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Abstract

Measuring and understanding human motion is crucial in several domains,
ranging from neuroscience, to rehabilitation and sports biomechanics. Quan-
titative information about human motion is fundamental to study how our
Central Nervous System controls and organizes movements to functionally
evaluate motor performance and deficits. In the last decades, the research in
this field has made considerable progress. State-of-the-art technologies that
provide useful and accurate quantitative measures rely on marker-based sys-
tems. Unfortunately, markers are intrusive and their number and location must
be determined a priori. Also, marker-based systems require expensive labora-
tory settings with several infrared cameras. This could modify the naturalness
of a subject’s movements and induce discomfort. Last, but not less important,
they are computationally expensive in time and space. Recent advances on
markerless pose estimation based on computer vision and deep neural net-
works are opening the possibility of adopting efficient video-based methods
for extracting movement information from RGB video data. In this contest,
this thesis presents original contributions to the following objectives: (i) the
implementation of a video-based markerless pipeline to quantitatively char-
acterize human motion; (ii) the assessment of its accuracy if compared with
a gold standard marker-based system; (iii) the application of the pipeline to
different domains in order to verify its versatility, with a special focus on the
characterization of the motion of preterm infants and on gait analysis. With
the proposed approach we highlight that, starting only from RGB videos and
leveraging computer vision and machine learning techniques, it is possible to
extract reliable information characterizing human motion comparable to that
obtained with gold standard marker-based systems.
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Introduction

1.1 Topic overview

Human motion understanding is a relevant task in many fields of science and
medicine. Quantitative and qualitative motion analysis, e.g., predicting and
describing human behavior while performing different actions, is essential
in neuroscience to understand the brain behaviour in both physiological and
pathological conditions [Bateson and Martin, 2021; Chambers et al., 2020; Moro
et al., 2020; Reich et al., 2021]. Moreover, it is helpful for human-computer in-
teraction applications, where a computer can be controlled with dedicated
gestures [Betke, Gips, and Fleming, 2002; Fu and Huang, 2007, Moro et al.,
2021b], for human-robot interaction, where a robot can detect changes in hu-
man keypoints to provide dedicated assistance [Droeschel and Behnke, 2011;
Narayanan et al., 2020] and for augmented reality applications for gaming and
rehabilitation [Kang et al., 2020; Song, Demirdjian, and Davis, 2012]. Lastly,
human motion understanding is largely adopted in proxemic recognition in
order to study and predict how people interact [Kim et al., 2021; Wang et al.,
2020].

1.2 Motivations

Nowadays, the gold standard techniques commonly adopted to accurately
characterize and study human motion rely on wearable sensors, motion cap-
ture systems and physical markers placed on the body skin [Lopez-Nava and
Mufioz-Meléndez, 2016] (see Figure 1.1 for an example of a standard setup).
However, markers are intrusive, they may limit natural movements, and their
location must be assigned a priori by expert operators, making the study of
human motion biased [Carse et al., 2013]. Furthermore, they are cumbersome,
making the analysis of motion patterns challenging in some application fields
such as infants motion analysis [Garello et al., 2021; Meinecke et al., 2006] (see
Figure 1.2 for two examples).
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Infrared cameras

Passive markers

Force platforms

Figure 1.1: Example of marker-based setup for gait analysis. Source: [Khouri and De-
sailly, 2017].

Figure 1.2: Example of application field where markers make the analysis of motion
difficult. (a) source: [Fan et al., 2012]; (b) source: [Meinecke et al., 2006].

For these reasons, recently, RGB video analysis has become a possible al-
ternative to marker-based systems to perform human motion analysis [Colyer
et al., 2018; Needham et al., 2021]. This is due to the increasing progress —
in terms of accuracy and computational resources needed — of deep learn-
ing algorithms in solving computer vision problems [Voulodimos et al., 2018].
In particular, recent advances on pose estimation algorithms based on deep
neural networks are opening the possibility of adopting efficient methods for
tracking human pose and extracting motion information starting from com-
mon RGB video data [Zheng et al., 2020]. Pose estimation consists in identify-
ing position and orientation of the subject body in images or image sequences,
and it involves body landmark points detection and skeleton estimation. The
latter may be carried out by exploiting spatial [Cao et al., 2017; Insafutdinov
et al., 2016] or spatio-temporal relationships [Liu et al., 2017]. In this context,
it is necessary to study and implement a markerless system able to extract
quantitative information related to human motion and to compare the mea-
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sures obtainable with this system to the ones commonly computed using gold
standard marker-based systems.

1.3 Objectives

The general aim of this work is to propose and test a new approach for the
analysis of human motion. The system overcomes the limitations of current
gold standard marker-based systems by leveraging computer vision and deep
learning techniques, while maintaining a similar accuracy level. In particular,
the work carried out during this Ph.D. had the following main objectives.

1. Design and implementation of a video-based markerless system to quantitatively
characterize human motion. Indeed, we need to comply with the following
requirements: (i) accuracy and precision, (ii) versatility and (iii) inter-
pretability. Firstly, it is necessary to have a system as precise and accurate
as possible in order to detect and highlight all the possible motion pat-
terns (for example, also the fine pathological movements). Then, we need
a versatile system because our goal is to use the implemented pipeline
to study human motion in different situations and with different tasks.
Furthermore, we want it to be usable even in cases where marker-based
techniques limit the possibility of analysis due to their cumbersome na-
ture. Finally, we need interpretability. In fact, it is necessary to fully
understand and control all the steps of the analysis.

2. Evaluation of the accuracy of the implemented pipeline with respect to gold
standard marker-based system. This test is necessary in order to evaluate
and measure the sources of systematic error impacting our markerless
pipeline. To accomplish that it is necessary to have multimodal datasets
that include both marker and video acquisitions simultaneously.

3. Application of the implemented pipeline. We select applications from differ-
ent fields. At the beginning, we focus on two main applications related
to the rehabilitation domain: gait analysis and the study of preterm in-
fants” motion patterns. We select these two applications because they
present different challenges. The first one is important because it is a
well known and standard procedure commonly used in the rehabilita-
tion field to highlight and monitor motion patterns in people with neu-
rological diseases, e.g., stroke, multiple sclerosis or Parkinson [Biase et al.,
2020]. Furthermore, gait analysis results can be used to tailor appropri-
ate and specific rehabilitation treatments. For these reasons, gait analysis
would benefit from a more accessible system based on RGB cameras. The
main challenges of this application are: (i) the fact that, since there are
largely used and well defined protocols, it is necessary to produce results
as accurate as possible; (ii) the need for a 3D analysis, which requires a
multi-view camera system. The analysis of preterm infants motion is es-
sential to detect and highlight the presence of abnormal motion patterns
due to lesions involving areas of the brain [Prechtl, 1990] intended for
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the control of movement and posture. An early diagnosis of pathological
cases would allow the start of early rehabilitation treatment that could
significantly increase the chances of recovery. For these reasons, a less
obtrusive technique with respect to marker-based systems is necessary
to increase the accessibility of this procedure. In this case, the main chal-
lenges of this application are: (i) the low number of related works and
(i) the need to create an interpretable pipeline without well established
guidelines.

1.4 Publications

The work carried out during this Ph.D. led to the following publications.

Moro M., Marchesi G., Odone F. and Casadio M., (2020, March). Marker-
less gait analysis in stroke survivors based on computer vision and deep
learning: a pilot study. In Proceedings of the 35th Annual ACM Sympo-
sium on Applied Computing (pp. 2097-2104) [Moro et al., 2020] (Chapter
6)

Moro M., Casadio M., Mrotek L. A., Ranganathan R., Scheidt R., and
Odone F. (2021, September). On The Precision Of Markerless 3d Seman-
tic Features: An Experimental Study On Violin Playing. In 2021 IEEE In-
ternational Conference on Image Processing (ICIP) (pp. 2733-2737). IEEE.
[Moro et al., 2021a] (Chapter 7)

Moro M., Rizzoglio F., Odone F.,, and Casadio M. (2021, January). A
Video-Based MarkerLess Body Machine Interface: A Pilot Study. In In-
ternational Conference on Pattern Recognition (pp. 233-240). Springer,
Cham. [Moro et al., 2021b] (Chapter 7)

Garello L., Moro M., Tacchino C., Campone F., Durand P, Blanchi L,
Moretti P.,, Casadio M. and Odone F. (2021, august). A Study of At-term
and Preterm Infants” Motion Based on Markerless Video Analysis. In
Proceedings of 29th European Signal Processing Conference, EUSIPCO
[Garello et al., 2021] (Chapter 5)

Garbarino D., Moro M., Tacchino C., Moretti P.,, Casadio M., Odone F.
and Barla A. (2021, November). Attributed Graphettes-based Preterm
Infants Motion Analysis. In 10th International Conference on Complex
Networks and their Applications. [Garbarino et al., 2021] (Chapter 5).

Moro, M., Marchesi, G., Hesse, F., Odone, F.,, and Casadio, M. (2022).
Markerless vs. Marker-Based Gait Analysis: A Proof of Concept Study.
Sensors [Moro et al., 2022] (Chapter 6)

And to the following works under review:

Pastore V. P, Moro M., Odone F. VisionTool: a semi-automatic tool for
effective semantic feature extraction. Scientific Reports (Chapter 8)
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e Moro M., Pastore V. P, Tacchino C., Durand P, Blanchi 1., Moretti P,
Odone F. and Casadio M. A Markerless Pipeline to Analyze Sponta-
neous Movements of Preterm Infants. Computer Methods and Programs in
Biomedicine (Chapter 5)

1.5 Thesis overview

This Thesis is structured in two main parts.

1. In Part I (Background and Proposed Approach), we focus on the background
behind human motion analysis and on the proposed markerless ap-
proach. In particular, in Chapter 2 we present state-of-the-art methods
for marker-based analysis (e.g., motion capture systems and wearable
sensors). Then, in Chapter 3 we present an overview of the current meth-
ods for markerless human motion analysis. Lastly, in Chapter 4 we report
in details the method developed and tested during this project.

2. In Part II (Applications), we present all the applications and the tests to as-
sess the reliability of the proposed markerless pipeline. Firstly, we high-
light the results obtained by applying the implemented pipeline to the
study and the characterization of preterm infants” spontaneous motion
(Chapter 5) and to gait analysis (Chapter 6). Then, in Chapter 7 we show
the results for other application examples in order to highlight the versa-
tility of the proposed approach. Lastly, we describe the tool we developed
to have full control of semantic features detection (Chapter 8).



PART I

Background and Proposed Approach

This part of the document covers a detailed presentation of state-
of-the-art methods for human motion analysis. Firstly, we focus on
gold standard techniques based on wearable sensors and markers.
Then, we present markerless systems and their relative advantages
and disadvantages with respect to the gold standard techniques.
Lastly, we describe our proposed markerless method to perform

human motion analysis.



Standard Approaches for Motion
Analysis

In this chapter we briefly review state-of-the-art methods for human motion
analysis. Markers and motion capture systems are considered the gold stan-
dards.

2.1 Human motion analysis

Human motion analysis is defined as the quantitative and/or qualitative de-
scription of motor patterns. Among the most common applications of human
motion analysis we can mention medical evaluation, monitoring people, and
action classification and recognition. In medicine and rehabilitation, partic-
ularly interesting is the quantitative evaluation, since it allows to compute
biomechanical variables, such as joint angles and spatio-temporal gait parame-
ters. Moreover, the quantitative characterization of human motion helps expert
physicians to monitor motion patterns after orthopedic injuries and in people
with neurological diseases, e.g., stroke, spinal cord injury, multiple sclerosis or
Parkinson [Biase et al., 2020]. Furthermore, it can be used to tailor appropriate
and specific rehabilitation treatments. In this context, quantitative assessments
ensure repeatability and objectivity of the analysis, compared to visual obser-
vations only [Wren et al., 2020].

The accurate characterization of human movements is commonly performed
with motion capture systems and markers. These systems are considered as
gold standard. Among the possible alternatives, we can mention wearable sen-
sors (such as Inertial Measurements Units (IMU)), depth cameras and, recently,
also RGB cameras.

2.2 Markers and motion capture systems

To extract quantitative information about human motion, a gold standard has
been established. A gold standard is a method which is commonly accepted
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as the best one to achieve a specific goal. For human motion analysis the gold
standard is stereophotogrammetry, consisting in a 3D motion capture sys-
tem based on infrared markers and infrared cameras. In detail, the infrared
markers are attached to the body skin according to a strict protocol. Multi-
ple protocols have been defined depending on the task under study [Ferrari,
Marin-Jimenez, and Zisserman, 2008]. Infrared markers can be (i) active or (ii)
passive. In the former, they generate beams of infrared light. In the latter, they
reflect the infrared light generated by a different source. A set of infrared cam-
eras (usually at least 8), distributed across the room, capture the infrared sig-
nals coming from the markers (see Figure 1.1 for an example of marker-based
setup). The cameras need to be calibrated in order to be able to retrieve the
position of the markers in the 3D space. The position of each infrared marker
is first detected in each camera’s image planes (2D). The different viewpoints
are then combined to retrieve the position of the markers in the 3D space. For
this reason, these systems require each marker to be visible by at least two
or three cameras in order to be clearly detected in 3D space. This becomes a
problem if the markers are occluded by body parts or walking aids or if the
subject leaves the field of view of specific cameras. It is important to note that
the cameras can not differentiate which markers they see. Thus, manual work
is generally necessary to specify the names of the detected 3D markers, which
may lead to significant effort for post-processing the recordings.

The most commonly used commercial motion capture systems are: (i) the
Vicon (Vicon Motion Systems Ltd., Oxford, UK) [Vicon]; (ii) the Optitrack (Nat-
uralPoint Inc, OR, USA) [Optitrack]; (iii) the Optotrack (Northern Digital Inc,
Ontario, Canada) [Optotrack]. These systems are generally referred to as the
gold standards due to their high precision and built-in advanced software.

As mentioned in the introduction, these systems have multiple drawbacks
which are frequently mentioned in the literature [Carse et al., 2013; Colyer et
al., 2018]:

¢ they are expensive and, thus, they can not be afforded by many clinicians
and researchers;

* they are cumbersome and they can cause discomfort and a lack of natu-
ralness during motion;

¢ they require trained personnel especially for markers positioning. In fact,
markers need to be positioned carefully in specific anatomic points, re-
sulting in a time consuming procedure.

For these reasons, researchers have been looking for markerless alternatives,
described in Section 2.3. For further details on stereophotogrametry see [Cap-
pozzo et al., 2005; Chiari et al., 2005a; Della Croce et al., 2005; Leardini et al.,
2005; Van Hamersveld et al., 2019; Wade et al., 2022], a series of papers that
describe the theoretical background as well as practical details and sources of
errors for these systems.
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2.3 Markerless approaches

Nowadays a big effort is being made to reduce the cost and the invasiveness of
the systems for the quantitative characterization of human motion [Colyer et
al., 2018]. Markerless technologies have the potential to solve or reduce some
of the issues of marker-based approaches, as they are non invasive and they
can be built with inexpensive and commonly used hardware. In this section,
we report alternatives to marker-based systems to analyze human motion.

WEARABLE SENSORS. Wearable sensors commonly used in state-of-the-art
works in clinical applications are: (i) accelerometers and gyroscopes (i.e., in-
ertial sensors); (ii) magnetometer (i.e., magnetic sensors); (iii) the combination
of (i) and (ii) (e.g., Inertial Measurement Unit (IMU)) [Ahmad et al., 2013].
Promising application fields where wearable sensors have been considered as
an alternative to marker-based techniques in the study of human motion are:
balance [Chiari et al., 2005b; Hasegawa et al., 2021], force localization [Acer
and Yildiz, 2018] and, in general, for sensorimotor feedback [Inertial, 2018].
Furthermore, they are largely adopted for human-robot interaction studies [Is-
lam, Xu, and Bai, 2018]. Systems for human motion analysis based on wear-
able sensors are less expensive and portable, but, unfortunately, they suffer
from the same other issues as marker-based approaches. In particular, similar
to markers, they are obtrusive and they can affect the naturalness of the mo-
tion. For further details on wearable sensors for human motion analysis see
[Lopez-Nava and Mufoz-Meléndez, 2016].

VIDEO CAMERAS. Thanks to recent improvements in hardware and soft-
ware technologies in computer vision, the use of video cameras has started
to be considered as a possible alternative for human motion analysis. In par-
ticular, RGB and depth (RGB-D) cameras have been adopted in many studies
[Castelli et al., 2015; Clark et al., 2013; Kidzinski et al., 2020, Kwolek et al.,
2019; Tsuji et al., 2020; Varol et al., 2021] involving the qualitative and quanti-
tative characterization of human motion. In general, video systems have many
advantages with respect to marker-based techniques thanks to their low-cost,
portability and minimal invasiveness.

RGB-D cameras (e.g., the Kinect) are sensors that are able to retrieve sparse
depth information during acquisition. Kinect (Microsoft, NM, USA) is able to
track 3D body keypoints thanks to depth data obtained relying on infrared
light, without using obtrusive markers. Nonetheless, these systems may be
less accurate with respect to the gold standard. Thus, it is important to eval-
uate their reliability and their precision level depending on the specific appli-
cation field. Kinect is the most studied RGB-D sensor and it has already been
validated in different contexts [Behrens et al., 2016; Clark et al., 2013; Xu and
McGorry, 2015] and its use is not recommended (especially in the medical do-
main) for accurate quantitative analysis due to its precision and accuracy level
[Carmo Vilas-Boas et al., 2019; Mentiplay et al., 2015].
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RGB cameras have the same advantages of RGB-D cameras (low cost, portable
and not obtrusive) and, in addition, they have the potential to reach higher spa-
tial and temporal resolutions [Pueo, 2016]. Moreover, RGB cameras are com-
mon sensors largely adopted also in our everyday life (e.g., in all the modern
smartphones and laptops) and there are few studies that quantitatively com-
pare the information extracted with RGB video-based markerless techniques
with those retrieved with gold standard marker-based systems [Needham et
al., 2021]. Furthermore, in the computer vision literature, we find new meth-
ods for automatic analysis of RGB video data that allow to obtain estimates of
features (body keypoints) and structures (human skeletons) that can be then
adopted to characterize the motion. The background of these system is pre-
sented in Chapter 3.



Video-based Human Pose Estimation

In this chapter we present the main concepts behind state-of-the-art algorithms
for video-based human motion analysis and a detailed description of the actual
approach that has been developed and employed.

3.1 Problem definition

The first aim of this thesis project is the implementation of a markerless pipeline
to characterize human motion. This pipeline should be low cost, easy to use
and portable. Moreover, it should not affect in any way the naturalness of the
motion. Following these considerations, we adopt common RGB cameras for
data acquisition. Starting from RGB videos/images, the first step is the de-
tection of meaningful semantic features (also called landmark points or key-
points) on the human body. These keypoints are then linked in order to build
the human skeleton (see Figure 3.1 for an example). The detection of the (x,y)
positions in the image plane of semantic body keypoints is the analogous of
what is done with marker-based motion capture systems, where a set of in-
frared cameras is adopted to acquire the (X, Y, Z) positions in the 3D world of
physical markers placed on the body skin.

Figure 3.1: Examples of human skeleton with the meaningful body keypoints (left
panel) and pose estimation from an RGB image (right panel). Source: [Cao
et al., 2017].

11
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3.2 Early approaches

Early works about RGB video-based pose estimation rely on model-based ap-
proaches and attempt to retrieve directly the 3D model of the human body
starting from a single image. One of the first work in this direction is presented
in [O’rourke and Badler, 1980]. The authors rely on the human body model
definition presented by [Badler and O’Rourke, 1977] and shown in Figure 3.2
(a). The model is built with about 600 sphere primitives and it is composed by
25 articulated joints. The model incorporates angle limits and collision detec-
tion. Similarly, in the works done by [Hogg, 1983; Marr and Nishihara, 1978],
the authors, instead of sphere primitives, use a collection of hierarchical 3D
cylinders to model human body (we show them in Figure 3.2 (b-c)).

human 3=1) mndol

:___ = == e
= [HL arm 3-0 model
m ’»__——j \ & fors-nem 3-D modst
[H ‘ % K (\‘\\ tid 513 model
N 5%,

= & <

| I ?H’l )

‘ 1|
Ly

(b) [e)

Figure 3.2: Examples of body models. (a) source: [O'rourke and Badler, 1980]; (b)
source: [Hogg, 1983]; (c) source: [Marr and Nishihara, 1978].

After these first attempts to extract 3D models from single images, researchers
realized the complexity of the task and they started focusing on 2D models.
In [Lee and Chen, 1985], the authors recover the stick figure of the body pose
starting from known 2D landmark points locations (see Figure 3.3 (a)). Other
tools to extract human pose are: (i) pictorial structures, described by [Fischler
and Elschlager, 1973] and more recently adopted by [Andriluka, Roth, and
Schiele, 2012; Eichner et al., 2012; Ferrari, Marin-Jimenez, and Zisserman, 2008;
Ramanan, 2006; Ramanan, Forsyth, and Zisserman, 2005]; (ii) puppet-like rep-
resentations, described by [Hinton, 1976] and shown in Figure 3.3 (b); (iii)
human silhouettes (see for example [Felzenszwalb and Huttenlocher, 2005]);
(iv) articulated model formed by a variable number of rectangles (an example
is presented in [Ronfard, Schmid, and Triggs, 2002] and shown in Figure 3.3
(€)); (v) coarse part-based models (see for instance [Ioffe and Forsyth, 2001]).

Prior to the rise of deep learning and, specifically, to the rise of convolutional
neural networks (CNNs), the most used state-of-the-art methods to estimate
2D human poses in RGB images were deformable part-models [Felzenszwalb
et al., 2009; Felzenszwalb, McAllester, and Ramanan, 2008]. Deformable part-
models can be considered as an extension of pictorial structures. The basic
idea is to represent the human pose by a collection of rigid parts, arranged in
a deformable configuration.

12
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Figure 3.3: Examples of body models representing stick figures (a) and pictorial struc-
tures (b-c). (a) source [Lee and Chen, 1985]; (b) source [Hinton, 1976]; (c)
source [Ronfard, Schmid, and Triggs, 2002].

3.3 2D human pose estimation algorithms

While earlier work focuses mainly on graphical models [Andriluka, Roth, and
Schiele, 2009], recent methods on human pose estimation are based on deep
learning (i.e., [Newell, Yang, and Deng, 2016; Pishchulin et al., 2016; Toshev
and Szegedy, 2014; Wei et al., 2016]). The focus on deep learning and CNN s is
also related to the availability of large-scale datasets with 2D pose annotations
(e.g., MPII (Max Planck Institut Informatik) [Andriluka et al., 2014] and MS-
COCO (Microsoft Common Objects in Context) [Lin et al., 2014b]). Thanks
to these labeled datasets, it is possible to implement methods and to reach
impressive results on the accuracy of 2D pose estimation.

These algorithms are implemented and structured in order to solve two dif-
ferent problems:

¢ the detection in the image plane of meaningful body keypoints (for ex-
ample those shown in the left panel of Figure 3.1), also referred as seman-
tic features detection step;

¢ the construction of the body skeleton by connecting the appropriate pairs
of keypoints.

Depending on the logic behind the algorithm for semantic features detection
and on the number of people detected in the image plane, there are two main
ways to classify CNN-based pose estimation algorithms.

1. Top-down vs bottom-up. Top-down approaches first detect bounding
boxes of single human beings in the scene and then detect the desired
keypoints inside the image snippets. Generally, for bounding box detec-
tion and keypoint detection two different neural networks are adopted.
On the other hand, bottom-up approaches proceed the other way round:
first they detect all keypoints in the entire image; then they associate all
detected body parts with the corresponding persons and they build the
skeleton.

2. Multi-person vs single-person. This distinction identifies if an algorithm
has been implemented in order to detect and build the skeleton of one or

13
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more people in the image plane. If an image with more than one person
is given as input to a single-person algorithm, it will output the skeleton
of only one of them depending on the one detected first. As a general
statement, multi-person algorithms are more difficult to be implemented
and more challenging because they need also to understand the number
of people in the image and how to assign the keypoints to the different
people.

3.3.1 Examples of 2D pose estimators

We now report meaningful CNN-based algorithms for human pose estimation
starting from RGB images.

DEEPPOSE. DeepPose [Toshev and Szegedy, 2014] is the first CNN-based
algorithm for human pose estimation that could reach the performances of
previous model-based approaches. DeepPose is a single-person top-down al-
gorithm and it is structured as a regression problem for body keypoints. It
starts from a 7 layers AlexNet [Krizhevsky, Sutskever, and Hinton, 2012] and
it adds an extra final layer that outputs the keypoints coordinates in the image
plane (see left panel of Figure 3.4). DeepPose introduces two main novelties:
(i) it is able to detect body landmarks even in presence of occlusions (i.e., in
a holistic fashion) and (ii) it refines the keypoints estimates with a cascade of
regressors (see right panel of Figure 3.4).

Initial stage Stage s

230 % 1)

DiNM-hased refiner

send refined values
L0 next smge

Figure 3.4: DeepPose architecture (source: [Toshev and Szegedy, 2014]). Convolutional
layers in blue and fully connected ones in green.

DEEPCUT AND DEEPERCUT. DeepCut [Pishchulin et al., 2016] is the first
bottom-up multi-person algorithm for human pose estimation. The imple-
mented architecture jointly solves the two tasks of keypoints detection and
keypoints association. It is able to infer the number of people in the image,
to identify body landmarks and to disambiguate keypoints between people
in close proximity of each other (see Figure 3.5). The keypoints detector is
built with a combination of Fast Region-based Convolutional Network (Fast
R-CNN) [Girshick, 2015] and VGG [Simonyan and Zisserman, 2014].
DeeperCut [Insafutdinov et al., 2016] is the updated version of DeepCut.
Specifically, the authors improve the keypoints detector by replacing the ar-
chitecture composed by the Fast R-CNN and the VGG with a Residual Net-
work (ResNet-152) [He et al., 2016]. Moreover, they propose novel image-

14
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conditioned pairwise terms that allow to increase the accuracy of the con-
nections between pairs of keypoints.

Figure 3.5: (a) Initial keypoints estimates and all the possible connections among
them; (b) the connections are jointly clustered in order to assign them to a
person (one colored subgraph = one person) and each keypoint is labeled
(different colors and symbols correspond to different body keypoints); (c)
predicted poses (source: [Pishchulin et al., 2016]).

OPENPOSE. OpenPose [Cao et al,, 2017] is one of the first open source sys-
tems for multi-person 2D pose estimation that works in real-time. It is a bottom-
up architecture that introduces the use of non-parametric representations known
as Part Affinity Fields (PAFs) in order to solve the task of keypoints associa-
tion to build the human skeleton. As shown in Figure 3.6, Openpose takes an
image as input and predicts confidence maps for detecting body landmarks
and PAFs for landmarks associations. The network architecture (reported in
Figure 3.7) iteratively predicts PAFs and confidence maps and then combines
them in order to build the final skeleton(s). The authors provide the code and
the weights of the architecture trained on different big datasets: MPII human
pose [Andriluka et al., 2014] and MS-COCO [Lin et al., 2014b].

(a) Input Image

(b) Parl Confidence Maps

(c) Part Affinity Fields (d) Bipartite Matching (e} Parsing Results

Figure 3.6: Example of Part Affinity Fields and confidence maps extracted with Open-
pose (source: [Cao et al., 2017]).
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Figure 3.7: Openpose architecture (source: [Cao et al., 2019]). The first part (blue rect-
angle, ®') predicts Part Affinity Fields (PAFs) L! and the second one (or-
ange rectangle, p') predicts confidence maps S' for each keypoint. The
input F represents a set of feature maps obtained by analyzing the original
image with a CNN initialized by the first 10 layers of VGG-19 [Simonyan
and Zisserman, 2014].

HIGH-RESOLUTION NETWORK (HRNET). High-Resolution Network (HR-
Net) is proposed by [Sun et al., 2019] and it is a top-down multi-person pose
estimation approach that outperforms all the previous algorithms. This ar-
chitecture differs from the other approaches because it starts from a high-
resolution subnetwork, and it gradually adds lower resolution subnetworks
to form more stages and connect the different subnetworks in parallel (the
architecture is summarized in Figure 3.8).
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Figure 3.8: HRNet architecture (source: [Sun et al., 2019]).

MEDIAPIPE AND MOVENET. Mediapipe [Bazarevsky et al., 2020; MediaPipe]
and MoveNet [Pose Detection with MoveNet and TensorFlow js] are two of the
latest pose estimation architectures released. They are bottom-up single-person
architecture implemented by Google’s researchers. With respect to previous
works, these two algorithms have a different objective: they do not intend
to improve keypoints detection or pairwise connections accuracy, but on the
speed of the estimations. In fact, while previous algorithm required a large
amount of computational resources, these systems can run real-time also in
common laptops without a Graphic Processing Unit (GPU).
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For a more detailed review of 2D human pose estimation algorithms, the
reader is referred to the survey [Zheng et al., 2020] that is continuously up-
dated at the website [Deep Learning-Based Human Pose Estimation: A Survey].

3.4 2D semantic features detectors

In some applications, it may be appropriate to detect semantic features only.
The main advantage of semantic features detectors with respect to pose esti-
mators is that they require a lower number of labeled examples to self-define
new points in the image which should be tracked. Moreover, these points are
not limited to keypoints on the human body. This is particularly interesting for
the applications presented in this thesis, since we are interested in the detec-
tion of landmark points that are not always those detected in pose estimators.

Semantic features detection is usually structured as an image segmentation
task, in the form of a multi-class classification problem. More formally, we
represent a dataset as a set of N images I = {Io, [, .., Iy} with pixels x(x1,x2)
on a discrete grid m x n with intensities I;(x) € ] C R. The dataset I is usually
split into three separated subsets: ITrajn for training, Iy4; for validation and
Itpst for testing. For each training (and validation) image I;, we assume a
ground truth is available as a set of binary segmentation masks M, with pixels
intensities € [o,1]; I € {0,1,..., L} represents the semantic label, and L is the
number of keypoints to detect. Let M} be the cumulative ground truth (GT)
matrix, with pixel intensities € [0, L]. A multi-class neural network is trained
to learn a function F : I — M’ that maps each pixel x € I to its semantic label I
with some probability. To maximize such probability, a loss function is defined
to estimate the deviation of the network prediction from GT, at each training
step (i.e., the training error). To minimize the prediction error, the loss function
is decreased iteratively during training, until a defined set of stopping criteria
is met.

Usually, in addition to a set of defined keypoints, a background class is
added to the set of semantic labels. Thus, each pixel of an image can be as-
signed either to one of the keypoints classes or to the background. Considering
that the number of pixels belonging to the keypoints area are generally signif-
icantly less than the ones belonging to the background (i.e., everything in the
image which is not a keypoint to detect), the problem becomes an imbalanced
multi-class classification problem, and imbalance between classes is handled
by using a set of weights for each class, with an inverse proportion with respect
to the number of pixels belonging to the specific feature class. The results of
this process are maps (one for each class, i.e., one for each keypoint) similar to
the GT ones M of the same size of the input image that are called confidence
maps (or probability maps). In these maps each pixel intensity corresponds to
the confidence of that pixel belonging to the correspondent keypoint.
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3.4.1 Examples of 2D semantic features detectors

We now report meaningful algorithms for semantic features detection. It is
worth mentioning that in the literature there are few examples of semantic
features detectors.

DEEPLABCUT (DLC). One of the most important features detector is DeepLab-
Cut (DLC) [Mathis et al., 2018]. This detector, in its first implementation, starts
from part of the architecture presented in DeeperCut [Insafutdinov et al., 2016],
i.e.,, a ResNet He et al., 2016 pretrained on Imagenet [Deng et al., 2009], and
adds a deconvolutional layer at the end in order to retrieve probability maps
(see Figure 3.9). In this context, it is possible to fine tune the architecture with
few annotated frames and it can be adjusted to track the desired points of
interest (transfer learning). To accomplish this fine tuning with ease, DLC pro-
vides routines and a Graphical User Interface (GUI) for extracting frames from
videos and generate training data by manual labeling.

DeeplabCut: markeriess tracking looibox

h Label fealuras In frames

FlesNot-50 i e
(pretrained A
an ImageNet) =
Demnwcl tonal ‘

Extract characlaristic
frames to label

ADW to datesats: use trainad network to predict labels

Figure 3.9: Example of DeepLabCut workflow (source: [Mathis et al., 2018]).

VISIONTOOL. To overcome the problem of the low number of tools that
guide the users in the process of training and testing a semantic features de-
tector and to have more control on the detection of semantic features in our
application tasks, we implement VisionTool, an open-source python toolbox
capable of providing accurate features detectors for different applications, in-
cluding motion analysis. VisionTool leverages transfer-learning with a large
variety of deep neural networks allowing the users to select the one that fit the
particular problem under investigation. The toolbox offers a friendly Graphi-
cal User Interface (GUI), efficiently guiding the user through the entire process
of features detection. VisionTool is presented in Chapter 8.
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3.5 3D human pose estimation algorithms

The final aim of pose estimation from RGB videos is the study and the char-
acterization of human motion/actions. Since humans interact in the 3D world,
a possible approach to retrieve 3D human pose is to combine pose detections
from different view points of the same person/people and geometrically re-
construct the 3D information leveraging stereo vision techniques [Hartley and
Zisserman, 2004].

GEOMETRIC 3D RECONSTRUCTION. If we have multiple calibrated cam-
eras viewing the same scene (i.e., we know the intrinsic and extrinsic camera
parameters that can be combined to form the cameras matrices), we can per-
form 2D pose estimation on the images from each view and, then, we can use
the final estimated semantic 2D points in each image plane and compute the
corresponding 3D points by triangulation [Hartley and Zisserman, 2004], see
Figure 3.10.

Figure 3.10: The points x and x’ in the two image planes are projected in the 3D
space (X) knowing the camera parameters (source: [Hartley and Zisser-
man, 2004]).

In this context, there are recent works that leverage triangulation increasing
the accuracy of the 3D reconstruction by refining the detection on the image
planes of the different viewpoints. For example, in the work by [Zhang et
al., 2021], the authors propose Adafuse, a deep learning-based methods to
refine the detection of the 2D estimates of the body keypoints retrieved with
a pose estimation algorithm and they prove that with this refinement also the
error after the 3D reconstruction is reduced. Similar works were presented by
[Cheng et al., 2019; Pavllo et al., 2019; Qiu et al., 2019].

MONOCULAR 3D RECONSTRUCTION. Unfortunately, it is not always possi-
ble to have multiple view points of the same action. For this reason, recently,
a lot of effort has been devoted to retrieve the 3D human pose starting from
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a single image [Pavlakos et al., 2017; Zhou et al., 2017, 2016] or from consecu-
tive video frames [Tekin et al., 2016]. These methods are now largely adopted
in the computer vision community, but, unfortunately, they do not fit the re-
quirements of the application fields treated in this thesis (medical and rehabil-
itation). In fact, we need systems for the 3D reconstruction fully interpretable
and as accurate as possible.

One of the earliest methods adopting an end-to-end CNN-based approach
to retrieve the 3D pose directly from a single image is the work of [Li and
Chan, 2014]. They present a two-level architecture that simultaneously de-
tects 2D body landmarks and regresses 3D coordinates. In most cases, input
to these architectures are RGB images and the GT used during training are
the (X, Y, Z) coordinates of each keypoint in camera coordinates or in normal-
ized coordinates (thanks to large public available datasets such as HumanEva
[Sigal, Balan, and Black, 2010] and Human3.6M [Ionescu et al., 2013]). An-
other possibility explored by [Martinez et al., 2017, Moreno-Noguer, 2017] is
to input to the model the 2D keypoints locations in the image plane retrieved
with 2D pose estimators. Unfortunately, 2D pose information alone is am-
biguous. Thus, different approaches use a combination of RGB image and 2D
pose as inputs [Mehta et al., 2017; Popa, Zanfir, and Sminchisescu, 2017; Ro-
gez and Schmid, 2016; Rogez, Weinzaepfel, and Schmid, 2017; Tome, Russell,
and Agapito, 2017]. One big challenge in 3D pose estimation is generalization
capability.

For a more detailed review of 3D human pose estimation algorithms, the
reader is referred to the following surveys [Bartol et al., 2020; Zheng et al.,
2020].

3.6 Evaluation metrics

To properly evaluate the accuracy and the reliability of the detection provided
by the deep learning-based pose estimators, numerous metrics have been in-
troduced to compare the estimates £; (that we will exchangeably call estimate,
keypoint or landmark point) with the GT positions x;, withi =1,.., N and N
the number of keypoints detected.

AVERAGE PRECISION (AP) AND AVERAGE RECALL (AR). The most com-
mon metrics to assess the performance of a semantic keypoint detection algo-
rithm are Average Precision (AP) and Average Recall (AR). The explanations of
these two metrics follow the ones provided in [COCO 2020 Keypoint Detection
Task]. As a reminder, we quickly summarize the basics behind the terms preci-
sion and recall: they are statistical variables, which can be computed based on
the entries of binary confusion matrices, see Table 3.1.

The formulas to compute precision and recall are [Davis and Goadrich,
2006]:

TP

Precision = TP+ EDP (3.1)
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Ground truth
Positive Negative
Positive True Positive (TP) False Positive (FP)
Negative | False Negative (FN) | True Negative (TN)

Prediction

Table 3.1: General binary confusion matrix.

TP

Recall = TP+ EN (3.2)

In other words, precision is the fraction of true positives over the number

of predicted positives, whereas recall is the fraction of true positives over the

number of actual positives. In order to compute precision and recall for a key-

points detection problem, it is necessary to decide if a keypoint is correctly or

wrongly detected. To do that, the Object Keypoint Similarity (OKS) between

the estimate (¥;) and the GT (x;) needs to be computed. If the OKS is greater

than a specific threshold T (OKS > 7), then the keypoint estimation is con-

sidered correctly detected (TP), otherwise it is considered a wrong detection
(EP).

,dlZ
ZiEZSZklzé(UZ‘ > 0) ( )
¥:8(v; > 0) >

OKS =

with i representing the index for the set of keypoints; d; = |%; — x;| is the
Euclidean distance between a detected landmark point and the corresponding
GT; s is the object scale (e.g., square root of object bounding box area in pixels);
k; is a per-keypoint constant that controls falloff; v; is the visibility flag of GT
(vi = 0 means keypoint not labeled, v; = 1 labeled but not visible, v; = 2
labeled and visible). v; > 0 in the equation means that the similarities are

averaged only over labeled keypoints and the ones not labeled do not affect
—d2

the OKS. The term >’ is identified as Keypoint Similarity (KS) and it is
a Gaussian centered in the GT position x; and with standard deviation sk;.
OKS is a number in the interval [0, 1]: perfect predictions have OKS = 1 and
predictions for which all the estimates of a certain keypoint are off by more
than a few standard deviations sk; have OKS ~ 0. The OKS is the analogous of
the Intersection over Union (IoU) [Rezatofighi et al., 2019] for object detection.

As mentioned, the variable k; aims to control the falloff of the Gaussian
for each keypoint and it is often selected taking into account the variability of
human performance annotating the same keypoint. More than one annotator is
usually involved and the standard deviation of their annotations is computed
(T3 human)- Many studies consider k; = 20; yman-

Finally, a keypoint is considered as correctly detected if OKS > 7. Common
choices for T are {0.50,0.55,0.60, ...,0.95}. OKS > 0.75 is considered as a strict
metric. Once we know if an estimate is correct or not, we can compute AP and
AR. Usually, AP and AR are averaged over multiple OKS values.
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Interestingly, as it is possible to see from Figure 3.11 (source: [Ruggero
Ronchi and Perona, 2017]), the KS depends on the dimension of the keypoint
detected (thanks to the role of the variable s): if we fix the distance d; a larger
object is related with higher similarity.

Figure 3.11: Keypoint Similarity for two different keypoints (eye and wrist). The blue
points define the GT positions, the red (eye) and green (wrist) points
define the estimates. The 2D orange Gaussians around the GT points have
different standard deviations sk;, consequently, two estimates that have
the same distance from their GT can have different KS values (source:
[Ruggero Ronchi and Perona, 2017]).

PERCENTAGE OF CORRECT PARTS (PcP). The PCP [Eichner et al., 2012] is
not related directly with one estimate’s position but with the distance between
two of them (%, and %,,, withn and m € {1,..., N}, n # m). For this reason, PCP
is interesting to evaluate pose estimation algorithms (in particular to evaluate
the accuracy of each limb composing the skeleton) and not semantic features
detectors. Specifically, a limb is considered correctly detected if the distance
between the difference of the two estimates forming the limb (¥, and %) and
the difference between the true limb joints (x,, and x,,) is less than a threshold,
usually identified as a percentage a of the GT limb length (commonly 50%,
meaning & = 50, and consequently denoted as PCP@0.5):

2
Kk || Xy — X
15— ) — (o — )| 2 < 2] 64

In the following we describe more straightforward metrics to understand.
All of them have in common the logic behind the decision to consider an
estimate ¥; correctly or wrongly detected: the definition of a circle of radius
tiny around the GT keypoint x; (considered as the center). If the estimate falls
inside the circle, it is considered as correctly detected:

|%; — x| < Ty (3-5)

They only difference regards the choice of the threshold radius 7y, of the
circle around the GT.
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PERCENTAGE OF CORRECT KEYPOINTS (Pck). The PCK [Yang and Ra-
manan, 2012] is computed considering ry,, as a percentage of: (i) the torso
diameter (usually the 20%, PCK@0.2); (ii) the head bone link (usually the 50%,
PCKh@0.5 with h indicating that we are referring to the head bone link).

PERCENTAGE OF DETECTED JOINTS (PDJ). The PDJ [Toshev and Szegedy,
2014] is computed considering 4, a fraction of the torso diameter. For in-
stance, PD]J@0.2 equal to the distance between predicted and true joint < 0.2
* torso diameter.

MEAN PER JOINT POSITION ERROR (MPJPE). Until now we have reported
metrics for the evaluation deep learning algorithms for 2D pose estimation, the
ones we are more interested in. The metrics for evaluating 3D pose estimators
are fewer and much simpler. This is due to the fact that reliable deep learning
algorithms for 3D pose estimation have been proposed and studied only in the
last few years. Hence, not as many metrics have been established over time.
The most common one is the MPJPE, defined for each keypoint as the mean
Euclidean distance in the 3D space (in mm) between the estimated keypoint
(X;) and the correspondent GT (X;).
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Proposed Approach to Markerless
Human Motion Analysis

In this chapter, we report all the steps of the pipeline we propose to perform
markerless human motion analysis starting from RGB video acquisitions.

4.1 Introduction

Our aim is to create a markerless system able to describe in a quantitative way
human motion. We test our pipeline also in the medical and the rehabilitation
domains to support physicians in their medical evaluations and to allow them
to timely plan appropriate rehabilitation treatments. In this context, an impor-
tant requirement to take into account is the need for interpretable methods:
for this reason, we can not rely on end-to-end architectures and we need to
build a multi-level system to better understand and control the results of each
step. In this way it is also possible to use this system in different application
scenarios with just small changes. Specifically, we divide the pipeline into the
following steps.

1. Landmark points detection (Section 4.2): we leverage CNN-based approaches
and we detect the positions of meaningful landmark points in the image
plane. The keypoints we detect are selected according to the problem we
address.

2. Landmark points” trajectories filtering (Section 4.3): since we are interested
in the characterization of human actions, we analyze videos (and not
just single images). For this reason, at the end of step 1, we have the
keypoints” detections for each frame composing the video. Thus, we filter
the trajectories in order to improve the spatio-temporal consistency:.

3. 3D reconstruction (Section 4.4): if the acquisition setup includes multiple
viewpoints, the information from the different views is combined in or-
der to reconstruct the 3D positions (X, Y, Z) of each landmark point. This
is particularly useful because the standard marker-based approaches to
study human motion provide 3D information.
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4.2 LANDMARK POINTS DETECTION

4. Motion characterization (Section 4.5): depending on the problem we ad-
dress and on which aspect of the motion we characterize, the processing
step can include (i) the extraction of quantitative motion parameters, (ii)
the classification / characterization of motion patterns.

4.2 Landmark points detection

We start from the same logic behind gold standard marker-based systems and
we detect the position of meaningful landmark points in the videos of humans.
To do that, it is first necessary to locate them in 2D image planes. Depend-
ing on the application, we start by relying on: (i) pose estimation algorithms
[Bazarevsky et al., 2020; Cao et al., 2017]; (ii) pre-trained semantic features de-
tectors [Mathis et al., 2018] fine tuned on specific keypoints depending on the
motion patterns to characterize. Since we need full control on the overall pro-
cedure, within this project, we also implement our semantic feature detector:
VisionTool (see Chapter 8 for a complete overview).

Inputs to our procedure are frames extracted from RGB videos. Indepen-
dently from the features detector adopted, the outputs are semantic probability
maps related to each keypoint and the positions of the keypoints themselves in
the image plane (the location of the pixels with the highest value in the proba-
bility maps — see Figure 4.1 for examples). Specifically, for each video we have
{(x,y, c)f}tT:O, where [ is the index for the different keypoints (that depend on
the application scenario) and t is the index indicating the frame (T represents
the total number of frames in one video). In particular, (x, y)! is the position of
the /—th point in the {—th frame and ¢} is a number in the interval [0,1] and
represents the corresponding likelihood (confidence map value in the position
(x,)). With c] we are able to quantify the uncertainty behind the detection of
each point in each frame.

Figure 4.1: Example of probability maps for different body landmarks. Red and blue
correspond to high and low probability respectively.
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4.3 Landmark points filtering

To improve the stability across time of the estimated points and reduce local-
ization errors, we add a temporal processing. This is possible because we are
working with videos and not with single unrelated images and we can rely on
temporal consistency. This step is necessary in order to: (i) correct the mispre-
dictions of the semantic features detector/pose estimator, which occasionally
detects points in a wrong position; (ii) manage occlusions.

Errors due to mispredictions are easily recognizable because they involve a
characteristic spike in the trajectory of the point’s coordinates. Commonly;, it
is possible to overcome this problem with two different approaches:

¢ A median filter applied to the time sequences of the individual positions,
{x}}T, and {y!} L, respectively. The filter replaces each point p! of the
trajectory, with the median value computed on a neighbourhood of p! of
size F (an odd value, usually F = 5 in our studies). The median filter
discards outlier values, corresponding to the above-mentioned spikes.

¢ The detection of evident peaks in the speed profile of the coordinates
themselves.

In the case of occlusions, the neural network will find it hard to identify the
position of the occluded point as it is hidden; this situation is easy to identify
as the detection likelihood {c}}I_, of the occluded points ! at a fixed time in-
stant ¢ drops to values close to zero. A simple idea would be to discard from
the motion study the points that are detected with a small likelihood, but this
approach could drastically reduce the amount of useful information. To over-
come this problem and control information loss, we drop the points with the
likelihood below a threshold (thr;, usually we set thrj = 0.75) and then, we
interpolate the trajectories in order to reconstruct the movement of each point
in the temporal interval between their occlusion and their reappearance. In this
way, if an anatomical point of interest is temporarily occluded while it is mov-
ing, it is possible anyway to reconstruct its movement. With the interpolation
we also smooth the signal and solve small localization errors.

Finally, in order to smooth the resulting signals, we apply a low pass filter
(e.g., Butterworth 4th order f. cut off frequency) to each time-series corre-
sponding to the x and y coordinates of the keypoints. Since we work with
human motion, the cut off frequency f. commonly adopted is 12Hz [Whittle,
2014].

4.4 Landmark points 3D reconstruction

As mentioned in Chapter 3, in the literature there are algorithms for 3D re-
construction specific for the human pose. There are methods relying on single
images (e.g., [Tome, Russell, and Agapito, 2017]); others that work under the
hypothesis that calibration is not available, and generally require very large
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datasets (e.g., [Burenius, Sullivan, and Carlsson, 2013; Elhayek et al., 2016]).
Other works approach the problem using a similar prior as calibrated recon-
struction (multi-view calibrated inputs during training) but in a data-driven
fashion (e.g., [Kocabas, Karagoz, and Akbas, 2019]). Unfortunately, the previ-
ously mentioned approaches do not appear to be appropriate for our purpose.
In fact, we need a method as precise and accurate as possible. For this reason
we opt for a geometric approach relying on stereo vision [Hartley and Zisser-
man, 2004]. The choice of a general purpose geometric approach is also moti-
vated by its simplicity and high generalization potential. For these reasons, we
included in our analysis the 3D reconstruction step only when a multi-view
camera system (two or more cameras) is available.

GEOMETRIC APPROACH. The semantic features extracted {(x,y)!}, from
different viewpoints v (where v = 1, ...,V is the index for the different view-
points and V is the total number of viewpoints available) in each time instant ¢
are combined to compute their corresponding points in the 3D space (X, Y, Z)!
by means of multi-view geometric reconstruction. In order to perform geomet-
ric 3D reconstruction, it is necessary to perform camera calibration. Among the
possible calibration techniques, we rely on Zhang calibration [Zhang, 2000].
Thus, we estimate the intrinsic matrices K,, of each camera and the extrinsic
parameters between camera pairs [Zhang, 2000]: (Ri]-, tl-j), i,j=1,.,V i#]j
Then, if more than two viewpoints are acquired, in order to register them and
to have the same reference system, we apply rotation averaging [Hartley et al.,
2013]. This technique takes the relative rotations R;; and computes the absolute
rotations R; in order to satisfy the compatibility constraint

Rij * Rl‘ = R]‘. (41)

In the presence of noise the problem can be solved through the minimization
of:

min Y ||Rij — R; * R]T\ 2. (4-2)
Ri..Ry (=

If the first view is chosen as reference, we have that R; = I. Similarly, it is
possible to synchronize the translation vectors obtaining the absolute transla-
tions ¢; starting from the ¢;; and satisfying the compatibility constraint

tij =t — Rjj x t;. (4-3)

Once rotations and translations are synchronized, considering p! the 2D
landmarks expressed in mm (Y = Kyp!), we apply a linear triangulation
algorithm followed by a non-linear refinement based on the Gauss-Newton
method [Hartley and Zisserman, 2004], obtaining P; in the 3D space.

ADAFUSE. To reduce the impact of occlusions and, consequently, to reduce
the 3D keypoints localisation error, it is possible to add a step before the 3D
reconstruction consisting in the refinements of the probability maps of the 2D
detections in the image planes. To do that, we rely on AdaFuse [Zhang et al.,
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2021], a deep learning-based algorithm that is mainly divided into the three
following parts:

¢ A 2D pose estimator backbone.

¢ A fusing deep learning architecture (the main innovative contribution
of Adafuse) that refines the probability maps of each view generated in
the first step. To accomplish this, the algorithm takes into account the
information from neighboring views and it leverages epipolar geometry
[Andrew, 2001]. In this way, it is possible to augment the information of
each probability map at any point x by adding the information of the
probability maps of its neighboring viewpoints.

¢ A geometric 3D reconstruction part as described above.

In the work presented in the following Chapters, we adopt the methods that
best fit the requirements of the application task we addressed.

4.5 Motion characterization

Once we obtain the trajectories of each keypoint (2D or 3D depending on the
number of available view-points), we analyze them in order to extract motion
parameters or characterize different motion patterns. In this section we report
general purpose methods. More specific approaches will be described in Part
II.

4.5.1  Quantitative parameters extraction

Starting from the filtered 2D or 3D signals that represent the evolution over
time of the positions of each landmark, it is possible to extract quantitative
parameters that characterize the motion patterns.

Given a dataset, oftentimes videos can have different duration and they can
be also quite long. For these reasons we usually split them in temporal win-
dows of length W, and we compute the motion features for each time window
composing each video. In this way it is possible to capture different charac-
teristics of the motion depending on the temporal scale W. In order to lose as
little information as possible and to increase the number of time windows for
each video, we may also consider a stride S (S < W) between the starting point
of a time window and the starting point of the consecutive one (see Figure 4.2).

Depending on the application domain, the parameters extracted to charac-
terize the motion are different. However, we identify certain motor parameters
that describe general aspects of the human motion [Ahmedt-Aristizabal et al.,
2019] and that can be divided in (i) kinematic parameters and (ii) parameters
in the frequency domain (see Table 4.1 for a complete list).
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frame T frame T+16

Figure 4.2: The role of W and S, an example: we show 16 frames of a video and
we highlight two time windows of W = 8 frames and a stride S = 3
between the two windows. The green circles in each frame are the detected
landmarks points.

4.5.2 Classification

The quantitative parameters extracted can be used to characterize and to dis-
tinguish different motion patterns. In the medical domain, this procedure is
commonly adopted to predict between normal and abnormal behaviours. In
the work presented in the second part of the thesis, we focus on the detection
of normal and abnormal motion patterns and we consider mainly 5 different
well-established classifiers:

¢ Support Vector Machine with polynomial kernel (SVM-poly) [Vapnik,
2013];

Support Vector Machine with Gaussian kernel (SVM-rbf) [Vapnik, 2013];

Random Forest (RF) [Breiman, 2001];

Fully connected neural networks (NN);

Architectures based on Long Short Term Memory (LSTM) [Hochreiter
and Schmidhuber, 1997].

A common practice in the medical domain — where the amount of data
available is small — is to train and to test binary classifiers with a k-fold cross-
validation (usually k = 5 in our work). In our proposed procedure, the pa-
rameters are computed for each time windows of length W. This means that
during test, for a given video j, we obtain one prediction for each i-th time win-
dow (i.e., for a binary classification problem we obtain Pred;'. =0and Pred§- =1
respectively for the two classes, in our work usually representing the absence
or the presence of abnormal motion patterns). Since we are usually interested
in one outcome for each video, the predictions of the time windows are then
grouped (following the steps explained below in Subsection 5.4.1) obtaining
the final prediction Pred; (one for each infant).
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Signal Parameter

position total covered distance

path length

mean

standard deviation

speed median

maximum

minimum

mean
Kinematic parameters standard deviation

acceleration median

maximum

minimum

mean

standard deviation
jerk median

maximum

minimum

entropy

. . eak magnitude
total covered distance spectral density P &

sum of the spectrum

spectral half point

Frequency parameters
entropy

speed spectral density peak magnitude

sum of the spectrum

spectral half point

Table 4.1: List of general motion parameters (last column). They are usually computed
for human keypoints / body parts. The total covered distance is the sum of the
Euclidean distances of the position of a same point / body part in consec-
utive frames; the path length is the Euclidean distance between the starting
and the final position of each landmark point / body part.

4.5.3 Interpretable tools

As we reason on the design of methods to assist medical diagnosis, an impor-
tant requirement is the interpretability of the results. In this case, this means to
highlight which motor parameters are more relevant in the classification step.
Among the available tools to provide interpretability for a classifier, we focus
on two different approaches:

1. Feature importance based on permutation, providing a score for each input
feature and representing how much a classifier bases its decision on that
specific attribute. Among the different approaches to identify sets of im-
portant features, we consider a permutation-based importance algorithm
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[Breiman, 2001]. This method randomly shuffles each input parameter
and compute the change in the model’s performance during test. The
meaningful parameters are those impacting the performance the most.

2. Rule extraction, an algorithm specifically designed to support interpretabil-
ity of neural networks [Augasta and Kathirvalavakumar, 2012].

RXREN. Neural network models are inherently a black box, since it is not
trivial to determine the exact reconstruction of the set of operations and input
values that cause the network to classify an input sample into a specific output
class. Such black box nature may represent a significant drawback when deal-
ing with medical diagnosis. A possible step towards interpretability consists in
associating an inherently explainable white box model to the black box neural
network by extracting classification rules. In our work, we adopt a customized
version of RxREN [Augasta and Kathirvalavakumar, 2012], a pedagogical rule
extraction algorithm providing: (i) a subset of significant input parameters
that are more important for the neural network’s classification; (ii) ranges of
significant input features (in form of minimum-maximum value) causing the
neural network to assign an input sample to each of the output classes; (iii) a
transparent and explainable set of rules that can be used to actually classify
the input data instead of the original neural network architecture. Figure 4.3
shows a schematic representation of RxREN’s workflow.

Motion Parameters
Neural Network (Vtot)
Model +
Ground Truth (GT)

Pruning

'

Data Ranges
Computation

.

Initial Rule
Construction

Rule Pruning —= Rule Update

Figure 4.3: RXREN's algorithm workflow.

We report below the main steps of the customized version of RxREN:

1. Pruning. For each input neuron I;, find the number of incorrectly classi-
fied testing samples Err;, corresponding to the neural network prediction
after removing the neuron I; from the input set. The neurons associated
with the minimum error are considered insignificant and removed from
the input. The procedure is iterated until the network accuracy at iter-
ation it (Pacc;;) surpasses the original testing accuracy (Acc): Pacciy >
Acc.

31



4.5 MOTION CHARACTERIZATION

2. Data range computation. After the subset of significant input neurons
(i.e., input features) is obtained, the next step consists in identifying the
data range for both the correctly classified and the misclassified samples
for each of the significant neurons I;. The result is a data length ma-
trix, where each element (mc;.) is associated with the i-th neuron and
c-th class. A threshold « is defined to only consider input features sig-
nificantly important to classify a certain class c. The corresponding data
range matrix is

DM, = { Lic — U;. if mcj. > ax mp;j (44)
0 otherwise

with mp; being the average among all the classes for neuron i, and L;
and U;. being the minimum and the maximum values of correctly and
misclassified samples in output class c for neuron i .

3. Rules definition. The method defines rules for each target class c, by
using the nonzero data ranges available in the corresponding column
p of the data range matrix. One rule is defined for each output class,
representing the subset of significant input features and corresponding
ranges that cause the original neural network to predict an input sample
as belonging to that specific output class. Each of these ranges repre-
sents a condition in the rule. The rules are extracted in descending order
according to the number of required input attributes.

4. Rules pruning. Pruning can be applied to the constructed set of rules
to further improve the classification accuracy. Let Racc be the accuracy
of the initial set of rules on the test set. Iteratively, starting from the
more restrictive rule (i.e., the rule with more conditions), each condition
cnj; is removed (i.e., an input attribute data range is removed), and on
the remaining ones testing accuracy is estimated, let it be Rnewacc. The
condition cn;; is considered redundant and removed, if Rnewacc > Racc.

5. Rules update. Finally, the data range is updated considering the data
range matrix for the correctly classified and misclassified samples ob-
tained by using the constructed set of rules. In descending order, simi-
larly to pruning, each condition cn; is updated in terms of data ranges,
and the updated set is used to perform classification, obtaining an ac-
curacy equal to Rupacc. The update is considered significant and main-
tained if Rupacc > Raccpruned, where Raccpruned is the classification
accuracy obtained using the pruned set of rules at previous step.

The final set of rules may be used as an explanation of the original classifier or
as a new rule-based classifier, that approximates the behavior of the original
model.
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4.5.4 Graph-based analysis

A new approach to study and characterize human motion has been imple-
mented in the field of action recognition and classification. In particular, the
2D (or 3D) human keypoints are considered as nodes of the graph-based struc-
ture and analyzed trough Graph Neural Networks (GNN) Scarselli et al., 2008.

In our work, to highlight different characteristics of the motion not neces-
sarily perceptible with quantitative motion parameters, we implement a pro-
cedure based on the analysis of graphs. This idea and its corresponding imple-
mentation particularly fit the analysis of infants” motion (see Chapter 5), but
it can be extended also to different application domains. In the following, we
present the main steps of the procedure.

NETWORKS DEFINITION The first step is the definition of the graph struc-
tures. We start from the detection of landmark points in the image plane, as de-
scribed in Section 4.2. Considering one video, we build a temporal sequence of
networks (one per frame) describing the relation among the landmark points
of interest in the image plane, used as nodes, that are connected through edges
depending on their relative proximity. More specifically, we obtain the edges
by computing the Euclidean distance between every pair of landmark points in
all the images composing our dataset. The distances distributions are adopted
to identify which points are close to or far from each other in each frame. Start-
ing from the distances distributions, the selection of the threshold to consider
two nodes close one to another depends on the application domain and on the
aspects of the motion we are interested in.

In this way, each layer in a network represents a configuration at a specific
timepoint (e.g., at a specific frame) and it is defined as a L-nodes graph, which
we exchangeably call attributed graphette or configuration, where L is the number
of keypoints detected.

ATTRIBUTED GRAPHETTES-BASED REPRESENTATION Each temporal net-
work can be represented as a sequence of configurations. More formally, the
t-th layer, corresponding to the t-th frame of a temporal network G, is rep-
resented by a graph ¢; = (V,E;, S), where V. = {1,..,L} is the set of nodes,
E; is the set of edges and S represents the set of node attributes. It is im-
portant to note that at each timepoint ¢, the map assigning a node n € V
to a label I € S is a bijection. These configurations representing each frame
are called graphettes [Hasan, Chung, and Hayes, 2017], defined as not neces-
sarily connected, non-isomorphic induced subgraphs of a larger graph (see
Figure 4.4 for an example). Similarly to graphlets [Przulj, Corneil, and Jurisica,
2004] and motifs [Milo et al., 2002], graphettes are a suitable tool to give a
local and global description of large complex networks. Indeed, by computing
node-level graphettes concentrations in a network we are able to describe local
wiring patterns [Tu et al., 2019] and, at the same time, by aggregating this local
information, we get a global description of the network based on the occur-
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rences of these substructures [PrZzulj, Corneil, and Jurisica, 2004]. The number
of possible configurations depends on the number of keypoints L.

e R S ke B s
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CRANTH R K
I ARATES = I =
MR AARA KO

Figure 4.4: Example of 5-nodes (L = 5) graphettes (blue and red) and graphlets (red).

To have a local and global description of graphettes distributions, we lever-
age Natural Language Processing (NLP) techniques. To do that, we need to
associate each attributed graphettes to a word, i.e., a string composed by the
letter ¢ and an integer number obtained by concatenating the elements of the
adjacency matrix and then interpreting that as a binary number (convention
we randomly decided to adopt for simplicity). A practical example of this pro-
cess is shown in Figure 4.5.

— }11001uuuo1| ) g801
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Figure 4.5: Canonical representation of one instance of a 5-node attributed graphette.
Starting from an attributed graphettes and its related adjacency matrices
(A) we generate a word composed by the letter ¢ and an integer number
obtained by concatenating the elements of the adjacency matrix and then
interpreting that as a binary number.

Given an infant video G, we sequentially associate each frame t of the video
with an attributed graphette, represented by the corresponding string g,. For
instance, the attributed graphette 0000000000 (the first in Figure 4.4) corre-
sponds to the string go. A network is then defined as an ordered sequence of
words, whose length is equal to the number of frames of the corresponding
video. Indeed, G results as a collection of configuration names that we treat as
text, resorting to NLP methods for text representation in order to enumerate
attributed graphettes and describe their occurrences. From a practical point of
view, in this way we are studying and characterizing the evolution of human
keypoints (and, consequently, of human poses) across time.
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NLP METHODS In this regard, the Bag-Of-Words (BOW) [Goldberg, 2017]
model is a histogram representation that transforms any text into fixed-length
vectors by counting how many times each word appears in the document. This
vectorization process is performed by fixing or inferring a vocabulary, which is
contained in or equal to the set of all words found in the documents. In our
case, the vocabulary of all configurations appearing in the dataset consists of
all the possible Nj; attributed graphettes found in the dataset. Therefore, after
titting a BOW model, every network turns out to be a vector of size 1 x Nj;.
Figure 4.6 (left panel) offers a visual representation of a video as a BOW vector.

In order to identify those configurations that are discriminative for networks
in the dataset, we need to normalize raw counts in BOW vectors properly.
For this purpose, we leverage Term Frequency - Inverse Document Frequency
(tf-idf), a common algorithm to transform word counts into meaningful real
numbers [Salton and Harman, 2003]. More specifically, given a configuration
gn and a network G, tf-idf measures the originality of g, by comparing the
number of times g, appears in G (i.e., term frequency) to the number of networks
gn appears in (i.e., document frequency). Formally,

tf-idf(gn, G) = tf(gn, G) X <log 1121}2;) + 1) (4.5)

where tf(g,, G) (i.e., term frequency) is the component of G’s BOW represen-
tation corresponding to g,, N is the number of networks in the dataset and
df(gn) (i.e., document frequency) is the number of networks g, appears in. To
reduce the dimensionality of these representations, we set a threshold on the
minimum and maximum document frequency of configurations. In the tf-idf
case, we also retain the ability of weighting graphettes based on their com-
monality in the dataset. Figure 4.6 (right panel) illustrates a tf-idf transform of
the network in the left panel.
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Figure 4.6: BOW (left) and tf-idf (right) word cloud visualization of an infant’s tem-
poral network. The size of configuration names is proportional to their
weights in the corresponding representation. Note that the configuration
8512 is either very frequent or rare in the collection of infants networks
and therefore it has weight equal to 0 in the tf-idf representation.

Even if the tf-idf approach provides an arbitrary amount of reduction in
description length, it does not reveal any information on intra-networks dis-
tribution over all attributed graphettes. To overcome this limitation, we re-
sort to topic modeling [Alghamdi and Alfalqgi, 2015] to define an interpretable
low-dimensional representation of videos, able to describe the distribution of
attributed graphettes for each video. Topic models [Alghamdi and Alfalqi,
2015] are probabilistic generative models for large collections of textual data
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(i.e., text corpora). A notable topic model is Latent Dirichlet Allocation (LDA)
[Blei, Ng, and Jordan, 2003] defined as a 3-level hierarchical Bayesian model,
in which every item in a corpus is modelled as a mixture over an underlying
set of topics, which are, in turn, described by a probability distribution over
words. Topic probabilities offer an explicit low-dimensional representation of
texts which has been recently adopted to analyse large social networks [Long
et al., 2020].

As mentioned before, we adopt this procedure to characterize the evolution
across time of body configurations in the study of infants” motion (Chapter 5)

4.6 Strengths and weaknesses of our markerless
approach

First of all, we highlight the main benefits that markerless systems allow to
reach with respect to marker-based ones. Here we highlight the main advan-
tages of markerless methods for human motion analysis.

¢ In general, the overall process to perform markerless analysis requires
less preparation and it is not operator dependent. While the practitioner
during marker-based data acquisition needs to place markers very care-
fully on the body skin in order to reduce as much as possible the bias,
markerless systems are fully automatic, and they are independent of any
human performance.

¢ The naturalness of movements is not affected by cumbersome markers
placed all over the body skin. Thanks to the non-invasive nature of mark-
erless systems, it is possible to adopt them to study human motion in ap-
plication fields where the invasiveness of markers do not allow or reduce
the possibilities to perform analysis (such as with infants, music players
and athletes).

¢ It is less expensive. We estimated that the cost for markerless analysis is
almost 20 times lower with respect to marker-based systems.

On the other side, they present some limitations that should be further ex-
plored.

¢ If from one side there are few and well defined marker-based system
for human motion analysis, on the other side there are many different
RGB cameras with different resolutions, sensors type and frame rates.
For these reasons and for the variability of the application environment,
it is difficult to create a standard reproducible system based on RGB
cameras.

* Due to intrinsic physical limitation of camera sensors (spatial limitation
related to pixel size), the level of detail achievable with this type of anal-
ysis is limited.
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¢ A too low temporal resolution (frame rate) of the camera combined with
fast movements may lead to motion blur and, consequently, to small er-
rors in the detection of the keypoints in the image plane. One immediate
way to reduce the motion blur is to adopt RGB cameras with a high
temporal resolution (i.e., high acquisition rate).

¢ The proposed pipeline, at this stage, requires only one person in the
scene and it has been tested in controlled environments.

In conclusion, markerless analysis represent an interesting alternative to
standard marker-based techniques. Unfortunately, its application has not been
fully explored and the studies analyzing the differences with well defined gold
standard analysis are still limited.
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PART II

Applications

This part of the document contains all the applications of our marker-
less pipeline to characterize human motion. With these examples
we show the potential of our algorithm in terms of accuracy and
versatility with respect to gold standard marker-based systems.



Infants Motion Analysis

In this chapter we present the application of our proposed markerless ap-
proach to study the motion of preterm infants. This work is carried out in
collaboration with the Istituto Giannina Gaslini (Genova, Italy).

5.1 Introduction

The analysis of infants” spontaneous movements is essential for an early diag-
nosis of neuro-motor disorders, especially for preterm birth. In fact, the 5-15%
of the premature babies born with a birth weight of less than 1500g have motor
alterations and 25-50% of them have developed behavioural and/or learning
deficits [Bax et al., 2005]. Thus, they can face a lifetime of disability [Allen,
2008]. Moreover, thanks to the development of intensive care techniques, in
the last years, preterm survival rates have increased in high-income countries.

Common neurological disorders that could occur in the early stage of life
are grouped under the term of ‘Cerebral Palsy’ (CP): permanent neuronal dis-
orders due to lesions that primarily involve the areas of the brain intended for
the control of movement and posture. Therefore, infants with CP may present
problems in motor skills, muscle weakness, rigidity, slowness and difficulty in
balance and coordination [Beckung and Hagberg, 2002]. An early diagnosis of
pathological cases would allow the start of early rehabilitation treatment that
could significantly increase the likelihood and extent of recovery.

Starting in the 1990s, the study of infants motion provide evidences of a
qualitative correspondence between anomalies in the motion patterns and neu-
rological dysfunctions [Bos et al., 1997]. This is the starting point for the de-
velopment of Prechtl’s General Movement Assessment (GMA) [Prechtl, 1997].
General Movements (GMs) are spontaneous movements of variable amplitude
and speed involving different parts of the body that could reflect the state of
neuro-motor development [Prechtl, 1990; Prechtl, 1997]. Common neurological
evaluation to better understand and estimate the infants” neurological status
include traditional neurological examination [Palmer, 2004] and neurological
examination based on the observation of spontaneous motor behavior. The
latter can include also the GMA [Prechtl, 1990]. Unfortunately, the visual anal-
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ysis and the recognition of GMs and of abnormal movements involves highly
specialized personnel for a long period of time, it is often operator dependent
[Adde et al., 2009] and its reliability increases starting from 12 months after
the conception, making difficult an early diagnosis. For these reasons, there is
a need for objective computer-aided methodologies able to extract quantitative
parameters that characterize infants” motion pattern.

In this context, we address the problem of the automatic markerless analy-
sis and characterization of infants” spontaneous movements. An important re-
quirement to take into account is the need for interpretable methods. With this
thesis we present two different interpretable approaches for the characteriza-
tion of infants motion relying only on a single RGB camera (see Figure 5.1). In
both of them, our goal is to identify early signs of neurological disorders. This
is essential because, despite the GMA, a fully reliable clinical evaluation of in-
fants’ neuro-motor status is performed starting from 24 months after birth. We
study the problem with two different approaches because, with each of them,
we could highlight different characteristics about infants motion patterns.

The long term goal of our research is to provide an easy to use methodology
which could also be applied at home by care givers. For this reason we focus
on single RGB videos which can be easily acquired by a mobile phone.

Approach 1: parameters-based. In this first study, we design a pipeline orga-
nized in three independent steps: (i) video representation based on 2D landmark
points detection, (ii) motion parameters extraction and (iii) classification. Firstly,
we adopt a semantic feature detector [Mathis et al., 2018] to automatically de-
tect the positions of relevant landmark points (nose, hands and feet) in the
image plane and we filter them to add spatio-temporal consistency. Then, we
compute quantitative parameters inspired by the neuro-motor literature to de-
scribe infant’s motion [Ahmedt-Aristizabal et al., 2019; Meinecke et al., 2006].
Lastly, to better understand the discriminative power of our computed param-
eters, we train and test different binary classifiers in order to identify infants
likely to manifest neuro-motor disorders. To increase the interpretability of
our analysis, this stage also includes a features importance procedure, to high-
light the most meaningful parameters among the ones computed [Augasta and
Kathirvalavakumar, 2012]. For the classification task we consider different al-
ternatives: Support Vector Machine (SVM) [Vapnik, 2013], Random Forest (RF)
[Breiman, 2001], a fully connected Neural Network (NN) and a deep learning
architecture based on Long Short Term Memory (LSTM) [Gers, Schmidhuber,
and Cummins, 2000]. The output of our pipeline is an automatic data-driven
evaluation for infants” motion (machine learning (ML) evaluation in Figure
5.4), that can be adopted to support the clinical evaluation performed in the
tirst weeks and /or months of infants life, when it is difficult to detect signs of
abnormal motion patterns. In this way it is possible to increase the reliability
of an early detection of infants at risk of neuro-motor disability and, conse-
quently, timely plan an intervention, increasing the potential for recovery.

Approach 2: graph-based. In this second case, we approach the problem
of representing spontaneous movement of preterm infants by studying it as
a temporal network analysis problem. More precisely, we map each frame of a
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video to a 5-nodes graph whose nodes are detected landmark points (nose,
hands and feet) and edges are inserted based on the Euclidean distance of
the landmark points on the image plane. In this way, each video become a
temporal series of graphs. We model the networks as sequences of 5-nodes
attributed graphettes [Hasan, Chung, and Hayes, 2017], defined as not neces-
sarily connected, non-isomorphic induced subgraphs of a larger graph, whose
nodes are equipped with attributes. We exploit this modelling choice in order
to obtain an interpretable, low-dimensional representation of each video, able
to convey information about the local dynamics of each infant. In this sense,
in [Long et al., 2020] the authors present a work in which they define a repre-
sentation of a large social network by using methods of topic modelling [Al-
ghamdi and Alfalqi, 2015]. In our problem, we leverage the method described
in [Long et al., 2020], instantiated with a Latent Dirichlet Allocation [Blei, Ng,
and Jordan, 2003] model, to identify local motion patterns able to characterize
infants spontaneous movements. This method allows us to highlight insightful
differences between the classes of infants with normal and abnormal motion
patterns. As far as we know, this is an original approach, never used before.

5.2 Related work

We report here significant papers in the field of the analysis of 2D markerless
infants” motion patterns. Since our work is based on single RGB videos, we
review papers that adopt the same input data and we do not consider works
that: (1) analyze infants” motion starting from signals acquired with wearable
devices or different sensors (e.g., depth cameras); (2) are based on motion cap-
ture systems and infrared cameras and markers; (3) exploit 3D information.
On these approaches the reader is referred to [Burger and Louw, 2009; Hesse
et al., 2018]. The remaining works in the literature dealing with this problem
are not many.

One of the first video-based approaches for infants” motion analysis is in-
troduced by [Adde et al., 2010, 2009]. The authors extract information about
infants” motion relying on change detection: they extract the difference im-
age between two consecutive frames and compute quantitative parameters
based on pixels change between frames. The same method is adopted also
by [Tacchino et al., 2021] and by [Tsuji et al., 2020]. [Baccinelli et al., 2020]
provide a graphical user interface in order to help tracking the movement of
hands and feet. This work also provides a software for motion parameters
extraction. [Das, Fry, and Howard, 2018] focus specifically on the analysis of
kicking movements for determining neuro-motor risk-level. Another computer
vision technique adopted in this field is optical flow: [Stahl et al., 2012] com-
pute motion parameters by tracking the body parts with a method based on
optical flow. With this method they are able to underline specific motor pat-
terns presented in the GMs theory and to classify with high accuracy infants
with and without neuro-motor disorders. [Rahmati et al., 2014, 2015] propose
an approach to segment and track the infants” body using optical flow fields
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initialized with a manual labeling, then from this information they compute
motion parameters.

Recently, a lot of effort has been put into the study of algorithms for human
pose estimation from RGB images (see [Colyer et al., 2018] for a review). One
of them (i.e., Openpose [Cao et al., 2017]) has been adapted in two different
works - one by [Reich et al., 2021] and the other by [Chambers et al., 2020] - to
study GMs directly from the infants” pose.

We conclude by observing that with respect to the papers cited in the cur-
rent section, our approaches are fully data driven and require limited user
intervention.

5.3 Dataset

Data acquisition was performed in collaboration with the Giannina Gaslini
Hospital in Genova and it included different acquisition sessions and video
and clinical evaluations.

ACQUISITION SESSION 1: 40TH WEEK OF GESTATIONAL AGE. During the
tirst acquisition session, the spontaneous movements of 142 preterm infants, 9o
females, born at (mean =+ standard deviation) 29 £ 2 weeks and with weight
at birth of 1212 + 307g, were acquired at 40 weeks of gestational age. For in-
clusion in the study, all infants had to be preterm, in stable clinical conditions,
in absence of pharmacological sedative treatment or respiratory support in the
previous 4 weeks, with birth not beyond the 32th gestational week and/or
weight at birth less than 1700g. The acquisition setup was composed by a sin-
gle RGB camera (Canon Legria HF R37, acquiring at 25 frames per second (fps)
with a resolution of 1080 x 1920 pixels) mounted on a stable support above a
cradle or a physiotherapy treatment table where the infants could move freely
facing the camera (see Figure 5.1). For each infant, one video (mean duration
and standard deviation in minutes: 8 & 2) was acquired during the wake con-
dition. We excluded from the analysis video sequences where unintentional
interventions of the operators obscured part of the scene and where the in-
fants were crying or using the pacifier (a total of more than 1000 minutes
remaining).

ACQUISITION SESSION 2: 3 MONTHS AFTER BIRTH. During the second
session of acquisition, the movements of 118 infants were acquired 3 months
after birth (78 females, born at 29 + 2 weeks and weighting 1150 £+ 303g).
Among them, 95 are the same infants acquired also at the 4oth week of gesta-
tional age. The inclusion criteria and the setup were the same as for acquisition
session 1. Also in this case, one video was acquired for each infant (mean du-
ration and standard deviation in minutes: 7 &+ 2, for a total of more than 8oo
minutes)
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Figure 5.1: Data acquisition setup with the camera viewpoint. We show different ex-
amples of acquisition with background of different colors. The images are
cropped to improve visibility and faces are anonymized for privacy.

EXPERTS VIDEO EVALUATIONS (VE40 AND VE3). For all the infants in-
volved in the study we have also the Video Evaluations (VE40 and V E3 respec-
tively for acquisitions done at the 4oth week of gestational age and 3 months
after birth) performed by two trained physicians relying only on the videos
recorded during the different acquisition sessions and performed according
to the General Movements Assessment (GMA). The evaluations done at the
4oth week of gestational age (VE40) are less reliable than the ones performed
3 months after birth (VE3) since GMs and abnormal motion patterns are less
evident at early stages even for trained physicians. The two experts, first as-
sessed independently the videos and then, they reached a common evaluation
(by discussing the ambiguous cases and agreeing on a decision) VE40;, with
j=12,..,142, VE40j = 0 and VE40j = 1 indicate respectively the absence
and the presence in the recording of frames with abnormal motion patterns.
Same notation for VE3 (but in this case j = 1,2, .....,118).

GROUND TRUTH (GT): CLINICAL EVALUATION. Among the infants in-
volved in the study, some of them (59 acquired at the goth week of gestational
age and 53 acquired 3 months after birth) had a clinical diagnosis of neuro-
motor disorders, while the others had not. The neuro-motor status assessments
were done according to different evaluations and tests. Among them, Magnetic
Resonance Imaging (MRI) was performed at birth and it was adopted to verify
possible brain injuries. The other clinical neuro-motor evaluations were per-
formed 30 months after the video recording and for the majority of the infants
the evaluation included the Bayley test [Bayley, 2006]. We considered these
evaluations as Ground Truth (GT) for our analysis (GT; with j = 1,2,...., N,
with GT; = 0 and GT; = 1 respectively for infants without and with neuro-
motor disorders and with N corresponding to the total number of infants).
The infants involved in the study present a wide spectrum of intensity of mo-
tor disorders and most of them present minor impairments. Figure 5.2 shows
a time line of infants neuro-motor evaluation and acquisitions.
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The study and the consent form signed by parents were approved by the
Giannina Gaslini Hospital Institutional Review Board on 20/06/2013 (protocol
number: IGGPMo1).
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Figure 5.2: Time line of infants birth and clinical assessments.

5.4 Methods

In this section we summarize the methods adopted for data analysis from
Chapter 4. The two proposed approaches (parameters- and graph-based) have
the potential to highlight different characteristics about infants motion pat-
terns. In particular, with the parameters-based analysis we are interested in
the characterization of motion features able to distinguish among normal and
abnormal motion patterns as soon as possible after birth. Thus, in this case,
we rely on acquisition session 1. Conversely, with the graph-based analysis
we are interested in the automatic recognition of body configurations similar
to the ones observed with GMA, that are more evident 3 months after birth
[Prechtl, 1997]. Thus, we rely on acquisition session 2. In future works, we are
planning to extend both approaches to the whole dataset.

The two approaches share the first step of the analysis, consisting on the de-
tection of interesting keypoints in the image plane, described in the following
paragraph.

PRE-PROCESSING: LANDMARK POINTS DETECTION AND FILTERING. We
train DeepLabCut (DLC) [Mathis et al., 2018] to detect a small set of meaning-
ful landmark points on the infants” body. The motivations behind this choice,
instead than full body pose methods (e.g., [Cao et al., 2017]) are: (i) classical
full body pose estimation algorithms, if not fine tuned on infants poses, have
proven to be not always appropriate for infants since they are trained and im-
plemented for the detection of adults” poses [Chambers et al., 2020; Hesse et al.,
2018], and they would require a significant amount of data for the fine tuning;
(ii) the possibility to focus only on some key points that provide meaningful
information regarding infants” motion and to guarantee a higher per-point ac-
curacy and a higher control on the interpretability of the results; (iii) semantic
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feature detectors normally require a limited number of annotated examples in
the training phase (see [Mathis et al., 2018]).

For the parameters-based approach, we train DLC with labelled examples
from videos of acquisition session 1 of our dataset. To extract quantitative
information related to different body parts, we detect the positions in the im-
age plane of the following landmark points: nose, hands and feet. We ran-
domly select 10 frames from 120 videos and we manually label the points
of interest. Then, we adopt that model to extract the positions of the five
landmarks in each frame of each video. The outputs are {(x,y,c):}L,, with
I = {nose (N), left hand (LH), right hand (RH), left foot (LF), right foot (RF)}.
As mention in Chapter 4, (x,y)! is the position of the I—th point in the t—th
frame (examples are shown in Figure 5.3) and ¢/ —a number in the interval
[0,1]- is the corresponding likelihood. With ¢} we were able to quantify the
uncertainty behind the detection of each point in each frame and filter them
as described in Section 4.3. Furthermore, the trajectories were normalized in
order to compensate for the possible differences in size of the infants” body
and distances between the camera and the acquisition plane (see Section 4.5).

Figure 5.3: Examples of detected landmarks in the image plane. The green circles are
the positions of some landmarks directly after the detection performed
with our fine tuned DLC model. The red circles are the landmark points
that were wrongly detected by the network (mispredicted or occluded) and
whose positions were retrieved thanks to the filtering step.

As a final remark, in order to confirm that full body pose estimation are
less accurate than ad hoc fine tuned semantic feature detectors, in Table 5.1 we
report the mean error in pixels for the same landmark points obtained with
DLC and the full pose estimator Openpose [Cao et al., 2017] with respect to
manually annotated ground truth. To solve this task we randomly selected 680
images and we manually labeled them.

For the graph-based approach, we trained DLC with labelled examples from
videos of acquisition session 2. In particular, we randomly select 10 frames
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Point DeepLabCut | Openpose

Nose 3.73 £ 243 | 7.68 £ 3.14
Right Hand | 5.12 £3.35 | 8.73 £ 3.97
Left Hand | 5.34 £ 3.58 | 8.82 + 4.73
Right Foot | 6.57 £ 4.13 | 9.74 + 5.04
Left Foot 6.18 £ 4.28 | 9.98 + 5.01

Table 5.1: Mean error + standard deviation (SD) for each point in pixels computed
considering a manually labeled ground truth in 680 images.

from 100 videos and we manually label the points of interest and we fine tune
the ResNet-50 within the DLC framework.

Before further analysis, we need to compensate for the possible differences
in (i) size of infants” body and (ii) distances between the camera and the acqui-
sition plane. Therefore, we normalize the landmarks’ coordinates within each
frame with the maximum distance in the image plane between the nose and
the virtual middle point between the feet across the whole video.

5.4.1 Parameters-based approach

Figure 5.4 summarizes all the steps performed in this approach.
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detection (x,y) Filtering (time)
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) - Motion
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Evaluation (VE40) extraction
Bayley Evaluation % Classifiers
{GT) Training TR
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Interpretable
models

| L

Figure 5.4: Summary of the steps implemented for parameters-based approach.

MOTION PARAMETERS EXTRACTION. Starting from the filtered and nor-
malized signals that represent the evolution over time of the positions in the
image plane of each landmark, we extract quantitative parameters that repre-
sent infants” motion patterns. Since the videos last on average 8 4= 2 minutes
and since abnormal motion patterns are usually localized in time, we divide
each video in time windows of length W frames and we extract motion pa-
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rameters in each time window (see Section 4.5.1 for further details). Among
time windows we consider a stride of S frames. The values of W and S we
adopt expressed in number of frames are: W = {50, 100,250,500, 1000} and
S = {50,100, 250,500,1000}, corresponding to {2,4,10,20,40} seconds. In this
way it is possible to highlight motion patterns of different granularity. Finally,
we extract two different types of parameters: general and specific motor pa-
rameters.

General motor parameters. Following the pipeline implemented in [Ahmedt-
Aristizabal et al., 2019], in each window we extract 125 features — that we call
Vgen — (25 parameters for each detected landmark point - nose, right hand,
left hand, right foot, left foot) described in Section 4.5.

Specific motor parameters. Following [Meinecke et al., 2006] we compute
a set of specific parameters for our application field — Vspec. These are de-
rived from qualitative factors that are commonly identified by the physicians
for evaluating infants” spontaneous motor activity and that can be summa-
rized in: variability, smoothness and complexity of the motion [Sival, Visser,
and Prechtl, 1992]. Corresponding quantitative parameters, as presented in
[Garello et al., 2021; Meinecke et al., 2006], are:

* Cross-Correlation: a measurement of variability, to determine whether the
movements of upper and lower limbs are correlated [Prechtl, 1990].

® Skewness: a statistical parameter that highlight asymmetry in the distri-
bution of the speed profile of each landmark point; it is an indicator of
smoothness [Meinecke et al., 2006].

* Area out of moving average: the area across time between a point’s coordi-
nate (x or y) and its moving average. Moreover, we consider also the area
out of standard deviation of moving average: the area between the trajectory
of a point’s coordinate and its moving average plus the standard devia-
tion [Meinecke et al., 2006]. These are other descriptors for smoothness.

* Periodicity: an indirect measure of the complexity of the motion. Con-
sidering the time course of a certain landmark point’s coordinate (x or
), the periodicity is the number of intersections between the coordinate
trajectory and its temporal average [Meinecke et al., 2006].

Thus, Vspec comprises 24 parameters: cross-correlation of hands and feet speed;
cross-correlation of hands and feet acceleration; the skewness, the area differ-
ing from moving average, the area out of standard deviation of moving average
and the periodicity for each landmark point (nose, right hand, left hand, right
foot, left foot).

In conclusion, we obtain a 149 — dimensional feature vector summarizing the
two sets of parameters:

k k k
Viot; = Vgen; U Vspec;

with j = 1,...,142 the index for each infant and k = 1, ..., N; the index for the
time windows — N; total number of time windows for the j-th infant.
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CLASSIFICATION AND INTERPRETABLE MODELS. We adopt the computed
parameters (Vtot;.‘) to train and test different binary classifiers as described in
Section 4.5.2 in order to distinguish between infants with and without neuro-
motor disorders. To reason on how critical the choice of a classifier is, we
consider all the 5 different classifiers presented in Subsection 4.5.2: (i) SVM-
poly, with 3rd degree polynomial kernel; (ii) SVM-rbf; RF with 100 trees; NN
with three hidden layers (with 64, 32, 4 units respectively and relu activation
function); LSTM with two layers (64 units each) and a last dense layer with a
sigmoid activation function.

During testing, we obtain one prediction for each time window (Pred;-‘ =0

and Pred}‘ = 1 respectively represent the absence or the presence of abnormal
motion patterns) that are then grouped in order to have one predicted label
for each infant Pred; (see Subsection 4.5.2). To compute the final Pred; we set
a threshold 7 on the percentage of windows classified as with neuromotor
disorders:

N/ '
PercImp; = 100 * () _ Pred})/N; (5.1)
i=1

If Perclmp; > 7, the j-th infant is classified as with neuromotor disorders
Pred; = 1, otherwise the infant is classified as without neuromotor disorders
Pred; = 0. To evaluate the predictive power of the classifiers we compute
the mean accuracy and the sensitivity (i.e., the percentage of infants correctly
identify as with neuromotor disorders with respect to the ground truth, GT).
Focusing on PercImpj, it is also possible to have an interesting measure related
with the uncertainty of the prediction. For instance, if the number of time
windows correctly detected is a high percentage of the their total number (e.g.,
PercImp; > 75 for an infant with neuromotor disorders) we could be more
confident about the final prediction with respect to a lower percentage.

We start following the usual procedure for a binary classifier and we set
T = 50: an infant is assigned to the majority class of the predicted labels. As
a consequence, if the class corresponds to the ground truth, then the infant is
correctly classified. Then, we verify the effect of selecting different thresholds.
In the following, unless otherwise stated, we refer to T = 50.

As we reason on the design of methods to assist medical diagnosis, we ask
ourselves which motor parameters are more relevant in the classification step.
Among the available tools to provide interpretability for a classifier, we apply
the two different approaches described in Subsection 4.5.2: (i) feature impor-
tance based on permutation, providing a score for each input feature and rep-
resenting how much a classifier bases its decision on that specific attribute and
(ii) rule extraction, specifically designed to support interpretability of neural
networks.

5.4.2 Graphs-based approach

Figure 5.5 summarizes all the steps performed in this approach.
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Figure 5.5: Summary of the steps implemented for graph-based approach.

NETWORKS DEFINITION: ATTRIBUTED GRAPHETTES. For each video, we
build a temporal sequence of networks (one per frame). We consider the de-
tected landmark points (N, RH, LH, RF, LF) as nodes of each network and
we connect them through edges depending on their relative proximity as de-
scribed in Section 4.5.4. In this way, each network represents a configuration at
a specific frame and it is defined as a 5-nodes graph, which we exchangeably
call attributed graphette or configuration. Edges are obtained by thresholding the
Euclidean distance distributions between every pair of landmark points in all
the images composing our dataset. The empirical distributions of normalized
distances are shown in Figure 5.6.

14
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Figure 5.6: Plot of the empirical distributions of normalized intra-frame distances be-
tween landmark points. '"HandR’ is the hand relative (R) to the same side
of the body (right or left) as the foot; 'HandO’ is the opposite (O) side with
respect to the foot. The red dotted lines correspond to the 25th empirical
quartiles of the distributions.

We state that if the distance between two landmark points is greater than the
25th quartile of the corresponding empirical distribution (see the red dotted
line in Figure 5.6), then they are far from each other, and we do not connect
them with an edge.
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ATTRIBUTED GRAPHETTES REPRESENTATION AND ENUMERATION. Each
video (i.e., each infant) is now represented as a series of attributed graphettes.
As mentioned in Subsection 4.5.4, graphettes are a suitable tool to give local
and global descriptions of large complex networks. In order to do that, we
need to exploit Natural Language Processing (NLP) methods that work with
words and texts. For this reason, we associate each configuration with a word,
i.e., a string composed by the letter ¢ and an integer number. Since the number
of possible configurations representing one frame is 219, this integer number
can range from 0 to 1023. Some of these configurations are not present in our
dataset. Thus, the vocabulary of all configurations appearing in our dataset
consists of 650 attributed graphettes (and, consequently, words). The final re-
sult of this step is the association of each frame t of a video with an attributed
graphette, represented by the corresponding string. Then, we leverage NLP
methods (e.g., Bag-Of-Words (BOW) and Latent Dirichlet Allocation (LDA)) to
describe infants motion in terms of configuration occurrences.

NLP METHODS. Specifically, we use BOW to convert each infant’s tempo-
ral network into a vector of size 1 x 650 containing the occurrences of each
word. In order to identify meaningful configurations, we need to normalize
raw counts in BOW vectors. For this purpose, we leverage Term Frequency -
Inverse Document Frequency (tf-idf), a common algorithm to transform word
counts into meaningful real numbers [Salton and Harman, 2003] and to reduce
the dimensionality of the representations. Unfortunately, the dimensionality
reduction performed with the tf-idf is still not enough to allow an interpretable
characterization of motion patterns. Thus, starting from the representations
obtained with the previous steps, we rely on topic modeling [Alghamdi and
Alfalqi, 2015] and, in particular, on Latent Dirichlet Allocation (LDA) [Blei, Ng,
and Jordan, 2003]. The result is an interpretable low-dimensional representa-
tion of videos, able to describe the distribution of attributed graphettes for
each infant and also able to give local information on the dynamic of infants
by considering co-occurrences of configurations.

Data Augmentation. Typically, in order to obtain reliable and stable topics,
LDA needs to be trained on a large amount of data. Our dataset is composed
of 118 infants (65 with normal and 53 with abnormal motion patterns) which
is too small to infer meaningful topics from LDA. Thus, in order to augment
the dataset, we simulate videos from the two classes (i.e., infants with normal
(N) and abnormal (Ab) motion patterns) until we obtain a balanced dataset
of 1130 videos (118 original videos, 500 and 512 simulated videos from the
classes N and Ab respectively). Simulated networks are composed of 10710
consecutive configurations, which is the average number of frames composing
original infants videos. We simulate temporal networks by leveraging normal-
ized bigrams (i.e., couples of adjacent configurations) counts from the original
dataset. More specifically, given a temporal network G we compute bigram
frequencies and associate every configuration g, with a vector vy, = (bf;)%,
where bf; corresponds to the normalized frequency of the bigram (gu g,(i))
in G, g,(;) identifying the i-th configuration in the vocabulary. Thus, for every
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infant, we obtain a matrix X (650 x 650) describing an infant-specific condi-
tional distribution over configurations. We generate networks by first picking
at random an infant from a chosen class and a starting configuration, then we
iteratively sample configurations from the probability distribution identified
by XG-

Number of topics selection. One of the most crucial LDA hyperparameters
that needs to be tuned is the number of topics. In the literature, many metrics
have been defined in order to find an optimal number of topics [Blei, Ng, and
Jordan, 2003; Roder, Both, and Hinneburg, 2015]. We focus on the maximiza-
tion of the Intrinsic Topic Coherence Measure (ITCM) [Mimno et al., 2011], which
is a metric based on the co-occurrence of words within the documents being
modeled. For every topic p, ITCM is defined as

5 Log ) +1

ITCM(p,V¥) = (5.2)
mz::z ;; df (v},)

where VP = (of,...,0h,) is a list of the M most probable configurations

in the topic p, df (v}, v)) is the number of documents where the configura-

tions pair v}, and UZ appear together in, and df (vi) is the document frequency

of the configuration v}. For each topic, co-occurrence frequencies of the M
most probable configurations (df (v}, v},) in Equation 5.2) are computed within
fixed-size temporal windows for every network. We consider M = 10 and a
temporal window size equal to 110 frames. We select an optimal number of
topics (NoT) by studying how ITCM varies as NoT ranges in {2,3,4,5,6,7}
when applying LDA to the tf-idf transform of the augmented dataset for dif-
ferent settings of maximum and minimum document frequencies. As shown
in Figure 5.7, we determine that an optimal ITCM is reached at NoT = 5, max-
imum and minimum document frequency equal to 70% and 45%, respectively.
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Figure 5.7: Average ITCM evaluated for number of topics (NoT) ranging in
{2,3,4,5,6,7} and for different values of maximum and minimum doc-
ument frequencies in the tf-idf representation. As shown in the bottom
right corner, the optimal choice is NoT = 5, maximum df equal to 70%
and minimum df equal to 45%.
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5.5 Results: parameters-based approach

In this section, we report the main results obtained with the parameters-based
approach. The results are reported following four main experiments: (1) first,
the performances of the 5 different classifiers are computed, considering as
ground truth the evaluation at 30 months after birth (GT); their accuracy is
also compared with the video analysis provided by the experts (VE40). This
experiment provide us an understanding of the complexity of the early diag-
nosis task at 4oth weeks of gestational age. (2) Then, we apply features impor-
tance and rule extraction algorithm focusing on the models with the highest
classification accuracy. These algorithms allow us to reason on the predictive
power and the interpretability of the results. (3) On the same models as in (2),
we investigate the role of the threshold 7 in Equation 5.1. (4) Lastly, we assess
the potential of our method as a tool to support the clinical evaluation.

5.5.1 Normal vs abnormal motion patterns classification accu-
racy

We start by comparing the different classifiers listed in Subsection 5.4.1 on dif-
ferent choices of W (W = {50, 100, 250,500, 1000}) and S (S = {50, 100, 250, 500,
1000}). We evaluate the accuracy of each classifier performing a 5-fold cross-
validation in order to have also a measure of the stability across different sets
of test infants. Figure 5.8 shows the results for each pair of W-S for each clas-
sifier. We report the mean accuracy (colored dots), the standard deviation and
also the maximum value (text numbers) across the 5-fold. It can be noticed
that there are not significant differences in terms of mean accuracy across the
different classifiers and for different pairs of W and S. However, RF and LSTM
lead to slightly better performances, with maximum accuracy of 78.5% and
75% respectively. This can be better appreciated in Table 5.2 that shows, for
each classifier, the overall mean (mean across different pairs of W-5), the mean
of maximum values and the absolute maximum values.

The overall mean accuracy reported in Table 5.2 (around 60%) highlights
the complexity of the task and it is confirmed by the accuracy obtained by the
experts video evaluation VE40 (52.1%). Then, we focus on the models that al-
lowed to reach the maximum accuracy, i.e., that better reflected the differences
between the two classes, and we analyze which parameters are more important
for the classification task. In this way we are able to address the need of this
application field to provide results as interpretable as possible, that physicians
could adopt as a tool to support their diagnosis.

5.5.2 Models interpretability assessment

In the previous subsection, in Table 5.2, we highlight the fact that RF and
LSTM allowed to reach the best results. Following this direction, we focus on
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Figure 5.8: Classification accuracy for all the possible pairs of W - S for all classifiers.
In each plot we show the results for all the five different classifiers, fixing
W and S. Each color refers to a different classifier (as reported in the legend
- red: SVM with polynomial kernel; green: SVM with rbf kernel; blue: ran-
dom forest; black: fully connected neural network; magenta: architecture
LSTM-based) and for each case we report the mean (colored dot) with the
correspondent standard deviation and the maximum value (text numbers)
for the 5-fold cross-validation.

Overall Mean (SD) | Mean Max (SD) | Max

SVM poly 59.3 (2.8) 68.6 (2.4) 72.4
SVM rbf 59.4 (2.0) 68.9 (2.0) 71.4
RF 62.6 (1.4) 73.3 (3.2) 78.5
NN 58.0 (2.8) 68.5 (3.8) 75.0
LSTM 59.5 (2.1) 70.5 (3.2) 75.0

Table 5.2: Here we report: (i) the mean values of accuracy across all the pairs W-S
for each classifier and the related standard deviation (SD); (ii) the mean of
maximum values across all the pairs W-S for each classifier and the related
standard deviation (SD); (iii) the absolute maximum classification accuracy
values

these two choices, selecting the trials that allow to reach the best classification
accuracy and we explore the importance of each parameter to highlight those
that are more important in the classification task.

5.5.2.1 Feature importance

Considering the RF model with W = 1000 and S = 100, we apply the fea-
ture importance algorithm; in Figure 5.9 we report the first 25 parameters with
higher importance coefficient. In this case there appear to be a single, meaning-
ful, parameter: the median value of the acceleration profile for the right foot.
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All the others are distributed across different types of parameters, and no spe-
cific motion quality seems to emerge. Notice that the parameters set we use is
highly redundant so it is likely that different combinations of parameters can
lead to similar classification performance.
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Figure 5.9: First 25 parameters with higher feature importance coefficient. Abbrevi-
ations — acc: acceleration, vel: speed, spect: spectral, mvg: moving, avg:
average, displ. displacement, std: standard deviation, rf: right foot, 1f: left
foot, rh: right hand, lh: left hand, n: nose.

5.5.2.2  Rule extraction algorithm

On the LSTM model with parameters W = 500 and S = 100, we apply the
rule extraction algorithm described in Subsection 4.5.2: a subset of 23 input
features is found significant after the pruning step (Figure 5.10 shows the
detailed list). The accuracy of the LSTM model using such significant input
attributes is equal to the one on the entire input set (75%). The 23 input fea-
tures are used to extract the related rules [Augasta and Kathirvalavakumar,
2012]. The classification accuracy using the constructed set of rules is 71.4%.
Figure 5.10 represents the data-ranges corresponding to the extracted set of
rules. While the same comment on the parameter redundancy would apply
also in this case, the extracted rules present some interesting intepretability
insights. In particular, we can notice that, for the majority of the normalized
input data, the ranges that characterize infants with neuro-motor disorders are
close to zero, also for the last 7 parameters that describe the smoothness and
the complexity of the motion patterns. This is in line with prior knowledge
from the medical domain.
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Figure 5.10: Normalized input data ranges for the extracted rules. The blue curves rep-
resent the input ranges that caused the LSTM model to classify a sample
as without neuro-motor disorders, while the orange curves correspond to
the infants with neuro-motor disorders. As it is possible to notice, most
of the normalized parameters related with the characterization of infants
with neuro-motor disorders have values close to 0. Same abbreviations as
in Figure 5.9

5.5.3 Choice of the threshold T

The threshold 7 in Equation 5.1 for the previous experiments is selected ac-
cording to the standard threshold for a binary classification problem (T = 50).
For the nature of our application task, a threshold T = 50 is not necessarily
the best option due to the fact that many infants in our dataset present minor
motor impairment. Also, abnormal motion patterns can be present only dur-
ing few time instants of the video recording and, consequently, in few time
windows. Following these considerations, we investigate the influence of the
threshold 7 in the classification accuracy for both models explained in the pre-
vious subsection. The lower the values of T the higher the probability of an
infant being classified as impaired (more importance given to PercImp), and
vice versa. Thus, the choice to select lower T accounts for the importance of the
detection of pathological cases. Specifically, in this application, it is preferable
to have a detection of false positive that will result on an unnecessary clinical
exam, than a false negative, i.e., failing to detect an infant at risk. Thus, it is
essential to give more importance to the correct detection of abnormal motion
patterns (T < 50) than the normal patterns.

Table 5.3 reports the results of this experiment in terms of overall classifica-
tion accuracy. We varied T between 20 and 50 (steps of 5%) for both the two
best original models and the extracted equivalent set of rules. As it is possible
to notice from Table 5.3, the accuracy, in all the cases, increases and reaches
a maximum value around T = 30 or T = 35 and then decreases again. The
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extracted set of rules provides interpretability to the trained neural networks
predictions, indicating the exact parameters and their ranges that cause the
network to predict if an infant has a neuro-motor disorder. More importantly
it also improves the classification accuracy that, as a consequence of the prun-
ing procedure, reached a maximum of 85.7%.

20 | 25 | 30 | 35 | 40 | 45 | 50

RF 71.4 | 78.5 | 78.5 | 82.1 | 78.5 | 78.5 | 78.5
LSTM 64.2 | 67.8 | 67.8 | 82.1 | 78.5 | 78.5 | 75.0
Extracted rules | 82.1 | 85.7 | 85.7 | 82.1 | 78.5 | 78.5 | 71.4

Table 5.3: Overall classification accuracy with different threshold T values (20, 25, 30,
35, 40, 45, 50) for the selected best models (RF with W = 1000 and S = 100
and LSTM with W = 500 and S = 100) and for the set of extracted rules.

To evaluate the potential of our models specifically in the early detection of
infants with abnormal motion patterns (true positives), in Table 5.4 we report
the sensitivity of our algorithm, i.e., the ratio between the true positives and
the positives, depending on the threshold 7, in the recognition of infants with
neuro-motor disorders. As expected, the lower the threshold the higher is the
sensitivity of the algorithm in the classification of infants with neuro-motor
disorder. Combining the information in Table 5.3 and in Table 5.4 we can high-
light that decreasing - until a certain value - the threshold 7 helps the correct
classification of a higher number of infants with neuro-motor disorders, not
affecting the number of infants without neuro-motor disorders correctly clas-
sified.

20 25 30 35 40 | 45 50
RF 727 | 727 | 72.7 | 72.7 | 63.6 | 63.6 | 63.6

LSTM 72.7 | 63.6 | 63.6 | 63.6 | 54.5 | 54.5 | 45.4
Extracted rules | 81.8 | 72.7 | 72.7 | 54.5 | 45.4 | 45.4 | 27.2

Table 5.4: Sensitivity with different threshold 7 values for the selected best models (RF
with W = 1000 and S = 100 and LSTM with W = 500 and S = 100) and for
the set of extracted rules.

5.5.4 Early diagnosis assessment

We focus on the models adopted in the previous subsections and we provide
more details regarding the prediction potential as an early diagnosis tool.

For this purpose, we first report in Figure 5.11 more details on the percent-
age of time windows classified as with (orange, PercImp) or without (blue,
100 — PercImp) neuro-motor disorders for each test infant. The first 11 infants
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Figure 5.11: We report the % of windows predicted as with normal (blue) and abnor-
mal (orange, Perclmp) motion patterns for test infants of the same fold
(x axis). The green stars for the first subjects indicate infants with neuro-
motor disorders (according to GT). At the top we report the results for
the random forest with W = 1000 and S = 100; in the middle the archi-
tecture LSTM-based with W = 500 and S = 100; at the bottom the results
obtained adopting the extracted set of rules.

time windows (%)
B & 8 B

are the subset of cases with neuro-motor disorders (according to GT). The top
panel of Figure 5.11 reports the details for the random forest with W = 1000
and S = 100. The middle panel reports the results for one of the fold for the
architecture based on LSTM with W = 500 and S = 100. The bottom panels
shows the percentage or windows classified with the extracted set of rules.
From these plots it is possible to notice that the percentage of time windows
classified as impaired is on average higher (even if not > 50%) for infants with
neuro-motor disorders.

Then, we compare the sensitivity and specificity of our predictions in asso-
ciation with VE40. Figure 5.12 shows the agreement between the computer-
aided predictions with the set of rules and T = 30 (accuracy of 85.7%) and
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VE40 (accuracy of 50%). In this case, our pipeline can correctly detect 8 out of
11 infants at risk and 16 out of 17 infants without neuro-motor disorders.
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Figure 5.12: Agreement of our predictions with VE40. In this way we highlight the
potential of our pipeline as a tool to support the experts in the detection
of normal/anomalous motion patterns. On the x axis there are the infants
divided in with and without neuro-motor disorders according to GT and
on the y axis the predicted label (VE40 the red stars and our machine
learning based prediction - extracted rules with T = 30 - in green).

5.6 Results: graph-based approach

We fit the LDA model with the hyperparameters retrieved following the steps
described in Subsection 5.4.2 to the augmented infants dataset and we obtain
5 topics describing local motion patterns. Figure 5.13 shows the topics sum-
marized by their 5 most probable configurations. Topic-specific most probable
configurations differ from each other only by a few edges and also appear
as little modifications of a basic configuration. This is evident by looking at
the first 2 most probable configurations in Figure 5.13. For instance Topic 2 is
well summarized by the configuration in which the only present edges are the
ones which connect a hand with the corresponding foot, meaning LH-LF and
RH-RF. Indeed the 2 most probable configurations appear as slight deviations
from this basic configuration.

Then, we study topic proportions for every network in the original dataset
in order to look for differences between the networks representation of infants
with normal and abnormal motion patterns. Topic proportions of networks
provide us with a global description of infants movement. Indeed, for each
network in the dataset, larger mixture components correspond to topics whose
most probable configurations are peculiar to the corresponding infant’s mo-
tion sequence. Furthermore, topic proportions are suitable to be interpreted as
probabilistic assignments to clusters, which are identified by the correspond-
ing topics.
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Figure 5.13: Visual representation of the five obtained topics described by their 5 most
probable configurations: the top 2 are depicted as graphs whereas the
last 3 are synthesized by their encoding (text). The size of a configuration
encoding is proportional to its weight in topic-configurations probability
distribution.

We perform class-specific topic proportions analysis, as reported in Table 5.5.
In particular, for each network in the dataset, we observe the largest mixture
component in its topic representation, that tells us the confidence in assign-
ing the network itself to the corresponding topic. Once assigned the infants
to the corresponding prevalent topic, we compute intra-topic, class-specific
mean, minimum and maximum probability assignments. We claim that such
statistics are good descriptors of the variety of intra-class motion. Also, for
each topic, we compute the concentrations of infants in normal and abnor-
mal motion patterns classes assigned to it. Differences in such concentrations
would indicate different global motion patterns between the two classes. Fur-
thermore, for each topic, we evaluate the mean global symmetry and density
of the 5 most probable configurations as well as the mean symmetry of hands
and feet neighborhood. In general, from Table 5.5 we can observe that:

1. no significant differences are detected in the concentrations of infants
assigned to each topic.

2. Infants with normal motion patterns are more uniformly distributed
among the 5 different topics meaning that they present a higher vari-
ability in terms of motion patterns.

3. Infants with abnormal motion patterns are well represented in Topic o
and Topic 4 (considering the minimum and the mean probability assign-
ments respectively).

5.7 Discussion

The common aim of the two methods presented was to apply our implemented
markerless pipeline in order to study, characterize and classify infants” spon-
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Intra-class probability Symmetry Density

class N class Ab

Mean | Min | Max | Conc | Mean | Min | Max | Conc | Global | Hands | Feet
To | 0.59 0.34 | 0.9 0.15 | 0.67 06 | 091 | 015 | 0.94 0.95 0.78 | 0.62

T1 | 08 0.41 | 1.0 0.28 | 0.74 0.42 | 1.0 0.28 | 0.94 0.87 0.60 | 0.28

T2 | 0.73 0.46 | 1.0 0.17 | 0.74 0.36 | 1.0 0.13 0.90 0.80 0.75 | 0.34

T3 | 0.6 0.4 |099 | 023 |o071 0.33 | 0.93 | 0.17 | 0.80 0.50 0.58 | 0.34

Tq | 0.7 0.44 | 0.98 | 0.17 | 0.82 0.47 | 1.0 0.26 | 0.92 0.20 0.68 | 0.24

Table 5.5: Results of topic analysis. For each topic, we report statistics on: Intra-class
assignment probability (mean, minimum, maximum, and concentrations),
Symmetry (global, hands, and feet), and Density of the 5 most probable
configurations. Class N stands for normal motion patterns and class Ab for
abnormal motion patterns.

taneous movements. Both approaches do not require expensive and obtrusive
technologies and they are based only on RGB video analysis. We opted for a
2D analysis to provide an easy to use system that - in our long term plan -
could be adopted also by non-expert users at home.

With the parameters-based approach, we evaluated the power of our imple-
mented pipeline to discriminate between infants with and without neuromo-
tor disorders as soon as possible after birth. Indeed, we relied on the videos
recorded in the first weeks after birth (4oth week of gestational age). We ob-
tained encouraging results in terms of mean overall accuracy, especially con-
sidering the task complexity. In fact, the majority of infants with neuromotor
disorders presented minor motor impairments and identifying abnormal mo-
tion patterns in infants before the 12th months after the conception is difficult
also for trained experts. Furthermore, adopting features selection techniques,
we highlighted the most meaningful parameters considered during the classi-
fication task and we further increased the overall accuracy (reaching 85.7%).
In terms of future developments, we will explore the role of different param-
eters and adopt a dense motion estimation [Stahl et al., 2012]. Also, it would
be interesting to divide infants with neuromotor disorder in more classes de-
pending on their impairment.

With the graph-based approach, we attempted to reflect qualitative aspects
of infants motion patterns considered by experts physician during the mo-
tor evaluation, for example the detection of body configurations similar to
the ones observed with GMA. For this reason we focused on data acquired
3 months after birth, when these configurations are more easily detectable
[Prechtl, 1990]. Also with this approach, we could highlight correspondences
between our analysis and the qualitative aspects of the motion usually con-
sidered during visual evaluation of expert physicians (VE3). In particular, we
highlighted higher motion variability associated with infants with normal mo-
tion patterns and dense configurations and with a higher level of symmetry in
infants with abnormal motion patterns.
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Gait Analysis

In this chapter we present the application of our proposed markerless ap-
proach for 2D and 3D gait analysis. Part of the work presented in this chap-
ter was founded by Fondazione Italiana Sclerosi Multipla (FISM — 2019/PR-
singleos0) and carried out in collaboration with San Martino Hospital (Genova,
Italy), Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e
Scienze Materno-Infantili (DINOGMI).

6.1 Introduction

Gait analysis is an essential functional evaluation in clinics [Fritz et al., 2015;
Langhorne, Coupar, and Pollock, 2009]. It consists on the extraction of quan-
titative parameters that can describe the quality of gait. It allows to better
understand the evolution of specific neurological diseases and how they affect
lower limbs. It helps also physiotherapists and physicians in the decision of the
best treatment that can improve the quality of the gait and, consequently, the
quality of life. Quantitative assessments ensure repeatability and objectivity
of the analysis with respect to visual observations [Wren et al., 2020]. Indeed,
this kinematic quantification has been a major technical challenge for many
years in the mid 9o’s [Whittle, 2014]. Important applications of gait analysis
are for example the motion analysis of stroke survivors and of people with
Multiple Sclerosis (MS), where the recovery of the walking abilities is one of
the primary goals [Langhorne, Coupar, and Pollock, 2009].

Our goal is to evaluate the appropriateness of our markerless pipeline as
an alternative to classical marker-based systems. To do that, we perform gait
analysis with gold standard systems and with our proposed markerless ap-
proach on the same dataset and we statistically compare the results obtained.
We compare the analysis both in 2D and in 3D in two different works.

¢ Firstly, we focus on the 2D experimental assessment and we compare
the quality of our estimated parameters with the ones obtained from
the study [De Luca et al., 2018] and report promising results: most of
the 2D parameters may be computed by our markerless method at a
comparable precision. We do not find statistically significant differences
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between the elevation angles computed with marker-based system and
markerless one. Furthermore, we succeed in highlighting the differences
between the parameters of the impaired leg and the unimpaired one in
hemiparetic stroke survivors, similarly to analysis carried out by conven-
tional methods. For this work, we adopt a subset of the dataset presented
in [De Luca et al., 2018], where RGB videos were acquired with the aim
of visual assessment and not for an organized computer-aided analysis.
In fact, in the clinical practice, videos are recorded for manual inspec-
tion, but they are never used for automatic analysis. In this direction,
our work opens the possibility for a massive data analysis campaign.

¢ Then, we extend our analysis and we perform a comparison in 3D. In this
direction, we acquire an ad hoc multimodal dataset with a gold standard
marker-based motion capture system and a multi-view RGB cameras sys-
tem to be able to perform a geometric 3D reconstruction. Also in this case
we do not observe major differences among the two approaches.

6.2 Related works

Many efforts have been done in the last few years to implement and test video-
based systems able to characterize human gait without using cumbersome
and intrusive markers placed on the body skin. In this section, we present
works that addressed this problem by following approaches that differ for: the
dimensionality of the considered space (2D or 3D analysis), type of cameras,
e.g., depth cameras (RGBD) or RGB cameras, and type of algorithms (deep
learning or classical approaches).

[Rodrigues et al., 2020] developed a markerless multimodal motion capture
system using multiple RGBD cameras to determine spatio-temporal gait pa-
rameters. However, additional IMUs were mounted to the lower limbs of the
participants to determine the joint angles. [Corazza et al., 2006] managed to
extract the walking people’s silhouettes from 16 RGB camera views. These sil-
houettes from different perspectives allowed the researchers to reconstruct the
visual hull of the subject as a 3D model. By post-processing this model, the
relevant joint angles could be determined. The authors could achieve good
performance determining the angles on the sagittal plane, but with larger er-
rors on smaller angles such as the knee adduction angle. Examples of similar
approaches that used one or more RGB cameras and extracted silhouettes or
used RGBD cameras can be found in [Castelli et al., 2015; Clark et al., 2013;
Gabel et al., 2012; Kwolek et al., 2019; Saboune and Charpillet, 2007].

Recently, due to the continuous progress in terms of accuracy and compu-
tational costs of pose estimation algorithms based on deep learning architec-
tures, there is an increasing interest in the study of video-based systems to
perform gait analysis. [Kidzifiski et al., 2020] performed 2D gait analysis start-
ing from the detection of keypoints in the image plane and, then, analyzing
their trajectories extracting the joint angles and their changes on the gait cycle.
They analyzed data from 1792 videos of 1026 patients with cerebral palsy. This
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approach has the potential to assess early symptoms of neurological disorders
by using inexpensive and readily available technology. This work succeeded
in performing a quantitative movement analysis using single camera videos
in a stable way with results comparable to standard marker-based methods.
Unfortunately, they have limitations due to the pure 2D nature of the images,
limiting the analysis to elevation angles [Borghese, Bianchi, and Lacquaniti,
1996] and only a subset of spatio-temporal parameters.

[Vafadar et al., 2021] performed markerless gait analysis by first reconstruct-
ing an accurate human pose in 3D from multiple camera views. To this aim,
they collected a gait-specific dataset: 31 participants, 22 with normal gait and
9 with pathological gait participated in the data collection. The researchers
recorded the gait of the participants with a standard marker-based system
and with 4 RGB cameras. For 3D pose estimation they relied on the approach
proposed by [Iskakov et al., 2019]. They were successfully able to reconstruct
the human pose while walking in 3D. However, they did not include feet on
the keypoints detected and, consequently, they were not able to extract all
the spatio-temporal parameters and the joint angles usually computed in gait
analysis.

6.3 Datasets

STROKE SURVIVORS (2D). For this part of the study, we analyze a subset
of the data presented in [De Luca et al., 2018]: considering only subjects for
which RGB videos is present.

Ten chronic stroke survivors (mean age + standard deviation: 62.75 £ 12.29
years old) volunteered to participate and provided written informed consent
(participants” information are reported in Table 6.1. Seven of them are female
and three of them male; one has a left hemiparesis and the other nine have a
right hemiparesis.

ID | Age | DD | Gender | Paretic Leg | Walking Aids
S1 | 46 6 | Female Left No
S2 | 43 2 | Female Right Cane
S3 | 6o 8 | Female Right Cane
S4 | 69 5 | Female Right Cane
S5 | 41 6 | Female Right No
S6 | 75 8 Male Right Cane
S7 | 69 17 Male Right No
S8 | 73 5 | Female Right Cane
Sg | 72 9 Male Right Cane
Si0 | 69 9 | Female Right No

Table 6.1: Subjects information. DD means disease duration.
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All the data were recorded in a gait analysis laboratory. Body motion was
recorded by a stereophotogrammetic system (SMART DX, BTSBioengineering,
Milan, Italy). The system consisted of eight infrared cameras (SMART- DX
5000 BTSBioengineering) that allow measuring body movement. We recorded
twenty-two reflective spherical markers (15 mm diameter) positioned on anatom-
ical landmark points according with the DAVIS protocol [Davis, 1988].

Two RGB cameras (BTS VIXTA) acquiring at 25 frame per second (dimen-
sions: 640x480 pixels) were present in this setup. The first one was positioned
in order to acquire the sagittal plane of the subject (lateral view) and the other
one the frontal plane (frontal view). Important kinematic parameters are com-
puted from the information obtained from the sagittal plane, so we focused on
the first type of videos [Whittle, 1996]. It is worth noticing that cameras were
included in the set-up with the sole purpose of providing a source of informa-
tion for future visual inspection to be carried out by clinicians. For this reason
the quality of the signal is quite low and the the positions of the cameras are
not optimal for an automatic analysis task. Also, no calibration procedure took
place at the time of data acquisition. Hence, we do not have access to extrinsic
nor intrinsic parameters.

Subjects walked multiple times on an eight-meter long pathway, inside the
acquisition volume of the infrared cameras, and stepped on two force plat-
forms located half way. Both walking directions were considered. They were
instructed to walk as naturally as possible and at their preferred speed and to
walk straight from one side to the other of the pathway.

HEALTHY PARTICIPANTS (3D). In this case, we acquired 16 unimpaired
participants (6 females, mean age & standard deviation: 27 & 2 years old)
without known history of orthopaedic injuries or neurological diseases. We
asked the participant to walk naturally in a straight lines from one side of a
room to the opposite. The path was 6 meters long. Each participant performed
20 trials, 10 for each direction.

The setup for data acquisition (see Figure 6.1) included (i) a calibrated multi-
view camera system consisting of 3 RGB Mako G125 GigE cameras with Sony
ICX445 CCD sensor, resolution 1292 X 964, 30 frames per second (fps) for
markerless analysis and (ii) a calibrated motion capture system, the Optitrack
Flex 13 Motion Capture system, 1.3 MP, 56° Horizontal FOV, 46° Vertical FOV,
28 LEDs, 8.33 ms latency, with 8 cameras acquiring at 100 Hz. With the motion
capture system we acquired the 3D position of 22 infrared passive markers
placed on the body of the participants following the Davis protocol [Davis III
et al., 1991].

The study was conducted according to the guidelines of the Declaration of
Helsinki, and approved by the Institutional Review Board of the Department
of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS),
University of Genoa, Genova, Italy (protocol code CE DIBRIS - 008/2020 ap-
proved on 18/05/2020). All the participants involved in the study signed an
informed consent form.
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Figure 6.1: Setup adopted for data acquisition. In the upper panel the sketch of the
setup with the position of the 8 infrared (red) and 3 RGB (blue) cameras.
In the lower panel the three view points of the RGB cameras.

PEOPLE WITH MULTIPLE SCLEROSIS (3D). We acquired the gait of 30 Mul-
tiple Sclerosis (MS) participants (22 females, 8 males, mean age + standard
deviation: 39 £ 11 yeas old, mean disease duration + standard deviation: 8.7
+ 7.5 years, mean Expanded Disability Status Scale score (EDSS) [minimum,
maximum]: 2.6 [0, 6]). The set up included only the multi-view camera sys-
tem composed by 3 synchronized RGB Mako G125 GigE cameras with Sony
ICX445 CCD sensor, resolution 1292 X 964, 30 frames per second (shown in
blue in Figure 6.1 . We did not include the motion capture system to reduce
the obtrusiveness of data acquisition for MS participants. In the same condi-
tions, we acquired also the gait of 30 healthy participants (age and sex matched
with the distributions of MS patients).

Due to time limits, we have not analyzed this dataset yet. Nonetheless, we
are planning to do that in the next months.

6.4 Methods

6.4.1 2D analysis

In this case our analysis is based on the lateral views, as they contain all the
landmark points needed to describe the motion on the sagittal plane: hip, knee,
ankle and foot. For this analysis we adopt the dataset of stroke survivors (only
one lateral viewpoint). Each video of a single walk lasts about 3 seconds. We
consider at least three trials for each leg. This allows our markerless approach
to incorporate information of both the impaired and the unimpaired leg. Here
we summarize the methods we adopt to extract gait parameters.

1. Landmark points detection and filtering. In this case, we train two net-
works: one for the left leg and one for the right one, depending on the
direction of the gait in the video. We proceed in this way in order to
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minimize the DeepLabCut (DLC) detection error. To train the networks
we randomly select 5 frames for two out of three videos of each subject
and we manually label the points of interest. During inference, in each
video frame, we first detect 2D key-points corresponding to the anatomic
joints considered in the reference study (see the example in Figure 6.2).
Once the key-points are detected on all the video frames, we track them
over time computing key-point sequences and we filter them (following
the steps described in Section 4.3).

Figure 6.2: Example of the extraction of landmark points coordinates (x and y) in the

image plane for left and right leg.

Once we obtain the 2D points of interest in the image plane reference
system, with a one camera system we can not derive the original 3D
information. For this we rely on an approximation, observing that the
joints we are considering live, with a good approximation, on a 3D vir-
tual plane. Lacking an appropriate calibration procedure, we estimate
the plane-to-plane transformation (or homography) relating the detected
image points (x,y) with the (X,Y) coordinates of the corresponding
marker-based 3D locations (where we discard the third component cor-
responding to depth information which we cannot determine in the im-
age). This transformation also takes care of the change of coordinates
(pixels to mm) [Hartley and Zisserman, 2004]. In this way we are com-
pensating for the absence of an appropriate calibration procedure during
data acquisition.

. Gait cycle detection. The first step before computing the gait spatio-
temporal and kinematic parameters is the detection of the gait cycles.
One gait cycle is defined as the period that starts with the heel strike
(first instant when the heel hits the ground) of one foot and ends with
the following heel strike of the same foot. A typical approach for auto-
matic gait cycle detection is to analyze the speed of the heel (or a foot
keypoint). The cycle starts when the heel hits the ground; in this time
instant the speed of the heel is close to zero. It remains close to zero
for the entire stance phase (the phase starting with the heel strike and
ending when the foot leaves the ground) and it goes up in the swing
phase (complementary to the stance phase). Then, the swing phase ends
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Parameters Description
Stride Length Distance (in meters) walked during a gait cycle.
Stride Time Time (in seconds) necessary to walk one gait cycle.

Stance Phase  Percentage of the gait cycle during which the foot of interest is touching the ground (from heel strike to toe off).
In healthy subjects it accounts for 60% of a single gait cycle for both legs.
Swing Phase Percentage of the cycle during which the foot that we are considering is not touching the ground.

In healthy subjects it accounts for 40% of a single gait cycle for both legs (complementary of the stance).

Table 6.2: Spatio-temporal parameters for 2D gait analysis.

and the heel speed goes close to zero again. This first time instant where
the speed is close to zero is the one representing the end of the current
gait cycle and also the start of the following one. From a practical point
of view, since in this case we do not have the position of the heel, for
each participant, we select the ankle trajectories and we filter the (x,y)
coordinates with a low pass filter (Butterworth, 4-th order, 3Hz cut off
frequency) in order to get rid of any noise in the signal. This is specially
important because we then compute the derivative of the position and
we need the result to be smooth (derivative generally increases noise, if
the input signal is noisy). It is worth mentioning here that this filtered
signal with 3 Hz cut off frequency is only created for gait cycle detection.
To further process the signal in later steps, we go back the original signals
and proceed with a different filter. Starting from the filtered signals, we
combine the different coordinates and we obtain the total displacement.

3. Parameters extraction. We computed the spatio-temporal parameters de-
scribed in Table 6.2 as reported in [O’Connor et al., 2007].

Furthermore, we compute the relative joint angles from the spatial co-
ordinates of each joints [Borghese, Bianchi, and Lacquaniti, 1996]. The
elevation angle of a limb segment is defined in the sagittal plane as the
orientation of the segment with respect to the vertical and to the walking
directions, and it is positive for the forward direction:

Xqg — Xp

o; = arctan(
Yp —Yd

) (6.1)

where x is the forward direction, v is the vertical direction, d and p de-
note the distal and proximal endpoint of the segment. We compute the
elevation angle of thigh, shank and foot.

4. Statistical analysis. For the analysis of the changes of the elevation an-
gles as function of the gait cycle we used the statistical parametric map-
ping (SPM) approach [Friston et al., 2007] which is used to analyse statis-
tical differences among continuous curves [Pataky, Robinson, and Van-
renterghem, 2013]. We perform 1D paired t-test with a=0.05 [Pataky,
Robinson, and Vanrenterghem, 2013] to compare curves of the elevation
angles computed with the two different techniques (marker-based and
our markerless approach) both for impaired and unimpaired legs.
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6.4.2 3D analysis

Here we summarize the methods to analyze the 16 healthy participants dataset.
Given the two different types of data (marker and video), some of the steps
are different for the two approaches.

3D KEYPOINTS EXTRACTION: MARKER DATA The motion capture system
reconstructs the trajectories of the markers in the 3D reference system, start-
ing from 8 infrared cameras. To perform the motion analysis, we need to add
a feature matching and tracking step. The process of sorting and tracking the
markers is a standard procedure performed after data acquisition with a mo-
tion capture system. The software Motive [Motive: optical motion capture soft-
ware] provided with the Optitrack motion capture system automatically per-
form this procedure by applying a model of the human body indicating the
position of the markers (Figure 6.3 A), defined by the user. However, in cases
of markers occlusions or presence of disturbances as reflexes, this procedure
required the manual intervention of the operator, resulting in a time consum-
ing procedure. This workload emphasizes one drawback of the marker-based
motion capture system. At the end of this process, we obtained 16 matrices
Pmarker/ with j = 1,...,16 indicating the index for each participant, of shape
22 x 3 x M; (22 representing the number of markers, 3 the (X,Y,Z),, markers’
coordinates in the 3D space in the markers reference system (,;) and M; the
number of samples for the acquisition of the j-th participant).

3D KEYPOINTS EXTRACTION: VIDEO DATA In the markerless approach,
the RGB cameras produce video streams acquired from multiple-views. To
obtain the 3D points, we need to detect semantic features in 2D and then
triangulate them in 3D. The resulting 3D points are in this way already tracked,
since each one of them is associated with a semantic meaning. Thus, the aim
of this step is the detection of the 3D positions of keypoints that represent the
analogous of markers and that can be adopted to perform gait analysis. To
perform this step we rely on a 2D pose estimator to detect the positions of the
keypoints in the image planes of each viewpoint and then we reconstruct the
positions of each keypoint in the 3D space with geometric reconstruction.

For this task we rely on AdaFuse [Zhang et al., 2021], described in Sec-
tion 4.4. AdaFuse is a deep learning-based algorithm that allows to accurately
detect the positions of specific keypoints in the image plane and leverages clas-
sical stereo vision algorithms [Andrew, 2001] to reconstruct the 3D positions
of the detected keypoints in 2D image planes. The pretrained 2D backbone
models provided by AdaFuse authors [Zhang et al., 2021] do not consider
keypoints on the feet. Unfortunately, these keypoints are necessary for gait
analysis to compute the kinematic parameters related with the ankle joint (i.e.,
ankle dorsi-/plantar-flexion). For this reason it is necessary to train the model
with new data that included also keypoints on the feet. To effectively train
our model, we need a dataset with the 3D ground truth positions of each key-
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point. Among the public available datasets (well summarized in [Kwolek et al.,
2019]), we rely on the Human3.6m dataset [Ionescu et al., 2013].

This dataset includes both a multi-view RGB camera system (with 4 cam-
eras) and a motion capture system with infrared cameras and 32 markers (see
[Ionescu et al., 2013] for further details). Leveraging Vicon's skeleton fitting
procedure [Vicon] and by applying forward kinematics [Ionescu et al., 2013],
the 32 markers are projected into the 2D image planes of the different view-
points resulting in 2D keypoints ground truth (see Figure 6.3B). Human3.6m
is our best option, even if it presented drawbacks for our main goal. For ex-
ample, the feet sometimes get rather blurry, mainly in the swing phase where
one foot moves quickly. Additionally, the background carpet, under the light-
ing condition during the recordings, has color similar to the skin, so contrast
decreases to a low level, where even for human observers would be hard to
detect the keypoints precisely.

Figure 6.3: (A) Frontal and back views of the positions of the 22 markers positioned
in this study according to the Davis protocol [Davis III et al., 1991]. Specif-
ically they were placed on the spinal process of C7 and on the spinal pro-
cess of the sacrum (both visible in the back view) and bilaterally on: the
acromion, the Anterior Superior Iliac Spine (ASIS), the greater trochanter,
the middle between the greater trochanter and the lateral epicondyle of
the femur (with bars 5cm long), the lateral epicondyle of the femur, the
fibula head, the middle between the fibula head and the lateral malleolus
(with bars 5cm long), the lateral malleolus, the first metatarsal phalangeal
joint, the fifth metatarsal phalangeal joint on the lateral aspect of the foot.
(B) 2D keypoints (green and blue dots) considered in this work from the
Human3.6 dataset. The two blue keypoints in each foot are highlighted be-
cause they are those not included in [Zhang et al., 2021] and that we added
them in our training.

We fine tune the Adafuse architecture in two steps:

1. 2D backbone. We first focus on the 2D backbone network creating in-
dependent probability maps of the keypoints in Figure 6.3B for each
separate input image and we fine tune the Pose ResNet-152 [Xiao, Wu,
and Wei, 2018] pretrained on the COCO dataset [Lin et al., 2014b]. We
fine tune the network adopting a subset of the Human3.6m training im-
ages, i.e., we considered one image every 20 frames. This allow us to have
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a training set with a reasonable number of frames sufficiently different
from one another.

2. Full architecture. Then we focused on the fusing network which refines
the maps with the help of the neighboring views. This second part of the
AdaFuse architecture should not be trained separately (as mentioned in
[Zhang et al., 2021]), but jointly with the 2D backbone. Thus, we initial-
ize the first part (2D backbone) with the weights obtained with the fine
tuning described above and the fusion network with random weights.
In this case, the inputs of the process are not just single images (as for
the previous step), but a group of images representing the same time
instant but coming from different viewpoints. Additionally, we input the
calibration information for the group of images containing intrinsic and
extrinsic parameters. These parameters are not used by the neural net-
work itself, but in an immediate post-processing step which computes
the 3D poses at the end. The target and output for the neural network is
a group of probability maps corresponding to the input images.

The motivation behind the choice of Adafuse is its high level of accuracy
reached thanks to the refinement of the 2D keypoints estimates performed
before the geometric 3D reconstruction step.

After training, we apply the model to our dataset for retrieving the 3D po-
sitions of the Human3.6m keypoints highlighted in Figure 6.3B. Since Pose
ResNet-152 requires as input also a bounding box localising the person in
the image plane for each frame composing the videos, we rely on CenterNet
[Zhou, Wang, and Kridhenbiihl, 2019] — a state-of-the-art object detector — to
create these bounding boxes for our dataset. Thus, we input to the model the 3
images coming from the 3 different viewpoints at the same time instant ¢, the
bounding boxes and the intrinsic and extrinsic parameters retrieved with cam-
eras calibration. Firstly, we obtain the probability maps for different keypoints
at the same time instant (Figure 6.4A) and, then, the final 2D locations of each
keypoint (Figure 6.4B). At the end, the final output is a vector of shape 21 x 3
(21 keypoints with the corresponding (X,Y, Z), coordinates in the 3D space
in the camera reference system ,), with j = 1, ..., 16 representing the number
of videos (i.e., the number of participants) and ¢t = 1,..., N; the index for the
number of frames composing the j-th video (N; is the total number of frame
for the video of the j-th participant). At the end of this step, we end with 16
matrices Pmarkerless’ of shape 21 x 3 x N; (see Figure 6.4C for examples of 3D
poses).

3D TRAJECTORIES ANALYSIS. The 3D trajectories of the keypoints obtained
with marker-based and markerless systems (Pmarker/ and Pmarkerless/ respec-
tively) are processed in the same way to extract quantitative parameters de-
scribing the gait of each participant. In particular, we perform the following
steps.
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Figure 6.4: (A) Examples of the detected probability maps (U{'l’l) for the j-th partici-
pant at a specific time instant t. The rows represent the 3 different view-
points i. Each column represents a different keypoint ! detected on the
right leg (from left to right: hip, knee, heel, toe). (B) Examples of the de-
tected keypoints (yellow dots) on the three views composing our dataset.
(C) Examples of the final 3D skeleton of the video pre-processing.

1. Gait cycle detection. We follow exactly the same procedure as for the
2D analysis, but in this case we use the heel trajectories to detect the gait
cycles.

2. Spatio-temporal and kinematic parameters extraction. The 3D coordi-
nates trajectories of each keypoint during the gait cycles are low pass
filtered (Butterworth, 4-th order, 12Hz cut off frequency) [Whittle, 2014].
Starting from the heels” markers trajectories, we extract the spatio-temporal
parameters that characterize the human gait. In particular, similarly to
the 2D analysis, we compute the parameters reported in Table 6.2 and we
add: (i) stride width: the distance (in meters) between the right and the left
foot across the cycle; (ii) speed: mean speed of the center of mass of the
body during the cycle. To estimate the joint angles during the gait cycle
we rely on the open source software Opensim [Delp et al., 2007]. Open-
sim is commonly adopted to estimate joint angles during gait analysis
because it allows associating the detected keypoints/markers to human
biomechanical skeleton models and analyze the kinematics and the rela-
tive muscular activation. In this work we adopted the Rajagopal Model
[Rajagopal et al., 2016] (shown in Figure 6.5), a full body musculoskele-
tal model for dynamic simulations of human movements, widely used
in gait analysis applications. In Opensim, two tools are specifically de-
signed to solve our problem, Scaling and Inverse Kinematics. The first is



6.4 METHODS 72

adopted to scale a generic skeleton model to fit the input markers/key-
points data. The latter is used to simulate the motion of the skeleton and
to estimate the joint angles for each gait cycle for each subject. Follow-
ing the steps explained above, we extract the joint angles for the central
gait cycle of each trial (for a total of 20 gait cycle) for each participant
involved in the study both with marker-based and markerless systems.

Figure 6.5: Rajagopal skeleton model [Rajagopal et al., 2016].

3. Statistical analysis. As in the 2D analysis, to compare the time profile of
the joint angles during the gait cycle obtained with the markerless and
the marker based gait analysis we use the statistical parametric map-
ping method, which is specifically designed for continuous field analysis
[Pataky, Vanrenterghem, and Robinson, 2015]. We apply this method to
the 1-D spatio-temporal variables describing the variations of the joint
angles during the gait cycle by using the open source software spmid
[Pataky, Vanrenterghem, and Robinson, 2015]. Specifically, we perform
a one dimensional paired t-test. We test the following null hypothesis:
"there is no statistical significant differences between the gait angles ob-
tained with our markerless approach and the gait angles obtained with
the gold standard marker-based system". The alpha level indicating the
probability of incorrectly rejecting the null hypothesis is set at 0.05. To
follow a conservative approach, i.e., to maximise the possibility of finding
statistically significant difference between the results obtained with the
two methods, we do not apply Bonferroni corrections. Notice that the
application of corrections for multiple comparison would decrease the
probability to find significant differences between the single point curves.
Furthermore, we compare the spatio-temporal parameters obtained with
the two methods with a paired t-test. Again, statistical significance is set
for all statistics at the family-wise error rate of « = 0.05.
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6.5 Results: 2D analysis

We first conduct a quantitative analysis with the aim of verifying the similarity
between measures obtained with marker-based technique and our markerless
method. In Figure 6.6 we can see the coordinates for a gait cycle of each land-
mark point for one subject randomly selected. We report both legs to show
that the method is robust for both the impaired and the unimpaired leg.

Alr} Ay

Figure 6.6: Coordinates in meters for landmark points for a randomly selected sub-
ject during a gait cycle. On the right we show the left leg (impaired) and
on the left the right leg (unimpaired). In red we can see the evolution of
each coordinate computed with the marker-based techniques, in blue those
obtained with our markerless approach.

In Figure 6.7 we show the mean error of our estimates expressed in cen-
timeters and computed as the euclidean distance of each point estimated by
our markerless approach with respect to the marker-based ones that we use as
a ground truth. The mean is computed over all the available data. We notice
that overall the distances are small, in the order of centi/millimeters. They are
sensibly lower for the first three landmark points (hip and the two points on
the knee) and higher for the ankle and the foot.

Error

Error [cm]

hip kneet knee2 ankle foot

Figure 6.7: Mean euclidean distance between positions estimated by a marker-based
system and our markerless approach. Error-bars indicate the standard de-
viation.
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Then, we compute the parameters described in the Table 6.2 and we verify
that the parameters computed with our method are coherent with the marker-
based ones, they are included in the standard deviation of the marker-based
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In the upper part is reported the stance phase (% of the gait cycle) for each
subject and in the lower part the swing phase. In red (impaired leg) and in
magenta (unimpaired leg) we show the mean and the standard deviation
computed using the marker-based technique taking in account three trials;
in blue (impaired) and black (unimpaired) we show the mean and the
standard deviation computed with our method.

In Figures 6.10, 6.11 and 6.12 we show the results of the statistical analy-
sis. First of all, in the upper part of Figure 6.10, we can see thigh, shank and
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foot elevation angles computed for the impaired leg with the marker-based
technique (red) and our system (blue). The colored area represents the Stan-
dard Error (SE). In the lower part, we show the t statistic as a function of the
percentage of gait cycle. As we can see there are not significant statistical dif-
ferences between the curves. Figure 6.11 displays the same analysis for the
unimpaired leg. In both cases the biggest difference although not significant is
in the foot elevation angles. This difference is coherent with the result shown
in Figure 6.7: a higher error in the coordinates of ankles and feet causes a
bigger difference between the elevation angles. Finally, Figure 6.12 highlights
the differences between the elevation angles of impaired and unimpaired leg
computed with our markerless system.
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Figure 6.10: The first row shows the elevation angles for the impaired leg computed
with the marker-based system (red) and our method (blue) averaged
across all the subjects. The colored area is the corresponding standard
error (SE). The second row shows the t statistic for the comparison of
marker-based and markerless technique as a function of the percentage
of gait cycle. No statistical significant differences are reported.

6.6 Results: 3D analysis

6.6.1 Architecture evaluation

To evaluate the accuracy of our trained 2D backbone, we compute the PCKh
for each keypoint (see Figure 6.13 for a qualitative result). As threshold value
riy We select a percentage of the head bone link for each participant (indi-
cated by the h in PCKh). The following multiplication factors are chosen: 1
(PCKh@1), 0.75 (PCKh@0.75) and 0.5 (PCKh@0.5). Table 6.3 summarizes the
obtained results.

The neural network indeed learns to detect also the new keypoints (toes and
heels) with high accuracy. The PCKF for these keypoints is comparable to the
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Figure 6.11:

Figure 6.12:
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The first row shows the elevation angles for the unimpaired leg computed
with marker signal (violet) and our method (black) averaged across all the
subjects. The colored area is the corresponding standard error (SE). The
second row shows the t statistic for the comparison of marker-based and
markerless technique as a function of the percentage of gait cycle. No
statistical significant differences are reported.
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The first row shows the elevation angles computed with markerless tech-
nique for the impaired (blue) and the unimpaired (black) leg. The colored
area is the corresponding standard error (SE). The second row shows the
t statistic as a function of the percentage of gait cycle. Here we have sig-
nificant differences (gray area) and the correspondent p value.

one of the other keypoints, and also to the results presented in other works
(see for instance [Zhang et al., 2021]).

To evaluate the accuracy of the full architecture we compute the MPJPE
across all the detected keypoints and we obtain an error of 23.65 millimeters,
again comparable to the one obtained in Zhang et al., 2021 (e.g., 19.5 millime-
ters on the same dataset, but with fewer keypoints — the feet were excluded)
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Keypoints PCKh@1 PCKh@o.75 PCKh@o.5
head 96.3 95.8 95.2
root 96.6 95.6 94.8
nose 96.1 94.3 87.2
neck 96.1 89.3 77.2

right shoulder 93.4 87.4 66.7
right elbow 89.1 79.8 70.7
right wrist 85.5 78.6 67.8

left shoulder 95.2 88.9 72.7
left elbow 90.6 82.2 77.1
left wrist 85.0 78.7 70.0
belly 94.2 8o0.7 72.0
right hip 96.0 87.6 73.2

right knee 93.4 85.5 76.2

right foot1 91.6 79.7 61.4

right foot2 92.3 84.5 68.6

right foot3 89.2 77.3 63.0

left hip 95.8 85.1 72.1
left knee 92.4 79.9 66.7
left foot1 90.3 75.9 52.8
left foot2 91.7 83.4 67.7
left foot3 88.7 78.4 64.4

Table 6.3: Accuracy (%) of the 2D backbone, i.c., the percentage of corrected keypoints
(PCKh) considering different threshold values: 1, 0.75 and 0.5 times the head
bone link (PCKh@1, PCKh@0.75 and PCKh@0.5 respectively).

Figure 6.13: Examples of the keypoints detected with our model (yellow dots) with

respect to the ground truth (blue dots).

and also comparable with the error obtained in the best performing recent
works about 3D pose estimation (between 19 and 30 millimeters) [He et al.,

2020; Li et al., 2021; Reddy et al., 2021; Shan et al., 2021].
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6.6.2 Joint angles and spatio-temporal parameters

We compute the spatio-temporal parameters described in the previous section
for each gait cycle for every participants and we compare the results obtained
with the two different techniques. In Table 6.4 we report the mean and the
standard deviation across all the subjects. As we can notice the parameters
obtained with our markerless pipeline are similar to the ones extracted with
the gold standard marker-based technique (as highlighted by the statistical
comparisons: all p-values > 0.050, see Table 6.4 for more details).

Stance | Swing | Stride | Step | Stride | Speed
phase | phase | length | width | time | (m/s)
(%) (%) (m) (m) (s)

Marker 59.2 40.8 1.35 0.10 1.13 1.31
+ 26 +26 | £011 | £0.02 | £0.02 | £o0.10

Markerless | 59.6 40.4 1.40 0.12 1.11 1.35

+ 3.1 +31 | £021 | £002 | 004 | £0.16

p-values ‘ 0.644 ‘ 0.644 ‘ 0.474 ‘ 0.132 ‘ 0.291 ‘ 0.341 ‘

Table 6.4: Spatio-temporal parameters computed with marker-based and markerless
systems, and statistical results of the comparison between the two methods
(last row). We report the mean + the standard deviation of each parameter.
The stance and swing phases are reported in % with respect to the whole
gait cycle; stride length and step width and expressed in meters (m); stride
time in seconds (s) and the speed in meters per second (m/s).

We compare the joint angles obtained by our markerless approach to those
obtained with the marker-based method. We select the following meaning-
ful angles: hip flexion/extension, knee flexion/extension, ankle dorsi-/planta-
flexion, hip ab-/ad-duction and pelvis tilt. Figure 6.14 shows the mean and
the standard deviation of the angles previously mentioned across all the par-
ticipants (black: marker-based, red: markerless) and the results of the paired
t-test. No statistical differences are found between the two techniques with the
exception of a slight underestimation of the knee flexion and the ankle dorsi-
flexion angle between the 70% and the 80% of the gait cycle (during the swing
phase, see gray areas in the paired t-tests in the right column of Figure 6.14 in
correspondence of these two angles). Note that those statistical differences are
not robust to multiple comparison, i.e., applying a Bonferroni correction the
differences are not below the threshold for significance.

6.7 Discussion

The results obtained with our markerless system present differences with re-
spect to the ones obtained with the gold standard, especially during the swing
phase in knee and the ankle elevation and joint angles.

78



6.7 DISCUSSION

20 Hip flexion/extension

— 304 3
o 24
U 20 .
k) 2 . N\
10 E 0 ........
1]
e & —l-
c i)
© _10
_3_ ]
=20 + T T T T ! T T T T
0 20 40 60 80 100 0 20 40 60 80 100
ml(nee flexion/extension
6_
p=0.030
E;, 4 V2
o) = 24
il 3
o z 5 r/'\ ........
e n NN
© =21
-10 4 : : ! | -4 . : i S

0 20 40 60 80 100 0 20 40 60 80 100

A3r3k|e dorsi-/plantar-flexion

p=0.001|
20 a4 =
g X
= ) 2-\/\,\ /
o =
[}
- 1 .
o a5 A\
= <2
T T T T _4- T T T T ]
0 20 40 60 80 100 0 20 40 60 80 100

3_
© 21
2 1
] - 0 ........
@ =3
— o
o n 1
5 -2
_3- o
100 0 20 40 60 80 100
Pelvis tilt
4 AT
=
o =
— e
o =
=y n
© —2]
-10 : : : : —4 : : . S
0 20 40 60 80 100 0 20 40 60 80 100
Gait cycle (%) Gait cycle (%)

Figure 6.14: Left column: joint angles (mean and std). From top to bottom: hip flex-
ion/extension, knee flexion/extension, ankle dorsi-/planta-flexion, hip
ab-/ad-duction and pelvis tilt. In black the results obtained with the
marker-based system and in red with the markerless pipeline. Right col-
umn: results of the correspondent paired t-tests.
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In the 2D analysis, these differences are not statistically significant. While, in
the 3D analysis, these differences are statistically significant, but they seem to
be small. Nonetheless, this limitation should be accounted and further investi-
gated when adopting this markerless pipeline to detect and monitor abnormal
motion patterns in people with orthopaedic injury or neurological diseases.

If we focus on the errors related to the knee and the ankle elevation and
joint angles during the swing phase, we can observe that they are mainly
due to small errors in the detection of the feet keypoints. In fact, during the
swing phase the foot moves quickly and the image tends to get blurry and it is
difficult also for human beings to detect keypoints with high confidence. The
immediate way to reduce the motion blur is to adopt RGB cameras with higher
temporal resolution, meaning higher acquisition rate (fps) [Pueo, 2016]. In this
way the motion blur will be reduced and, consequently, also the detection error
will be lower.

The results highlighted with the 2D analysis open the possibility for a mas-
sive data analysis campaign, as often, in the clinical practice, videos are recorded
for manual inspection, but they are never used for automatic analysis. The
available considerable set of data has the potential to be analysed offline, with
the goal of obtaining additional and statistically relevant information about
the medical condition and how it evolves over time.
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Other Applications

In this chapter we present two additional applications of markerless human
motion characterization. In particular, the first part of the chapter is related
with the analysis of the motion of violin players. The work is done in collabo-
ration with Marquette University (Milwaukee, WI, USA), Michigan State Uni-
versity (East Lansing, MI, USA) and the Music Institute of Chicago (Chicago,
IL, USA). The aim of this part of the thesis is to quantitatively evaluate the
error produced with our markerless pipeline with respect to a gold standard
marker-based system. In the second part of the chapter we report the imple-
mentation of a video-based Body Machine Interface (BoMI) that makes it pos-
sible to move the computer cursor by moving body parts in front of a webcam.

7.1 Motion analysis of violin players

The characterization of motion patterns of violin players is a project carried
out in collaboration with the NeuroMotor Control Laboratory of the Marquette
University (Milwaukee, WI), the Department of Kinesiology of the Michigan
State University (East Lansing, MI) and the Music Institute of Chicago and it
was supported by the US National Science Foundation (Grant 1823889). The
long term goal of this project is the study of motor learning and motor re-
learning: how people acquire motor skills and how these skills change with
practice and experience. The specific aim within this thesis is the application
of our implemented markerless pipeline and its quantitative comparison with
a gold standard marker-based procedure in the analysis of a complex task like
playing a music instrument. Adopting markerless methods in this application
domain may provide significant benefits with respect to participant setup time
and reduced invasiveness.

In order to evaluate the performance of our markerless approach, we ac-
quire the kinematics of 58 violinists repeatedly playing a G scale arpeggio. We
rely on a 3-view camera system. The choice of three viewpoints allows us to
geometrically reconstruct the 3D information while reducing the numbers of
self-occlusions, which are quite frequent in moving human bodies. As a gold
standard reference, we employ a motion capture system (Optotrak 3020) with
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active markers placed on the violin and on the bow. To compare our imple-
mented pipeline with the gold standard, since the two systems are not mutu-
ally calibrated, we compare Euclidean distances between pairs of 3D landmark
points in the marker-based and the markerless approach respectively. The dis-
tributions of distances show that the measures computed with our markerless
pipeline are very close to the one computed with the marker-based system
(with an error on the pair-wise distances below 6 mm in at least 70% of the
cases).

7.1.1  Dataset

The motions of 58 violinists of a wide range of ages and capabilities has been
acquired during 5 days of the 2019 Summer Suzuki Institute organized by the
Music Institute of Chicago. The violinists signed an informed consent form
approved by the Marquette University Institutional review board.

The setup includes a multi-view camera system (3 RGB Mako G125 GigE
cameras with Sony ICX445 CCD sensor, resolution 1292 X 964, 30 frames per
second) and a motion capture system (Optotrak 3020, Northern Digital Inc.,
100 Hz) with 6 active markers on the violin and 4 on the bow - see Figure 7.1.
The RGB cameras have been calibrated in order to obtain intrinsic and extrinsic
parameters.

Figure 7.1: Data acquisition setup (video cameras marked in red, motion capture sys-
tem marked in blue) and markers location on the violin and the bow.

Each violinist was asked to sit on a chair, at a fixed distance from the ac-
quisition sensors, and to perform 50 repetitions of a 13-note arpeggio (G-scale
arpeggio). Apart from that, no other instructions were given to the violinists:
their pose is variable and clothing differs across participants. They all played
the same instrument. To reduce the acquisition time and limit the discomfort
of the volunteers, no markers were attached to the players.
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7.1.2  Methods

We apply our proposed pipeline (described in Chapter 4 summarized by the
following steps:

¢ Landmark points detection. In order to be able to compare the mark-
erless analysis with the marker-based one, we focus on the positions of
the infrared markers on the violin and on the bow. Moreover, since the
long term goal of the work is the analysis of human motion, we consider
also some human joints (the right shoulder, elbow, and wrist). Also in
this case, we adopt a CNN-based semantic features detector and not a
classical human pose estimation algorithm because we are not interested
in the full-body pose, but we are instead interested in including semantic
features that belong to objects (violin and bow). To fine tune our model,
we consider 45 subjects and we randomly select 15 frames for each view-
point (45 frames for each subject) and we manually label the position in
the image plane of the landmarks: 4 markers on the bow, 5 markers on
the violin (the 6th one is excluded because it is almost always occluded),
3 anatomic landmarks on the body - see Figure 7.2.

Figure 7.2: Landmark points detected in the image plane.

¢ Filtering. Once the network is trained, for each test frame t it provides
a set of 2D landmarks pr,t = (x,y, c)lV,t, where | € {shoulder, elbow, wrist,
violini, ..., violing, bowy, ..., bow1io} characterises the semantic features
and V = {1,2,3} describes the view-point. For each video, the trajecto-
ries (x, y)Xt are filtered (first depending on the value of cXt and then low
pass filtered — see Section 4.3 for details).

* 3D reconstruction. The semantic features extracted from the three view-
points in each time instant, are combined to compute their corresponding
points in the 3D space by means of multi-view geometric reconstruction
(see Section 4.4 for details and Figure 7.3 for an example). In this case,
we do not include the probability maps refinement step (i.e., Adafuse) for
the following reasons: (i) the landmark points we consider in this appli-
cation are rarely occluded and their image texture variability is low (i.e.,
it is easier to recognize them across different images); (ii) the position of
the cameras (one close to another) and the position of the participants
with respect to the cameras (see Figure 7.1) allow to increase the stability
of the 3D reconstruction algorithm.



7.1 MOTION ANALYSIS OF VIOLIN PLAYERS

To show that recent 3D algorithms based on deep neural networks are
not accurate enough for our general aim, we adopt also the method de-
scribed in [Kocabas, Karagoz, and Akbas, 2019] and we compared the
results obtained with the ones retrieved with geometric 3D reconstruc-
tion. The method described in [Kocabas, Karagoz, and Akbas, 2019] is a
self-supervised learning method for 3D human pose estimation, which
does not need any 3D ground truth and makes use of multiple view-
points and epipolar geometry.

Bow(10)

Shoulder

Violin(1) wialin

=10 cm

Figure 7.3: The reconstructed landmark points: the right arm in blue (shoulder, elbow
and wrist), the 4 markers on the bow in red and the 5 ones on the violin in
green.

7.1.3  Results

LANDMARKS DETECTION EVALUATION. Firstly, we process all 58 videos
acquired through our trained model. In order to evaluate the quality of the
detection of each landmark [ in the image plane, we analyze the confidence
value clV,tVV returned by the model for each frame t. Both for training (45) and
test (13) subjects we count for each landmark the number of frames where
confidence is lower than 0.75; to identify the number of times that we can not
trust the detection. Figure 7.4 shows the percentage - with respect to the total
number of frames for each video - of cases detected with ¢ < 0.75. Occlusions
are included in this analysis.

As we can see from Figure 7.4 the % of frames with points in the bow and
in the violin detected with low confidence is balanced in the test and train-
ing videos; these cases are mainly due to occlusions that can occur during the
performance depending on the pose of the violinist with respect to the vio-
lin itself. Different considerations can be done for shoulder, elbow and wrist
where the % of cases detected with low confidence is higher in test subjects.
This is mainly due to the high variability of body landmarks, as confirmed in
Figure 7.5: the figure compares the appearance variability of the shoulder land-
mark with violinz. The higher variability of shoulder, mainly due to different
clothes worn by the volunteers, is apparent. Because of that, we may conclude
body landmark points” detection would need to be trained on a larger dataset
[Perez and Wang, 2017]. These points are not considered in our comparative
analysis, as we do not possess a 3D gold standard for them.
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Figure 7.4: % of frames (y axis) in which the landmarks (x axis) are detected with a
confidence < o.75. In blue we show the results for the training subjects
(45), in red the test ones (13). These results show that the the number of
points detected with ¢ < 0.75 in the violin and in the bow is balanced in
training and test subjects.
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Figure 7.5: Left: examples of textures for shoulder (top) and violin 1 (bottom). Right:
average grey level variability.

MARKER VS MARKERLESS PERFORMANCE COMPARISON. We evaluate the
precision of the reconstructed 3D landmarks with the geometric approach.
Since we do not posses the relative position between the cameras and the
motion capture reference systems, we compare Euclidean distances in the 3D
space between pairs of landmarks estimated by the marker-based method and
the markerless one. Let dMf be the distances computed with the marker-
based system for each t-th frame and for each k-th pair of markers, with
k = {violinl — violin2, violin2 — violin3, violin3 — violin4, violind — violin5} as
numbered in Figure 7.1. dML¥ are the corresponding markerless distances.
We then evaluate the difference between the measures computed with the two
techniques: (dMF — dMLF). A difference close to o mm means that our mark-
erless measure is close to the gold standard. In Figure 7.6 we report the errors
for 4 different pairs of points. As we can notice the majority of the samples
has a very small difference. The distributions of the errors are approximately
Gaussian centered in 0 and with a mean standard deviation of 6 mm.

MARKERLESS 3D RECONSTRUCTION COMPARATIVE ANALYSIS. As a final
evaluation of the 3D reconstruction algorithm adopted, we compare its accu-
racy with the 3D reconstruction performed following [Kocabas, Karagoz, and
Akbas, 2019]. Figure 7.7 reports a consistently larger error with respect to the
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Figure 7.6: Difference in mm (x axis) between Euclidean distances computed with
marker-based signal (gold standard) and the geometric 3D reconstructed
markerless one. The 4 plots refer to 4 different distances between pairs of
markers on the violin numbered as in Figure 7.1. The results show that the
errors distribution are approximately Gaussian centered in o mm and with
a mean standard deviation around 6 mm, meaning that the error is very
low for the majority of cases.

geometric approach. This is confirmed by Table 7.1, where we report mean
and standard deviation for both techniques with respect to the gold standard.
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Figure 7.7: Difference in mm (x axis) between Euclidean distances computed with
marker-based signal (gold standard) and the CNN-based 3D reconstructed
markerless one. A comparison with Fig. 7.6 shows that the error with [Ko-
cabas, Karagoz, and Akbas, 2019] is significantly higher.

1-2 2-3 34 4-5
Geom |07 £57 | 06+t49 | 1.9£83 |08+L55
CNN | 35+09.1 | 48+93|91+122]|53+89

Table 7.1: Absolute value of mean + standard deviation in mm of the error reported
in Figure 7.6 and 7.7 for geometrical (Geom) and CNN-based (CNN) 3D
reconstruction. The pairs of markers are numbered as shown in Figure 7.1.
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7.1.4 Discussion

The results show that the error made by adopting the implemented marker-
less pipeline is in the order of a few millimeters (below 6 mm in at least 70%
of the cases). This opens the possibility of adopting video-based markerless
systems also in other applications fields such as motor learning, where a high
level of precision is required. Furthermore, it is an example of how markerless
techniques can help in the characterization of human movements in scenar-
ios where it would be difficult (or even impossible) to adopt marker-based
approaches, due to they intrusive nature.

7.2 Markerless body machine interface

Human motion disability is a global challenge affecting many people around
the world [Cook and Polgar, 2014]. Disability can arise due to a birth condition,
an accident or ageing. In this scenario, it is necessary to implement and inves-
tigate technologies that can improve the quality of life. Assistive Technologies
(AT) [Cook and Polgar, 2014] and Positive Technologies (PT) [Grossi et al.,
2020] emerge as promising approaches to address human disability. AT and
PT are generic terms for all devices and services that enable the independence
of individuals with cognitive and/or functional impairment by improving the
conditions of their daily living activities and, consequently, their quality of life.

We investigate the problem of enabling individuals with motor disabilities
(such as after Spinal Cord Injury - SCI) to recover their functional indepen-
dence. We exploit the fact that, even after a severe injury, many individuals
retain some movement, especially of their head and shoulders, that can be
used to control external devices, such as a computer cursor. Our approach is
based on the framework of Body-Machine Interfaces (BoMlIs) [Casadio, Ran-
ganathan, and Mussa-Ivaldi, 2012]. BoMIs convert high-dimensional body sig-
nals (e.g., upper body kinematics, muscle activities) into lower-dimensional,
latent, commands to operate an external device. As a result, BoMIs allow in-
dividuals with motor disabilities to overcome some of their impairments. The
use of BoMIs has been tested in situations involving the control of a com-
puter cursor [Rizzoglio et al., 2020], a powered wheelchair [Thorp et al., 2015]
and quadcopters [Miehlbradt et al., 2018]. Typically, kinematic-based BoMIs
rely on the use of sensors such as inertial measurement units (IMUs) [Pierella
et al., 2017] or markers [Zhou and Hu, 2008] to record the body-movements
of their users. For the specific task of cursor control, sensor-based techniques
(electrooculargraphy (EOG), electromyography (EMG), IMU, gyro- and opto-
sensors) are commonly adopted [Chen et al., 1999; Di Mattia, Curran, and
Gips, 2001; Jeong, Kim, and Son, 2005; Kim et al., 2010]. However, such ap-
proaches might hinder the assistive capability of the interface, as sensors can-
not be worn autonomously by the BoMI user. Moreover, in the case of training
with the BoMI across multiple days, sensors need to be placed consistently so
as to minimize the need of interface re-calibration.
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A video-based markerless BoMI would potentially allow for a more natu-
ral user-friendly interaction with an external device, as it is less invasive and
cheaper than a sensor-based one. However, applicability of interfaces that rely
only on video-information has seen limited efforts. Javanovic et al. [Javanovic
and MacKenzie, 2010] have proposed MarkerMouse, a computer mouse con-
troller based on videos acquired from a webcam that detect a big marker
placed on the head of the user. Fu et al. [Fu and Huang, 2007] and Betke
et al. [Betke, Gips, and Fleming, 2002] have developed respectively hMouse
and Camera Mouse, two video-based markerless mouse controllers that detect
specific body features, enabling people with severe disabilities to comfortably
access a computer, without body attachments.

With the application of our implemented markerless pipeline, we want to
enhance these approaches combining new computer vision and deep learn-
ing techniques and the knowledge derived from the body machine interfaces.
Specifically, we present a novel video-based markerless BoMI pipeline (avail-
able at https://github.com/MoroMatteo/markerlessBoMI_FaMa) to empower
individuals with motor disabilities to independently control a computer cur-
sor via shoulders and/or head movements without the needs of any sensors
other than the computer webcam. Our procedure can be summarized by the
following steps (see also Figure 7.8): (1) automatic acquisition of images of the
user from a computer webcam; (2) detection of landmark points (e.g., eyes,
nose and shoulders) in the image plane; (3) encoding of the extracted signals
to a lower dimensional (control) space via application of a dimensionality re-
duction (DR) algorithm; (4) handling of the graphic for providing BoMI users
with visual feedback of the cursor via a computer monitor. We have evaluated
our pipeline in terms of landmark points detection accuracy and overall speed,
obtaining encouraging preliminary results. To the best of our knowledge, our
method is the first involving a recent state-of-the-art pose estimation algorithm
based on deep learning techniques.

Body landmarks detection

Frame acquisition

B Cursor Motion

~ & — R — =

Figure 7.8: Summary of the BoMI pipeline. The image acquired by the computer we-
bcam is fed through the trained network to detect the body landmarks.
Then, a dimensionality reduction (DR) algorithm is applied to the land-
marks’ signal to obtain the coordinates of the computer cursor.

7.2.1  Methods

The pipeline adopted in this study slightly differs from the one described in
Chapter 4. The main steps are reported below.
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1. Body landmarks detection. The first step of the pipeline is the detec-
tion of the positions of body landmarks in the image plane. Since the
long-term goal of the pipeline is to empower individuals with motor dis-
abilities, specifically after cervical SCI (cSCI), regaining independence,
we decided to focus on the tracking of the body parts whose mobil-
ity is most likely retained even after a high level ¢SCI - i.e., shoulders
and head (nose and eyes). In order to create an ad hoc model, for the
first implementation [Moro et al., 2021b], we ask 40 healthy volunteers
to freely move their head and shoulders for 30 seconds so as to com-
fortably explore their range of motion and to use a computer webcam
or a mobile phone to capture a video of such body movements. Then,
we randomly select 15 frames in 32 videos (80% of the total number
of videos, for a total of 480 training samples), we manually label the
points of interest for each sample and we fine tune the semantic fea-
tures detector (DLC). As a result, the network learns to predict the po-
sition (x,y,c)! of each landmark point in the frame coordinate system,
with I € {righteye,lefteye, nose, rightshoulder, le ftshoulder}. Figure 7.9
shows examples of detection result of this first step. Notice that we
include videos with a wide variety of backgrounds, clothes and im-
age dimensions so as to increase the robustness of the model. In the
actual implementation presented at https://github.com/MoroMatteo/
markerlessBoMI_FaMa, we adopt Mediapipe [Bazarevsky et al., 2020] as
pose estimator in order to speed up the pipeline and allow our marker-
less BoMI to run in real time also in common laptop with low computa-
tional resources.

Figure 7.9: Extracted landmark points (shoulders, nose, eyes) for different subjects.

2. Encoding body landmarks in the 2D cursor space. After detecting the
body landmarks, the second step consists of applying the BoMI forward
map to obtain the (x,y) coordinates of the computer cursor. Since the
movements of the nose and the eyes are extremely correlated, we decide
to exclude the latter. Thus, the 2D coordinates of shoulders and nose
are organized as a 6D vector (7). The BoMI forward map is obtained
by asking a volunteer to freely move his head and shoulders for 3os.
Then, the DLC model previously trained is applied to the video to extract
the vector of body landmarks g for each frame. As a result, a matrix Q
containing the estimated coordinates of the landmark points for every
frame is obtained. Next, we train a non-linear 2D variational autoencoder
(VAE) [Kingma and Welling, 2013] on Q to derive the 2D latent space
in which the greatest amount of the body movements variance during
calibration is explained. We choose a VAE among the possible methods
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for dimensionality reduction (DR) (e.g., Principal Component Analysis,
vanilla AE) due to its ability to enforce a Gaussian distribution within
its latent space. This would ensure a more uniform coverage of the 2D
workspace with respect to that obtained training other DR models. To
control the uniformity of the latent space, we introduce a scaling term
(B = 0.00025) in the VAE cost function (see [Higgins et al., 2016] for
more details). Then, we set the VAE encoder sub-network E as the BoMI
forward map. Thus, E maps the 6D body landmark vector (g) into the
X-y cursor vector (p):

p = E(q) + po (7.1)

The offset vector pg is chosen to match the origin of the body-space with
a corresponding reference position of the cursor. Moreover, the resulting
workspace is scaled to ensure full coverage of the computer monitor
space [Casadio et al., 2010].

. Online video-based markerless BoMI. Finally, we set up the online con-
trol of a computer cursor with the proposed BoMI. In order to set up
the real-time interface, we develop a custom-coded Python script. The
script has a multi-threaded architecture so as to handle three different
processes: (i) capture the current frame from the computer webcam (via
OpenCV library); (ii) forward pass the current frame through the DLC
trained model to obtain the body-vector g; (iii) forward pass g through
the variational encoder E to obtain the coordinates p to control the cur-
sor (see Figure 7.10). During the real-time pipeline, we feed the current
webcam frame -read with OpenCV- and the weights of the DLC model
to the Deeplabcut-live library [Kane et al., 2020], to obtain a real-time
estimation of the body landmarks g. Finally, the encoder E is applied to
g in order to obtain the cursor coordinates p for the current frame. To
speed up these online operations, we run the code in a computer with a
16 GB NVidia P5000 Quadro GPU.
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Figure 7.10: Scheme of the markerless BoMI for online cursor control.
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7.2.2  Results

We present the results related to the real-time operation of the BoMI. Our goal
is to assess whether our markerless BoMI could be run in real-time. Analyzing
the frame recorded by the webcam with the DLC model is a computationally
expensive operation, thus achieving a satisfactory frame rate during the online
operation of the BoMI is not trivial. We have enrolled a naive unimpaired
participant (age 27, male) to practice the online operation of the interface,
informing him that he could move the cursor with the motion of his upper
part of the body and nothing else. He has performed a reaching task, in which
he is asked to move the cursor over a set of targets as quickly as he can.
The position of the cursor and the targets are shown to the participants on a
computer monitor. The targets are placed in four different locations, uniformly
distributed along a circle. A reaching trial is considered successful after the
cursor remains inside the target for 250ms. A total of 192 targets (48 trials
per target location) are presented. The order of targets is pseudoranodmized
so as each target location is not presented again before all 4 locations have
been reached. The participant was immediately able to efficiently move the
computer cursor over each target presented. Specifically, he completed all the
192 trials in just 13 minutes. Moreover, we completed all the analysis described
before with a frame rate of 15 Hz, that allowed a continuous and efficient
cursor control.

7.2.3  Discussion

This study delivered three main findings: (i) the fine-tuned DLC model was
able to accurately predict the position of body landmarks on images with a va-
riety of different backgrounds and clothes; (ii) such model can be adopted for
the online detection of body landmarks; (iii) the proposed pipeline allowed a
participant to efficiently and easily operate a computer cursor. For comparison
with sensor-based approach, 10 healthy participants practicing cursor control
with an IMU-based BoMI completed the same protocol in approximately 20
minutes. Note that this is a pilot study with the aim of exploring the feasibility
of the real-time procedure, for this reason only one subject is involved.

The main goal of the study was to verify whether a video-based marker-
less BoMI could be used to operate a computer cursor in real-time. The step
that took the most to be completed online was the application of the DLC
model to estimate the landmarks position. Only a desktop computer with a
powerful GPU would be able to complete this operation within an acceptable
time frame during the online cursor control - as we achieved. However, our
long-term goal is to improve the pipeline in order to be able to run it on any
modern-day laptop, which does not have the same computational capability.
This would dramatically increase the availability of the interface, thus broad-
ening its impact as an assistive device.

91



7.2 MARKERLESS BODY MACHINE INTERFACE

The work described here is the first version of the markerless BoMI. In fact,
we improved it with the following novelties (present in the software down-
loadable at https://github.com/MoroMatteo/markerlessBoMI_FaMa).

¢ User-friendly Graphical User Interface (GUI) that allows to select the
landmark points to be used for cursor controlling.

¢ Custom calibration step that allows to create a personal BoMI forward
map to obtain the (x,y) coordinates of the computer cursor.

* Replacement of DLC Live with Mediapipe [Bazarevsky et al., 2020] for
the landmark points detection step. In this way it was possible to increase
the frame rate of the software. In fact, it is now possible to use it also in
laptop without a GPU, reaching a mean frame rate of 27 Hz. We are
now testing its performances on laptops and computers with different
hardware characteristics.
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VisionTool

In this chapter we report the implementation of VisionTool, our custom seman-
tic feature detector designed to provide an effective tool to non expert users.
VisionTool leverages transfer learning with a large variety of deep neural net-
works allowing high-accuracy features detection with few training data. The
toolbox offers a friendly Graphical User Interface (GUI), efficiently guiding the
user through the entire process of features extraction. Moreover, it allows us
to have more control on the features detection step of our proposed markerless
pipeline. To facilitate broad usage and scientific community contribution, the
code and an user guide are available at https://github.com/Malga-Vision/
VisionTool.git.

8.1 Introduction

As mentioned in Chapter 3, in order to characterize human motion, it is not
always necessary to retrieve the full body skeleton. In fact, there is a large
variety of applications where the availability of an accurate algorithm for the
detection of semantic features in the image plane may be crucial as evident
from the applications described in the previous chapters.

In this context, it becomes clear that versatility is a fundamental feature for
a toolbox aiming to provide general-purpose semantic features extraction. In
particular it requires: (i) the possibility to define the set of high-level features
to detect; (ii) no assumption on input data, which may be a video or a set of
static and uncorrelated images; (iii) high accuracy with minimal training data
because obtaining annotated data is not a trivial process. In fact, annotation
is time-consuming and user-dependent. Moreover, the availability of training
data may be intrinsically limited in some fields of application (e.g., medicine
and rehabilitation). With respect to the tool adopted in all our studies de-
scribed in the previous chapters (i.e., DeepLabCut [Mathis et al., 2018]), we
need more control on the training step (i.e., parameters and hyperparameters
setting) and the possibility to select among an higher number of architectures
depending on the complexity of the problem.
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8.1 INTRODUCTION

For these reasons, we implement VisionTool, a custom Python toolbox for
general-purpose markerless semantic features detection. VisionTool is based
on transfer learning with deep neural networks, and has been designed to
give appropriate importance to the following characteristics.

1. Versatility: the toolbox allows the user to define the semantic features to
detect and to graphically annotate a set of training data to be used for
further steps.

2. Prediction accuracy: precision in keypoints coordinates detection is a key
factor in pose estimation since high-level features are later extracted from
keypoints positions in all of the applications.

3. Annotation efforts reduction: after a minimal training set has been anno-
tated (e.g., 5-25 frames, depending on the application), the toolbox offers
the possibility to use an assisted annotation procedure. A neural net-
work is trained on the annotated data, and used to predict the remaining
frames (either the entire video or a random subset). The predictions are
then automatically uploaded to the annotation tool and identified with
different color maps with respect to the first set. The user can visually
inspect the predictions, and correct mistakes dragging them with the
mouse, adding or removing a label, in order to obtain a bigger anno-
tated dataset, potentially improving further predictions.

4. Simple and immediate adoption: the toolbox is provided with an intuitive
GUI that allows all the users to easily exploit all the implemented fea-
tures (see Figure 8.1).

5. Modularity and extensibility: the toolbox is modular, meaning that new
features and modules can be easily added to the package, and the adop-
tion of customized neural networks to perform segmentation is straight-
forward.

As shown in Section 8.4, VisionTool can be exploited in different ways.
Firstly, it can be used as an annotator, meaning that, given the frames com-
posing one video or a set of images, a neural network can be trained on a
subset of them and used to predict the remaining ones with high accuracy. In
addition, the toolbox has good generalization properties. Thus, it is possible
to train a model on a set of frames belonging to one video and use it to detect
the analogous set of selected keypoints in frames extracted from a different
video. To test VisionTool’s versatility and precision, we apply the toolbox to
three different domain of applications: (i) action recognition; (ii) face descrip-
tors extraction and (iii) plankton cell tracking. We show that, with less than
50 annotated frames, VisionTool is able to provide accurate features detectors
(mAP%5 > 0.95) for all the three case studies.
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Figure 8.1: Example of VisionTool’s annotation GUIL The user can annotate keypoints
of interest with the mouse, visualize images and the predictions overlaid
on them.

8.2 Methods

In this section we provide a schematic description of VisionTool’s features
extraction pipeline and give a detailed report on the available implemented
neural networks.

8.2.1 VisionTool’s workflow

Visiontool offers a user-friendly interface allowing the user to easily exploit all
the implemented features. First, the user creates a new project, imports input
data (videos or set of images), defines the keypoints (i.e., the semantic features
to detect) and selects the number of frames to be annotated, which is randomly
extracted from the total available set. The number of frames to be annotated
(i.e., the training set size) is a fundamental parameter for the features detec-
tion task. A meaningful choice should be a compromise between annotation
efforts and the quality of prediction. In general, it depends on the difficulty of
the specific task (e.g., number of keypoints, percentage of occlusions, average
standard deviation of keypoints location, number of poses in pose estimation
applications). To manually perform features annotation, the user exploits the
dedicated annotation interface (see Figure 8.1), using the mouse to select the
keypoints (e.g., keypoints coordinates in human-pose estimation). A deep neu-
ral network is chosen among the available ones and trained on the annotations.
Data augmentation based on random transformations (i.e., rotation, shearing,
zooming and shifting) is performed at training time to allow for better gen-
eralization ensuring high accuracy on few training data. The trained model is
then ready to be used to perform features extraction in testing videos (either
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unseen videos, or the remaining frames of the training video). After testing,
the obtained results can be visually inspected by the user; if they are not sat-
isfactory, they can be corrected and used as a further set of annotated data
in the training procedure, resulting in a human-in-the-loop framework. See
Figure 8.2 for a schematic description of VisionTool’s workflow. VisionTool’s
GUI guides the user through the entire process of semantic features extraction.
More details on the main steps are reported in the next subsections.

GUI annotation

Input . : :
Architectures and (with assistance)
annotation options
- - -
|

CSV Bad results?”
output Testing prediction Neural _N fetwork

annotation training

o«

e
; 2

trained -3

model

Figure 8.2: VisionTool’s workflow description.

8.2.2 Input data import and annotation

After a project is created (or an existing project is opened), the user can add
new videos (or process the existing ones). The videos are automatically read by
the toolbox to provide the total length (in number of frames), helping the user
to set a valid number of frames to annotate. After the user sets the number
j of frames to annotate, a random set of j frames is extracted among all the
available ones and annotated. When the user annotates an image, a circle with
radius r is drawn over the frame in the annotation tool, where r can be set
by the user through the annotations option GUI. Such circles are then used to
form the ground truth segmentation masks.

8.2.3 VisionTool as an annotation assistance tool

The larger the training set, the higher the algorithm precision in detecting
the semantic features from videos. However, the annotation procedure is time
consuming, forcing a compromise between number of annotations and pre-
diction accuracy. In order to partially solve this issue, VisionTool implements
a deep neural network-based automatic annotation procedure. After at least
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10 frames are manually annotated, in fact, there is an option to train a deep
neural network, to provide an initial annotation estimation for a number k of
randomly extracted frames, with k defined by the user. After the prediction, the
automatically annotated frames are loaded in the same GUI used for manual
annotation, and the user can check the results and correct potential mispre-
dictions by dragging the points to the correct location, adding or removing a
detected keypoint, with a significant saving in term of annotation efforts. The
automatic and manual frames predictions are represented with different color
maps in order to be clearly distinguishable in the GUI. The checked and cor-
rected frames are added to the original set of manual annotations to increase
the training set size. The automatic annotation tool is a key feature and the
main novelty in VisionTool, reducing user annotation efforts while speeding
up the entire features detection process, eventually leading to a higher predic-
tion accuracy and better generalization.

8.2.4 Awvailable deep neural networks

VisionTool includes 4 different largely used architectures for detection and seg-
mentation: UNet [Ronneberger, Fischer, and Brox, 2015], LinkNet [Chaurasia
and Culurciello, 2017], Pyramid Scene Parsing Network (PSPNet) [Zhao et al.,
2017] and Feature Pyramid Network (FPN) [Lin et al., 2017]. These architec-
tures encode the input exploiting sequential downsampling (i.e., compressing
the images) and then reconstruct the input by specular sequential upsamples
(deconvolution) with different combinations with respect to the downsam-
ples layers according to the specific architectures. The encoding module can
be adapted from different neural networks, choosing the number of param-
eters and network depth according to the specific problem. VisionTool offers
30 models to be used as backbones for each of the available deep network.
A key-feature in VisionTool is the possibility to obtain high accuracy in the
semantic features extraction with a limited training set (i.e., with limited anno-
tations). Such feature is implemented exploiting transfer learning, providing
better generalization than training from scratch. In fact, ImageNet [Deng et al.,
2009] pre-trained weights are available for each of the neural network back-
bones. Neural network implementations are based on the library proposed in
[Yakubovskiy, 2019].

8.2.5 Model training and deployment

A dedicated GUI offers the possibility to select the neural network, the opti-
mizer, the loss function, the learning rate and the number of epochs to wait
if validation loss does not decrease before stopping training, training from
scratch or using transfer-learning from ImageNet pre-trained weights. The
learning rate is halved at every z epochs to facilitate the convergence of the
trained model, and z is again set through the dedicated architectures prefer-
ences GUL
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After training, VisionTool can be used to annotate other frames of the same
video or frames of new similar videos. The final locations of the detected key-
points are obtained by thresholding the confidence maps. The confidence maps
(one per keypoint and of the same size of the input image) have pixels inten-
sities corresponding to the probability of finding the keypoint at that precise
location (the higher the intensity, the higher the algorithm confidence about
the pixel belonging to that specific keypoint). VisionTool’s final output corre-
sponds to a dataframe reporting the estimated locations for the detected fea-
tures in each frame (pixel location with the highest value in the corresponding
confidence map), stored both as a h5 and a csv file. For each video frame f,
they include the detected coordinates (x,y)! in the image plane for each key-
point / and the corresponding estimation confidence c} (i.e., the value of the
confidence map at the location (x,y)! where the keypoint is detected) . If one
of the keypoints has not been detected in a certain frame, the corresponding
output coordinates are automatically set to a negative number: (-1, -1). The
toolbox offers the possibility to save the predicted maps for each keypoint for
user visual inspection or further processing.

8.2.6 Evaluation Metrics

VisionTool’s semantic features detection accuracy is evaluated in terms of
mean Average Precision (mAP), as explained in Chapter 3. As commonly
done in the literature and COCO challenges [Lin et al., 2014a], we compute
mAP with respect to three different thresholds, defined as values of Object
Keypoint Similarity (OKS): (i) o.5; (ii) 0.75; (iii) average mAP value with OKS
thresholds from 0.50 to 0.95 and steps of 0.05. See Section 3.6 for further details
and formal equations. In our evaluation protocol, the standard deviation ks in
Equation 3.3 is computed with respect to keypoints mask area, and exploiting
redundant annotations, as done in [Lin et al., 2014a]. In our experiments, key-
points circle mask radius is set accordingly to the size of the semantic features
to detect: 13 pixels for MOCA dataset (i.e., approximately the the size of the
physical markers in the cooking videos); 2 pixels for faces, and 7 pixels for
plankton dataset.

The notation mAP®> corresponds to the mAP computed as in point (i);
mAP°75 corresponds to the mAP computed as in point (ii); while mAP refers to
mAP computed as in point (iii). In our evaluation metrics, the mAP at OKS=o.5
can be interpreted as the percentage of correct keypoints (PCK@0.5) metric
[Yang and Ramanan, 2012] (i.e., the fraction of predicted keypoints that fall
within a threshold distance from the ground truth location) with a maximum
allowed distance corresponding to an Intersection over Union (IoU) between
ground truth and prediction keypoints masks equal to o.5.
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8.3 Datasets

A semantic features detection toolbox should be versatile with respect to se-
mantic, number of keypoints and domains of application, as well as precise,
intuitive, and easy to use. To validate VisionTool with respect to such re-
quirements, we adopt the toolbox in the analysis of three different benchmark
datasets and associated application fields: (i) upper-body human actions from
the Multiview Cooking Actions dataset (MOCA) [Nicora et al., 2020]; (ii) hu-
man faces from the Facial Keypoints Detection Kaggle’s dataset [Bengio, 2016];
(iii) videos of swimming plankton cells from the Plankton dataset [Pastore et
al., 2020] (see Figure 8.3 for samples of each dataset). Each of them has specific
challenges (reported in Section 8.3) that support the evaluation of different
aspects of the toolbox.

Figure 8.3: Samples for the three datasets included in the work. (a-c) Moca dataset:
(a) lateral viewpoint; (b) egocentric viewpoint; (c) frontal viewpoint. (d-f)
Kaggle face dataset. (g-i) Plankton dataset: (g) spirostomum ambiguum;
(h) arcella vulgaris; (i) didinium nasutum.

MULTIVIEW COOKING ACTIONS DATASET. The MOCA dataset [Nicora et
al., 2020] contains video sequences acquired from multiple views of upper
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body actions in a cooking scenario. The purpose of MOCA is to provide a rich
test bed to understand motion recognition skills and view-invariance proper-
ties of both biological and artificial perceptual systems. The dataset includes
20 cooking actions involving one or two arms of a volunteer and the tools
to perform the correspondent action. Three different view-points have been
considered for the acquisitions, i.e., lateral, egocentric, and frontal. Each action
includes a training and a testing video, each containing, on average, 25 repeti-
tions of the action. Since the dataset is multimodal, the volunteer was wearing
markers in correspondence to the five keypoints considered for the detection
task: (i) index; (ii) little finger; (iii) hand; (iv) wrist and (v) elbow. However, no
ground truth annotations are available with the dataset, so we needed to build
a 2D ground truth for keypoints location to actually evaluate VisionTool’s fea-
tures detectors accuracy. Hence, ground truth keypoints location is obtained
exploiting VisionTool’s assistance annotation feature. The presence of physical
markers makes the annotation process precise and repeatable, since it is im-
mediate to build the annotation masks on top of the existing markers. On the
other hand, occlusions and peculiar motion patterns represent a challenge for
detecting the semantic features in the dataset (see Figure 8.4 (a-b)).

FACIAL KEYPOINTS DETECTION DATASET. The Facial Keypoints Detection
dataset [Bengio, 2016] was released for a kaggle competition focused on im-
proving features detection accuracy in the context of face recognition. It con-
tains 96 x 96 pixels images of different subjects faces, with a total of 7049 train-
ing images and 1783 testing images. Complete annotations are only provided
for a subset of the training data. The detection task consists in identifying 15
facial keypoints, divided in 4 semantic groups : (i) eyebrow: left and right inner
and outer limits; (ii) eye: left and right eye center, inner and outer corners; (iii)
nose: nose tip, (iv) mouth: left and right corners, top and bottom centers. Here,
the challenge is mostly related to the low image resolution and the ambiguity
in the identification (and annotation) of the keypoints (e.g., the top and bottom
center of mouth, can be annotated and correctly predicted within a radius of
several pixels, see Figure 8.4 (c-d) for an example).

PLANKTON DATASET. The plankton dataset [Pastore et al., 2020] contains
static images of swimming plankton extracted from 1-minute videos of 10
species of plankton acquired using a digital detector. The system used for ac-
quisition employs the principles of a lensless microscope. The dataset includes
a total of 5000 images (500 per species) for training, and 1400 images for test-
ing (140 per species). We evaluate VisionTool’s accuracy in detecting the center
of the plankton cell. No ground truth is available, so we need to annotate the
data for actually evaluating VisionTool’s detectors accuracy. To perform anno-
tation, first, we exploit an image-processing algorithm to select the centroid of
the cell body (i.e., contour detection on available cell body masks, followed by
selection of centroid for the contour with highest area). Then, we visually in-
spect the annotation with VisionTool’s annotation GUI, correcting the body cell
center detection, when needed. In the plankton dataset, the challenge is repre-
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sented by the low-resolution images and the intrinsic semantic of the keypoint
to detect. For circular shape cells, in fact, the annotation process is trivial and
precise. However, a few of the classes included in the dataset (e.g., the spiros-
tomum ambiguum, the dileptus and the stentor coeruleous) can contract and
relax (see Figure 8.4 (e-f-g) for an example), radically changing their shape,
making hard and not unique the identification of the center cell for annotation
and, consequently, for prediction.

a

Figure 8.4: Example of challenges for the datasets included in the work. (a-b) Moca’s
keypoints occlusion in egocentric viewpoint (a) and frontal viewpoint (b).
It is common for such views to have the little finger occluded by index,
as well as wrist occluded by hand. (c-d) Mouth keypoints can be correctly
annotated with a difference of several pixels. (c) ground-truth; (d) exam-
ple of a different manual annotation. (e-g) stentor ceruleous contracting
and relaxing during different stages of swimming with significant shape
changing.
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8.4 Results

8.4.1  VisionTool’s results on MOCA dataset

AUTOMATIC ANNOTATION ACCURACY The toolbox can be adopted as an
annotation assistant (i.e., trained on frames belonging to a certain video and
tested on its remaining frames), to speed-up the annotation process while re-
ducing user efforts. We used the MOCA dataset testing videos for the three
viewpoints (i.e., lateral, egocentric and frontal) to validate VisionTool as auto-
matic annotator. The set of semantic features to detect includes: index, little
tinger, hand, wrist, and elbow. The first step consisted in using the toolbox
to perform manual annotation of the 5 keypoints on a set of randomly ex-
tracted training frames. We used a random subset of 10 action videos among
the 20 available from the lateral viewpoint to perform an automatic anno-
tation accuracy evaluation as a function of the number of frames manually
annotated. For this experiment, we use a LinkNet [Chaurasia and Culurciello,
2017] neural network with EfficientNetb1 [Tan and Le, 2019] backbone pre-
trained on ImageNet [Deng et al., 2009] (RMSprop optimizer, weighted cate-
gorical cross-entropy as loss function, batch size equal to 5). The number of
annotated frames is 10, 25 and 50. As expected, mAP increase with the num-
ber of annotated frames, reaching a maximum value of 0.974 for 50 annotated
frames (see Table 8.1). A higher number of annotated frames could lead to
higher detection accuracy, however, we limit our analysis to 50 frames, since
the aim of the experiment is to test the toolbox potential with minimal manual
annotation efforts.

| Frames mAP*S mAP” mAPingec MAPrigicfnger  MAPrand MAPyrise MAPeiogy AP |

10 0.888 0.869 0.818 0.855 0.866 0.882 0.890 0.862
25 0.979 0.966 0.852 0.862 0.967 0.888 0.890 0.892
50 0.984 0.977 0.949 0.972 0.975 0.986 0.989 0.974

Table 8.1: VisionTool’s detection accuracy with respect to number of annotated frames
on MOCA dataset. A LinkNet with EfficientNetb1 backbone is trained on
(i) 10; (ii) 25 and (iii) 50 frames, and used to predict the remaining ones, for
each of the 10 lateral viewpoint videos included in the evaluation subset.
The results reported in this table correspond to the average mAP computed
across the whole subset of videos.

Transfer learning from ImageNet pre-trained models is a key-feature in Vi-
sionTool, allowing to obtain high detection accuracy, while providing better
generalization than training from scratch, with randomly initialized weights.
To show the importance of ImageNet fine-tuning, we train and test Vision-
Tool’s semantic features extraction algorithms with randomly initialized weights.
With the same number of annotated frames per video and the same neural
network and backbone (i.e., LinkNet neural network with EfficientNetb1 back-
bone), in this case keypoints predictions confidence are below the adopted
minimum level of significance (i.e., 0.6 in our experiments), proving the impor-
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tance of transfer learning to obtain high accuracy semantic features detectors
with minimal training data.

As a next step, we evaluate the annotation accuracy with respect to the
specific neural network applied. We use the same set of 50 annotated frames
of previous step to compute prediction accuracy with the 4 different neural
networks available (Unet, LinkNet, Pyramid Scene Parsing Network (PSPNet)
and Feature Pyramid Network (FPN)) and two popular neural network back-
bones in the computer vision literature: EfficientNetb1 and ResNetso [He et
al., 2016]. As reported in Table 8.2, EfficientNetb1 outperformed ResNetso0 for
all the considered neural networks, with FPN and Unet leading to higher ac-
curacy with respect to the other models. Table 8.3 provides information on the
neural networks used in this experiment with respect to number of FLoating
point Operations Per Second (FLOPs) and parameters. As we can see, even if
Unet and FPN with EfficientNetb1 backbone accuracy are similar, the former
works with a number of FLOPs significantly lower than the latter. Thus, hav-
ing in mind the best compromise between efficiency and accuracy, we use Unet
with EfficientNetb1 as backbone, and we train it with 50 annotated frames to
evaluate VisionTool’s annotation accuracy on the entire MOCA dataset. Table
8.4 summarizes the obtained results.

H Net/Backbone ~ mAP®S mAP” mAPige. MAPpye finger MAPhang  MAPyrigt  MAPgy,  mAP H

FPN/Efficientb1 0.991 0.984 0.957 0.973 0.981 0.987 0.991 0.978
FPN/ResNets0 0.975 0.944 0.874 0.949 0.923 0.978 0.985 0.942
LinkNet/Efficientb1  0.992 0.987 0.974 0.945 0.985 0.971 0.976 0.969
LinkNet/ResNets0 0.858 0.849 0.769 0.786 0.859 0.788 0.890 0.819
PSPNet/Efficientbr  0.987 0.957 0.894 0.929 0.928 0.957 0.949 0.931
PSPNet/ResNet50 0.983 0.914 0.803 0.867 0.850 0.927 0.935 0.876
Unet/Efficientb1 0.993 0.981 0.962 0.976 0.978 0.984 0.976 0.970
Unet/ResNets0 0.952 0.945 0.848 0.875 0.878 0.887 0.975 0.893

Table 8.2: VisionTool’s detection accuracy on MOCA dataset, with respect to neural
networks and backbones. The 4 neural networks (i.e., FPN, LinkNet, PSP-
Net and Unet) are combined with EfficientNetb1 and ResNetso backbone.
Each model is trained on the 50 annotated frames, and used to predict the
remaining ones, for each of the 10 lateral view-point videos included in
the evaluation subset. The results reported in this table correspond to the
average mAP computed across the whole subset of videos.

GENERALIZATION: PREDICTION OF UNSEEN VIDEOS We showed that Vi-
sionTool is able to provide high-accuracy semantic features detectors with min-
imal annotated data, when used as annotator (i.e., trained on frames belong-
ing to a certain video and tested on its remaining frames). However, when
dealing with semantic features extraction tasks, generalization properties are
crucial, since the same keypoints will have to be accurately detected in dif-
ferent testing videos with respect to the training ones. This is especially true
in pose estimation tasks, where different subjects performs the same action
in different environments. To investigate how the algorithms implemented in
the toolbox generalize and perform on unseen videos, we use each set of 20
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Net/Backbone FLOPS(bilions) Number Params(milions) Number Layers
FPN /Efficientb1 12.80 0.96 379
FPN/ResNetso 6.43 2.69 237
LinkNet/Efficientb1 8.04 0.86 388
LinkNet/ResNet50 2.09 2.88 246
PSPNet/ Efficientb1 1.76 0.18 142
PSPNet/ResNet50 0.90 0.39 116
Unet/Efficientb1 8.72 1.26 373
Unet/ResNetso 2.58 3.26 231

Table 8.3: Neural networks and backbones complexity in terms of FLoating point Op-
erations Per Second (FLOPS), number of parameters and layers.

H View p oint mAP* mAP*” mAP index mAP, little finger MAPhand MAPuyrist mAPelbow mAP H

H All together  0.992 0.987 0.974 0.945 0.985 0.971 0.976 0.970 H

Table 8.4: VisionTool’s detection accuracy on MOCA dataset, when used as annotator.
A Unet with EfficientNetb1 backbone is trained on 50 frames, and used to
predict the remaining ones, for each of the 60 videos included in the dataset.
The results reported in this table correspond to the average mAP computed
across the whole set of videos.

videos (one for each viewpoint) to perform a k-fold experiment, with k = 5,
each time using one fold for testing and the remaining four to train the detec-
tion algorithms (16 training and 4 testing videos). As we can see in Table 8.5
the toolbox is able to provide features detectors that generalize well between
different videos. In fact, the mAP5 is higher than 0.95 for all of the considered
sets of videos, while the mean mAP across the 5 different folds, is higher than
0.90. As expected, the elbow and the wrist are the easiest keypoints to detect,
since they are the most stable with respect to different videos, while the index
and the little-finger are the hardest ones, since they are the ones characterized
by the highest level of motion. Finally, as expected, the frontal viewpoint is
the hardest one to predict, since videos acquired with such viewpoint present
the highest variability of keypoints detection and number of occlusion with
respect to the 20 cooking actions. As a final step, we investigated how accurate
are VisionTool’s detections when trained on three different viewpoints videos
at once. Hence, we trained a neural network on the entire dataset with a k-fold
approach (k = 5). We split the dataset into the 5 folds imposing to have the
same number of videos belonging to the three different viewpoints at each
fold (i.e., 16 videos per each view for training and 4 videos for testing, for a to-
tal of 48 training and 12 testing videos) obtaining a corresponding mAP equal
to 0.908.
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H View point mAP®S mAP®7 mMAPigex MAPje finger  MAPhang  MAPyrist MAPegy  MAP H

Lateral 0.969 0.905 0.865 0.845 0.889 0.958 0.988 0.909
Egocentric 0.962 0.929 0.925 0.789 0.963 0.922 0.978 0.915
Frontal 0.957 0.858 0.861 0.907 0.836 0.930 0.992 0.905
All together  0.954 0.904 0.880 0.821 0.912 0.949 0.980 0.908

Table 8.5: VisionTool’s detection accuracy on MOCA dataset. A k-fold (k=5) approach
is used for each view point (i.e., the detectors are trained on 4 folds and the
remaining one was predicted). The results reported in the table correspond
to the average mean AP (mAP) computed across the different folds.

8.4.2 Face dataset results

In this section, we evaluate if VisionTool is able to provide accurate features
detection for the face dataset. We extract a set of 1500 images from the training
set provided with full annotation. We split the dataset into training and test-
ing with ratio 3:1, resulting in 1000 images for training and 500 for testing. We
evaluate the 4 neural networks included in VisionTool (i.e., Unet, LinkNet, PSP-
Net and FPN) with EfficientNetb1 backbone (considering that on the MOCA
dataset this was the best performing backbone, batch size equal to 5, RMSprop
optimizer). Table 8.6 summarizes the obtained results in terms of mAP. The de-
tector based on FPN and EfficientNetb1 shows the highest detection accuracy,
with a mAP®7> around 0.96 and a mAP of 0.86.

H Net/Backbone mAP®>  mAP*7> mAPeyebrow MAPeye MAPnrose MAPpoun mMAP H

FPN/Efficientb1 0.998 0.958 0.791 0.939 0.739 0.926 0.859
LinkNet/Efficientbtr  0.998 0.950 0.771 0.920 0.724 0.908 0.838
PSPNet/Efficientbr  0.992 0.896 0.742 0.915 0.636 0.878 0.803

Unet/Efficientb1 0.994 0.934 0.749 0.905 0.708 0.896 0.824

Table 8.6: Facial keypoints detection accuracy in terms of mAP. EfficientNetb1 is used
as backbone for the 4 neural networks implemented in VisionTool. The 15
detected Keypoints are divided into 4 semantic groups, as explained in Sub-
section 8.3

8.4.3 Plankton dataset results

As a final quantitative application, we evaluate if VisionTool is able to provide
an accurate detector for the center of the plankton cell body. We consider the
testing set of 140 images for each of the 10 included classes of plankton in the
dataset, for a total of 1400 images. We consider only the testing set because
it contains a sufficient number of images to accomplish our task and because
in this way we reduce labeling efforts. For each class, we annotate a random
set of 50 images, as previously explained. After ground truth annotations have
been created, we train the 4 neural networks included in VisionTool with the
same configuration adopted for the Face dataset (previous subsection) on the
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50 images for each class, and predicted the plankton cell center on the go re-
maining images. Table 8.7 shows the performances in terms of mAP. Despite
the intrinsic morphology change and the arbitrarity in the keypoint annota-
tion, VisionTool is able to achieve high detection accuracy. The most accurate
detectors correspond to a FPN and Unet with EfficientNetb1 backbone, reach-
ing a mAP®7> equal to 0.92 and a mAP around 0.91.

Net/Backbone mAP°5 mAP°75 mAP

FPN /Efficientb1 0.980 0.919  0.908
LinkNet/Efficientb1  0.951 0.837  0.839
PSPNet/Efficientb1  0.942 0.776  0.784

Unet/Efficientb1 0.976 0.919  0.907

Table 8.7: Plankton cell center detection accuracy in terms of mAP. EfficientNetb1 is
used as backbone for the 4 neural networks implemented in VisionTool.

8.5 Discussion

In this chapter, we introduced VisionTool, a toolbox for semantic features
extraction. To facilitate broad usage and scientific community contribution,
the toolbox is available at https://github.com/Malga-Vision/VisionTool.
git. We showed that transfer learning from pre-trained deep neural network
can be quickly applied to completely different contexts and applications (from
cooking actions to swimming cells) with accurate results. We believe that Vi-
sionTool could supplement the list of available toolboxes for video analysis,
allowing even inexperienced users to obtain high-accuracy features detectors
for a wide range of applications.

DATASET ANNOTATION AND PERFORMANCES.  VisionTool is based on trans-
fer learning from ImageNet pre-trained deep neural networks, allowing to
obtain high-accuracy detectors with minimal annotated training data. In our
experiments, we showed that 50 frames were sufficient to obtain high accuracy
detectors (mAP > 0.9) for the three investigated datasets. In general, the accu-
racy of fine-tuned features detectors may depend on the number and quality
of annotations. A precise labeled training set may be not trivial to obtain, it is
time-consuming and user-dependent. As a solution, our toolbox offers the pos-
sibility to obtain an additional set of data with an automatic procedure, where
a deep neural network is trained to predict a subset of frames, with predic-
tions that are later available in the annotation GUI for checking and potential
correction. We used such a procedure to obtain a ground truth for the MOCA
dataset, where annotations were not provided with data. However, in noisy
videos where objects move with high frequency, frames where this particular
behavior is present could be not part of the randomly selected minimal anno-
tated set for training. The exclusion of such frames from training potentially
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brings to sub-optimal results. In such cases, a solution comes directly from
VisionTool’s output, with a post-processing training frame addition. In fact,
VisionTool provides as output confidence maps (of the same size of the input
image) for each keypoint, where pixel intensity corresponds to the confidence
of that pixel belonging to the detected keypoint. These maps (also called prob-
ability maps) are thresholded with a minimum level of confidence to provide
the final predicted keypoints locations. Hence, frames with particularly low
levels of confidence could be added to the training set to test if the accuracy
can be improved. Low values in the probability maps could also occur when
keypoints are occluded. In this case, multiple viewpoints (as in the MOCA
dataset) are ideal to improve precision in features extraction.

VISIONTOOL’S VERSATILITY. We showed that VisionTool is able to provide
accurate detections for three different datasets: (i) MOCA,; (ii) facial keypoints
detection and (iii) swimming plankton cells. We chose such datasets because
their different features supported the evaluation of specific aspects of the pro-
posed toolbox. In the MOCA dataset, in fact, even if videos were acquired
by three different viewpoints, it was still possible to obtain high-accuracy
(mAP > 0.9) when detectors were trained with different viewpoints videos
at once. In the face dataset, we showed that VisionTool provides accurate de-
tections (mAP > 0.9) when input data are sequences of static low-resolution
images and features are smaller and more user-dependent with respect to the
previous dataset (where annotations coincide with physical marker positions).
Finally, the plankton dataset has low-resolution images and the position of
cell centroid is ambiguous and strongly dependent from the user. To prove
this point, we asked three different annotators to provide annotations for 50
frames per each class. The standard deviation among the different set of an-
notations reached a maximum value of 7 pixels for the class dileptus, where
strong intrinsic morphology change and the shape of the cell make harder to
precisely identify its centroid. However, VisionTool’s was still able to train an
accurate detector (mAP > 0.9) for each of the ten species of plankton included
in the dataset.

VISIONTOOL'S COMPUTATIONAL COST DETAILS. The deep neural net-
works embedded in the toolbox were trained and tested on resized version of
the original video frames (in the current version, to size 288 x 288), that were
later scaled to the original size with no effect on features detection accuracy.
Thus, VisionTool’s semantic features extraction can be quite fast on modern
hardware. For instance, inference rate for the MOCA dataset spanned from 50
to 85 Hz on a Nvidia RTX2060 with 6GB of RAM (for Unet with EfficientNetb1
backbone). Such prediction time makes VisionTool compatible with real-time
features detection applications. The inference time could be further decreased
by increasing the resize rate, cropping the frames, or modifying the architec-
tures (e.g., with pruning algorithms) to speed up the prediction process.
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Conclusions

In this thesis we presented an approach to markerless human motion analysis
relying only on RGB video acquisition and leveraging computer vision and
deep learning algorithms. Our approach presents the following advantages
with respect to the gold standard marker-based methods:

1. it requires less expertise and it has no bias introduced by any operators.
In fact, while the operator during marker-based data acquisition needs
to place markers carefully on the subjects skin in order to avoid biased
results, our pipeline works fully automatically, and it is independent of
any human performance;

2. it does not affect the naturalness of the motion in any way since it does
not require cumbersome markers and sensors. Furthermore, it makes
the data acquisition easier and faster because it is not necessary to place
markers on the body skin;

3. it is less expensive and with a simpler setup, easier to be used outside
laboratory environments, since it requires only RGB cameras.

We tested the reliability and the versatility of our markerless pipeline by
comparing it with gold standard techniques and by adopting it in different
application tasks.

Firstly, we focused on the study of infants spontaneous movements. In this
case, we proceeded with two different techniques: (i) one based on the com-
putation of quantitative parameters that could be adopted to distinguish be-
tween normal and abnormal motion patterns in videos acquired during the
tirst weeks after birth and (ii) one based on graphs and NLP methods that
could highlight abnormal aspects of the motion patterns usually extracted
with a visual analysis. In both cases we obtained encouraging results suggest-
ing the possibility of adopting computer-aided techniques for the quantitative
characterization of preterm infants spontaneous movements.

Then, we focused on gait analysis. In this case, we were particularly in-
terested in the comparison of our system with gold standard marker-based
techniques. In fact, gait analysis has largely used and well defined protocols
that allowed to highlight the drawbacks of our system. We performed both
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2D and 3D analysis and we found differences between the results obtained
with our markerless system and those obtained with the gold standard, espe-
cially during the swing phase, where the high motion of the feet led to motion
blur in the acquired videos and, consequently, to small errors in the final re-
sults. The limitations highlighted with this analysis should be accounted when
adopting our markerless pipeline to detect and monitor abnormal motion pat-
terns in people with orthopaedic injury or neurological diseases and further
investigated.

Lastly, to highlight the versatility of the pipeline, we reported the results
of its application in two other tasks: (i) the analysis of the motion of violin
players and (ii) the implementation of a video-based markerless body machine
interface as an assistive tool to allow people with spinal cord injury to control
the computer cursor with the motion of the head and shoulders. In these two
tasks we demonstrated the wide applicability potential of our procedure.

The core step of our work was the detection of semantic features in the
image plane. In fact, with the analysis of the trajectories of the coordinates
of the keypoints detected in the image plane with a semantic features detec-
tor [Mathis et al., 2018] we were able to achieve all the results described in
Part II. This consideration pushed us to think about the importance of hav-
ing an efficient and easy-to-use semantic features detectors. For these reasons,
we implemented VisionTool, our custom tool with an user-friendly graphical
user interface for semantic features detection. With VisionTool we reached an
higher control during training (i.e., parameters and hyperparameters setting)
and we introduced the possibility to select among different backbones CNN
architectures depending on the complexity of the problem.

In the future, we are planning to extend the works presented in the previous
chapters as follows: (i) adopt the two approaches implemented to characterize
infants spontaneous movements to both acquisition sessions (Chapter 5); (ii)
analyze the gait of people with Multiple Sclerosis (dataset already acquired)
with the implemented markerless pipeline (Chapter 6); (iii) test the new ver-
sion of our markerless Body Machine Interface (Chapter 7); (iv) focus on the
general drawbacks of our pipeline highlighted within the thesis.

In conclusion, the results reported in this thesis suggest that the proposed
markerless pipeline is a promising alternative with respect to marker-based
systems to study and characterize human motion. We presented many advan-
tages in terms of costs and usability. We highlighted also the main limits and
we presented possible solutions to overcome them.
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