79 research outputs found

    Visual features are processed before navigational affordances in the human brain

    Get PDF
    To navigate through their immediate environment humans process scene information rapidly. How does the cascade of neural processing elicited by scene viewing to facilitate navigational planning unfold over time? To investigate, we recorded human brain responses to visual scenes with electroencephalography and related those to computational models that operationalize three aspects of scene processing (2D, 3D, and semantic information), as well as to a behavioral model capturing navigational affordances. We found a temporal processing hierarchy: navigational affordance is processed later than the other scene features (2D, 3D, and semantic) investigated. This reveals the temporal order with which the human brain computes complex scene information and suggests that the brain leverages these pieces of information to plan navigation

    CurriculumLoc: Enhancing Cross-Domain Geolocalization through Multi-Stage Refinement

    Full text link
    Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geo-tagged reference images. Existing methods, devoted to semantic features representation, evolving towards robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multi-stage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code and trained models are publicly available on https://github.com/npupilab/CurriculumLoc.Comment: 14 pages, 15 figure

    3D Human Body Pose-Based Activity Recognition for Driver Monitoring Systems

    Get PDF

    Markerless Human Motion Analysis

    Get PDF
    Measuring and understanding human motion is crucial in several domains, ranging from neuroscience, to rehabilitation and sports biomechanics. Quantitative information about human motion is fundamental to study how our Central Nervous System controls and organizes movements to functionally evaluate motor performance and deficits. In the last decades, the research in this field has made considerable progress. State-of-the-art technologies that provide useful and accurate quantitative measures rely on marker-based systems. Unfortunately, markers are intrusive and their number and location must be determined a priori. Also, marker-based systems require expensive laboratory settings with several infrared cameras. This could modify the naturalness of a subject\u2019s movements and induce discomfort. Last, but not less important, they are computationally expensive in time and space. Recent advances on markerless pose estimation based on computer vision and deep neural networks are opening the possibility of adopting efficient video-based methods for extracting movement information from RGB video data. In this contest, this thesis presents original contributions to the following objectives: (i) the implementation of a video-based markerless pipeline to quantitatively characterize human motion; (ii) the assessment of its accuracy if compared with a gold standard marker-based system; (iii) the application of the pipeline to different domains in order to verify its versatility, with a special focus on the characterization of the motion of preterm infants and on gait analysis. With the proposed approach we highlight that, starting only from RGB videos and leveraging computer vision and machine learning techniques, it is possible to extract reliable information characterizing human motion comparable to that obtained with gold standard marker-based systems

    From pixels to people : recovering location, shape and pose of humans in images

    Get PDF
    Humans are at the centre of a significant amount of research in computer vision. Endowing machines with the ability to perceive people from visual data is an immense scientific challenge with a high degree of direct practical relevance. Success in automatic perception can be measured at different levels of abstraction, and this will depend on which intelligent behaviour we are trying to replicate: the ability to localise persons in an image or in the environment, understanding how persons are moving at the skeleton and at the surface level, interpreting their interactions with the environment including with other people, and perhaps even anticipating future actions. In this thesis we tackle different sub-problems of the broad research area referred to as "looking at people", aiming to perceive humans in images at different levels of granularity. We start with bounding box-level pedestrian detection: We present a retrospective analysis of methods published in the decade preceding our work, identifying various strands of research that have advanced the state of the art. With quantitative exper- iments, we demonstrate the critical role of developing better feature representations and having the right training distribution. We then contribute two methods based on the insights derived from our analysis: one that combines the strongest aspects of past detectors and another that focuses purely on learning representations. The latter method outperforms more complicated approaches, especially those based on hand- crafted features. We conclude our work on pedestrian detection with a forward-looking analysis that maps out potential avenues for future research. We then turn to pixel-level methods: Perceiving humans requires us to both separate them precisely from the background and identify their surroundings. To this end, we introduce Cityscapes, a large-scale dataset for street scene understanding. This has since established itself as a go-to benchmark for segmentation and detection. We additionally develop methods that relax the requirement for expensive pixel-level annotations, focusing on the task of boundary detection, i.e. identifying the outlines of relevant objects and surfaces. Next, we make the jump from pixels to 3D surfaces, from localising and labelling to fine-grained spatial understanding. We contribute a method for recovering 3D human shape and pose, which marries the advantages of learning-based and model- based approaches. We conclude the thesis with a detailed discussion of benchmarking practices in computer vision. Among other things, we argue that the design of future datasets should be driven by the general goal of combinatorial robustness besides task-specific considerations.Der Mensch steht im Zentrum vieler Forschungsanstrengungen im Bereich des maschinellen Sehens. Es ist eine immense wissenschaftliche Herausforderung mit hohem unmittelbarem Praxisbezug, Maschinen mit der Fähigkeit auszustatten, Menschen auf der Grundlage von visuellen Daten wahrzunehmen. Die automatische Wahrnehmung kann auf verschiedenen Abstraktionsebenen erfolgen. Dies hängt davon ab, welches intelligente Verhalten wir nachbilden wollen: die Fähigkeit, Personen auf der Bildfläche oder im 3D-Raum zu lokalisieren, die Bewegungen von Körperteilen und Körperoberflächen zu erfassen, Interaktionen einer Person mit ihrer Umgebung einschließlich mit anderen Menschen zu deuten, und vielleicht sogar zukünftige Handlungen zu antizipieren. In dieser Arbeit beschäftigen wir uns mit verschiedenen Teilproblemen die dem breiten Forschungsgebiet "Betrachten von Menschen" gehören. Beginnend mit der Fußgängererkennung präsentieren wir eine Analyse von Methoden, die im Jahrzehnt vor unserem Ausgangspunkt veröffentlicht wurden, und identifizieren dabei verschiedene Forschungsstränge, die den Stand der Technik vorangetrieben haben. Unsere quantitativen Experimente zeigen die entscheidende Rolle sowohl der Entwicklung besserer Bildmerkmale als auch der Trainingsdatenverteilung. Anschließend tragen wir zwei Methoden bei, die auf den Erkenntnissen unserer Analyse basieren: eine Methode, die die stärksten Aspekte vergangener Detektoren kombiniert, eine andere, die sich im Wesentlichen auf das Lernen von Bildmerkmalen konzentriert. Letztere übertrifft kompliziertere Methoden, insbesondere solche, die auf handgefertigten Bildmerkmalen basieren. Wir schließen unsere Arbeit zur Fußgängererkennung mit einer vorausschauenden Analyse ab, die mögliche Wege für die zukünftige Forschung aufzeigt. Anschließend wenden wir uns Methoden zu, die Entscheidungen auf Pixelebene betreffen. Um Menschen wahrzunehmen, müssen wir diese sowohl praezise vom Hintergrund trennen als auch ihre Umgebung verstehen. Zu diesem Zweck führen wir Cityscapes ein, einen umfangreichen Datensatz zum Verständnis von Straßenszenen. Dieser hat sich seitdem als Standardbenchmark für Segmentierung und Erkennung etabliert. Darüber hinaus entwickeln wir Methoden, die die Notwendigkeit teurer Annotationen auf Pixelebene reduzieren. Wir konzentrieren uns hierbei auf die Aufgabe der Umgrenzungserkennung, d. h. das Erkennen der Umrisse relevanter Objekte und Oberflächen. Als nächstes machen wir den Sprung von Pixeln zu 3D-Oberflächen, vom Lokalisieren und Beschriften zum präzisen räumlichen Verständnis. Wir tragen eine Methode zur Schätzung der 3D-Körperoberfläche sowie der 3D-Körperpose bei, die die Vorteile von lernbasierten und modellbasierten Ansätzen vereint. Wir schließen die Arbeit mit einer ausführlichen Diskussion von Evaluationspraktiken im maschinellen Sehen ab. Unter anderem argumentieren wir, dass der Entwurf zukünftiger Datensätze neben aufgabenspezifischen Überlegungen vom allgemeinen Ziel der kombinatorischen Robustheit bestimmt werden sollte

    Practical and Rich User Digitization

    Full text link
    A long-standing vision in computer science has been to evolve computing devices into proactive assistants that enhance our productivity, health and wellness, and many other facets of our lives. User digitization is crucial in achieving this vision as it allows computers to intimately understand their users, capturing activity, pose, routine, and behavior. Today's consumer devices - like smartphones and smartwatches provide a glimpse of this potential, offering coarse digital representations of users with metrics such as step count, heart rate, and a handful of human activities like running and biking. Even these very low-dimensional representations are already bringing value to millions of people's lives, but there is significant potential for improvement. On the other end, professional, high-fidelity comprehensive user digitization systems exist. For example, motion capture suits and multi-camera rigs that digitize our full body and appearance, and scanning machines such as MRI capture our detailed anatomy. However, these carry significant user practicality burdens, such as financial, privacy, ergonomic, aesthetic, and instrumentation considerations, that preclude consumer use. In general, the higher the fidelity of capture, the lower the user's practicality. Most conventional approaches strike a balance between user practicality and digitization fidelity. My research aims to break this trend, developing sensing systems that increase user digitization fidelity to create new and powerful computing experiences while retaining or even improving user practicality and accessibility, allowing such technologies to have a societal impact. Armed with such knowledge, our future devices could offer longitudinal health tracking, more productive work environments, full body avatars in extended reality, and embodied telepresence experiences, to name just a few domains.Comment: PhD thesi

    Cross-dimensional Analysis for Improved Scene Understanding

    Get PDF
    Visual data have taken up an increasingly large role in our society. Most people have instant access to a high quality camera in their pockets, and we are taking more pictures than ever before. Meanwhile, through the advent of better software and hardware, the prevalence of 3D data is also rapidly expanding, and demand for data and analysis methods is burgeoning in a wide range of industries. The amount of information about the world implicitly contained in this stream of data is staggering. However, as these images and models are created in uncontrolled circumstances, the extraction of any structured information from the unstructured pixels and vertices is highly non-trivial. To aid this process, we note that the 2D and 3D data modalities are similar in content, but intrinsically different in form. Exploiting their complementary nature, we can investigate certain problems in a cross-dimensional fashion - for example, where 2D lacks expressiveness, 3D can supplement it; where 3D lacks quality, 2D can provide it. In this thesis, we explore three analysis tasks with this insight as our point of departure. First, we show that by considering the tasks of 2D and 3D retrieval jointly we can improve performance of 3D retrieval while simultaneously enabling interesting new ways of exploring 2D retrieval results. Second, we discuss a compact representation of indoor scenes called a "scene map", which represents the objects in a scene using a top-down map of object locations. We propose a method for automatically extracting such scene maps from single 2D images using a database of 3D models for training. Finally, we seek to convert single 2D images to full 3D scenes using a database of 3D models as input. Occlusion is handled by modelling object context explicitly, allowing us to identify and pose objects that would otherwise be too occluded to make inferences about. For all three tasks, we show the utility of our cross-dimensional insight by evaluating each method extensively and showing favourable performance over baseline methods

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports
    corecore