text file which contains the labels for

each data file. In the created application, however, a different methodology was employed

to simplify this process.

In the developed application, the label of each image is encoded in its filename. The

reasoning behind this methodology lies in the way modern operating systems are able to

rename multiple files simultaneously. On Windows 10, by selecting many files at once

and renaming the set to the same name, all files will have the same name followed by a

differing number in parenthesis, starting at one, such as:

Alcoholic (1) , Alcoholic (2) , Alcoholic (3) , (...)

As such, labelling large datasets is simple using this technique and avoids the use of a

label text file, which is largely inconvenient and may easily lead to errors. This technique

is also available on modern Macintosh operating systems. Finally, this labelling technique

prevents information regarding each image to be associated with that image file by way

of the filename, therefore making storing images on the server more secure.

4.1.7 Use of Theano

Theano, not being a specialized ML library but rather a more general mathematical op-

timization one, as presented in Section 3.1.1, requires a more programming-intensive

approach to the development of CNN algorithms. Other frameworks, such as Caffe,

feature more specialized methods to ease development of networks, e.g. automatically

computing the dimensions of weight arrays. In Theano, this needs to be approached from

a mathematical point of view and hence be fully programmed by the developer. Whether

this is an advantage or a disadvantage depends on the situation.

In the development of more straightforward classifiers which do not entail novel

features to complement the CNN algorithm, Theano can be seen to be too complex to use

and perhaps a more high-level library such as Caffe is more appropriate. On the other

hand, Theano offers an unmatched freedom in terms of development, as the versatile

mathematical functions Theano provides allow the developer to add upon the standard

CNN algorithm and more easily and intuitively create new concepts to build upon the

algorithm. As such, by using Theano to develop the application, insurance is given

that future development of the application is not limited by the functionalities of other

libraries and new experimental features could even be added as research into the CNN

algorithm continues.

4.1.8 Cloud Environment

The usage of a Cloud server as the hosting environment for the application has shown to

bring about significant advantages, especially in terms of financial considerations.
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Firstly, the fact that the application ran remotely on a server, which none other had

need to use simultaneously, allowed server run times of 24 hours per day without any

danger of interrupting any running processes. This proves valuable when comparing to

the usage of a portable computer, which may entail the interruption of processes due to

transportation, or even desktop computers, which may need to be used for other tasks. In

fact, the absence of physical hardware rids the developer and user of many constraints,

not only in terms of availability of the application but also in terms of maintenance and

overall costs.

In setting up the environment, the ability to choose from several different servers with

varying computational capabilities and pricing details can be seen as advantageous, as

it made possible to choose a server with the best features bearing in mind the desired

expenditure.

One other significant advantage of employing the Cloud paradigm in the deployment

of such an application is the fact that it opens up the possibility for more flexible payment

options. A common example of this is the Pay-As-You-Go subscription method, where

the user pays for Cloud services on an as-needed basis. As such, the user only pays

for the time during which the environment is running, with per-minute billing. This is

especially useful in situations where a research or healthcare institution may not need

a certain application to be constantly running, hence only using said application when

needed and thus saving up on billing while it is not in use. Coupled with the lifting of

physical hardware requirements, this shows that the Cloud paradigm does, in fact, offer

a significant advantage in terms of flexibility and payment options.

The main factor that has hindered the use of Cloud Computing in healthcare is data

security. While this factor is broad and tackling it is dependent on each situation, in this

work an effort was made to prevent the storing of compromising information on the server.

This effort consisted in both the labelling strategy presented in Section 4.1.6, where the

user is prevented from freely labelling each individual image, and in the feature that

allows data classification using existing networks, where the uploaded set is not saved

after classification is performed. While it is still possible, in network creation and training,

to label the datasets and network filenames with compromising information, it is thought

that this represents a much decreased data security risk.

4.1.9 Processing Time

Due to the fact that a CPU is used rather than a GPU, processing time is a factor to bear

in mind and worth discussing.

The time it takes a network to be trained or to perform classification is highly de-

pendent on the computational power it has access to. As such, the more powerful the

hardware running the program, the faster it will be. GPUs are commonly employed in

this sense due to their parallel computing capabilities, which allow more computations

to be performed simultaneously, thus drastically reducing processing time. CPUs, on the
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other hand, are intrinsically slower when the amount of computations required is high

and so care must be taken to ensure processing time is not infeasibly long.

Setting aside hardware constraints, the time it takes to train a CNN or to classify data

with one depends on a few factors:

• Both train and test dataset size

• Image dimensions

• Network architecture complexity

An increase in any of these factors leads to an increase in the number of computa-

tions that need to be performed when training a network or using it to classify data.

Furthermore, other factors intrinsic to server performance (e.g. other processes taking

up computational resources) also play a role in processing time, though these factors are

more difficult to quantify. In addition, Theano may introduce a degree of variability as it

tries to optimize code execution.

In this work, each round performed while training a network on the aforementioned

subset of MNIST had an average duration of 13.4 minutes. Though the images are 28×
28 pixels in size, the large amount of images (ten thousand training images and three

thousand testing ones) greatly increases the time needed to train the network.

A more complete analysis was performed when training and testing data using the

UCI EEG Database.

On Table 4.1, the duration of each round of network training for each different stimu-

lus paradigm is detailed. While, as discussed in Section 4.1.3, a training round using the

application implies training the network and subsequently performing classification on

the testing set, this table details only the time the program took in training the network,

not testing it. One thing to note is that, while different metrics were employed in this

work, the metric itself has no effect on the time the program takes to train the network

since none of the previously mentioned factors is changed when using different metrics.

Table 4.1: Table detailing the average training round duration and respective standard
deviation for each stimulus paradigm.

Stimulus
Paradigm

Mean Round
Duration (s)

Standard
Deviation (s)

S1 65.8211 3.1340
S2 match 34.1296 1.3931

S2 non-match 30.7767 1.9956

Moreover, since all images have the same size it becomes possible to calculate the

average training time for each image by dividing the round duration by the size of the

training set for the given paradigm. The results for this calculation is detailed in Table 4.2.
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Table 4.2: Average training round duration and respective standard deviation for a single
image for each stimulus paradigm.

Stimulus
Paradigm

Mean Round Duration
per Image (ms)

Standard
Deviation (s)

S1 34.2106 1.6289
S2 match 35.1128 1.4332

S2 non-match 34.1963 2.2173

As expected, the average time it takes to train each image is quite similar across

different paradigms, as none of the aforementioned factors differ between them. Thus it

is possible to conclude that, for the used architecture, the algorithm takes approximately

35 ms to train the network using one 64× 64 image. Though training a network using a

single image is not useful, using this value to extrapolate the duration of a set of images

may be useful when planning on training a network.

While this may not seem like a great deal of time, it is important to remember that

many training rounds may be required to fully train a network. If hundreds or thousands

of rounds are performed then network creation and training may have a total duration in

the scale of days, again depending on the dataset and the employed architecture.

Similarly with testing (or classification), an analysis of processing time was performed.

This was conducted by calculating the time networks took to classify the constructed

testing sets. Results for each paradigm and average results for each image can be found

in Table 4.3 and Table 4.4, respectively.

Table 4.3: Table detailing the average testing round duration and respective standard
deviation for each stimulus paradigm.

Stimulus
Paradigm

Mean Round
Duration (s)

Standard
Deviation (s)

S1 5.7810 0.5515
S2 match 2.9597 0.2897

S2 non-match 2.5938 0.3439

Table 4.4: Average testing round duration and respective standard deviation for a single
image for each stimulus paradigm.

Stimulus
Paradigm

Mean Round Duration
per Image (ms)

Standard
Deviation (s)

S1 7.1019 0.6775
S2 match 6.8512 0.6706

S2 non-match 6.5499 0.8683

Similarly to training, single image classification time can be calculated by dividing

round duration by the number of images used. Using the same reasoning, it can be
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inferred that classifying a single 64× 64 image will take an average of approximately 7

ms.

This value is noticeably smaller than the average training time for one image, being

approximately one fifth of the duration. This is due to the fact that, in training, the

network must adjust its parameters.

It can therefore be concluded that, given the computational capabilities of the server

the application is housed in, it lacks in speed comparing to GPU-based programs [102],

especially in terms of network training. While it has been discussed in Section 4.1.8, it

is worthwhile to reiterate that the created application being housed on a Cloud server

means that it does not use resources that could be otherwise used for other tasks, i.e. it

works remotely and does not require a specific physical computer to be reserved to it.

As such, if there are no time constraints, longer processing time may be preferable to

reserving a computer or even having to acquire a GPU. Moreover, the fact that Cloud

servers are only billed while they are active may represent a more economical option in

the long run, as shutting down the server while not in use reduces expenditure.

It should however be noted that Cloud servers with access to GPUs exist in the market.

These allow to maintain the advantages of housing the application on a Cloud with the

added benefit of much faster processing, though they are naturally more expensive than

servers that do not have access to GPUs.

Fortunately, since Theano is compatible with both CPU and GPU, migrating the ap-

plication to an environment with the intention of using an available GPU would be as

simple as changing a configuration file for Theano to start using the GPU instead of the

CPU, thus showing the versatility of the created application.

With all that being said, while the developed application may not be ideal for creating

and training a new network when it comes to processing time, classifying data using a

trained network becomes more feasible. This can be explained by the fact that classifi-

cation does not entail multiple rounds, while training a network requires that several

iterations be performed. Using the obtained classification time per image value, it can be

calculated that in one hour it is possible to classify around half a million 64× 64 images

with the employed architecture. This shows that the application can be a powerful tool

to classify data when a network has already been trained. The fact that Caffe networks

can be uploaded to the server, as discussed in Section 4.1.4, and be converted so as to be

usable within the application is an attempt to bridge this gap, in the sense that trained net-

works can be uploaded to a remote environment that can be accessed when classification

is required.

Finally, it is important to mention that the effects of using different network architec-

tures were not analysed in this work. That being said, it follows from the same logic used

before that architectures with more layers and, overall, more computationally-intensive

layers (e.g. ones with smaller strides or larger filters) lead to an increase in processing

time in the same way as increasing the size of the training or testing sets. Due to the

need to perform several iterations when training, increasing network complexity will
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have a more significant effect on network training than on classification. This further

emphasizes the disadvantage in using the application in network training given its cur-

rent computational capabilities though effects on classification time are thought not to

be as drastic and, barring networks of extreme complexity, still allow the application to

maintain its feasibility in terms of classification time.

4.2 Classification

4.2.1 MNIST Data

As discussed in Section 3.2.1.1, the MNIST dataset was used to validate the network

architecture to be used in the remainder of this work. As such, a network was created and

trained on MNIST using the created application. Results are presented in Figure 4.11.

Figure 4.11: MNIST classification results on the testing set as a function of the training
round as network training progressed.

As we can see in Figure 4.11, classification accuracy improves rapidly in the start of

the training process, reaching values above 90% after 6 rounds of training. This indicates

the algorithm has found features that allow it to adequately characterize each class fairly

quickly. This progression continues and the accuracy score surpasses 95% after the ninth

round and, though fluctuations begin to occur, the score continues to rise as rounds

progress, albeit at a slower pace. After 100 training iterations, classification accuracy on

the testing set was 98.2%. While this value is quite lower than the current State-of-the-

Art performance of 99.89%, it was deemed sufficient for its purpose and further training

rounds were not performed due to the time each round took (as discussed in Section 4.1.9)

though further training would likely improve this score.

48



4.2. CLASSIFICATION

4.2.2 Raw Data

As presented in Section 3.2.2.1, the EEG data from the UCI Database was used to construct

images, and networks were trained on different training and testing sets constructed from

the data so Monte Carlo Cross-Validation could be performed.

An example of an image constructed in this manner can be seen in Figure 4.12 and

classification results are presented in Table 4.5.

Figure 4.12: Example of a created Raw image.

Table 4.5: Results of the Raw metric. Results for each Stimulus Paradigm is given in a
total of 5 tests of this metric. Mean Accuracy Score and respective Standard Deviation
are shown as well.

Test Index S1 S2 match S2 non-match

1 65.48% 58.10% 63.64%
2 66.09% 59.95% 61.87%
3 60.69% 55.09% 64.39%
4 68.43% 57.87% 68.13%
5 60.93% 55.32% 67.68%

Mean value 64.32% 57.27% 65.15%
Standard Deviation 3.39% 2.05% 2.70%

Results appear to show that S1 and S2 non-match provide the best classification re-

sults, with all tests scores of both paradigms consistently above 60%. This shows that,

using these stimulus paradigms, CNN networks can, to a certain extent, find distinguish-

ing features between control subjects and alcoholics independently of the distribution

among training and testing sets.

S2 match, on the other hand, shows lower classification scores, with all tests resulting

in a lower score than any S1 or S2 non-match tests. In the S2 match paradigm, the image

used as stimulus was already presented as S1 which may cause subject reaction to be of

a lower degree of intensity and thus the signal may not present such clear identifiable

features. Furthermore, prior to the S2 stimulus being presented, the subject is unaware of

the type of stimulus that will be delivered, whether S2 match or S2 non-match. The fact
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that, in S2 non-match, the image is not only different but of a separate semantic category

than S1 may evoke a stronger response, as the subject has to process the new information

instead of recognizing the same image that was presented before, as happens in S2 match.

As such, it is thought that the stronger response in S2 non-match is behind the higher

classification obtained for this paradigm. This is in accordance with the results obtained

by Zhang et al. using the same database, who found that the Event Related Potential

signal component showed a greatly decreased amplitude in the S2 match paradigm in

comparison to S2 non-match [113].

It is thought that the same reasoning can be applied to analyse the results of the S1

metric. The fact that, after a longer inter-stimulus interval, a new image is presented

without the subject having any indication of the type or category of the image leads to a

higher information processing to occur, as the subject is presented with a new stimulus

and must analyse and comprehend the image presented.

4.2.3 Pearson Correlation

Images were constructed using the Pearson Correlation metric and again results were

cross-validated using Monte Carlo Cross-Validation. An example of the constructed im-

ages can be seen in Figure 4.13 and results are presented in Table 4.6.

Figure 4.13: Example of a created Pearson Correlation image.

By examining the classification results, it can be seen that no paradigm is clearly more

effective than the others in terms of accuracy. This is observable in the average accuracy

values, as the largest difference (between S2 non-match and S2 match) is approximately

2%, which is smaller than the standard deviations for all paradigms.

On the other hand, results show a significantly lower standard deviation for the S2

match paradigm than for the others. This shows an indication that the training process

was more consistent when using S2 match images rather than S1 or S2 non-match. S2

match did, however, produce the lower average accuracy score.

While average classification scores are not high, it is interesting to point out the fact

that one S1 and two S2 non-match results are above 60%. The fact that these values were
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Table 4.6: Results of the Pearson Correlation metric. Results for each Stimulus Paradigm
is given in a total of 5 tests of this metric. Mean Accuracy Score and respective Standard
Deviation are shown as well.

Test Index S1 S2 match S2 non-match

1 57.25% 53.47% 51.77%
2 55.53% 59.03% 59.09%
3 57.99% 54.86% 54.86%
4 53.81% 56.48% 65.40%
5 65.36% 57.87% 62.12%

Mean value 57.99% 56.34% 58.65%
Standard Deviation 4.43% 2.24% 5.47%

obtained but the average score was brought down by the other results may be evidence of

a significant dependency on the distribution of subjects between training and testing sets.

this can be explained by the fact that the data from some subjects is significantly more

rich in distinguishing features than others. When these individuals are more optimally

distributed between the training and testing sets, a higher score is obtained. This effect is

more prominent in the S2 non-match paradigm, as two low scores (51.77% and 54.86%)

contrast with two higher scores (65.40% and 62.12%), therefore leading to a higher stan-

dard deviation (5.4677%). This principle may mean that carefully selecting the data to

be used in the training set may have a large impact in performance.

4.2.4 Maximum Cross-Correlation

Images were constructed using the Maximum Cross-Correlation metric and results were

cross-validated using Monte Carlo Cross-Validation. An example of one such images can

be seen in Figure 4.14 and results are presented in Table 4.7.

Figure 4.14: Example of a created Maximum Cross-Correlation image.

The results show a larger difference between stimulus paradigms than with Pearson

Correlation, with the difference between the average classification scores of S1 and S2

match being larger than 8%.
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Table 4.7: Results of the Maximum Cross Correlation metric. Results for each Stimulus
Paradigm is given in a total of 5 tests of this metric. Mean Accuracy Score and respective
Standard Deviation are shown as well.

Test Index S1 S2 match S2 non-match

1 60.93% 50.93% 57.58%
2 71.99% 58.56% 60.35%
3 60.07% 58.33% 58.84%
4 53.19% 50.23% 53.79%
5 62.53% 48.61% 56.57%

Mean value 61.75% 53.33% 57.42%
Standard Deviation 6.75% 4.75% 2.48%

The largest classification score is given by the S1 stimulus paradigm. However, S1

also gave the largest standard deviation of all three paradigms. This shows that, while S1

did perform better on average, classification on this data using this metric may be prone

to a high degree of variation and uncertainty. This may be due to the fact that S1 images

present features which are good candidates for use in classification but are not trivial to

represent and may present significant underlying variability among subjects.

Going into detail on the S1 results, it can be seen that the largest score achieved for

all S1 networks was 71.99%. While this is an isolated result and scores from the other

networks bring the average score down, this instance shows evidence of the presence

of significant classification features. It can be hypothesized that the configuration of

training and test sets when achieving this score was optimized so that such features were

more effectively found in the training set and recognized in the testing set. As discussed

in Section 4.2.3, this may be evidence that, while effective features can be found using

this metric, data selection must be done so that the training set is as representative as

possible in terms of these features.

A graph illustrating the S1 classification accuracy as training rounds progressed be-

tween Tests 2 and 5 can be seen in Figure 4.15.

Analysing S2 non-match results, a comparatively low standard deviation is verified.

It can be concluded that S2 non-match is a more reliable stimulus paradigm to be used

in data classification in this context.

S2 match, on the other hand, showed very low performance results, with two results

barely above 50% (50.93% and 50.23%) and one below 50% (48.61%). This shows that S2

match is simply not effective in this classification scenario and, while some tests perform

better, average result is still barely above chance. As discussed in Section 4.2.2, this is

thought to be due to the fact that S2 match does not elicit a strong response from subjects.
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Figure 4.15: Plot comparison of the best S1 Maximum Cross Correlation score with
another one (Tests 2 and 5, respectively). Each line represents the progression of the
classification score on the testing set as training rounds progressed.

4.2.5 Paradigm Comparison

Examining the differences between the results of different paradigms reveals that S2

match produces the lowest average classification scores in all metrics.

As discussed previously, this can be explained by the way the S2 match stimulus is

performed. The fact that the second image shown is equal to the first leads to the subject

only recognizing the image to determine that it is equal to S1, while in S2 non-match the

subject not only must compute that the images differ but will also analyse the new image

to determine what it represents. In S1, this analysis of the image also occurs since the

stimulus is new and has no relation to previous ones. The fact that S2 match shows a

lower average score for all metrics supports this theory.

Furthermore, it can be seen that, in two of the three metrics, S2 match results showed

the lowest standard deviation. This shows that the created networks were not able to

effectively find distinguishing features between alcoholic and control images to segment

the data correctly, thus leading to low scores and less variation between them. In the

remaining metric, Maximum Cross-Correlation, despite not having a small standard

deviation, S2 match results were the lowest even when compared to the other metrics,
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thus further strengthening the given argument.

As for S1 and S2 non-match, it can be argued that the stimuli are quite similar. Both

involve presenting a new unseen image which is actively analysed by the subject. Thus, it

stands to reason that results between these paradigms are more similar than each of them

is to S2 match. However, one aspect must be taken into consideration: more S1 data was

used than S2 non-match, as discussed in Section 3.2.1.2. The fact that S2 non-match has

shown higher classification scores than S1 in two of the three employed metrics shows

evidence that the data used in this work was either sufficient in terms of quantity of

images used or was adequately representative of the intended features to achieve reliable

results.

Finally, whether S1 or S2 non-match was a more effective stimulus paradigm in classi-

fying the used data is debatable. While S2 non-match did produce higher scores in both

the Raw and Pearson Correlation metrics, S1 produced the highest single test score with

the Maximum Cross-Correlation metric, as well as the highest average score with the

same metric. It could be argued that the fact that, in S2 non-match, subjects have to press

a button using a randomly assigned hand per subject may lead to undesirable effects on

the acquired data. However, having the subject provide feedback from the stimulus may

lead to acquisition of data which simply is not present when the subject merely observes

the image.

In conclusion, no significant difference could be found to discern whether S1 or S2

non-match was a more effective stimulus paradigm for data acquisition to distinguish

alcoholics from controls in the scope of this work.

4.2.6 Metric Comparison

Results show that the Raw metric was the most effective of all the used metrics as it

produced the highest average classification scores in all stimulus paradigms. Standard

deviation was also, in general, lower for this metric.

For the Brain Connectivity metrics, it can be seen that higher average classification

scores were associated with higher standard deviations. This may be evidence that distin-

guishing features can be found with these metrics but may be strongly dependent on the

distribution of subjects between training and testing sets. As such, it may be theorized

that finding an optimal set distribution of subjects leads to an also optimal classification

score, as the optimized training set allows the network to be more adapted to find the

desired features. As the constructed datasets can be considered large in size, this can be

seen as a method of adapting the classifier to the data rather than the reverse. This is a

possible direction which can be taken to follow up on this work in the future.

Examining Equation (2.1) and Equation (2.2) brings to attention the fact that both

metrics possess the commutative property. Thus, due to the way the images were con-

structed, as presented in Section 3.2.2.2 and Section 3.2.2.3, they will present symmetry

along the diagonal that stretches from the top left corner to the bottom right corner of
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the images. This effect can be observed in Figure 4.13 and Figure 4.14. It is debatable

whether this negatively affects classification. The fact that there is duplicated informa-

tion on the same image can be seen as undesirable simply due to redundancy but an

argument could be made that it is beneficial as it allows the network to view the same

data from different perspectives. In this scenario, each kernel in convolutional layers will

encounter the same information twice but since these kernels may not be symmetrical,

they will operate on the same data differently in both situations. This is analogue to Data

Augmentation methods such as horizontal flipping and rotation. These methods are used

to increase the amount of training data with new valid images and thereby making the

network generalize better to new data [117]. The difference in this case is the fact that

the original and augmented data are seen within the same image.

One important aspect to analyse is electrode order. Due to the fact that, in CNNs,

convolutional layers use locally connected moving filters to process data means that pix-

els located near one another will be processed differently than pixels which are located

further away from each other. As such, pixels in close proximity will be analysed for

features of lower dimensionality in the first Convolutional layers, such as edges. Convo-

lutional layers further down the architecture will analyse features of increasingly higher

dimensionality, such as texture. If the data in two pixels has a very low dimensionality

relationship, such as simple proportionality, having them far away from one another may

cause this relationship to not be found by the classifier. In real life images this is not

a problem since pixels which are far away from each other do not typically share low

dimensionality features but may both be integrated in a higher dimensionality aspect

which spans the distance between them, such as a pattern or texture. This is the basis for

the power of CNNs: the way the algorithm is adapted to find extremely complex features

with far reduced computational complexity when comparing to traditional ANNs. This,

of course, comes at the price of having local connectivity in Convolutional layers rather

than always having full connectivity with fully-connected layers [96].

In images which were constructed from non-visual data this is thought to be sig-

nificant in classification. While CNNs can identify complex relationships in the data,

the disposition of said data in the image can therefore be considered very important in

assuring the algorithm can correctly identify those relationships.

This argument can used to explain why the Raw metric performed better than the

Brain Connectivity metrics. The fact that, in the Raw images, each row represents the time

series for a single electrode means that each column provides a value which is temporally

sequential in regards to the adjacent columns. Although this denotes a temporal sequence

rather than a spatial one, it can be argued that such a relationship is similar to the spatial

proximity represented by pixels in, say, a photograph. As such, the CNN algorithm will

find features by analysing the relationship between electrodes in different moments of

time. To note that electrode ordering also plays a significant effect on the results of

this metric. To illustrate, a 3 × 3 filter in the first Convolutional layer will only analyse

electrodes which are within two indices apart in the electrode ordering, again due to local
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connectivity.

Experimenting with the order of electrodes can therefore be seen as a valid research

direction towards which this work could be continued. It can be argued that a valid

methodology with which the electrodes should be ordered for best results is to place

electrodes which are spatially closer in adjacent indices. However, due to the fact that

such an ordering would consist in a one-dimensional sequencing of a two-dimensional

arrangement of electrodes on the scalp, no clear disposition can be chosen without testing

different hypothesis.

Another possible solution which could be envisioned to tackle both the problem of

electrode disposition and the issue of redundant data also discussed in this work is to

design a more complex methodology of data arrangement within the image. Due to the

fact that the distance between data points in the image is relevant to feature detection, a

methodology which exploits this trait can be envisioned where data points are strategi-

cally placed so as to ensure the desired neighbouring pixels have relevant data in order

to improve classification. An example of this strategy would be to assign correlation

values constructed using electrodes sampled closer together to pixels at the centre of the

image. However, this is merely a conjecture which would have to be tested and many

other different methods could be proposed.

Another important aspect to be discussed is network architecture. The architecture

which was employed performed satisfyingly on the MNIST data. However, it failed to

perform in the same manner with the used metrics on the EEG data. For the architec-

ture to perform better on the MNIST is to be expected, as the handwritten digit images

represent far less complex data than those constructed using EEG data. Yet, whether

the used architecture was an inadequate representation of the capabilities of the CNN

algorithm is unlikely. It was to safeguard against this scenario that MNIST was used to

test classification performance with the architecture. Knowing the architecture worked

well on a common benchmarking dataset such as the MNIST is thought to be evidence

enough of the validity of the architecture for general image classification tasks. That

being said, it is certain that the employed architecture was not optimized to the type of

data to be classified. This is because the MNIST and the constructed EEG images repre-

sent data with completely different features and their optimized classification will most

certainly entail differing network architectures. Discovering what kind of architecture

would better fit the raw EEG and Brain Connectivity metrics was, however, beyond the

scope of this work.

From the obtained results it cannot be concluded that EEG and, more specifically,

Brain Connectivity are good metrics to classify AUD or, more broadly, neuropsychiatric

disorders using the methodology employed in this work.

It is thought that results obtained from the chosen metrics allow to conclude that

said metrics reveal features which can be used for classification. The reason to justify the

fact that more satisfying results were not not obtained lies in the aforementioned issues

underlying CNN classification.
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5
Conclusions

5.1 Limitations

A number of limitations were presented in this work.

In the development of the application, the installation of Theano was the largest

obstacle that was faced. Online documentation on installing Theano proved to be scarce

and the available documentation was often incomplete or outdated. Furthermore, as

stated in Section 4.1.7, the fact that Theano is a low-level mathematical optimization

library and requires many low-level computations to be explicitly programmed led to a

steep learning curve in the development of the application. Combining that with the fact

that it had to be installed on a virtual machine further impeded development.

In terms of classification, the largest limitation proved to arise from the fact that the

application was housed on a Cloud environment without access to a GPU. This was due

to the Azure licence used. As discussed in Section 4.1.9, this led to the application having

high processing times when training networks and thus making it impractical to perform

a large number of different tests and therefore a more extensive research.

5.2 Future Work

Many directions can be envisioned to continue this work.

In terms of the development of the application, the use of a GPU in conjunction with

a Cloud environment is a definite step in the right direction in terms of fully combining

the strength of the CNN algorithm with the advantages of using a Cloud environment.

Furthermore, as discussed in Section 4.1.4, more specialized CNN features such as

Regularization techniques and different Score functions could be implemented as part of

the Network Customization feature. Adding this level of customization could go against

57



CHAPTER 5. CONCLUSIONS

the concept of minimalism associated with the application but finding a way to implement

these features and still retain the intuitiveness of the interface and structure can be

proposed as future work.

Moreover, expanding the compatibility with Caffe can be seen as a definite step for-

ward towards extending the versatility of the application. As this expansion in compat-

ibility entails that the application supports more layers and different features, this has

the additional effect of also expanding the application to be more complete in network

customization.

In terms of the application interface, adding the ability to plot the testing set classifi-

cation scores as training rounds progress can prove to be a significant improvement on

the user experience.

As mentioned, research as extensive as desired was not possible due to the limita-

tions faced. That being said and as discussed previously, many directions towards which

research can be taken were revealed during the course of this work.

These directions are based on varying the parameters of classification, the main of

which is the employed Image Construction Methodology. Varying this parameter entails

trying different Network Architectures, using new Brain Connectivity metrics and experi-

menting with the way images are constructed from the metrics. This last point is of great

interest since, as discussed previously, the CNN algorithm shows great promise if care is

taken in image construction. As such, ideas such as those proposed in Section 4.2.6 can

be employed to further research and better gauge the effectiveness of the CNN algorithm

in this situation.

5.3 Final Thoughts

When analysing the application, it is interesting to think of the possibilities such a pro-

gram can have in the context of improving healthcare. As the world converges into

on-demand technology and patient care is becoming evermore streamlined, accessible

and convenient, the way technologies are incorporated into both medical research and

patient care/diagnosis is experiencing change in a never before seen rate. Healthcare is,

in fact, more willing than ever to accept new technologies that improve all its processes.

The developed application is one such result of this revolution, bringing new concepts to

an ever-changing world.

To conclude, it is relevant to reiterate that the obtained classification results, while

not high enough to allow a definitive conclusion that the used metrics and methodology

represent a definite direction for research into neuropsychiatric disorder diagnosis, do

show indication that they can be used both in a research and clinical context, with more

tests being necessary. As such, the main contribution of this work lies in the analysis of

the obtained results and their discussion towards the creation of new directions to which

this research can be taken.
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