614 research outputs found

    Real-time Traffic Flow Detection and Prediction Algorithm: Data-Driven Analyses on Spatio-Temporal Traffic Dynamics

    Get PDF
    Traffic flows over time and space. This spatio-temporal dependency of traffic flow should be considered and used to enhance the performance of real-time traffic detection and prediction capabilities. This characteristic has been widely studied and various applications have been developed and enhanced. During the last decade, great attention has been paid to the increases in the number of traffic data sources, the amount of data, and the data-driven analysis methods. There is still room to improve the traffic detection and prediction capabilities through studies on the emerging resources. To this end, this dissertation presents a series of studies on real-time traffic operation for highway facilities focusing on detection and prediction.First, a spatio-temporal traffic data imputation approach was studied to exploit multi-source data. Different types of kriging methods were evaluated to utilize the spatio-temporal characteristic of traffic data with respect to two factors, including missing patterns and use of secondary data. Second, a short-term traffic speed prediction algorithm was proposed that provides accurate prediction results and is scalable for a large road network analysis in real time. The proposed algorithm consists of a data dimension reduction module and a nonparametric multivariate time-series analysis module. Third, a real-time traffic queue detection algorithm was developed based on traffic fundamentals combined with a statistical pattern recognition procedure. This algorithm was designed to detect dynamic queueing conditions in a spatio-temporal domain rather than detect a queue and congestion directly from traffic flow variables. The algorithm was evaluated by using various real congested traffic flow data. Lastly, gray areas in a decision-making process based on quantifiable measures were addressed to cope with uncertainties in modeling outputs. For intersection control type selection, the gray areas were identified and visualized

    SPATIO-TEMPORAL DYNAMICS OF SHORT-TERM TRAFFIC

    Get PDF
    Short-term traffic forecasting and missing data imputation can benefit from the use of neighboring traffic information, in addition to temporal data alone. However, little attention has been given to quantifying the effect of upstream and downstream traffic on the traffic at current location. The knowledge about temporal and spatial propagation of traffic is still limited in the current literature. To fill this gap, this dissertation research focus on revealing the spatio-temporal correlations between neighboring traffic to develop reliable algorithms for short-term traffic forecasting and data imputation based on spatio-temporal dynamics of traffic. In the first part of this dissertation, spatio-temporal relationships of speed series from consecutive segments were studied for different traffic conditions. The analysis results show that traffic speeds of consecutive segments are highly correlated. While downstream traffic tends to replicate the upstream condition under light traffic conditions, it may also affect upstream condition during congestion and build up situations. These effects were statistically quantified and an algorithm for properly choosing the “best” or most correlated neighbor(s), for potential traffic prediction or imputation purposes was proposed. In the second part of the dissertation, a spatio-temporal kriging (ST-Kriging) model that determines the most desirable extent of spatial and temporal traffic data from neighboring locations was developed for short-term traffic forecasting. The new ST-Kriging model outperforms all benchmark models under various traffic conditions. In the final part of the dissertation, a spatio-temporal data imputation approach was proposed and its performance was evaluated under scenarios with different data missing rates. Compared against previous methods, better flexibility and stable imputation accuracy were reported for this new imputation technique

    Motion Segmentation Aided Super Resolution Image Reconstruction

    Get PDF
    This dissertation addresses Super Resolution (SR) Image Reconstruction focusing on motion segmentation. The main thrust is Information Complexity guided Gaussian Mixture Models (GMMs) for Statistical Background Modeling. In the process of developing our framework we also focus on two other topics; motion trajectories estimation toward global and local scene change detections and image reconstruction to have high resolution (HR) representations of the moving regions. Such a framework is used for dynamic scene understanding and recognition of individuals and threats with the help of the image sequences recorded with either stationary or non-stationary camera systems. We introduce a new technique called Information Complexity guided Statistical Background Modeling. Thus, we successfully employ GMMs, which are optimal with respect to information complexity criteria. Moving objects are segmented out through background subtraction which utilizes the computed background model. This technique produces superior results to competing background modeling strategies. The state-of-the-art SR Image Reconstruction studies combine the information from a set of unremarkably different low resolution (LR) images of static scene to construct an HR representation. The crucial challenge not handled in these studies is accumulating the corresponding information from highly displaced moving objects. In this aspect, a framework of SR Image Reconstruction of the moving objects with such high level of displacements is developed. Our assumption is that LR images are different from each other due to local motion of the objects and the global motion of the scene imposed by non-stationary imaging system. Contrary to traditional SR approaches, we employed several steps. These steps are; the suppression of the global motion, motion segmentation accompanied by background subtraction to extract moving objects, suppression of the local motion of the segmented out regions, and super-resolving accumulated information coming from moving objects rather than the whole scene. This results in a reliable offline SR Image Reconstruction tool which handles several types of dynamic scene changes, compensates the impacts of camera systems, and provides data redundancy through removing the background. The framework proved to be superior to the state-of-the-art algorithms which put no significant effort toward dynamic scene representation of non-stationary camera systems

    Sensor Data Fusion for Improving Traffic Mobility in Smart Cities

    Get PDF
    The ever-increasing urban population and vehicular traffic without a corresponding expansion of infrastructure have been a challenge to transportation facilities managers and commuters. While some parts of transportation infrastructure have big data available, so many other locations have sparse data. This has posed a challenge in traffic state estimation and prediction for efficient and effective infrastructure management and route guidance. This research focused on traffic prediction problems and aims to develop novel spatial-temporal and robust algorithms, that can provide high accuracy in the presence of both big data and sparse data in a large urban road network. Intelligent transportation systems require the knowledge of current traffic state and forecast for effective implementation. The actual traffic state has to be estimated as the existing sensors do not capture the needed state. Sensor measurements often contain missing or incomplete data as a result of communication issues, faulty sensors or cost leading to incomplete monitoring of the entire road network. This missing data pose challenges to traffic estimation approaches. In this work, a robust spatio-temporal traffic imputation approach capable of withstanding high missing data rate is presented. A particle-based approach with Kriging interpolation is proposed. The performance of the particle-based Kriging interpolation for different missing data ratios was investigated for a large road network. A particle-based framework for dealing with missing data is also proposed. An expression of the likelihood function is derived for the case when the missing value is calculated based on Kriging interpolation. With the Kriging interpolation, the missing values of the measurements are predicted, which are subsequently used in the computation of likelihood terms in the particle filter algorithm. In the commonly used Kriging approaches, the covariance function depends only on the separation distance irrespective of the traffic at the considered locations. A key limitation of such an approach is its inability to capture well the traffic dynamics and transitions between different states. This thesis proposes a Bayesian Kriging approach for the prediction of urban traffic. The approach can capture these dynamics and model changes via the covariance matrix. The main novelty consists in representing both stationary and non-stationary changes in traffic flows by a discriminative covariance function conditioned on the observation at each location. An advantage is that by considering the surrounding traffic information distinctively, the proposed method is very likely to represent congested regions and interactions in both upstream and downstream areas

    Augmented Terrain-Based Navigation to Enable Persistent Autonomy for Underwater Vehicles in GPS-Denied Environments

    Get PDF
    Aquatic robots, such as Autonomous Underwater Vehicles (AUVs), play a major role in the study of ocean processes that require long-term sampling efforts and commonly perform navigation via dead-reckoning using an accelerometer, a magnetometer, a compass, an IMU and a depth sensor for feedback. However, these instruments are subjected to large drift, leading to unbounded uncertainty in location. Moreover, the spatio-temporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. To add to this, the interesting features are themselves spatio-temporally dynamic, and effective sampling requires a good understanding of vehicle localization relative to the sampled feature. Therefore, our work is motivated by the desire to enable intelligent data collection of complex dynamics and processes that occur in coastal ocean environments to further our understanding and prediction capabilities. The study originated from the need to localize and navigate aquatic robots in a GPS-denied environment and examine the role of the spatio-temporal dynamics of the ocean into the localization and navigation processes. The methods and techniques needed range from the data collection to the localization and navigation algorithms used on-board of the aquatic vehicles. The focus of this work is to develop algorithms for localization and navigation of AUVs in GPS-denied environments. We developed an Augmented terrain-based framework that incorporates physical science data, i.e., temperature, salinity, pH, etc., to enhance the topographic map that the vehicle uses to navigate. In this navigation scheme, the bathymetric data are combined with the physical science data to enrich the uniqueness of the underlying terrain map and increase the accuracy of underwater localization. Another technique developed in this work addresses the problem of tracking an underwater vehicle when the GPS signal suddenly becomes unavailable. The methods include the whitening of the data to reveal the true statistical distance between datapoints and also incorporates physical science data to enhance the topographic map. Simulations were performed at Lake Nighthorse, Colorado, USA, between April 25th and May 2nd 2018 and at Big Fisherman\u27s Cove, Santa Catalina Island, California, USA, on July 13th and July 14th 2016. Different missions were executed on different environments (snow, rain and the presence of plumes). Results showed that these two methodologies for localization and tracking work for reference maps that had been recorded within a week and the accuracy on the average error in localization can be compared to the errors found when using GPS if the time in which the observations were taken are the same period of the day (morning, afternoon or night). The whitening of the data had positive results when compared to localizing without whitening

    Automated mapping of climatic variables using spatio-temporal geostatistical methods

    Get PDF
    Javno dostupni meteorološki podaci, kako sa stanica tako i iz daljinske detekcije, korišćeni su za prostorno vremensku interpolaciju temperature vazduha iznad površine Zemlje. Zastupljenost i pogodnost javno dostupnih podataka je ocenjena, kroz tri aspekta kontrole kvaliteta: (a) zastupljenost u geografskom i prostornom domenu, (b) zastupljenost u karaktestičnom prostoru (feature space; bazirano na MaxEnt metodi), kao i (c) pogodnost korišćenja podataka za prostorno-vremensku predikciju (na osnovu kros-validacije prostorno-vremnskog regresionog kriginga). Rezultati pokazuju da je kombinovani set podataka (GSOD i ECA&D) značajno klasteriran i u geografskom i u karakterističnom prostoru. Uprkos klasteriranju, preliminarni rezultati globalne interpolacije primenom prostorno-vremenskog regresionog kriginga koristeći merenja sa stanica i snimke daljinske detekcije su pokazali da se tako mogu dobiti precizne globalne karte dnevne temperature. Oko 9000 stanica kombinovanog seta podataka (GSOD i ECA&D) je korišćeno za prostorno-vremensko geostatističko modeliranje i predikciju dnevnih temperatura u rezoluciji 1 km, iznad površine Zemlje. Za predikciju srednjih, minimalnih i maksimalnih temperatura korišćen je regresioni kriging uz pomoćne prediktore: MODIS LST 8-dnevni snimci, topografski lejeri (DEM i TWI) i geometrijski temperaturni trend. Model i predikcija se odnose na 2011 godinu, ali ista metodologija bi se mogla primeniti od 2001 godine do danas (od kada su dostupni MODIS snimci). Rezultati pokazuju da je prosečna tačnost predikcije za srednju, minimalnu i maksimalnu temperaturu vazduha oko ±2°C za oblasti gusto pokrivene stanicama i između ±2°C i ±4°C za oblasti koje su slabo pokrivene stanicama. Najniža tačnost predikcije je dobijena u planinskim predelima i na Antartiku, oko 6°C. R softverski paket, meteo, je razvijen kao resenje za automatsko kartiranje. Razvijen je i paket plotGoogleMaps za automatsku vizuelizaciju na Web-u, koristeći Google Maps API.Publicly available global meteorological data sets, from ground stations and remote sensing, are used for spatio-temporal interpolation of air temperature data for global land areas. Publicly available data sets were assessed for representation and usability for global spatio-temporal analysis. Three aspects of data quality were considered: (a) representation in the geographical and temporal domains, (b) representation in the feature space (based on the MaxEnt method), and (c) usability i.e. fitness of use for spatio-temporal interpolation (based on cross-validation of spatio-temporal regression-kriging models). The results show that clustering of meteorological stations in the combined data set (GSOD and ECA&D) is significant in both geographical and feature space. Despite the geographical and feature space clustering, preliminary tested global spatio-temporal model using station observations and remote sensing images, shows this method can be used for accurate mapping of daily temperature. Around 9000 stations from merged GSOD and ECA&D daily meteorological data sets were used to build spatio-temporal geostatistical models and predict daily air temperature at ground resolution of 1 km for the global land mass. Predictions were made for the mean, maximum and minimum temperature using spatio-temporal regression-kriging with a time series of MODIS 8 day images, topographic layers (DEM and TWI) and a geometrical temperature trend as covariates. The model and predictions were built for the year 2011 only, but the same methodology can be extended for the whole range of the MODIS LST images (2001–today). The results show that the average accuracy for predicting mean, maximum and minimum daily temperatures is RMSE = ± 2°C for areas densely covered with stations, and between ± 2°C and ± 4°C for areas with lower station density. The lowest prediction accuracy was observed in highlands (> 1000 m) and in Antarctica with a RMSE around 6°C. Automated mapping framework is developed and implemented as R package meteo. Likewise, package plotGoogleMaps for automated visualisation on the Web, base on Google Maps API is developed

    Challenges in data-based geospatial modeling for environmental research and practice

    Full text link
    With the rise of electronic data, particularly Earth observation data, data-based geospatial modelling using machine learning (ML) has gained popularity in environmental research. Accurate geospatial predictions are vital for domain research based on ecosystem monitoring and quality assessment and for policy-making and action planning, considering effective management of natural resources. The accuracy and computation speed of ML has generally proved efficient. However, many questions have yet to be addressed to obtain precise and reproducible results suitable for further use in both research and practice. A better understanding of the ML concepts applicable to geospatial problems enhances the development of data science tools providing transparent information crucial for making decisions on global challenges such as biosphere degradation and climate change. This survey reviews common nuances in geospatial modelling, such as imbalanced data, spatial autocorrelation, prediction errors, model generalisation, domain specificity, and uncertainty estimation. We provide an overview of techniques and popular programming tools to overcome or account for the challenges. We also discuss prospects for geospatial Artificial Intelligence in environmental applications
    corecore