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Abstract 

1. Abstract 

Carbon fluxes at the site scale (-- 1km 2) are well quantified by continuous 

monitoring with eddy flux covariance instruments, whilst national to continental scale 

fluxes may be measured by tall towers or flask measurements. Quantification of carbon 

(C) budgets at the landscape or catchment scale is more problematic, and is generally 

achieved using process-based models as scaling tools. Such models require some metric 

of the exchange surface capability (e.g., Leaf Area Index, LAI) and a set of rate 

parameters for C processing. The net C exchange is then determined by driving the 

model with meteorological observations. Regional fields of parameters and drivers may 

be derived by upscaling site level measurements, constrained using Earth Observation 

(EO) data such as radiance derived vegetation indices and digital elevation models 

(DEMs). I explore issues of error and uncertainty when upscaling C model parameters 

and drivers, and the effect of these uncertainties on the final analysis of the carbon 

budget. Two study areas, with excellent research infrastructure, focus the research: a 

region of tundra in Arctic Sweden and a ponderosa pine stand in Oregon. I use 

geostatistical techniques to develop fields of LAI and meteorology, complete with error 

statistics, whilst the distributions of rate parameters for a C model are derived via the 

Ensemble Kalman filter (EnKF). I report that the use of DEM data can provide LAI 

fields with an r2  -50% greater than those derived from EO data alone. In particular I 

find strong relationships between LAI, elevation and topographic exposure. I explore 

the use of spatio-temporal geostatistics to improve meteorological fields, but report a 

better interpolation skill when temporal autocorrelations are ignored. I employ 

simulation techniques to propagate parameter and driver uncertainty through a simple 

carbon dynamics model, finding that variation in parameters has a much larger effect on 
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the uncertainty of the carbon budget (50%) than driver uncertainty (<10%). Whilst 

driver uncertainty is related to the quantity and spatio-temporal arrangement of the 

conditioning data, we find this result to be stable in cases of extreme data scarcity (max 

driver uncertainty <20%). The combined uncertainty in parameterisation and 

meteorology may result in a 53% uncertainty in total C uptake. I conclude that 

improved methods to constrain vegetation surface characteristics on the regional scale 

should take precedence over improvements to model drivers: It is likely that data 

assimilation of high quality EQ products may go some way to providing such constraint. 

00$ Luke Spadavecclua 	 -9- 
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2. Introduction 

In the past, carbon cycle research depended on site level experiments or 

observational studies of ecosystems to make local assertions about carbon budgets 

(Grace 2004). Typically these were based around micro-meteorological eddy flux 

covariance methods (Baldocchi et al. 1988, Grace et al. 1995a, Grace et al. 1995b, 

Moncrieff et al. 1997) at the stand to forest scale, or flask sampling giving information at 

the continental to global scale (Keeling et al. 1996a, Keeling et al. 1996b). Later attempts 

to formalise this knowledge for hypothesis testing led to increasing focus on modelling 

studies to understand ecosystem dynamics on a global scale and typically over long time 

periods via Dynamic Global Vegetation Models (DGVMs) (Woodward et al. 1995, Sitch 

et al. 2003). 

DGVMs are generally heuristic, and do not aim to match site level data 

accurately, but rather describe likely system behaviour in the event of various scenarios 

(e.g. IPCC 2007). As such, the system can be 'spun up', typically with synthetic 

meteorology generated within the model, to generate surface vegetation characteristics. 

This approach assumes an ecosystem in equilibrium, with vegetation settled at some 

'climax community', in accordance with Clement's view of succession and plant 

community structure (Clements 1916, 1936): Such notions of climax communities have 

been challenged, and 'non-equilibrium' concepts associated with Gleason (Gleason 

1927) are generally considered to be more appropriate at the regional scale. Large-scale 

models have been useful tools for predictions of future climate and vegetation states, 

and for exploring system behaviour under different sets of assumptions (Cox et al. 2000, 

Cramer et al. 2001), but have caveats due to the omission of key feedbacks; particularly 
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in terms of soil nutrient dynamics, e.g. the relationship between the decomposition rate 

of soil organic carbon and soil nitrogen availability (Henriksen and Breland 1999). 

More recently, modelling studies have focused on regional to catchment scale 

studies of the carbon balance (Running 1994, Williams et al. 2001). These models may 

be simpler in terms of the number of processes represented in the model structure, but 

tend to be better at matching site level observations over fairly short time periods (-3 

years). At the regional scale, these models are used as a scaling tool to implement 

knowledge gained at the site level to a larger region of interest. Interest in local 

ecosystem potential as C sinks and their behaviour in response to climatic variability is 

increasing, particularly with a view towards sequestration and climate change mitigation. 

Regional scale modelling presents a different set of challenges to global scale 

modelling: Local scale models must accurately reproduce the C fluxes observed at the 

site level, to provide both diagnostic and prognostic information on regional dynamics 

of C. Furthermore, at the regional scale, effects of micro-topography and vegetation 

surface heterogeneity which are irrelevant at the global scale have an appreciable effect 

on the C balance. As such the synthetic 'spin-up' methods employed in DGVMs are 

inappropriate; we therefore require a set of meteorological driving variables, and some 

conception of the vegetative surface at an appropriate scale to derive estimates of C 

dynamics. Typically we utilise a combination of site level observational data and earth 

observation (EO) products to parameterise the vegetation surface and derive fields of 

meteorological drivers. There are unavoidable errors inherent in the up/downscaling of 

observational data sources, which are often poorly quantified, or not considered in 

regional modelling studies (Fuentes et al. 2006). 

Quantification of errors is becoming increasingly important for C modelling. 

Current trends in research towards data assimilation (DA) and data fusion techniques 
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(e.g. Williams et al. 2005, Quaife et al. 2008) require some knowledge of model and data 

uncertainty, which are often difficult to quantify. DA techniques are the next logical step 

in the development of our understanding of the C cycle, as they allow the use of 

formalised knowledge in the form of a model to flag and correct aberrant observational 

data, whilst allowing better integration of site level and satellite derived ecological 

observations into such models in a way which optimally balances the errors of each. 

Such methods effectively bridge the gap between field ecologists and modellers, and 

provide a better analysis than either model or data alone (Maybeck 1979, Williams et al. 

2005). In order to achieve an unbiased estimate of the system state, DA requires an 

accurate estimate of model variability, without which the results may be highly 

questionable (Quaife et al. 2008). It is the goal of accurate model uncertainty analysis 

that motivates this thesis. 

Quantification of regional model errors is not only an academic exercise. 

Political decisions to achieve binding emission reduction targets (Kyoto protocol) 

through offsetting have led to a growing C trading market (Grace 2004); reflected in the 

recent restructuring of the National Environmental Research Councils (NERC) Earth 

observation centres to the National Centre for Earth Observation (NCEO), which has 

an objective towards developing commercial deliverables to customers from research. 

To be truly useful, such products must have some form of error quantification 

(Kennedy et al. 2008), and this is likely to be a profitable area of research in the future. 

In this thesis I aim to quantify and reduce the errors associated with the 

production of regionalised data sources for the parameterisation and driving of models. 

I employ geostatistical techniques to the problem of upscaling, which confer the 

considerable advantage of providing estimates of uncertainty to estimated fields. 

Furthermore, I aim to examine the effects of these errors on the state vector when 
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propagated through a simple carbon dynamics model (DALEC). Issues related to 

parameterisation of the vegetation surface are tackled in chapters 3 and 4, whilst issues 

related to the estimation of driver fields are addressed in chapters 5 to 6. An 

examination of error propagation is undertaken in chapter 6. 

Chapter three was published as a paper in Global Change Biology (Williams et al. 

2008), and aims to quantify the errors associated with upscaling leaf area index (LAI) 

from site level harvest data to the regional scale in an arctic tundra ecosystem. Correctly 

specifying LAI is critical to the quantification of the carbon balance (Sitch et al. 2003) 

because (along with foliar nitrogen content) it dictates the rate of exchange of mass and 

energy between the land and atmosphere by defining the total exchange surface. LAd 

can be inferred from EQ reflectance data via vegetation indices such as the Normalised 

Difference Vegetation Index (NDVI) (Lillesand et al. 2004). Issues of scale invariance 

for relationships of NDVI and LAI are explored. We found that for a relatively large 

range of spatial scales, the same relationship between LAT and NDVII held, with similar 

prediction error. However, we are only able to capture - 17% of the LAI variation with 

EQ data sources, indicating the use of EQ data alone may be insufficient to 

parameterise the vegetation surface in highly heterogeneous areas. This result motivated 

the chapter four, in which we attempted to find suitable topographic predictors of LAI 

to support or supplant the use of EQ data for vegetation surface parameterisation. 

Chapter four was submitted as a paper to the Journal of Ecology, and explores the 

spatial relationships between topography and variation in LAI in an arctic tundra 

ecosystem. We report significant scale dependent relationships between LAI, elevation 

and topographic position, indicating that at larger spatial scales LAI is constrained by 

elevation (perhaps due to temperature variation), whilst topographic exposure 

dominates the spatial patterns of vegetation at smaller scales. The effect of topographic 
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exposure on LAI is likely due to wind shear, and shelter effects on snow accumulation 

and melt. Geostatistical techniques were used to build simple spatially explicit models of 

LAI variation with relevant topographical characteristics, better replicating the observed 

vegetation characteristics than EQ sources (r2 - 30%). Future development in this area 

may integrate EQ derived NDVI and vegetation classifications with data on surface 

topography to provide more accurate LAI parameterisations complete with error 

statistics. 

Chapter five was submitted as a paper to Agricultural and Forest Meteorology, and 

aims to address the issue of spatio-temporal autocorrelation in meteorological data 

sources, and how this information can be potentially exploited to improve estimation of 

model driver fields for a moderately large region of central Oregon, USA. The paper 

also explores the effects of temporal aggregation on error magnitude and bias. We 

employ the product-sum representation of spatiotemporal covariance (Dc Cesare et al. 

2001) to meteorological upscaling problems for the first time. Interestingly, 

incorporation of temporal autocorrelation did not improve the accuracy of driver fields 

over utilisation of spatial data sources alone. However, we report that post hoc temporal 

aggregation of high-resolution estimates tends to reduce their bias and error. The likely 

consequences of this in terms of model error propagation are uncertain, as some model 

processes react instantaneously to driving variable, whilst others act as capacitors, 

integrating driver error over longer time periods. These results provide the motivation 

for chapter six. 

Chapter six is intended for submission to Global Change Biology, and aims to 

quantify and compare model uncertainties resultant from parameter and driver 

uncertainties respectively. The paper utilises DA techniques to parameterise a simple 

model of C dynamics for an intensive observation site at Metolius, central Oregon. 
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Parameters are derived via the Ensemble Kalman filter (ENKF) (Evensen 2003), to 

construct optimal parameter distributions. The variation in C fluxes due to parameter 

uncertainty is derived, and compared with the uncertainties resultant from 

meteorological driver uncertainty. Driver uncertainty is quantified using geostatistical 

simulation techniques (Sequential Gaussian Simulation, SGS) (Goovaerts 2001), 

whereby an ensemble of 1000 weather scenarios is produced. We also undertake a series 

of experiments to disaggregate the errors resultant from temperature and precipitation 

uncertainty. 

We find that parameter error dominates the total C sink strength uncertainty, 

despite the considerable uncertainties associated with upscaling meteorology. In order to 

assess the robustness of this conclusion we examine the effect of conditioning the 

simulated meteorology on increasingly remote sets of stations. We report that in cases 

of extreme data sparsity, conditioning the meteorology on stations over 100km from the 

study site, the effect parameter uncertainty still exceeds the effect of meteorological 

uncertainty on NEE by 50%. Disaggregation of the driver uncertainty reveals that 

temperature variability has a larger impact on total C sink uncertainty than precipitation. 

Interestingly we find that biases in simulated meteorological drivers appear to cancel out 

over model runs, although further research at other sites is needed to rule out the 

possibility of this occurring by chance. We conclude that producing reasonable 

parameterisations over the study area is of greater importance than reducing driver 

uncertainty. 

All geostatistical analyses presented in this thesis were conducted using a set of 

software tools developed specifically for this thesis. This set of software tools, the 

Edinbu,h Spatio-Temporal Geosi'atistics package is documented in chapter seven, which 

serves as a technical paper and manual for the software, and also provides an exposition 
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and justification of some of the modelling choices made in the thesis. The Fortran 90 

code is provided in the appendix in digital format. 
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3.1 Declaration 

The following chapter was submitted as a paper to Global Change Biology. 

Although the main body of the text is attributable to M. Williams, I contributed 

significantly to content of the paper. Specifically I collated and manipulated the EQ data 

and extracted the NDVT values to the sample locations. I analysed the relationship 

between the EQ (Landsat) dervided LAI and the ground observations, and calculated 

the semivariograms. I also implemented the geostatistical analysis used for the 

extrapolation sections of the paper. I provided the text for the sections entitled remote 

sensing (3.4.3) and geospatial methods (3.4.4). M. Williams produced all the figures, with the 

exception of Figure 3.9, which I produced. 
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3.2 Abstract 

Monitoring and understanding global change requires a detailed focus on 

upscaling, the process for extrapolating from the site-specific scale to the smallest scale 

resolved in regional or global models or earth observing systems. Leaf area index (LA1) 

is one of the most sensitive determinants of plant production and can vary by an order 

of magnitude over short distances. The landscape distribution of LAI is generally 

determined by remote sensing of surface reflectance (e.g. normalised difference 

vegetation index, NDVT) but the mismatch in scales between ground and satellite 

measurements complicates LAI upscaling. Here, we describe a series of measurements 

to quantify the spatial distribution of LAT in a sub-Arctic landscape and then describe 

the upscaling process and its associated errors. Working from a fine-scale harvest LAJ-

NDVT relationship, we collected NDVII data over a 500 x 500 in catchment in the 

Swedish Arctic, at resolutions from 0.2 - 9.0 m in a nested sampling design. NDVI 

scaled linearly, so that NDVI at any scale was a simple average of multiple NDVI 

measurements taken at finer scales. The LA]I-NDVT relationship was scale invariant 

from 1.5 - 9.0 in resolution. Thus, a single exponential LAT-NDVI relationship was 

valid at all these scales, with similar prediction errors. Vegetation patches were of a scale 

of —0.5 m, and at measurement scales coarser than this there was a sharp drop in LA! 

variance. Landsat NDVI data for the study catchment correlated significantly, but 

poorly, with ground based measurements. A variety of techniques were used to 

construct LA! maps, including interpolation by inverse distance weighting, ordinary 

Kriging, Kriging with an External Drift using Landsat data, and direct estimation from a 

Landsat NDVT-LAI calibration. All methods produced similar LA1 estimates and overall 

errors. However, Kriging approaches also generated maps of LA! estimation error 
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based on semi-variograms. The spatial variability of this arctic landscape was such that 

local measurements assimilated by Kriging approaches had a limited spatial influence. 

Over scales >50 m, interpolation error was of similar magnitude to the error in the 

Landsat NDVI calibration. The characterisation of LPd spatial error in this study is a 

key step towards developing spatio-temporal data assimilation systems for assessing C 

cycling in terrestrial ecosystems by combining models with field and remotely sensed 

data. 

3.3 Introduction 

Leaf area index (LAT) is a vegetation characteristic with a dominant role in 

controlling primary production, evapotranspiration, surface energy balance, and 

biogeochemical cycling. LPLT is thus a critical part of many global change studies, 

including those focussing on identifying recent changes in plant growth (Jia et al., 2006; 

Myneni et al., 1997) or interpreting measurements of net carbon fluxes from global 

networks (Owen et al., 2007). JAI is also a key variable in vegetation/biogeochemical 

models (Sitch et al., 2003) and land surface schemes in general circulation models 

(Essery et al., 2001), and its variation across space must be determined to improve 

model predictions. 

LAI can be highly heterogeneous. For instance, LAT in Arctic ecosystems can 

vary by an order of magnitude over landscapes (Williams & Rastetter, 1999) due to the 

patchiness of vegetation. The size of vegetation patches, and the range and statistical 

distribution of LAT in the landscape, are generally poorly recorded worldwide. The 

patchiness of ecosystem structure and function thus represents a major challenge in 
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upscaling LAI (Boelman et al., 2005; Williams et al., 2001). In the Arctic, changes in LAI 

are already occurring, and resulting in feedbacks to regional climate (Chapin et al., 2005). 

Upscaling can be defined as the process for extrapolating from the site-specific 

scale, at which direct observations are made, to the smallest scale resolved in regional or 

global models or earth observing systems (Harvey, 2000). Because the terrestrial 

biosphere is characterised by spatial heterogeneity and non-linear processes, it is 

important to determine whether the relationships determined at fine scales in field 

research are applicable directly at coarser scales. Without proper care, significant errors 

can be introduced in the upscaling process. 

Because LAI is related to the surface energy balance, satellite and airborne 

instruments provide a means to monitor LAT remotely (Tian et al., 2002). Remote 

sensing does not, however, measure LAT directly. Observations of surface reflectance 

(e.g. the normalized difference vegetation index (NDVT); the normalized ratio between 

the red and infrared bands) are generally calibrated against direct observations of LAT 

from field measurements (Boelman et al., 2003; Van Wijk & Williams, 2005). A 

particular source of error is caused by differences in spatial scale between remote 

observations and direct measurements (Woodcock & Strahler, 1987). Williams et ad. 

(2001) showed a poor correlation between LAI measured in destructive harvests in 

arctic tundra in 0.2 x 0.2 m quadrats versus ND\TI data from satellites at 1 km' 

resolution. 

Here, we describe a series of measurements to map and quantify the spatial 

distribution of LAI in a sub-Arctic landscape. Our overall objective is to test an 

upscaling approach so that uncertainty in landscape LAT can be directly determined. The 

landscape scale selected (500 x 500 m) is highly relevant as it represents the approximate 

scale of sampling by eddy flux instrumentation used to monitor C fluxes, and it is also 
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spans the scale of key earth observation sensors, such as Landsat ETM+ and MODIS. 

With a detailed knowledge of LAT at this scale it should be possible to interpret flux 

data and satellite information more effectively for global change research. 

In a microscale study (spatial resolutions from 0.2-9 m), determinations of hAT 

from harvests were linked to a series of scaled observations of NDVT collected with 

hand-held instruments. We tested the hypothesis (HI) that NDVT averaged linearly at 

resolutions from 0.2-9 m. If proven, this relationship simplifies up-scaling. We then 

tested the hypothesis (H2) that LAI-NDVT relationships were scale-invariant. Scale-

invariance means that an NDVT-LAT relationship developed at a fine scale can be 

applied at a coarser scale. We hypothesised (H3) that the range of LAT data estimated 

for a sample area would increase at finer sensor resolutions. We expected that the 

distribution of estimated LAT would be increasingly skewed at finer resolutions, because 

much of the Arctic land surface has low LAI values and is patchy at fine scales (Street et 

al., 2007; Williams & Rastetter, 1999). Any shift in the distribution of estimated LAT will 

have important implications for any process non-linearly associated with LAI. 

We then determined the capacity of satellite remote sensing approaches to 

retrieve information on spatial distribution of LAI. In a macroscale study (spatial 

resolutions from 10-500 m) overlaid on the microscale measurement area, we compared 

collocated ground-based estimates of NDVII (9 in resolution) to satellite data (30 m 

resolution). Our first objective was to test the quality of space-borne observations of 

NDVI. Our second objective was to construct maps of LAI using a variety of methods, 

including interpolation of ground data, direct application of calibrated remotely sensed 

data, and a combination of the two. We hypothesised (H4) that geostatistical 

interpolations of ground data combined through Kriging with remotely sensed NDVT 

Luke Spadavecchia 	 - 23 -  	 2008 



Upscaling LAI in Arctic Tundra 

data, would produce better maps than either interpolation or satellite-based approaches 

alone. 

There is an increasing interest in data assimilation approaches (Raupach et al., 

2005; Williams et al., 2005) for modelling studies, whereby models and multiple 

observations are combined to produce an analysis of a system with quantified 

confidence levels. For regional data assimilation, provision of estimation errors and their 

spatial structure is vital, so we generated maps of LAI estimation error. We conclude by 

discussing how studies of this type can guide the process of assimilating remote sensing 

observations into ecosystem C models. 

Previous studies have correlated ground measurements of LAd against satellite 

NDVT (Turner et al., 1999) in temperate and boreal ecosystems. But these studies have 

not taken explicit account of the difference in scales between satellite pixels and ground 

data collections, nor assessed NDVI at ground level for direct comparison to satellite 

data. Our study is novel in that, for the first time, a nested design has been used to 

upscale direct, harvest measurements of LAd to the landscape scale, with the same 

sensor approach (NDVI) employed at all scales from ground to satellite. This 

experimental design means it is possible to track the development of errors throughout 

the upscaling and properly quantify canopy heterogeneity. 

3.4 Methods 

3.4.1 The study area 

This study was carried in a 500 x 500 m area located within the sub-Arctic zone 

of Fennoscandia; an ecotone between taiga and tundra characterised by deciduous birch 

forests with low altitudinal tree lines, above which heath and mire communities 
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predominate (Callaghan & Karisson, 1996). The study area was located above the tree 

line near Abisko, Sweden (68° 18'N, 18° 50'E) at an average elevation of 580 m at the 

centre of a shallow valley draining northwards, hereafter known as the intensive valley 

(IV). At Abisko the average rainfall is 400 mm per annum and average temperatures are 

—1°C (Anderson et al., 1996). A stream running through the centre of the area was 

bordered by shrubby riparian vegetation characterised by Betula nana and Salix species. 

Elsewhere vegetation was dominated by a low heath characterised by Empetrum 

nigrum, with Betula nana growing in more sheltered dips. There were some scattered 

wooded areas characterised by Betula pubescens usually with a Vaccinium understory. 

3.4.2 Skye NDVI and LAI measurements 

Measurements were carried out at two scales within the IV. The 'microscale' 

study (testing H1-H3) focussed on detailed measurements within a 40 x 40 m area 

straddling the stream and foot-slopes of the IV. The 'macroscale' study (testing H4) 

involved estimates of NDVI from a 500 m x 500 m area spanning the upper slopes and 

valley floor of the IV, and including the microscale site at its centre (Figure 3.1). 

The microscale study involved measurements in nine 10 x 10 m plots laid out in 

a regular grid at 5 m spacing in the 40 m x 40 m domain, collected between the 10th and 

31" July, 2002 (Van Wijk & Williams, 2005). In each 10 x 10 m plot, direct harvest 

measurements of LAT (harvest LAI) were determined in nine 0.2 m x 0.2 m quadrats 

(Williams & Rastetter, 1999). A series of indirect LAI measurements were also obtained 

on each quadrat pre-harvest using (1) NDVI obtained with a Skye Instruments 2 

Channel Sensor SKRI800 (Skye Instruments, Powys, UK, channel I = 0.56-0.68 m, 

channel 2 = 0.725-1.1 Lm) with the diffuser off (Skye NDVT), and (2) a LI-COR LAJ-

2000 Canopy Analyzer (LI-COR, Lincoln, NE, USA), collecting one above and one 
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Figure 3.1 .The top panel shows the 500 x 500 m macroscale experimental design, and its 
approximate orientation. The circles show the locations and sampling area of 9 m 
resolution Skye NDVI observations. The filled circles indicate the location of the 
microscale study area. The bottom panel shows the nested multi-scale experimental 
design for one of the nine microscale 10 m x 10 m plots. The circles show the locations 
and approximate sampling area of Skye NDVI, with scales ranging from 0.2 m (smallest 
circles, n = 625) to -9 m (the largest circle, n = 1). LAI-2000 data were also collected at 
the points indicated by the smallest circles. Both figures have scales in m. 

Luke Spadavecchia 	 - 26 -  	 2008 



Upscaling LAI in Arctic Tundra 

Table 3.1: The design of multiscale NDVI measurements on 10  10 m microscale plots. 
Nine 10 m  10 m plots were sampled in this way. 

Measurement height (m) 	Area (m) 	Diameter (m) 	 N 

0 .9* 0.03 0.2 525 
0.5 1.77 1.5 100 

1.0 7.07 3.0 25 
1.5 15.9 4.5 9 
2.0 28.3 6.0 5 

3.0 63.6 9.0 1 

All units in meters 
* indicates the diffuser was not used, so field of view was reduced. 

Number of samples in aerial unit 

below-canopy measurement LAI-2000 LAI). The harvest LAJ data were used to 

calibrate the indirect sensors, see Van Wijk and Williams (2005) for full details. 

The spatial variability of LAT within the nine microscale plots was determined by 

performing paired LM-2000 and NDVI measurements, each giving an estimated 

resolution of 0.2 m, in each plot in a regular grid at 0.4 in intervals. 625 measurements 

for each instrument were collected in each plot, giving 5625 measurements at 0.2 m 

resolution for the microscale study. Harvest LAIs in the microscale study were closely 

related to Skye ND'VII values, but the best estimates of LAI were generated by 

combining information from co-located LAI-2000 and Skye NDVI data, with 

parameters estimated by maximum likelihood methods (Van Wijk & Williams, 2005). 

Besides estimating the NDVI at 0.2 m resolution on a regular grid of 0.4 m, we 

also estimated the Skye NDVT of larger surface areas on successively coarser grids 

(Figure 3.1). A diffuser cap extended the field-of-view of the Skye sensor to 113°, and 

the area of reflectance measurement was further increased by raising the sensor height 

using light-weight poles. The sensor heights, the area measured, the pixel resolution and 

the number of measurements taken at coarser scales are shown in Table 3.1. The 
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experimental design meant that measurements at a coarse resolution could be directly 

compared with multiple fine resolution data collected within the coarse pixel. 

The macroscale study was undertaken between the 14th  and 25th  of August, 2004. 

A 500 m x 500 m area was set up centred on the microscale 9tudy (Figure 3.1). The 

macroscale area was divided into one hundred 50 x 50 m plots on a 10 x 10 grid (Figure 

3.1). Sixteen of the 50 x 50 in plots were subdivided into nine 10 x 10 m intensive plots 

on a 3 x 3 grid with 5 m spacing to generate a nested sampling design with 228 plots. 

The central intensive 50 x 50 m plot corresponded with, and resampled, the microscale 

study of 2002. At the centre of each plot (whether 50 x 50 m, or 10 x 10 m) a Skye 

NDVT reading was recorded with the sensor suspended 3 m above the ground (Table 

3.1) with a nominal resolution of 9 m. The location of each plot centre was determined 

using GPS, with spatial error estimated at '6 m. Some plots had a covering of birch 

trees (>2 m tall) which precluded the use of the Skye sensor. These locations (n = 31) 

were excluded from the sampling analysis, so that the focus was purely on tundra 

vegetation in the remaining 197 macroscale plots. 

3.4.3 Remote sensing 

Remote sensing observations for the Abisko region were generated from 

Landsat 7 ETM+ data, with a nominal resolution of 30 m, collected from an overpass 

on 20 August 2001. The image belonged to the NASA's orthorectified data-set and was 

geo-referenced to a root-mean-square error (RMSE) of 50 m (Tucker et al., 2004). In 

order to confirm this claim and improve the accuracy, further geo-referencing was 

carried out using a 1:100,000 scale map belonging to the Lantmãteriet series. Twelve 

ground control points were used to give an image with a final RMSE of <35 m. We 

used bands I (red) and 4 (near infra-red) to determine Landsat NDVI. Landsat NDVI 
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values were then extracted by distance weighted averaging (Arclnfo software, ESRII, 

Redlands, USA) for each macroscale plot for comparison with Skye NDVI 

measurements and [AT estimates for these locations. 

Airborne remote sensing was undertaken using a helicopter, with the Skye 

NDVT sensor mounted externally on a boom. The macroscale area was located from the 

air using GPS, and the helicopter hovered over the centre of the study area at a height 

of 235 in above the ground surface. Given the field of view with the cosine diffuser, the 

ground resolution (i.e. diameter) of the single NDVT observations was —700 m. 

3.4.4 Geospatial methods 

To identify pattern in spatial measurements of the microscale and macroscale 

areas, and also the remote sensing data, we generated semi-variograms, a description of 

the spatial autocorrelation structure of the data (Cressie, 1993). For a stationary process, 

there is generally an increase in semivariance with increased separation vector, up to 

some threshold distance, referred to as the range. At separation distances greater than 

the range, the semivariance remains at a constant 'sill' value. The semivariance at zero 

separation is known as the nugget. 

We fitted an exponential model of semivariance 

g(h) =r +c(1_exPI_j-_)) 
	

(3.1) 

where t is the 'nugget' variance, c is the contribution of the exponential 

structure, and 4 is the effective range, interpreted as the distance at which g(h) reaches 

95% of the asymptotic 'sill' variance (r + c). The factor of 3 in the numerator solves for 
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Table 3.2. Testing different techniques of LAI extrapolation. All techniques used ground 
LAI estimates, but only some used Landsat NDVI data. Root-mean-square-error and 
mean absolute error of the jackknife test are shown. 

Technique Ground Landsat 	RMSE 	MAE 
LAI NDVI 

Inverse distance weighting (IDW) Yes no 	0.27 	0.21 

Linear correlation model (LCM) Yes yes 	0.28 	0.21 

Ordinary Kriging(OK) Yes no 0.28 0.21 

Kriging with external drift (KED) Yes yes 0.29 0.22 

effective range. The model was fit to the data by minimising the sum of squares 

differences. 

3.4.5 Generating LAI maps 

We used a variety of methods, from relatively simple to more complex, to 

generate maps of LAI for the macroscale area, using various combinations of ground 

and satellite observations (Table 3.2). Inverse distance weighting (IDW) makes use of 

estimates of LAI, derived from Skye NDVI, and information on their spatial 

arrangement. LAI values across the macroscale domain were generated through 

interpolation of the 197 macroscale plots, with weights determined according to 

distance. The linear correlation model (LCM) approach used the linear regression of 

Landsat NDVI (30 m resolution) against ground-based estimates of LAd (9 m 

resolution, from Skye NDVT data) for the same locations. The linear regression was 

then used to estimate LA! for all Landsat NDVI pixels over the intensive valley. 
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Kriging refers to a set of multiple linear regression procedures by which the best 

linear unbiased estimate of an unobserved datum value is arrived at by the weighted 

linear combination of surrounding observations, such that the prediction error is 

minimized (Goovaerts, 1999; Isaaks & Srivastava, 1990). The weights ascribed to each 

observation are arrived at by taking into consideration the clustering of the data 

locations (with points from over-sampled locations being down-weighted), and the 

proximity of each observation to the prediction location. These spatial effects are 

included via reference to the autocorrelation structure of the data set, as summarized by 

the semi-variogram. Ordinary Kriging (OK) involved generating an interpolated LAI 

map using ground based LPd data and their semi-variograms. An additional output from 

Kriging is a prediction of interpolation error, provided by the geostatistics of the semi-

variograms. 

More complex spatial regression models partition the. spatial information into a 

large-scale trend component, and a stationary, spatially autocorrelated residual 

component (i.e., non-stationary geostatistics). In Kriging with an External Drift (KED) 

we used a secondary covariate 'external' to the calculation of semivariance for our data 

as extra spatial information (Deutsch & Journel, 1998). Here we require that the 

variation of the secondary data, in this case Landsat NVDI data, be smoothly and 

linearly related to the local variable, the estimates of LAI. The covariate must be 

sampled at all observation and all prediction locations. The extra covariate informs the 

interpolation, so that the more spatially complete remote sensing observations improve 

interpolation skill. 

The interpolation skill of each technique was assessed by statistical resampling. 

The jackknife approach involved systematically recomputing the interpolations,  leaving 

out one observation at a time. The ability of the interpolation routine to predict the 
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missing observations can then be used to construct statistics, such as a RMSE and mean 

absolute error (MAE). 

3.5 Results 

3.5.1 Microscale study 

3.5.1.1 Mlcroscale NDVI 

The mean microscale site NDVI estimated by averaging 0.2 x 0.2 m NDVT 

observations was 0.68, and was identical at all scales from 1.5 - 9 m (Table 3.3), and 

very similar to the median values. The mean NDVT estimated for the same range of 

scales using individual, coarser samplings (Table 3.2) was slightly larger, 0.73, but also 

did not vary across the pixel resolution from 1.5 - 9 m (Table 3.3). Again, the median 

values were very similar (0.74). NDVT generated by averaging the finest resolution data 

(0.2 m) plotted against single observations at increasingly coarser resolution showed a 

strong linear relationship across the range of scales (Figure 3.2). The slopes and 

intercepts of the linear regressions fitted to the NDVI comparisons were very similar in 

all cases. 

3.5.1.11 Mlcroscale LA! 

The fine scale estimates of LAT (0.2 iii resolution), derived from co-located Skye NDVT 

and LAI-2000 observations, were aggregated at various scales (1.5 - 9.0 m resolution) 

and compared to corresponding single Skye ND\TI estimates at those scales (Figure 3.3). 

A simple exponential fit of NDVI-LAI using maximum likelihood approaches with an 

assessment of LAT estimation error (Van Wijk & Williams, 2005) was successful (i.e. 

acceptable parameter combinations were identified, P<0.05) at each scale of comparison 
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(Figure 3.3). This successful fit was in contrast to the case at 0.2 x 0.2 m reported in 

Van Wijk and Williams (2005), which required the combination of Skye NDVI and 

LAI-2000 	data 	to 	generate 	an 	acceptable 	estimation 	of LAT. 

The exponential fits are able to explain 80-94% of the variability in LAI from 

NDVT data. The parameters for the exponential relationships were similar across all 

scales (Figure 3.3). The RMSE of the LAI-NDVT relationships varied from 0.18 at 1.5 

m resolution to 0.08 at 9 m resolution (Figure 3.3). As the range of LAT and NDVI 

variability declined with coarsening resolution, linear fits became increasingly acceptable, 

although the exponential models were always better. 

The mean LAT for the microscale site generated using 0.2 m resolution data was 

0.69, and the median was 0.65. Both the NDVI data (Table 3.3) and the LAT estimates 

derived from NDVI and LAI-2000 (Figure 3.4) show decreasing ranges with spatial 

aggregation. At the finest scales, some sites had LAII values very close to zero, but the 

minimum LAT (L,,,) estimate increased linearly with resolution, (L = 0.0371 r = 

0.0108, where r is resolution in m, r 2  = 0.99, n = 6). The maximum LAT dropped 

sharply in the aggregation from 0.2 m (L,,, = 3.68) to 1.5 m (L = 1.75), but thereafter 

declined slowly. The distribution of LAII at 0.2 m resolution was highly skewed, but 

tended towards normality at coarser aggregations (Figure 3.4). 
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Table 3.3 Comparison of Skye NDVI generated across a range of scales in the microscale plots. At each pixel resolution, there are two methods 
for determination of NDVI, classified by whether the NDVI is the average of several fine-scale NDVI measurements (n>1), or is determined by a 
single measurement (n=1). The number of replicates (n') indicates the number of pixels at each resolution, which are then used to generate 
statistics of NDVI at different scales and generated with different numbers of observations (n), in the columns below. 

Resolution (m) 1.5 3 4.5 6 9 

Observations in pixel (n) 6 1 25 1 69 1 125 1 625 1 

Number of replicates (n) 900 225 81 45 9 

minimum 0.36 0.5 0.47 0.56 0.51 0.61 0.53 0.62 0.59 0.67 

median 0.69 0.75 0.69 0.74 0.68 0.73 0.68 0.73 0.68 0.74 

maximum 0.83 0.85 0.8 0.83 0.79 0.8 0.78 0.83 0.76 0.78 

mean 0.68 0.73 0.68 0.73 0.68 0.73 0.68 0.73 0.68 0.73 

standard deviation 0.08 0.061 0.07 0.054 0.062 0.047 0.055 0.046 0.052 0.04 

variance 0.0063 0.0037 0.0049 0.0029 0.0039 0.0022 0.0031 0.0021 0.0027 0.0015 

skew -0.95 -0.89 -0.72 -0.85 -0.55 -0.88 -0.29 -0.27 -0.29 -0.29 

kurtosis 3.73 3.62 3.15 3.42 3.06 3.21 2.74 2.52 2.3 1.75 
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Figure 3.2. Linear averaged Skye NDVIs (collected at 0.2 x 02 m resolution with diffuser 
off) versus measured NDVIs at coarser spatial scales with diffuser on. Linear regression 
equations and r2  values are shown. 
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Figure 3.3 Relationships between estimated LAI (using both Skye NDVI and LI-CaR LAI-
2000 observations at 0.2 m resolution, linearly averaged for upscaling) versus Skye NOVI 
at different spatial scales. Exponential model equations, R 2  and root mean square error 
are shown. 
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Figure 3.4. Frequency histograms for LAI estimates in the microscale site at a range of 
resolutions. LAI was derived from the calibrated NDVI and LAI-2000 relationship at 0.2 m 
resolution. The complete 5625 estimates are shown in the top left panel. In succeeding 
panels the data are aggregated into coarser pixels by linear averaging. 
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Figure 3.5. Semi-variogram for LAI in the microscale study. The plot demonstrates the 
increase in spatial variance with separation distance using all paired measurements from 
5625 LAI estimates (symbols). An exponential model (solid line) is fitted to the 
observations. The nugget variance is 0.03, the range for the first exponential model is 1.2 
m, and for the second is 8.0 m, where the sill is 0.19. 

3.5.1.111 Spatial autocorrelation 

There was clear spatial autocorrelation in the microscale estimates of LAT, as 

indicated in the semi-variogram (Figure 3.5). However, the autocorrelation dropped 

rapidly at distances beyond 1.2 m. A more gentle decline followed, with the sill value 

reached at 8 m. The discontinuity at the origin of the semi-variogram (the 'nugget') is a 

combination of noise and the interaction of the discrete nature of plants with the 

sampling scale. So the nugget represents a fundamental uncertainty in observed LAT. 

The nugget value of 0.03 suggested that the standard deviation on LAI uncertainty was 

0.17. 
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Figure 3.6. Histograms showing the variation in NDVI/LAI recorded in the macroscale 
study, at the 197 tundra sampling points (Figure 1). The panels show a comparison 
between Landsat ETM+ NDVI data (lower panel), NDVI recorded in the field at 9 m 
resolution (middle panel), and LAI (upper panel) estimated using the 9 m resolution data 
using the equation from Figure 3.3. 
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Figure 3.7. Semi-variograms for LAI and NDVI in the macroscale study of the intensive 
valley. The middle panel was generated from Skye NDVI, and the lower panel from 
associated estimates of LAI. The top panel was generated from Landsat NDVI for the 
same locations. Exponential models (solid lines) are fitted to the observations (symbols). 
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3.5.2 Macroscale study 

35.2.1 Macroscale NDVI and LA! 

The mean NDVT recorded across the 197 tundra sample locations at a 

resolution of 9 m was 0.75, close to the mean value of 0.73 recorded using the same 

sampling approach at the rnicroscale site (Table 3.3). The distribution of measured 

NDVI was skewed towards higher values (Figure 3.6). Using the relationship between 

LAI and NDVI generated using microscale data at 9 m resolution (Figure 3.3), LAT was 

estimated for all macroscale locations. The mean estimated LAII was 0.84 with a range 

from 0.14 to 1.60, and a distribution without skew (Figure 3.6), similar to the 

distributions of LAT determined at ~ 3.0 in resolution in the microscale study (Figure 

3.4). We tested deriving macroscale LAI estimates using the LAI-NDVT relationships 

from the other microscale resolutions, 1.5 - 6.0 m (Figure 3.3). The mean LAT (n = 197) 

using all relationships was 0.82, and the individual relationships differed from the mean 

by 1-7%, so there is little difference between the relationships. 

The NDVI estimated by airborne sampling of the entire macroscale area was 

0.74, close to the mean value of the macroscale field measurements. Using the upscaled 

NDVI-LAI relationship (Figure 3.3) resulted in estimate of LAI of 0.70 at 700 m 

resolution for the intensive valley, 17% less than the estimate summed from 9 in 

resolution ground data. This error is what might be expected, given the RMSE of the 

LAl-NDVI relationship from the microscale study. 
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Figure 3.8. A comparison across the macroscale area of the intensive valley of ground-
based NDVI using 9 m resolution measurements and LandSat NOVI measurements for the 
same locations. The line indicates the linear regression. 

3.5.2.11 Macroscale geostatistics 

Semi-variograms for the macroscale observations of LAT and NDVI in the 

intensive valley, and also the LandSat observations of NDVT for the same locations, 

indicated clear spatial autocorrelation (Figure 3.7). Pairs of data observations separated 

by <160 m showed clear autocorrelation in both analyses. The sill values (i.e. maximum 

semivariance) for the satellite NDVT analysis were larger than those for the ground-

based NDVI, and this was likely due to the effect of atmospheric interference and 

differences in viewing angle (Lillesand et al., 2003). The nugget value was 50% greater 

for the Skye NDVI than for the Landsat data, but the ground-based values require less 

U 
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extrapolation and thus are more trustworthy. The nugget on the macroscale semi-

variogram was the same as that determined on the microscale data, again indicating an 

uncertainty in LAI estimates of 0.17. At distances of 50 m, the standard deviation in 

LAT increased by >50% to 0.26. 

3.5.2.iii Satellite data 

The comparison of ground-based NDVTI with LandSat NDVI revealed a highly 

significant linear relationship (Figure 3.8, r 2 = 0.20, P < 0.0001). The intercept was not 

significantly different from zero (P = 0.446) but the slope of the relationship (0.55) was 

significantly different from one (P<0.001). A simple linear correlation model (LCM) 

between Landsat NDVI and ground-based LAT at the macroscale sites was developed 

(r2  = 0.17, LAI -0.004 + 2.1 NDVI, data not shown). The LCM predictions of LAT 

had an RMSE of 0.28 for the macroscale plots. Seii-variograms of NDVI from Skye 

and Landsat showed a very similar form (Figure 3.7), suggesting a detection of the same 

underlying spatial pattern. However, the frequency distribution of Landsat NDVI values 

was quite different to Skye NDVT measurements (Figure 3.6). The satellite data showed 

a peak in frequency towards the low end of the measurement range, while the ground 

data showed a peak towards the high end of the range. 

3.5.2.iv Extrapolation of LA! 

Extrapolation with the linear correlation model (LCM, Figure 3.9), inverse 

distance weighting (IDQ), ordinary Kriging (OK, not shown) and Kriging with an 

External Drift (KED,) generated maps with some clear commonalities, but also 

differences. All approaches predicted an increase in LAT towards the north of the IV, 

matching the local drop in elevation. There was a smoother LAI distribution with IDW 

and OK compared to LCM and KED. 
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Figure 3.9. Maps of LAI for the intensive valley for late August, using inverse distance 
weighting of ground-based NDVI data (upper left); a simple correlation model of ground-
based LAI versus Landsat NDVI data (upper right); Kriging of ground-based NDVI data 
with external drift from Landsat NDVI data (lower left). The variances of the Kriging 
estimates are shown in the lower right panel. Contour lines are overlaid on the pixels. The 
units of the axes are in kilometers, based on the UTM coordinate system. 

The four methods showed similar overall skill, as determined in the jackknifing 

of predicted LAI against LAJ estimates from Skye NDVT (Figure 3.9). These techniques 

make use of different data sets and assumptions, so this similarity is unexpected. The 

Kriging methods have the advantage of producing spatial error estimates, which clearly 

were minimised around ground sampling points, and maximised in areas with sparse 
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sampling (Figure 3.9, lower right panel). Some ground sampling points were missed out 

if there was tree cover, and this explains some of the largest concentrations of error. In 

Krigng the growth of error with distance from ground sampling points is determined 

by the semi-variograms (Figure 3.7). 

3.6 Discussion 

3.6.1 Comparing NDVI measurements across scales 

The microscale multi-resolution data were consistent with the hypothesis (HI) 

that NDVI averaged linearly at resolutions from 0.2-9 m (Figure 3.2). The coarse 

measurements of NDVT were slightly offset from the fine-scale averages, probably due 

to the presence of the cosine diffuser on the sensor during the coarse measurements. 

However, at all scales of averaging up to 9 m, the linear regression parameters were very 

similar. These sensor resolutions are estimates only, because the instrumental field of 

view does not have sharp boundaries, but rather a weighting towards 1130. 

Furthermore, there was some error associated with the location of each sensor reading, 

particularly those where the sensor was suspended over the land-surface at heights of 2 

or 3 m. The landscape is heterogeneous, with a highly skewed distribution in NDVI at 

fine (0.2 m) scales. Nevertheless, the results here show that single, coarse pixel 

measurements capture the mean properties of surface reflectance accurately. The lack of 

falsification for HI is a powerful support for the subsequent scaling exercises. 

3.6.2 Scale invariance in LAI-NDVI relationships 

In support of hypothesis (H2), we found that LAII-NDVT relationships were 

scale-invariant in the microscale study (Figure 3.3). At all resolutions, from 1.5 - 9 m, a 
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simple exponential relationship linked upscaled LAT with Skye NDVI measured directly 

at the relevant resolution. While these LAT-ND\7T relationships were all similar (in terms 

of parameters), they differed from the TAI-NDVI relationship at 0.2 rn (Van Wijk & 

Williams, 2005), because the 0.2 m resolution data were collected without a diffuser. 

More importantly, the coarse scale LAI-NDVI relationships were all stronger (0.80 < r 

>0.94) compared to the original study at 0.2 m (r 2  = 0.73) and outputs from the 

relationships differed by only a few percent. Further, maximum likelihood analyses (Van 

Wijk & Williams, 2005) undertaken on the data from this study indicated that the NDVI 

data alone were able to provide a satisfactory prediction of LAI at resolutions from 1.5 

- 9 m, which was not the case for 0.2 m resolution data. This improvement in the 

capabilities of NDVI as a predictor of LAI is likely to be due to the averaging of LAT 

values occurring at coarser resolutions. NDVI performed poorly in estimating higher 

LAI values at 0.2 m resolution, but maximum LAI dropped sharply with scale 

aggregation (Figure 3.4) so this problem was negated. 

The outcome of this hypothesis testing is that carefully calibrated LAT estimates 

developed at 0.2 m using destructive harvests have been used to develop a robust 

calibration of LAI-NDVT at a range of coarse resolutions which approach those typical 

of aircraft and satellite remote sensing. The error properties of the LAI-NDVT 

relationship are well characterised. As far as we know this study is the first to link direct 

measurements of canopy structure (i.e. LAT) at fine scales to remote sensing data with 

replication across scales spanning more than an order of magnitude. 

3.6.3 Spatial distribution of LAI 

We hypothesised (H3) that the range of LAII data estimated for a sample area 

would decline with a coarser sampling, and that the distribution of estimated LAI would 
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be increasingly skewed at finer measurement scales. We found clear shifts in probability 

density functions for LAT in the microscale study, with increasingly skewed distributions 

at finer scales (Figure 3.4). Spatial autocorrelation of LAT in the microscale study was 

greatest at <I m separation (Figure 3.5), indicating that 0.5 in was the approximate 

scale of vegetation patches. In accordance with this analysis, the greatest variation in 

ND\TI and LAT was at the finest scale of sampling (0.2 m), while the range of both 

ND\TI and LAM dropped rapidly at more aggregated scales. It is interesting that the LAI 

semi-variogram for the macroscale study has similar nugget values to the microscale 

semi-variogram, but sill values in the macroscale study are around half those in the 

microscale study. This comparison suggests that at coarser scales of measurement the 

variance of canopy characteristics declines as the values of extreme, small patches, are 

subsumed. 

The quality of autocorrelation statistics depends on the quality of the datasets 

used to generate them, so their results must be interpreted cautiously. We used very 

simple geostatistical models, taking no account of topography, which is likely to be an 

important factor in controlling the distribution of vegetation. 

3.6.4 Assessing LAI with satellite NDVI data 

Our first objective was to test the quality of space-borne observations of NDVT 

against ground data. The comparison of ground estimated LAI versus Landsat NDVT 

was poor (though significant), with relatively large prediction errors (Figure 3.8). It is 

possible that georeferencing errors have degraded the correlation in our study, but such 

errors are inherent in most satellite remote sensing studies. The comparison of 

histograms of Skye and Landsat NDVI (Figure 3.6) show that there are clear differences 

between the landscape signals, that are unlikely to be explained by spatial errors of '-P6 m 
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from the GPS. Other comparisons of Landsat NDVI versus LAT have shown similar, 

poor correlations for temperate and boreal ecosystems (Lee et al., 2004). A comparison 

of 1 km AVHRR NDVI versus LAT from tundra in the Alaskan arctic had a similar, 

weak correlation coefficient (Williams et al., 2001). Lee et al. (2004) concluded that 

satellite NDVT was generally not sensitive to LAI. Our ground based studies have 

shown that this is not the case, because Skye NDVT was highly sensitive to LAI. There 

was a poor correlation between Skye NDVI and Landsat NDVI data, and so it seems 

that errors in the satellite data cause the relationship observed at ground level to break 

down. 

The poor Skye versus Landsat NDVI correlation and large offset of the satellite 

data reflects several uncertainties. Firstly, there were georeferencing errors in both the 

ground-based and satellite data. We explored these errors by introducing 7 m buffer 

zones into the ground data locations, corresponding to the GPS error. For the buffer 

zone around each Skye NDVI measurement, we determined the mean NDVT of all 

underlying Landsat pixels. The result .was only a small improvement in the NDVI-

NDVT correlation coefficient (data not shown) suggesting that small uncertainties in the 

handheld GPS and spatial uncertainty introduced by raising the sensor height were not 

the cause of the poor relationship. Secondly there were errors related to the temporal 

offset in NDVT collection. The Landsat data were from late August 2001, and the 

macroscale data were collected in late August 2004. Phenological differences between 

years are possible. Finally, there were errors introduced by differences between sensor 

optics, atmospheric attenuation of signals, and local illumination conditions (Alter-

Gartenberg et al., 2002) to be considered. Atmospheric correction of the reflectance 

data could improve the estimate of NDVT, but the required atmospheric data were not 

available. Future studies should combine ground-based and airborne remote sensing 
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with the necessary atmospheric transmissivity information to reduce uncertainties in 

NDVT/LAI estimation at larger spatial scales. 

3.6.5 Maps of LAI, and estimation errors 

Our second objective was to generate maps of LAI across the macroscale site, 

using a variety of approaches with remote sensing data and geostatistics. We 

hypothesised (H4) that geostatistical interpolations of ground data combined with 

remotely sensed NDVT data, through Kriging, would produce better maps than either 

interpolation or satellite-based approaches alone, but our results showed this was not 

clear cut. All four approaches produced roughly the same level of mean estimation error 

(Figure 3.9). We found that ground-based NDVI data were excellent at generating local 

LAI estimates, with mean estimation errors of typically 0.08-0.17. However, spatial 

autocorrelation dropped rapidly with increasing separation, so that at <50 m separation 

LAJ errors were typically '-0.3. The linear correlation model between Landsat NDVI 

and ground estimates of LPJ had an RMSE of 0.28. The similarity in magnitude of the 

spatial error and the Landsat calibration error accounts for the similarity in prediction 

capability across the macroscale area. Of course, around the ground measurement 

locations the prediction error was smaller, and so methods like Kriging have the 

advantage of reducing prediction error wherever extra data are available (Figure 3.9), but 

the spatial variability of this arctic landscape is such that local measurements have a 

limited spatial influence. 

3.6.6 Spatial data assimilation 

The assimilation of multiple data sources requires a careful determination of 

data error, so that data can be suitably weighted to produce an analysis. Data 

assimilation (DA) approaches are now being used commonly in ecological research to 
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generate state estimates, by combining process information with multiple data series 

(Raupach et al., 2005; Williams et al., 2005). These techniques are now being used to 

assimilate remote sensing data sequentially into ecosystem models (Quaife et al., in 

press). For such time-series DA approaches to be applied across regions or globally, 

spatial assimilation approaches such as Kriging become important tools for generating 

estimates of initial conditions in state variables, and for generating spatial errors. There 

is an urgent need to develop a closely coupled spatio-temporal assimilation system. This 

system would combine the strengths of time-series analysis with geostatistical 

approaches, to simulate ecological processes, and more effectively link networks of field 

sites - with high resolution process data - with global, repeated reflectance data from 

Earth Observation systems. 

3.7 Conclusions 

With multiple nested reflectance measurements on an Arctic tundra, we showed 

that NDVT scaled linearly with increasing spatial grain, and that the LAI-NDVI 

relationship was scale invariant from 1.5 - 9.0 m resolution. Thus, a single exponential 

LAT-NDVT relationship was valid at all scales, with similar prediction errors. An analysis 

of semi-variograms showed that vegetation patches were of a scale of -0.5 m, and at 

measurement scales coarser than this there was a sharp drop in LAI variance. Landsat 

NDVI data for the study catchment correlated significantly, but weakly, with ground 

based NDVI measurements. A variety of techniques were used to construct LAI maps 

across the catchment, including interpolation by inverse distance weighting, ordinary 

Kriging, and Kriging with an External Drift using Landsat data, and direct estimation 

from the Landsat NDVI-LAI calibration. All four methods produced similar estimates 
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of LAI and errors of similar magnitude. The Kriging approaches also generated maps of 

LAJ estimation error based on semi-variograms. The spatial variability of this arctic 

landscape was such that local measurements assimilated by Kriging approaches had a 

limited spatial influence. Over scales >50 m interpolation error was of similar magnitude 

to the uncertainty in the Landsat NDVT calibration to LAJ. The characterisation of LAT 

error in this study is a key step towards developing spatio-temporal data assimilation 

systems for assessing C cycling in Arctic ecosystems from combining models, field and 

remotely sensed data sources. 
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4.1 Declaration 

The following chapter was submitted to the Journal of Ecology. The data was 

collected by R. Bell, L. Street and Mark Van Wijk. M. Williams organised the field study 

and devised the experiments, whilst B. Huntley organised the aircraft flight which 

carried the LIDAR instrument used to produce the macroscale DEM: Ana Prieto-

Blanco and Mathias Disney processed the raw LIDAR data, although subsequent 

analysis to produce the macroscale DEM was undertaken by me. P. Stoy provided the 

calculations for Compound Topographic Index (CTI), and conducted much of the 

georeferencing of the various data sets, although I took an active role in both of these 

tasks. I wrote the body text of the chapter, although M. Williams and P. Stoy provided 

comments and editorial changes. Otherwise, I undertook all of the reported analyses. 

The discussion of this chapter interprets the macro-scale elevation gradient in 

LAI is likely being related to temperature: This is unlikely given the small range in 

sampled elevation; in the published version of this paper (Spadavecchia et al. 2008. 

'Topographic controls on the leaf area index and plant functional type of a tundra 

ecosystem'. Journal of Ecology 96(6): 1238-1251) we correct this statement, attributing 

the LAI elevation gradient to interactions with snow accumulation and freeze/thaw 

timing. 
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4.2 Abstract 

Leaf area index (LAI) is an emergent property of vascular plants closely linked 

to primary production and surface energy balance, which can vary by an order of 

magnitude among Arctic tundra communities. We examined topographic controls on 

LAI distribution on the scales of tenths of metres ('microscale') and tens of metres 

('macroscale') in an Arctic ecosystem in northern Sweden. Exposure was the most 

significant topographic control on LAI at the microscale, while on the macroscale the 

dominant explanatory variable was elevation, which explained - 12%  of the total LAI 

variation. Across all scale lengths compound topographic index (related to surface 

drainage) failed to account for the observed spatial relationships in LAT. Similarly, 

potential insolation (determined from slope and aspect) failed to account for the 

observed patterns of LAI at the microscale, although a small spatial interaction effect 

was observed on the macroscale. The distribution of plant communities was strongly 

associated with topography, imposing a clear structure on LAI. Shrub communities, 

dominated by Beta/a nana, were associated with low elevation sites, while more exposed 

high elevation sites were dominated by cryptogam communities. Topographic 

parameters accounted for 32% of the variation in LAI at the macroscale, and 16% at the 

rnicroscale. The large degree of autocorrelated latency in the data suggests that residual 

variation in LAI may be accounted for by edaphic constraints and/or facilitation 

amongst plant species. Our results suggest that topographic data can be combined with 

co-registered remotely sensed reflectance data to generate improved maps of spatial 

LAT. 
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4.3 Introduction 

The recent rate of warming in the Arctic has been two to three times the global 

average rate (Kattsov et al. 2005, 2007), enhanced by the snow-albedo feedback (Camp 

and Tung 2007), and is likely to be exacerbated in the future by a vegetation-albedo 

feedback (Chapin et al. 2005). Warming is likely to result in significant changes in the 

distribution and structure of Arctic vegetation, with implications for the global carbon 

cycle and climate (ACIA 2005). Quantifying the present distribution of vegetation and 

its physical and biological determinants is thus a critical step towards improving 

understanding the controls on Arctic vegetation distribution in the present and for a 

more robust understanding of how it may change in the future. 

Leaf area index (LA1) is an emergent property of vascular plants, strongly linked 

to primary production, evapotranspiration, surface energy balance and biogeochemical 

cycling (Williams et al. 2001, Shaver et al. 2007, Street et al. 2007). However, 

uncertainty in the temporal and spatial distribution of LAI (Williams and Rastetter 1999, 

van Wijk et al. 2005) limits efforts to predict Arctic photosynthesis and C cycling at 

multiple spatial scales (Williams et al. 2001). Asner et al (2003) found that spatial LAI 

variability in the Arctic was higher than in any of the other 15 biomes investigated. It is 

therefore necessary to improve understanding of the spatial distribution of Arctic LAI 

to estimate reliably the effects of climate change on tundra ecosystem processes. 

Some aspects of the relationship between topography and vegetation 

distribution in Arctic ecosystems have been well established. Walker and Walker (1996) 

noted a consistent shift in vegetation community composition from riparian shrub to 

cryptogam with increasing distance to streams. Darmody et al. (2004) described 

variability in vegetation community type with respect to topographic position, 
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highlighting the role of elevation, exposure and hydrology in controlling plant 

community distribution in Arctic montane regions. Despite this research on the 

community level, fewer studies have considered Arctic LAI distribution and its controls 

on different spatial scales, for studies of ecosystem physiology and functioning (Williams 

& Rastetter 1999). 

From these studies and others we can identify six broad controls on plant 

distribution and development that determine spatial patterns of LAI in Arctic 

ecosystems that can lead to testable hypotheses: (1) snow cover, through its impacts 

upon effective growing season length and winter soil temperature, as well as by 

redistributing energy and nutrients during snow melt; (2) climate, through the effects of 

temperature, insolation and exposure on plant development; (3) hydrology, through the 

effects of soil moisture; (4) biodiversity, determining the species pool; (5) soil/substrate 

variability, determining nutrient status and drainage characteristics; and (6) disturbance 

and site history, including the effects of ecosystem management. 

The first three controls are broadly related to topography and form the focus of 

this study. Here we examine four related hypotheses to test the relative importance of 

topographical controls on LAI distribution in a tundra ecosystem; that the primary 

constraint on LAI distribution is through estimated landscape soil moisture (HI), 

topographic exposure (142), potential insolation, (H3) or topographic parameters like 

elevation, slope and aspect (144). 

The relationships between topographic variables and LAI may vary with scale. 

For instance, insolation and exposure are likely to vary strongly with micro-topography 

(vertical scale on the order of tenths of metres), whereas air temperature is most likely to 

vary with macro-topographical changes in altitude on the order of tens to hundreds of 

metres. Hydrological variability may be important across a range of scales, from 
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hummocks to hill slopes. There are close links among the controls, which complicates 

attribution. For instance, soil conditions affect hydrology (Darmody et al 2004). Plants 

can also act to modify snow-cover, soils and micro-climate, and the role of facilitation, 

competition and adjacency may be another important spatial control (Callaway et al. 

2002). 

Spatial arrangement at any scale length is likely determined by a different set of 

controls. Thus, we tested the hypotheses at two different scales, defined by the 

horizontal resolution or "grain" of the LAI data. The first scale test was with 0.2 m 

horizontal resolution LAI data within a 40 x 40 m "microscale" area, and the second 

was with '-10 m resolution LAI data within a 500 x 500 m "macroscale" area. Detailed 

digital elevation maps were available at both scales with appropriate resolutions. 

Vegetation community information was collected at the macroscale allowing us to 

investigate the role of species assemblages on LAI distribution (Williams and Rastetter 

1999). 

This study is novel in that it uses a uniquely detailed dataset, on plant 

community distribution, vegetation structure (i.e. LAI) and topography, to investigate 

vegetation-environment interactions. The data were collected at two resolutions, 

allowing the influence of scale to be properly determined for the first time in Arctic 

tundra. We use contemporary statistical techniques that quantify spatial autocorrelation 

for appropriate fitting of geostatistical models, and demonstrate improvements in model 

selection by employing maximum likelihood (ML) techniques after first demonstrating 

the predictions from ordinary least squares (OLS). An additional goal of the paper is to 

demonstrate how topographic data can be used to improve landscape mapping of LAI, 

that is currently undertaken using remote sensing of land surface reflectance (Raynolds 

et al. 2006). 
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Figure 4.1 Digital elevation model of study site near Abisko, Sweden. The area in the left 
pane is the extent of the macroscale' data set The sample locations of the 'microscale' 
data set (van Wijk and Williams 2005) displayed in the right pane, are not shown, as their 
density (40 cm grid) would obscure the contours. The coordinates are in meters (UTM 
projection). 

4.4 Methods 

4.4.1 Study Site 

The study site was located in the sub-Arctic zone of Fennoscandia, in Swedish 

Lapland, centred on 68 0 18'54" N, 18°50'58" E, a few kilometres south of the Abisko 

Research Station. The site, hereafter referred to as the Abisko 'intensive valley' site (IV, 

see Williams et al. in review), lies within a small (1 ha) catchment in a transition zone 

that intersects the local tree line. The IV has a gentle (5%) slope from south to north 

with an average elevation of 580m. A stream runs through the centre of the area. The 

Abisko weather station records an average rainfall of 300-400 mm per annum and an 

average temperature of —1°C (ASRS 2007). The hill slope surrounding the IV was 

characterised by mesoscale topographic features reflecting an extensive cover of glacial 

and fluvioglacial deposits, with hummocks and depressions at higher spatial frequencies 

on the order of several metres (Sonesson et al. 1975). The vegetation of the IV was 
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characterized by shrub tundra at lower elevations, above which Empetrum heath 

communities predominate (Karisson and Callaghan 1996). 

4.4.2 Vegetation Description 

A number of distinct vegetation types were observed in the IV, referred to 

throughout the paper as willow, dwarf birch, heath, moss, graminoid and fell field 

communities. The willow assemblage was a shrubby riparian community dominated by 

grey-leaved Salix spp. with a Betula nana understorey. Dwarf birch was a community 

dominated by Betula nana, with E. nigrum and to a lesser extent Vaccinium vitis-idea. The 

heath community comprised the same species as observed in the dwarf birch 

community, but was lower-growing and dominated by B. nigrum. Moss refers to a 

community typified by Sphagnum spp. and characterised by the presence of Rubus 

chamaemorus, among other herb and graminoid species. The graminoid communities were 

assemblages of Carex or Eriophorum spp., and were associated with moist sites. The fell 

field community was associated with ridges and hummock tops, comprising of a patchy 

(typically < 25% ground cover) cryptogam community predominantly of lichens, and a 

few mosses, interspersed with B. nana, E. nigrum, stones and gravel. 

4.4.3 LAI Measurements 

Measurements of LAI were conducted on a nested sampling grid at two spatial 

scales in the IV (Figure 4.1) during the Arctic growing season. All location 

measurements were made in the Universal Transverse Mercator (UTM) projection; zone 

34 North, WGS 1984 datum. 

Microscale measurements were collected from 1O'-31' July 2002 within a 40 m 

by 40 m area centred on the stream in the foot slopes of the IV. The microscale 

measurements were made in nine 10 m x 10 m plots laid out on a 3 x 3 grid, with 5 m 
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spacing between each plot (Figure 4.1). Within each of the nine microscale plots, 

indirect LAI measurements at a nominal resolution of 0.2 m were obtained using (1) 

NDVI obtained with a Skye Instruments 2 Channel Sensor SKRI 800 (Skye 

Instruments, Powys, UK, channel I = 0.56-0.68 pm, channel 2 = 0.725-1.1 im) with the 

diffuser off, held 0.9 m above the ground (referred to hereafter as 'Skye NDVT'); and (2) 

a LI-COR LAI-2000 Canopy Analyzer (LI-COR, Lincoln, NE, USA), collecting one 

above- and one below-canopy measurement (referred to as 'LAI-2000 LAI'). The paired 

LAI-2000 and NDVI measurements were conducted on a regular grid at 0.4 m intervals 

for each plot, giving a total of 5625 measurements. Subsequently, nine destructive 

harvest measurements of vascular plant LAI were taken for each microscale plot, and 

were used to calibrate the indirect sensors (n = 81), see van Wijk and Williams (2005) 

for full details. 

Macroscale measurements were collected on 14th25th August 2004, in a 500 m x 

500 m area encompassing the microscale area. The macroscale area was subdivided into 

one hundred 50 m x 50 m plots. Sixteen of these plots were further subdivided into nine 

intensive 10 m x 10 m plots, giving 228 measurement locations (Figure 4.1). The central 

intensive plot corresponded with and re-sampled the microscale area. At the centre of 

each of the macroscale sampling points, an NDVI measurement was made using the 

Skye sensor with its diffuser on, suspended at 3 m above ground level, resulting in a 

nominal resolution of —'9 m in diameter. Macroscale measurements of LAI were 

obtained using the calibration developed from the microscale data (van Wijk and 

Williams 2005), with a detailed recalibration to account for change of sensor resolution 

using multi-scale nested NDVI measurements (Williams et al. in review). The location 

of each plot was determined to an accuracy of ±6 m using a handheld GPS (Garmin e-

trex). Some plots (n = 31) had a covering of birch trees over 2 m tall. It was not possible 
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to sample ND\1T effectively with the suspended Skye sensor for these plots, so they 

were excluded from all subsequent analysis. We consider only the remaining 197 tundra 

vegetation plots in this study. 

4.4.4 Digital Elevation Model 

A digital elevation model was produced for the microscale site by manually 

surveying each of the 5625 sample locations with a level and a survey pole to record the 

level of the soil surface, as referenced to the lowest point in the plot, which was set to 

zero. These points were interpolated using inverse distance weighting (ID in Arclnfo 

(ESRI, Redlands, California) to produce a continuous surface. 

The macroscale DEM was produced from airborne LIDAR data collected by a 

NERC aircraft flight in July 2005 using an Optech Airborne Laser Terrain Mapper 3033 

(Optech Inc., Vaughan, Ontario, Canada). The generated point cloud was gridded at 4 

m resolution, using minimum values of the last return pulse. Missing data values were 

interpolated using IDW, and standard pit removal procedures were undertaken in 

Arclnfo. 

For both microscale and macroscale data, a series of topographic indices were 

generated related to slope, aspect, and surface curvature from the DEMs, by taking 

quadratic approximations to the first and second differentials of the surface (Evans 

1980). The slope was simply the first differential of the elevation surface, whilst 

curvature was given  by the Laplacian of the DEM. Aspect was derived from directional 

estimates of surface gradient (Zevenbergen and Thorne 1987). 
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4.4.5 Terrain Indices 

The compound topographic index (CTI) was developed to summarize landscape 

level soil moisture (Beven 1977). CTI was calculated from surface drainage 

characteristics of the DEM, namely the upsiope area (A,) and local slope ()9) (equation 

4.1). A, was estimated in Arclnfo by using slope and aspect to estimate how many 

upstream pixels drained into a candidate pixel (Burrough et al. 1998). Higher scores are 

associated with moist sites. 

CTI = ln(A, /tan()) 
	

(4.1) 

For exposure, Toposcale 1.2 AML (Zimmerman 1999) for Arclnfo was used to 

estimate the TOPEX (Pyatt 1969, Wilson 1987) index. TOPEX scores are developed 

from the difference between average elevation of a search window and the elevation at 

the central pixel of the window. The process was repeated at a number of increasing 

search radii, and the final TOPEX estimate is achieved by hierarchical integration over 

all scales (Zimmerman 1999). A high score indicates exposed positions, whilst negative 

scores indicate shelter. Although the scores are based on surface elevation, and 

therefore ignore the impact of vegetation, vegetation height in the region was typically 

only —'180 mm: Whilst trees may act as shelter belts, large specimens infrequent in the 

Iv. 

Potential incoming shortwave radiation was calculated over the growing season 

(mid-May to mid-September), using the Shortwave AML (Kumar et al. 1997) for 

Arclnfo. The model calculates the solar geometry for each time step (30 minutes), 

taking into account the instantaneous terrain effects (slope and aspect). Shadows are 

projected on the surface at each time step, so terrain adjacency issues are also accounted 
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for (Kumar et al. 1997). Edge effects were avoided by extending the DEM beyond the 

LAI data extent. 

4.4.6 Data transformation and model testing 

Prior to analysis we ensured that the pooled LAI data approximated a normal 

distribution using a Box-Cox transform (Box and Cox 1964). The Box-Cox transform 

(Y) of a variable Y is given by equation 4.2. The power parameter A was estimated by 

maximum likelihood methods. 

1, _(yA)/) 	
(4.2) 

For much of the analysis ordinary least squares (OLS) regressions were fitted to 

the transformed data (LAI) to assess the significance of the derived terrain indices and 

models. 

4.4.7 Ordination Methods 

Due to the large data set used for the microscale analysis, some degree of data 

thinning was required for practical hypothesis testing. Topographic variables were 

selected on the basis of ordination, initially partitioning the parameter space using a 

regression tree (Breiman 1984). The regression tree method selects variables that are 

best able to classify the response (LA1) into distinct clusters in parameter space. The 

process proceeds by forward selection (binary recursive partitioning), splitting the data 

set using the predictor variable that explains the maximum amount of the remaining 

deviance in the response variable. The process results in a series of splitting rules, by 

which parameter space can be partitioned into ordered categories of LAI. 
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Trends in the parameter space were examined by principal components analysis 

(PCA) (Pearson 1901, Hotelling 1933). PCA re-projects the original parameter space 

onto an orthogonal coordinate system of principle axes, maximising the proportion of 

the variation in the parameter space represented by the first few dimensions. The new 

variables created by the rotation are referred to as principal components (PCs). By 

examining the first three PCs on Gabriel hi-plots (Gabriel 1971), we searched for 

clusters of parameters that were well associated with LAI. 

4.4.8 Statistics to Measure Spatial Dependency 

In order to assess the validity of OLS, we tested for autocorrelation in LAI 

using Moran's I statistic (Moran 1950). Moran's I tests for significant correlation in 

neighbouring points, controlled for the overall variance in the data set. Ansein (1995) 

extended the concept of Moran's I to a local indicator of spatial autocorrelation (LISA). 

We utilized LISA analysis to find clusters of high and low LAI values in the microscale 

data. 

Semivariograms (Cressie 1991) were used to quantify the spatial autocorrelation 

structure of the data. We expressed the semivariogram in terms of a spatially continuous 

model to conveniently quantify spatial dependence in the data. A set of basic models 

which are known to be permissible were used (Christakos 1984, Mcbratney and Webster 

1986), being the spherical and exponential functions. Spatial variation was characterised 

by the range () over which autocorrelation was observed, and a 'nugget' ( noise 

parameter at zero separation. 
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4.4.9 Spatial Regression Models 

In the presence of significant spatial autocorrelation, OLS regression was 

deemed unsuitable. We implemented spatial lattice models using maximum likelihood 

(ML) methods. Spatial lattice models are designed for data sampled on a grid, and 

include the effects of spatial autocorrelation by incorporating information on sample 

adjacency when fitting regressions. Adjacency was quantified using the sphere of 

influence (SOl) method Uaromczyk and Toussaint 1992). 

Three lattice-type models were applied to the macroscale data: lagged-response, 

lagged-error, and spatial Durbin models (Haining 2003). The lagged-response model 

was identical to a regular linear regression, except that the neighbouring values of LAI, 

were also used in the prediction. Lagged-error models differ from OLS models by 

altering the error term to reflect the spatial dependence, by incorporating information 

about the magnitude of residuals in neighbouring points. The spatial Durbin model was 

the most complex model fitted, and incorporates a spatially lagged response, along with 

spatially lagged predictors, i.e. neighbourhood effects for all topographic variables 

tested, and an LAI, autocorrelation term p. Details of these models can be found in the 

Appendix. 

Lattice models were not feasible for the microscale data, due to computational 

restrictions on the 5625 data points. Instead we fitted spatial analysis of covariance 

(ANCOVA) models on a continuous spatial metric. A mixed effects type model was 

developed to test differences in selected topographic covariates between high and low 

LAI clusters, as identified from a LISA cluster analysis. The ANCOVA was fitted by 

ML methods, with two additional parameters (z ) to describe the spatial error 

Luke SpadavecchIa 	 -67- 	 2008 



Topographic Controls on LA! in Arctic Tundra 

structure, as defined by the semivariogram. All statistical analyses were carried out in R 

version 2.4.1 (R Foundation for Statistical Computing, Vienna, Austria). 

4.5 Results 

The microscale LAI data were heavily skewed, with most values between 0-1, 

but some values up to —3 (Williams et al, in review). The macroscale data were more 

normally distributed, because of averaging occurring at a resolution of 9 m (Williams et 

a!, in review). A Box-Cox transformation resulted in a normal distribution for all data, 

and a constant was added to the transformed LAI data to make them strictly positive. 

The maximum likelihood estimate of transformation parameter A was 0.4. Unless 

otherwise stated, all analyses were undertaken using the transformed variable, LAI,. 

4.5.1 Microscale analysis 

The median untransformed LAI of the microscale data was 0.9, ranging from 

0.1 to 3.6. Elevation ranged from 615 - 618 m, with a mean of 616.6 m. Slopes were 

generally moderate, with 74% of all observations < 100, although steep inclines were 

observed, with a maximum of 39°. Slopes were generally on a north-westerly aspect, 

with 31% of all slopes facing north, 23% facing east, 14% facing south, and 32% facing 

west. Surface curvature was generally convex, with a mean curvature of 6 and a mean 

TOPEX of 3. TOPEX was approximately normally distributed, with a standard 

deviation of 68, and a range of -297 - 274. CTI was generally above zero, with a mean 

of 2 and a maximum of 15. PT ranged from 10-25 MJ m 2  day1 , with a median of 20 MJ 

M' day'. Histograms of the derived terrain indices are provided in Figure 4.2. 
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Figure 4.2 Histograms of DEM derived terrain indices. The top row summarizes the microscale data, whilst the bottom row contains microscale data. Elevations 

are in metres, slope and aspect are in degrees, Potential Insolation (P1) is measured in MJ/m2/day for the growing season, whilst Curvature, Compound 

Topographic Index (CTI) and Topographic Exposure (TOPEX) are unitless. 
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Table 4.1 Linear associations between transformed microscale (20 cm) LAI and terrain 
properties derived from a digital elevation model, at a study site near Abisko, Sweden.. 

Microscale Data 

Parameter Estimate Std. Error t Value Pr (>ItI) r2  Kendall's Li 

Elevation (m) -2.06 x 1001  1.29 x 10.02  -16.00 <0.001 0.05 -0.15 

Aspec( -2.89 x 10 02  2.94 x 10.02 -0.98 0.33 0.00 -0.01 

Slope(°) 2.17x10 °2  1.48x10 °3  14.67 <0.001 0.04 0.13 

Curvature -3.02 x 10 04  3.84 x i0 °5  -7.86 <0.001 0.01 -0.08 

CTl 1.61x10 °2  3.14x10 °3  

PP -4.30 x 1002 5.61 x 10 °3  

TOPEX -1.63 x I 003  1.24x 
1014 

5.12 	<0.001 	0.00 	0.01 

	

-7.69 <0.001 	0.01 	-0.06 

	

-13.26 <0.001 	0.03 	-0.13 

* Aspect converted to circular score ranging from 0:1 via sin(Aspect*Tr/360) 

§ Compound topographic index 

r Potential Insolation over the growing season (May-September) in Mj/m2/day 
Topographic exposure index 

Exploratory analysis of the microscale data by univariate linear regression 

indicated that all topographic factors and physical models for LAI were highly 

significant (P < 0.001), with the exception of aspect (P = 0.33) (Table 4.1). Despite 

statistical significance, all factors had low r 2  values, with a maximum of 0.05 for 

elevation (Table 4.1). 

Partitioning the parameter space via regression-tree analysis on the raw LM 

values revealed that exposure, slope and elevation could best separate high and low LAI 

values (Figure 4.3). Higher LAI values (mean LAI = 0.82) were associated with 

sheltered sites with highly negative TOPEX (< -26). Lower LAI values (mean LAI = 

0.48) were associated with exposed topographic positions on flat surfaces at higher 

elevations. 

Re-projecting the parameter space via PCA similarly indicated that elevation, 

TOPEX and slope were strongly related to LAI. Principle component loadings 

positively associated with LAI had negative loadings of TOPEX and elevation, and 
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Figure 4.3 Regression tree for microscale LAI observations (left panel). Terminal points in 
the tree indicate clusters in parameter space associated with high or low LAI values (mean 
LAI of the cluster is displayed at the terminus). The right pane illustrates the ability of the 
regression tree to classify the 5% quantile LAI values, displayed as black circles. The 
broken grey lines indicate the breaks in the tree structure, with mean LAI values for each 
data subset indicated with dark grey labels. 

positive loadings for slope (Table 4.2). In particular, principal component 3 (16% of 

variance) displayed a strong positive loading for LAI, and strong negative loadings for 

elevation and TOPEX. Comparing the first 3 principal components on Gabriel bi-plots 

(Gabriel 1971), which were split into rotation and scores plots for clarity, the 0.05 and 

0.95 percentiles were well separated by the coordinate rotation, particularly on the plane 

of PCI and PC3, on which a clear manifold was visible in the parameter space linking 

LAI,to elevation, TOPEX and slope (Figure 4.4). 

Fitting a linear regression model to predict LAJ, from the parameters selected 

from ordination results indicated that all terms were highly significant (P < 0.001, r 2  = 

0.11). However, significant autocorrelation in the data set (Moran's I = 0.68, P <0.0001) 
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Figure 4.4 Ordination matrix from principal components (PC) analysis of the microscale 
data. The matrix illustrates the relationship between the first 3 principal components of the 
data set, which capture 62% of the total variation. For all plots, the 95% quantiles of LAI 1  

are indicated in white and the 5% quantiles in dark grey. The boxplots on the diagonal 
show the distribution of the PC scores for the 95% and 5% I-Al t  quantiles, labelled High 
and Low respectively. Notches indicate the non-parameteric 95% confidence interval of the 
median. The scatter plots in the top right of the matrix show the pairwise relationship 
between components. The plots on the lower left of the matrix illustrate the rotation of the 
factors for each PC, and help to identify manifolds in parameter space. Abbreviated factor 
names are: LAI = transformed LAI, E = elevation, SI = slope, A = aspect, Cv = curvature, T 
= topographic exposure index, CTI = compound topographic index, P1 = potential insolation 
over the growing season. 
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Figure 4.5 Moran's LISA cluster analysis for microscale data, indicating local anomalies 
(clusters) from the background LAI variation. In the left pane clusters of LAI values above 
the local mean are indicated as open circles, whilst clusters below the local mean are 
displayed as dark grey circles. The right pane indicates the significance of the spatial 
clusters. In both plots sample locations are indicated as open grey circles. 

indicated that robust parameter inference was not possible by simple OLS methods. 

Examining the LAI, data for spatial clustering via a LISA test indicated significant 

clusters (P < 0.01) of high LAI values around the stream, running centrally down the 

microscale site, while low LAI clusters (P < 0.01) are observed on the valley slopes 

(Figure 4.5). 

The high and low clusters identified in the USA analysis were examined for 

significant differences in relevant topographic indices, as identified above. A factorial 

ANCOVA for un-balanced sample sizes was fitted to the data (Table 4.3), and 

significant effects were identified for slope (F = 33.4, P < 0.0001) and TOPEX (F = 

37.8, P < 0.0001). However, autocorrelation in the ANCOVA residuals was evident 

when semivariogram analysis was performed (Figure 4.6). 
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Table 4.2 PCA results for the microscale data set. Factor loadings for each component 
indicate the direction and magnitude of the rotation of each variable onto the component. 
Data capture is indicated by the cumulative variance. 

Loadings by Component 

Factor PCi PC2 PC3 PC4 PC5 PC6 PC7 PC8 

LAIt  0.26 -0.13 0.59 -0.21 0.42 -0.57 0.10 -0.04 

Elevation (m) -0.20 0.20 -0.44 -0.78 -0.05 -0.33 0.04 0.01 

Aspect -0.49 0.08 0.41 -0.27 0.16 0.33 -0.52 -0.33 

Slope (°) 0.40 0.40 0.31 -0.29 -0.20 0.29 -0.17 0.59 

Curvature -0.39 0.25 0.24 0.29 -0.56 -0.54 -0.15 0.15 

CT!' 0.05 -0.65 -0.19 -0.03 -0.01 -0.15 -0.61 0.39 

PIt -0.57 -0.22 0.15 -0.04 0.22 0.16 0.46 0.56 

TOPEX -0.09 0.50 -0.28 0.32 0.63 -0.16 -0.29 0.24 

Standard Deviation 1.40 1.32 1.12 0.93 0.86 0.82 0.65 0.57 

Variance 0.25 0.22 0.16 0.11 0.09 0.08 0.05 0.04 

Cumulative Variance 0.25 0.47 0.62 0.73 0.82 0.91 0.96 1.00 

* Aspect converted to circular score ranging from 0:1 via sin(Aspect*rr/360) 

§ Compound topographic index 

Potential Insolation over the growing season (May-September) in Mj/m2/day 

Topographic exposure index 

In order explicitly to treat the autocorrelation present in the data, the 

ANCOVA, was repeated specifying exponentially structured spatial errors and 

spherically structured spatial errors (Figure 4.6). In both cases, the fitted semivariogram 

models indicated autocorrelation at separation distances below 2.5 m. The models with 

spatial error structures both outperformed the original model (Table 4.4), with the 

additional exponential spatial structure providing the best results (Likelihood ratio = 

500.0, P < 0.0001). Inclusion of the exponential spatial error term altered the results 

significantly (Table 4.3); TOPEX remained highly significant (F = 66.0, P <0.0001), but 

the slope effect became insignificant (F = 2.2, P = 0.14), and a significant effect of 

elevation was also revealed (F = 8.1, P < 0.01). 
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Table 4.3 Data summary of DEM derived topographic indices for the microscale spatial 
clusters I-Al t  values from a tundra site near Abisko, Sweden. Significance is tested by 
analysis of covariance, using standard ANCOVA and an ANCOVA incorporating an 
exponential autocorrelation function for the errors. 

Spatial 
High Clusters 	Low Clusters 	ANCOVA 	ANCOVA 

Parameter 	Mean 	SD 	Mean 	SD 	F 	Pr (>F) 	F 	Pr (>F) 

LAI 1.51 0.42 0.20 0.22 

Elevation (m) 1.45 0.65 1.85 0.50 	2.4 	0.12 	8.1 	<0.01 

Slope (%) 8.99 6.29 5.84 4.05 	33.4 	<0.0001 	2.2 	0.14 

TOPEX -7.21 76.82 22.65 54.66 	37.8 	<0.0001 	66.0 	<0.0001 

* Back transformed LAl 
Topographic exposure index 

a 
0 

o 	Observations 

- Exponential: 
-3" 

y 	= T +C( 1 - e o )  

d Spherical: Y(h) = t + c( 1 .5()-0.5()) 

0 	 0 	00 

CP 
0 

0 

	

0 	0 	
Oo 	

0 	0 	0 	 0 
000 

0 	 0 0 	0 0 	0 
0 	 00 <°0 	

%0 	
o, 

	

? 	° Go 0 

C 

U, 

c80 

> 	0 

() 

- .00 

0) 
0 

c'Jl 
0 

0 	 1 	 2 	 3 	 4 

Distance (m) 

Figure 4.6 Semivariogram of the residuals of the microscale ANCOVA. Semivariance (y) 
measures statistical difference between points separated by a distance vector (h). Two 

models were fitted to describe the spatial structure of the residuals. The solid line is an 
exponential model with intercept (r) = 0.2, and range (p) = 2.4 m. The broken line is a 
spherical model with r = 0.3, q = 2.3 m. In both cases, a contribution parameter (c) was 

used to scale the model. For separation distances greater than q, the spherical model 

takes a value equal to the sill variance (t+c). 
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Table 4.4 ANCOVA model selection criteria for microscale transformed leaf area index 
(LAl) data. The first model is a non-spatial analysis of covariance, fitted by maximum 
likelihood methods. The two spatial models add a spatially autocorrelated error function to 
the model, requiring an extra two degrees of freedom for the nugget (intercept x) and (p) 

range parameters. 

Model 	 Log likelihood 	AIC 	BIC 	Pseudo r2  DF 

ANCOVA 	 -776 	1565 	1597 	18 6 

Spatial ANCO VA 1* 	-526 	1069 	1112 	16 8 

Spatial ANCO VA 2' 	-528 	1071 	1115 	16 8 

* Autocorrelated errors with spherical functional form 

§ Autocorrelated errors with exponential functional form 

Table 4.5 Linear associations between transformed leaf area index (LAl) and individual 
macroscale terrain properties, derived from a digital elevation model, from a study site 
near Abisko, Sweden. 

Macroscale Data 

Parameter 	Estimate 	Std. Error 	t Value 	Pr (>ItI) 	r2  Kendall'st 

Elevation (m) 	-1.71 x 10.02 	3.23 x 10 °3 	-5.30 	<0.001 	0.12 -0.28 

Aspect 	 -3.70 x 10 01 	9.71 x 1012 	-3.82 	<0.001 	0.06 -0.17 

Slope (°) 	8.20 x 10.03 	8.49 x 10 03 	0.97 	0.35 	0.00 0.07 

Curvature 	-1.30 x 10 02 	9.70 x 10 03 	-1.34 	0.18 	0.00 -0.05 

CT!' 	 1.52 x 1002 	1.18 x 10 02 	1.23 	0.20 	0.00 0.03 

Pit 	 -8.32 x 10.02 	2.92 x 10 02 	-2.84 	<0.01 	0.03 -0.15 

TOPEX 	-8.00 x 10 04 	1.94 x 1004 	-4.13 	<0.001 	0.08 -0.22 

* Aspect converted to circular score ranging from 0:1 via sin(Aspect*Tr/360) 
§ Compound topographic index 
t Potential Insolation over the growing season (May-September) in Mj/m2/day 

Topographic exposure index 
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Figure 4.7 Box and whisker plots of macroscale LAI by plant community type, presented in 
decreasing order of mean elevation. The box extent indicates the interquartile range, whilst 
the bold central lines indicate the sample medians. The whiskers correspond to the sample 
maxima and minima. Mean LAI is indicated with an asterisk. 

4.5.2 Macroscale analysis 

The mean LAI at the macroscale was 0.8 with a standard deviation of 0.3 

(Williams et al, in review). The elevation range sampled was 604 - 640 m, with a mean of 

621. Slopes were moderate on the macroscale, with 91% of all observations < 10 0,  

whilst the steepest slope recorded was 18°. The site was on a north-facing slope, with 

51% of all observations on a northerly aspect. In general, the macroscale observations 

were collected on concave sites, with curvature and TOPEX scores below zero. The 

mean curvature was -0.3, whilst the mean TOPEX was -4. TOPEX scores were 

generally close to zero, indicating the macroscale DEM was significantly flatter then the 

microscale observations (Figure 4.2). Cli scores ranged from 2 to 14, with a median 
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Table 4.7 Summary of LAI and macroscale terrain properties by plant community type from 
a study site near Abisko, Sweden. Terrain properties were derived from a digital elevation 
model. 

Elevation Slope 
Vegetation LAI (m) (%) Aspect Cv TOPEXt CTI5  Ptt 

Willow 0.99 616.52 11.57 0.27 -1.97 -39.71 4.83 18.70 

Birch 1.01 618.71 6.60 0.61 0.64 90.92 5.75 19.93 

Dwarf Birch 0.95 618.79 9.79 0.39 -0.16 -0.16 5.99 19.34 

Heath 0.74 622.15 9.57 0.42 -0.28 -5.62 6.15 19.31 

Moss 0.74 624.66 6.85 0.49 0.37 -54.68 6.33 19.81 

Graminoid 0.72 624.98 4.03 0.47 -0.20 -42.00 8.13 19.86 

Fell field 0.55 625.95 7.87 0.47 -0.08 18.36 5.91 19.61 

* Aspect converted to circular score ranging from 0:1 via sin(Aspect*u/360) 
+ Surface curvature: Negative values are concave 
§ Compound topographic index 
t Potential Insolation over the growing season (May-September) in Mj/m2/day 

Topographic exposure index 

Table 4.6 Linear model selection criteria for macroscale transformed leaf area index (LAI) 
data. The OLS model is a linear regression model fit by ordinary least squares methods. 
The other models are simultaneous spatial auto-regression models fit by maximum 
likelihood methods. The lagged response model adds a spatial interaction term for LAI 1 , 

whilst the spatial error model adds a spatially interactive error term. The spatial Durbin 
model is the most complex, adding spatial interactions for all predictors, and LAl. 

Model Log likelihood AIC RMSE Pseudo r2  DF 

OLS -76.10 164.19 0.36 0.22 6 

Lagged Response -69.99 153.97 0.34 0.27 7 

Lagged Error -69.57 153.15 0.34 0.27 7 

Spatial Durbin -62.75 147.50 0.33 0.32 11 

* Lagged response and lagged predictors 

value of 6. P1 ranged from 15 - 22 MJ 
M2  day with a median of 20 MJ m2  day'. A 

summary of the DEM derived topographic indices is presented in Figure 4.2. 

Initial exploratory analysis of the macroscale data by univariate linear regression 

indicated that elevation (P <0.001, r 2  = 0.12), aspect (P <0.001, r 2  = 0.06), TOPEX (P 

<0.001, r2  = 0.08) and potential insolation (P <0.01, r 2  = 0.03) were significantly related 
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Table 4.8 Spatial Durbin model of macroscale LAI t  against DEM derived terrain variables. 
The model incorporates local effects of topography at the prediction location, along with 
spatial interactions of these terms with neighbouring samples. A neighbourhood 
interaction in the response (p) is also included. 

Parameter Effect 

Macroscale Data 

Estimate 
Likelihood 

Ratio Pr (>IzI) 

Intercept Intercept 9.98 

Elevation Local Effect -8.07 x 10.02 11.50 <0.001 

Aspect Local Effect -2.44 x 1001 3.58 0.06 

TOPEX Local Effect -2.32 x 10 04  1.17 0.28 

Plt Local Effect 1.11 x 1002 0.08 0.77 

Lagged Elevation Spatial Interaction 7.18 x 1002 8.49 <0.001 
Lagged Aspect* Spatial Interaction 4.43 x 10 0  3.41 0.06 

Lagged TOPEX Spatial Interaction -6.42 x 10
-05  

 0.03 0.87 

Lagged PP Spatial Interaction -1.69 x 1001 6.31 <0.05 

P Spatial autocorrelation 0.33 11.44 <0.001 

* Aspect converted to circular score ranging from 0:1 via s i n (Aspect* ir/360) 

Potential Insolation over the growing season (May-September) in Mj/m2/day 

Topographic exposure index 

to LAI (Table 4.5). However, a much greater percentage of the variation in LAI, was 

accounted for by differences in community type (P < 0.001, r 2  = 0.31). 

Summarizing topographic variables by vegetation type indicated a strong 

interaction between landscape level community structure and topographic position 

cable 4.7). In particular, a toposequence of community types became apparent, with a 

corresponding downward shift in LAI with increasing elevation (Figure 4.7). We fitted 

a linear mixed effects model to the macroscale data to predict LAI, from the full set of 

topographic indices and physical models, with fixed slopes for the topographic effects, 

and random intercepts by vegetation type. The optimal model was selected by linear 

stepwise regression, sequentially dropping terms that did not favourably affect the 

Akaike information criterion (Akaike 1974) of the model. The retained terms were 
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Figure 4.8 Spatial covariance of LAI and elevation in the macroscale data set. Spatially 
lagged covariance (c(h)) is displayed as a solid black line, whereas the global (non-spatial) 
covariance is indicated by the broken grey line. 

vegetation type, elevation, TOPEX and potential insolation (PT), all of which were 

highly significant (P < 0.001), with an r 2  of 0.44. Analysis of the residuals of the fitted 

model showed that significant autocorrelation was present in the error term (Moran's I 

= 0.14, P < 0.001), indicating that OLS fitting methods were inappropriate. Residuals 

were found to be autocorrelated below a distance of 116 m, when an exponential 

autocorrelation structure was imposed upon the error term of the model. 

To incorporate the spatial autocorrelation structure, a series of simultaneous 

autoregressive linear models were fitted to the data. Lagrange multiplier tests (Anselin 

1988, Anselin and Rey 1991) indicated that fitting spatial autoregressive models were 

appropriate; diagnostics for lagged-response, lagged-errors and Durbin models were all 

highly significant (P < 0.0001). 
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Clear improvements to the model fit over OLS were observed for increasingly 

complex ML models (Table 4.6). The best choice of model, as indicated by AIC, was 

the spatial Durbin model (pseudo r 2  = 0.32). An examination of the terms of the Durbin 

model (Table 4.8) indicated that the only significant local topographic term was 

elevation (P <0.001); however, significant adjacency effects were indicated for elevation 

(P < 0.01) and PT (P < 0.05). Significant residual variation was also indicated by the 

autocorrelation parameter p (P < 0.001). The residuals of the Durbin model were not 

autocorrelated (Moran's I = -0.002, P = 0.47), indicating robust estimation of model 

parameters. 

To examine the adjacency effect of elevation, the covariance between LAI and 

elevation at increasing separation distances was plotted (Figure 4.8). The covariance 

between LAI and elevation was close to zero at short separation distances, but became 

increasingly negative as separation increased, indicating that the inverse relationship 

between LAI and elevation developed at larger spatial scales, with weaker local 

influence. 

4.6 Discussion 

The analyses at the macro- and microscales demonstrated that explicit 

treatments for the effects of spatial autocorrelation were required to make valid 

inferences regarding the distribution of LAI under our sampling strategy. Failure to treat 

for the autocorrelation in the data led to false inferences on the significance of effects, 

most clearly illustrated in the microscale analysis, in which slope appeared to be a highly 

significant parameter, until autocorrelation was accounted for. Similarly in the 

macroscale analysis, an erroneously high pseudo r 2  was arrived at before treating the 
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analysis for spatial effects. Problems arose because of the inflation of the probability for 

committing Type I errors in the presence of spatial autocorrelation, due to a bias 

towards artificially lowering the estimate of sample variance. This led to an 

overestimation of r2  values, and hence incorrect hypothesis tests (Haining 2003, Kuhn 

2007). 

The macroscale analyses demonstrated that the major determinant of LAI was 

community type, which accounted for 31% of the variation in LAI. We clisaggregated 

the community level effect from the topography, and still observed a highly significant 

effect (P < 0.0001), indicating that plant functional type was strongly associated with 

LAI. 

There was a clear toposequence of vegetation types associated with the trough 

and hummock topography of the macroscale site. On high exposed sites, fell field 

communities dominated, with associated low vascular LAI values. Moving down the 

elevation profile, graminoid and moss-dominated sub-Arctic meadow communities were 

more common, associated with relatively flat but sheltered topographic positions. Below 

this were heath communities, with an increasing dominance of Betula nana as elevation 

decreased, and an associated increase in mean LAI. At the lowest elevations, the heath 

community was interspersed with an over-storey of small Betulapubescens individuals. On 

low elevation sites with steep slopes bordering the drainage channels, Salix communities 

dominated. 

There was a clear, gradual decrease in LAI up the elevation gradient (Figure 4.7). 

Our findings are in general agreement with Walker and Walker (1996), who reported a 

similar toposequence and general trend between LAd and elevation on the North Slope 

of Alaska. Walker and Walker (1996) observed changes in vegetation physiognomy over 
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a scale of --150-200 m, which agrees with the characteristic scale lengths over which 

macro scale LAI was autocorrelated in the present study (-120 m). 

There was no significant relationship between CTI and LAI at either the 

microscale, or the macroscale, and hence we reject Hi, that the primary constraint on 

LAI distribution was through landscape soil moisture. We observed that drainage at the 

site was complicated by the stony nature of the substrate, a result of the intense glacial 

activity in the late Pleistocene. 

There was evidence at the microscale to support H2, that exposure was the 

dominant control on LAI, (P < 0.0001), where it was observed to be the most 

significant factor measured. However, there was no supporting evidence for exposure 

effects at the macroscale. 

H3, that short wave radiation budget was the dominant control on LAI, can be 

rejected; no significant effect was observed at either scale. Interestingly, P1 was observed 

to have a negative spatial interaction with LAI at the macroscale, indicating that an 

adjacent site with high solar intercept reduced the LAI at the prediction location. This 

may be an artefact of the dataset, or may be an outcome of the irregular hummocky 

topography of the site (e.g. an effect of projected shadows). 

Elevation proved a significant determinant of LAI at both the macro- and 

microscales (P < 0.001, P < 0.01 respectively) and thus we accept H4. The macroscale 

effect of elevation most likely reflects an elevational temperature profile. Models of LAI 

distribution based solely on topographic parameters were able to account for -30% and 

20% of the LAI variation at the macro- and microscales respectively, which compares 

favourably with reflectance based approaches reported elsewhere, and outperforms 

reflectance-based efforts previously undertaken at the IV (17% at the macroscale site 

only, see Williams et al. in review). 
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The elevation response was most clearly observed at the macroscale, and 

decreased in influence and significance at the microscale. The decreasing importance of 

elevation as an explanatory variable as scale length decreased is clearly illustrated in 

Figure 4.8 where covariance with LAI tends to zero at small distances. Increased 

elevation is correlated with lower temperatures through adiabatic lapse rates (-0.6°C per 

100 m). The elevation change in the IV was 40 m, corresponding to -0.2°C expected 

drop in mean temperature. The macroscale study suggests that this small drop in 

temperature has identifiable effects on LAI. While it would be intriguing to extrapolate 

the LAI-temperature response to determine an altitude for zero LAI, we expect that this 

relationship is likely to be non-linear. 

At the microscale, higher order topographic effects, namely TOPEX, dominated 

LAI distribution, noting that TOPEX was derived in part from slope curvature. 

TOPEX is a better indicator of sheltering than instantaneous curvature because it 

integrates enclosure over a wide distance, rather than within the narrow confines of 

DEM pixel adjacency. Exposure influences LAI by increasing mechanical stress from 

wind-shear, and by modifying the local growth season through reduced snow 

accumulation, earlier snow melt and more variable soil temperatures (Wielgolaski et al. 

1975). 

There was a large degree of latency in the models presented, with significant 

autocorrelation in the error terms. This latency indicates that other variables, for which 

measurements were unavailable, exerted a substantial influence on the distribution of 

LAI. Analysis of the spatial structure of these errors, through the semivariograrn, gave 

an indication of the characteristics of the residual process. For the microscale study the 

residuals displayed an exponential structure with a range of -2.5 m, indicating an 

underlying phenomenon with rapid but ordered variation at small spatial scales. 
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The present study did not incorporate belowground processes and plant 

community interaction effects, and this may account for the residual variation in the 

spatial patterns of LAJ. The soils of Abisko have low fertility (1-linneri et al. 1975, 

Ratcliffe 2005), but their spatial variability has not been well studied. Drainage patterns, 

the distribution of snowbeds, and the nature of the rocky substrate probably generate a 

heterogeneous distribution of soil nutrients that may explain the residual variation in 

LAI. It is also probable that significant variation in LAI is due to plant species 

interactions, site history and facilitation. Callaway et al (2002) reported positive 

interactions between plant communities in highly stressed environments, and it is 

possible that such facilitation processes may affect the LAI distributions observed here. 

Factors related to site history, reindeer management and disturbance may also play an 

important role in the distribution of LAI, but no historical data for the IV was available. 

Further research into below ground processes and community interactions are therefore 

likely to improve our understanding of the spatial patterning of Arctic LAI. 

4.7 Conclusions 

It is clear that vegetation type, topography and LAI are tightly coupled in tundra 

ecosystems. In this study we were able to characterize LAI variation through 

topographically derived indices more successfully than previous attempts utilizing 

satellite derived vegetation indices (Williams et al, in review). The improved results are 

most likely because the high spatial frequency LAI response to microtopography is not 

resolved by commonly used satellite borne vegetation mapping instruments (with 

resolutions ranging from —P20 m to I km), and the problems associated with 

atmospheric and illumination effects. We conclude that an understanding of the scale 
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dependent relationships between LAI and topographic position can improve landscape 

characterization of LAI. We have demonstrated a strong association between 

topography and LAI, especially at larger scales. In particular, elevation was a useful 

predictor of LAI at the small catchment scale, as reflected by its increasingly negative 

covariance with LAI as scale length increases. The relationship between LA1 and 

elevation most likely reflects an altitudinal temperature profile, while local topographic 

position exerts an influence on the spatial patterning of LAI through local modification 

of the time of snow melt. We propose that combinations of satellite-derived surface 

reflectance with topographical information may result in improvements in estimating 

regional LAI distributions. 
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4.10 Appendix 

The spatial regression models employed all conceptualize the data set as a spatial 

lattice comprised of data values z posted at locations u, with first order Markov type 

interaction; that is, points deemed to be immediately adjacent on the lattice exert an 

influence on the prediction at location z*(u). We elect n spatial neighbours 

{z,(u),i = 1,...,n}via the sphere of influence (SOT) method. 

SOl selection proceeds by finding the nearest neighbour distance d for every 

point on the lattice, and constructing circles around the points with radius equal to d. 

Points are said to be SOT adjacent if and only if their neighbourhood circles overlap (i.e. 

- :5 d,). For each z*(u) we construct a set of weights w(u), which code for 

adjacency. All SOT adjacent points exert equal influence on z*(u), so SOT neighbours 
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were ascribed equal weights of i/n, whilst points outside the SOT adjacency were 

ascribed a weight of zero. 

Having established adjacency weights for each point, we can proceed with 

estimation by one of three methods; the spatial lag model (1), lagged error model (2), or 

the spatial Durbin model (3). These models allow horizontal interaction between the 

response, errors and response and predictors respectively. 

The spatial lag model incorporates first order autocorrelations by including a 

term that incorporates neighbouring values of the variable of interest into the right hand 

side of the equation: 

fl 

z*(u) = f3X(u) + P1 W i (u)z(u i ) 
	

(4.3) 
l,n 

Where /3 is a vector of parameters, X(u) is a vector of observed variables at the 

estimation location, and p is an autocorrelation parameter. 

The lagged error model allows for spatial autocorrelation of the error term, 

relating the error at the estimation location with that of the n adjacent members of the 

lattice for Z*(u): 

Z *  (U) = f3X(u)+ X I W i (O-C(U) 

In (4.4) 

Again, /.3 is a vector of parameters, X(u) is a vector of observed variables at the 

estimation location, and A is an autocorrelation parameter on the errors. 

The spatial Durbin model allows spatial interaction of all predictors and the 

response: 
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if  
z*(u) = fX(u) + [A w 1 (u)X(u i )] + [ 	w(u)z(u)] 	 (4.5) 

1,n 	 i= 1,1: 

Again, 8 is a vector of parameters, X is the matrix of observed explanatory 

variables, A is a vector of parameters for the lagged predictors, and p is an 

autocorrelation parameter for the response. 
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5.1 Declaration 

The following chapter was submitted to Agricultural Forest Meteomlo. I undertook 

all analyses and wrote all the software required for the analysis. I also wrote all of the 

body text for the paper, although M. Willimas provided comments and made editorial 

changes. M. Williams also made suggestions for the scientific questions and hypotheses 

addressed in the chapter. 
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5.2 Abstract 

Models are often used to make estimates of ecological and hydrological 

phenomena (e.g. land surface exchanges of carbon and water) over large spatial 

domains. Generally such models require the input of meteorological information for the 

region for each time step of the state vector. We investigate the potential improvements 

to space-time regionalisations of sparse meteorological data sets when including 

information on temporal correlations between successive measurements of minimum 

temperature (T), maximum temperature (Tm~_j and precipitation (P) from 112 stations 

across Central Oregon. We compare a number of increasingly complex geostatistical 

models based on Kriging with a baseline inverse distance weighting algorithm. We 

varied the number of interpolation data used in both space and time and assessed the 

impact on interpolation skill. Furthermore, we assessed the error and bias reduction 

resulting from aggregating estimates over increasingly large temporal supports. We 

hypothesised that incorporating temporal information would decrease errors, and that 

error and bias would be reduced when considering estimates aggregated over longer 

time periods. We found that incorporation of information on temporal autocorrelation 

decreased interpolation skill by --'lO%, contrary to our expectations. However, 

increasing the temporal aggregation of estimates was shown to decrease error by up to 

50% and bias by up to 30%  (daily vs. annual support). These results indicate that 

instantaneous error may be diluted for phase lagged or integrating elements of the state 

vector, such as soil moisture, when implementing such surfaces in modelling 

applications. Results were more successful for temperature than precipitation (T = 52, 

T = 13, P = 128 % error), reflecting the stochastic nature of precipitation, and 

problems with non-linearity for the Kriging algorithm. 
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5.3 Introduction 

Models are often used to make estimates of ecological and hydrological 

phenomena (e.g. land surface exchanges of carbon and water) over large spatial 

domains. The model, parameterized at the plot level with detailed measurements, 

upscales information to the region of interest (e.g. Law et al., 2004; Law and Waring, 

1994; Running, 1994; Van Tuyl et al., 2005; Williams et al., 2001b). Generally such 

models require the input of meteorological information for the region for each time step 

of the state vector. For example, air temperature, solar radiation and precipitation are all 

important controls on surface energy balance and ecosystem processes. A critical choice 

in the modelling process is the spatial resolution of the simulations. Given the high 

degree of heterogeneity in the land-surface, higher resolutions are advantageous. 

However, generating meteorological drivers to allow models to run at high resolutions is 

a difficult process. 

Meso-scale climate models and reanalysis products can provide detailed global 

meteorology at resolutions down to --'50 km, (e.g. PRECIS Jones et al., 2004). These 

spatially averaged data do not resolve climatic variability - altitudinal, latitudinal or 

continental - that exists at the sub-grid scale (e.g. <= I km) and may be important 

ecologically. Earth observation data from space-borne instruments have been used in 

the past to successfully quantify surface temperature and humidity from thermal infra-

red retrievals (Goward et al., 1994; Prihodko and Goward, 1997). However these 

products are limited by temporal revisit time versus spatial resolution, and their complex 

retrieval schemes are sensitive to atmospheric conditions, so uncertainties are large. 

An alternative to downscaled climate models is to upscale data from station 

observation networks. However, data from these networks may exhibit temporal 'drop 

out', due to sensor failure, and spatial gaps. The sparse and temporally incomplete data 
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must be converted into a continuous surface to drive models. Various solutions to the 

problem of upscaling meteorological point data have been proposed. Conceptually 

simple methods based on the concept of nearest neighbour polygons (Thiessen, 1911) 

are easily implemented, but are fairly crude, and ignore fine-scale spatial variation. 

A variety of linear regression approaches have been proposed for upscaling, 

with the simplest of these linking meteorological observations to auxiliary data on 

topography (e.g. PRISM, Daly et al., 1994). Weighted regression schemes such as 

Inverse Distance Weighting (IDW, Williams et al., 2001b), or Gaussian convolution 

(MTCLIM, Hungerford et al., 1989; Thornton et al., 1997) provide good results (Glassy 

and Running, 1994), but are subjective and lack optimality in terms of least squares (LS) 

error. Solutions which are LS optimal under mild assumptions include the thin plate 

spline (Hutchinson, 1995) and geostatistical 'Kriging' algorithms (Goovaerts, 1999). 

These approaches are data driven, and are more objective, although subjective decisions 

to make certain assumptions are implicit. 

Kriging is a powerful interpolation algorithm as it is data driven, able to include 

linear relationships with topography (Goovaerts, 2000; Hudson and Wackernagel, 1994), 

and easily extended to the space-time domain (De Taco et al., 2001; Kyriakidis and 

J ournel, 1999). Also Kriging provides an estimation variance for all locations 

considered. Estimation variance is highly desirable in the light of model error analysis 

(Van Meirvenne and Goovaerts, 2001), and the move towards model-data fusion 

approaches to state estimation (Bertino et al., 2002; Williams et al., 2005). 

In general, estimation of the temporal trajectory of meteorological variables over 

some spatio-temporal domain has previously been accomplished using models with no 

temporal covariance (e.g. Williams et al., 2001b) by creating regionalisations 

independently for each day. Developments in the field of geostatistics in the last ten 
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Figure 5.1 Digital elevation model of the central Cascades region, obtained from the NASA 
Space Shuttle Radar Tomography (SRTM) mission. Elevations are mapped at a horizontal 
resolution of 1 km, with vertical units expressed in metres (see scale to right). Solid 
contours correspond to 500 m of rise, whilst broken contours indicate 250 m of rise. The 
maximum DEM elevation of Mount Jefferson is indicated by a solid black point. Open 
points indicate the locations of meteorological stations within the study area. The point 
closest to the centre of the region is station 82 (Metolius Arm). 

years allow the use of the spatio-temporal correlation between observations via the 

product-sum covariance model (De Cesare et al., 2001a), in a manner which fully 

represents space-time data interactions. 

In this paper we demonstrate the first application of the spatio-temporal Kriging 

paradigm to regional meteorological data. This application addresses a key question: 

Does the inclusion of temporal correlation structures in interpolation schemes reduce 

errors of surface estimates? We hypothesised that incorporating temporal information 

would decrease errors (HI), by 'borrowing strength' from neighbouring data points in 
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time in the event of missing data, and by stabilizing the lapse relationship between 

topography and meteorology through reducing noise in the trend model. We also 

hypothesised that errors and biases would be reduced when aggregating the estimates 

over larger time periods (H2), as stochastic noise was filtered as errors cancelled out, 

with possible implications for end users of the meteorological surfaces produced. 

We investigated the potential improvements to space-time regionalisations of 

sparse meteorological data sets when including information on temporal correlations 

between successive measurements of minimum temperature (T), maximum 

temperature (TJ and precipitation (1') from 112 stations across Central Oregon. We 

selected these three variables as they were common to all 112 station inventories. 

Although other variables such as solar radiation and vapour pressure deficit (VPD) are 

important for ecosystem modelling, we chose not to interpolate them because of data 

scarcity, and because of the existence of well-tested relationships to derive these 

variables from temperature and precipitation datasets (Bristow and Campbell, 1984; 

Murray, 1967; Thornton and Running, 1999). We compared a variety of interpolation 

methods of increasing complexity, to assess the relative merit of incorporating temporal 

information at the cost of increasing model complexity. 

5.4 Methods 

5.4.1 Study Area 

This study is focused on an area of 100 x 100 km in Central Cascades region of 

Oregon, USA (Figure 5.1). It is an area of considerable altitudinal variation, with Mount 

Jefferson rising to 3200 m towards the centre of the site from a lowest point of '-300 

m in the 'high desert' plains to the northeast of the region. Increasing hygric 
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Figure 5.2 Increasing hygric continentality (HC) cotan (elevation / mean annual 
precipitation) across the longitudinal gradient. HC <450 indicates a maritime climate, whilst 
I-IC > 450  indicates a dryer, more continental climate. The bold black line indicates the 
divide between hygric maritime and hygric continental climates, whilst the broken contours 
indicate 100  increments in HC. The rectangular outline indicates the 100 x 100 km region 
of interest. Points indicate the positions of meteorological stations used to derive the HC 
scores. All data are publicly available from the Agrimet, Ameriflux, Coop, Raws, and Snotel 
networks. Only stations in North/Central Oregon, with data available between January 
2000 and December 2004 were considered for analysis, resulting in 112 temporal vectors, 
comprising some 184660 data points. 

continentality (cotan[elevation / mean annual precipitation], Karrasch, 1973) (Figure 

5.2) imposes longitudinal gradients on the climatology, as does topographic 

modification of wind patterns, temperature and rainfall (Taylor and Hannan, 1999). We 

selected this site because of the readily available meteorological data and interesting 

climatology as a result of topography and continentality. The area also includes a long 

term ecological study site at the Metolius Natural Research Area (MNRA 44o,25  N 

121°,40' E), maintained by Oregon State University (Waring and Peterson, 1994), at 
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which a large body of ecological modelling and upscaling work has already been carried 

out (Law et al., 2001; Running, 1994; Williams et al., 2001a; Williams et al., 2005). 

5.4.2 Meteorological Data 

The data set comprised of 112 meteorological stations across northern Oregon, 

using publicly available data from the AgriMet (U.S. Department of the Interior, Bureau 

of Reclamation, Washington, District of Columbia; 3 stations), COOP (National 

Weather Service, Silver Spring, Maryland; 57 stations), RAWS (National Weather 

Service; 43 stations) and SNOTEL (Natural Resources Conservation Service, 

Washington, District of Columbia; 7 stations) networks for the five year period 2000 - 

2004. These data were augmented with observations from two stations located at the 

Metolius eddy covariance towers, part of the Ameriflux network (Law et al., 2003). The 

stations were selected to surround the study region to prevent edge effects, and sample a 

wide range of topographic (Figure 5.1) and longitudinal variability (Figure 5.2). 

All data were converted to SI units, collated and quality controlled prior to 

analysis. Quality control procedures rejected data that exceeded the Oregon state climate 

records (NOAA, 2007). Only variables common to all data sets were interpolated via the 

spatial algorithms described in this paper. The common variable set included daily 

minimum temperature (T°C), maximum temperature (T°C) and total precipitation 

(P, mm/day). Snow events were included as snow water equivalent. In order to produce 

climate summaries, and T. were converted to average daily temperature (T) using 

equation 5.1 provided in Running et ad. (1987) and validated for our study region in 

Thornton and Running (1999): 

7• j  =O.606T +0394*T min 	 (5.1) 
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The resulting data table contained 184660 entries, although not all entries had 

complete records for all three parameters. The table contained 180850 Tmin  records, 

181667 T records, and 134432 P records. 

We sourced location data for each station from online metadata, and converted 

the location information from geographic coordinates (Degrees, minutes and seconds) 

to meters, using the Universal Transverse Mercator (UTM) projection (zone 10 north, 

WGS84 datum) (Figure 5.2). The UTM projection allowed distances between stations to 

be determined in SI units, and provided consistency with elevation products. 

5.4.3 Digital Elevation Model 

A digital elevation model (DEM) for northern Oregon was generated from the 

NASA Space Shuttle Radar Tomography (SRTM) mission (Rabus et al., 2003) (Figure 

5.1). The SRTM DEM provides terrain information at 10 m resolution, with an absolute 

vertical error of ± 10 m (Rabus et al., 2003). From this data set, elevation data were 

extracted for each of the 112 meteorological stations considered in a GIS (Arclnfo, 

ESRI, Redlands, California). 

5.4.4 Trend Models 

To examine the effect of elevation on the common set of meteorological 

variables, simple linear regression models of the variables were fitted against elevation 

and easting. We also investigated the possibility that the topographic and longitudinal 

trends were not consistent throughout the year, by fitting mixed effects models 

(Pinheiro and Bates, 2000) to the data, and then checked for significant improvements 

over the common slope and intercept models when incorporating monthly effects. 

Quantification and removal of large scale effects were necessary prior to 

investigating the autocorrelation structure of the data, because the model of spatial 
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variability assumes constant mean and variance (stationarity) throughout the domain 

(Goovaerts, 1997). Decomposition of the data into high frequency, autocorrelated 

departures from the local mean (signal) and a large-scale trend (m) allows this 

assumption of stationarity to be satisfied. For the purposes of detrending, continuous 

space-time trend models were constructed using a first order Fourier series with a 

period of 365 days, and a fixed linear relationship with a secondary variable: 

m = a + P, sin(t.w) + 02  cos(t.w) + 183s 

2..ir 
	 (5.2) 

(0=- 
365 

Where 61-3 are parameters, t is time in days, and s is a secondary variable; an 

altitudinal lapse rate for and T,, or a fixed longitudinal response for P, reflecting 

the strong rain shadow effect imposed by the Cascade mountains. 

5.4.5 Semivariograms 

Having removed the large-scale deterministic trend component m, the residual 

autocorrelated component of variation in the meteorological data can be summarised. A 

collection of n data points Z(u,z) with spatial coordinates u and temporal coordinates t 

can be completely summarized by their mean, variance, and some measure of their 

auto correlation structure, such as a semivariogram (Deutsch and Journel, 1998). The 

semivariogram describes the way in which similar observation values are clustered in 

space-time, in accordance with Tobler's first law of geography (Tobler, 1970). The 

semivariogram is therefore a measure of the dissimi1ari'y of data pairs as the space-time 

separation between them increases (Deutsch and Journel, 1998). The semivariance (9) 

is calculated for lagged sets of separation vectors hu  and h  as half the mean squared 

pairwise difference between the n observed values within the space-time lag (n(h0 bM: 
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1 	
n(h,h) 

= 	 [z(u1,ti) - z(u 1  + h, t1  + h)]2 	 (5.3) 
2n(h,h) i-i 

In order to summarize the autocorrelation in space and time, a product-sum 

covariance model was fitted to the semivariogram, as described by De Taco et al (2001). 

First, only the simple spatial and temporal semivariograms ( 51 (h,0) and  25 (0,h,) 

respectively) were considered. Valid semivariogram models (see Deutsch and Journel, 

1998, pp.  24-26) were fitted to them, estimating the spatial and temporal 'partial' ranges 

( ) and sills (sill, siI4), and adding a 'nugget' discontinuity (ri) at the origin to reflect 

spatial uncertainty if required. 

Semivariogram models must be selected from a set of allowable functions that 

are conditionally negative definite (Mcbratney and Webster, 1986), such as the spherical, 

exponential or Gaussian models (Deutsch and Journel, 1998). It is possible to model a 

sernivariogram as a 'nested' model, using any additive linear combination of these 

models. There is some argument over the correct way to proceed in semivariogram 

model fitting (see Diggle et al., 2002; Goovaerts, 1997 p.  98, for contrasting views); here 

we favour initial fitting by OLS methods, followed by adjustment by eye, to reduce the 

effect of outliers. 

Having described the spatial and temporal behaviour separately, we examined 

the values of the semivariogram beyond the spatial and temporal ranges 

(9,,(h5 > 4.,h, > )) to find the global sill (sill;). We then checked the validity of the 

fitted model, using the values of sill, sill, and sill g  via the diagnostics detailed in De Cesare 

et al (2001), to ensure the resulting space-time semivariance function was negative 

definite. 
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5.4.6 Interpolation methods 

All of the interpolation methods considered in this paper produce estimates 

through weighted linear combination of a subset of the data {z(u,t),i = 1,...,n}. Data 

were selected on the basis of spatial and temporal distance from the estimation datum. 

The spatial effects were decomposed into a global trend m, and a high frequency 

autocorrelated residual component, formed from a weighted combination of the 

residuals {z(u,t) - m(u,t)} (equation 5.4). Therefore the only difference in the 

prediction algorithms was the method by which the weights (A) were derived: 

z*(u,t) = m(u,t)+ 	A(u,t)[z 1 (u,t)-m(u,t)] 	 (5.4) 

The 'baseline' algorithm, by which the other methods were judged, was inverse 

distance weighting (]IDW), with no temporal information content. Estimation proceeded 

by removing the trend component m from the data, and weighting the residuals using 

the inverse of the squared distance to the estimation location j(u,1) raised to the power 

of 2. The inverse square law produced a map similar to that of a practitioner contouring 

'by eye' (O'Sullivan and Unwin, 2003, Pp. 230-231). The weights were standardized such 

that they summed to one. 

Also implemented were three variants of the Kriging algorithm; simple Kriging 

(SK), ordinary Kriging (OK) and Kriging with an external drift (KED). Kriging refers to 

a set of multiple linear regression procedures by which the best linear unbiased estimate 

(BLUE) of an unobserved datum value is arrived at by the weighted linear combination 

of surrounding observations (see Cressie, 1990 for a historical perspective), such that 

the prediction error is minimized (Cressie, 1991; Isaaks and Srivastava, 1989). The 

conditioning data were weighted by taking into consideration the clustering of the data 
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locations (with points from over-sampled locations being down-weighted), and the 

proximity of each observation to the prediction location. These spatial effects are 

included through reference to the autocorrelation structure of the data set, as 

summarized by the semivariogram. 

In the case of SK, a known trend function m is removed from the data, and the 

residual variation is interpolated. The resulting estimate is therefore a combination of a 

deterministic trend function m and autocorrelated stochastic departures from this trend. 

In the case of OK, m is treated as unknown, and is derived from the conditioning data 

as part of the interpolation process. OK derives a simple mean function for m, 

equivalent to an intercept-only model. KED extends m to include covariates such as 

elevation, by fitting a local trend function from the conditioning data as part of the 

interpolation process (Hudson and Wackernagel, 1994). The parameters of the trend 

function are readily recoverable (Wackernagel, 1998). All Kriging algorithms 

implemented have the considerable advantage of returning estimation variances along 

with the BLUE. Kriging variances provide an assessment of the uncertainty of the 

estimate at*(zi,/),  providing the semivariogram is correctly specified (Goovaerts, 1999). 

Because all of the interpolation methods implemented are able to result in 

negative daily precipitation estimates, we truncated the results for P at zero, and treated 

A negative estimates as zero rainfall events. All interpolations were carried out on a I 

2  resolution grid, on a daily time-step using the Edinburgh Space-Time geostatistics 

software (Luke Spadavecchia, University of Edinburgh, UK), and statistical post-

processing was carried Out in R version 2.4.1 (R foundation for statistical computing, 

Vienna, Austria). 
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5.4.7 Error Assessment 

Interpolation skill of the methods was assessed by 'cross validation' resampling. 

Each station, in turn, was temporarily excluded from the network, and the data from the 

remaining stations were interpolated to the space-time coordinates of the excluded 

observations (Deutsch and Journel, 1998). The differences between each of the 

observed and predicted meteorological variables were then assessed to determine the 

interpolation skill. 

In order to test the effects of incorporating larger numbers of conditioning data 

on interpolation skill, we ran a number of experiments varying the number of spatial 

neighbours used, and the size of the temporal window from which data were selected. 

The n data considered were selected from the n1  spatial neighbours from the estimation 

day, with n, data harvested from the ± n1  days. Thus the total number of observations on 

which an estimate was conditioned was n = n5  + 

We also considered the effect of estimating meteorology on increasingly large 

time steps, by comparing the cross validation results on different temporal aggregation 

schemes. This comparison was achieved by taking the weekly, monthly and annual 

averages of the daily cross validation estimates and comparing them with the observed 
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Figure 5.3 Histograms of the three daily meteorological variables Tmin, TM. and 
precipitation, gathered from 112 stations in North/Central Oregon, between January 2000 
and December 2004. 
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Figure 5.4 Average meteorological variables by day of year (day I = January 1st) for 112 
meteorological stations across North/Central Oregon over the period 2000-2004. Average 
temperature (Ta ) is indicated as a solid black line, and was calculated from Average 
minimum temperature (Tmin ) and average maximum temperature (Tm ), displayed as 
broken black lines, with the range indicated as a light gray envelope. Vertical gray lines 
indicate average daily precipitation (right-hand scale). 

aggregates for the same time period. 

5.5 Results 

5.5.1 Exploratory Analysis 

The temperature variables appeared to be approximately normally distributed 

(Figure 5.3), whilst the distribution of P was strongly positively skewed (Figure 5.3) 

(skew = 5.52), reflecting the stochastic nature of precipitation (66% of P observations = 

0). Initial exploratory analysis of the data over five years indicated a mean annual 

precipitation of 929 mm, and mean annual T. of --'lO °C. Temperature extremes ranged 

from a of -36 °C (Sunriver station, 30th  October 2002, 1317 m a.s.l.), to a T of 

44°C (29th  July 2003, Fossil station, 809 m a.s.l.) in the high desert plains of the northeast 
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Figure 5.5 Differing thermal climate regimes by hygnc continentality for the central 
Cascades study area. The study area is divided in two by a longitudinal gradient; the 
western seaboard side of the Cascades is hygric maritime, having significantly higher 
thermal stability over the year than the eastern region. Climate to the east of the Cascades 
is hygric continental, with greater seasonal extremes and higher within-month variability. 
Box extent indicates the interquartile range, whilst notches indicate the 95% non-
parametric confidence interval of the median. Whiskers indicate the extremes of the 
distribution. 

of the region. The daily average temperatures for these sites were -24 and 32 °G 

respectively. Annual climatology indicates that the daily range of temperatures increases 

in the summer months, and is associated with extreme aridity (Figure 5.4). 

There was a highly significant longitudinal gradient of hygric continentality (HC) 

across the region (P <0.001 r2  = 0.75). An HG of < 45° is associated with a maritime 

climate, whilst an HG > 45° is indicative of a continental climate. The 45° HG iso-

contour runs along the latitudinal path of the Cascade mountain range, dividing the state 
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into two climatic regimes (Figure 5.2). To the west of the Cascades, HG <450  and the 

climate was wetter (mean annual precipitation 1452 mm, with a daily o of 9 mm), milder 

and more thermally stable (mean annual temperature 12 ± 7 °C). To the east of the 

Cascades HG > 45 and the climate was dryer (mean annual precipitation 370 mm, with 

a daily (Y of 4 mm), cooler, and more thermally variable (mean annual temperature 9 ± 9 

°C). The west-east temperature regimes were significantly different (t = 64.1, P < 

0.0001, Figure 5.5); the continental region had greater within-month variability, with 

higher seasonal extremes. Differences in precipitation between HG regions were clear, 

with 43% of observations in the maritime region corresponding to a precipitation event, 

while only 26% of observations in the continental region corresponded to precipitation 

events. 

5.5.2 Trend Modelling 

Elevation best explained the large-scale spatial patterning of temperature 

variables, while easting best described the large-scale variation in precipitation. T 0  and 

T had significant relationships with elevation, with an overall lapse response of -0.004 

°G per metre for Tnun  (P < 0.001, r2  = 0.12), -0.003 °C per metre for T (P < 0.001, r2  = 

0.02). The longitudinal gradient in hygric continentality (Figure 5.2) was reflected in an 

overall longitudinal trend of -0.014 mm of precipitation per km east (P < 0.001 r 2  = 

0.02). 
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Table 5.1 Temporal trends in meteorological variables with elevation, showing the intercept 
and elevation coefficients from a mixed effects regression model for unbalanced data. All 
data drawn from the central Oregon meteorological network over 2000-2004. 

Month 

Min Temperature °C 

Intercept 	Elevation 

Max Temperature °C 

Intercept 	Elevation 

Precipitation mm 

Intercept 	East 

Jan 2.3 -0.005 8.8 -0.004 14.9 -0.018 

Feb 2.4 -0.005 11.4 -0.005 15.2 -0.020 

Mar 3.6 -0.005 13.8 -0.004 12.3 -0.015 

Apr 5.0 -0.005 17.0 -0.004 13.5 -0.017 

May 7.6 -0.004 20.2 -0.003 3.8 -0.003 

Jun 10.3 -0.004 24.4 -0.002 6.1 -0.007 

Jul 12.0 -0.003 28.1 -0.001 1.1 -0.001 

Aug 11.9 -0.003 28.0 -0.001 2.5 -0.002 

Sep 10.1 -0.004 24.8 -0.002 11.5 -0.015 

Oct 7.0 -0.005 18.3 -0.003 10.9 -0.014 

Nov 3.4 -0.005 11.6 -0.004 23.5 -0.031 

Dec 2.8 -0.005 8.9 -0.004 25.9 -0.034 

In all cases a variable-intercept, variable-slope model (Table 5.1) outperformed 

the fixed slope model (P < 0.001). The trend models were all found to be highly 

significant (P < 0.001), and adequately described the large-scale spatio-temporal 

behaviour of the meteorology (T,,,,, r2  = 0.70, T r2  = 0.92, P r2  =0.18). The seasonal 

cycle of the meteorology was clearly reflected in the intercepts of the model, while 

interesting temporal interactions with the spatial patterns were evident (Table 5.1). For 

the temperature variables, the strength of the attitudinal lapse response weakened in the 

summer months, and the distribution of temperature became more uniform. Similarly, 

the longitudinal gradient in precipitation became less pronounced in the summer 

months. 
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5.5.3 Semivariograms 

To quantify the spatial semivariance structure of the small scale component of 

the spatio-temporal variation, continuous time trend functions were removed from the 

data, with fixed elevation (T, T) or longitudinal (1') effects. Although there were 

significant changes in the lapse gradients over time (Table 5.1), the improvements to the 

r2  over a fixed slope model were typically only -1% over the fixed slopes models. 

Having removed the large-scale trend from the data, residual semivariograms 

were calculated (Figure 5.6). We modelled the spatial variation of Tmj , and T with a 

nested spherical = 23.8 km, T = 9.67 km), exponential model (q 

= 154.2 km, 99., T = 196.6 km). For P, a Gaussian model (a,i 
= 34.7 km) with a 

small nugget effect (r = 0.2 mm) best captured the patterns of small-scale spatial 

variation. All three variables displayed exponential semivariance structures in time, with 

ranges of -4 week for Trnin  and and a shorter temporal range of 2 days for 

precipitation, indicating lower temporal continuity in the time series. The sill parameters 

fitted for each variable were sill,, = 6.4, sill, = 11.69 and .cillg  = 12.8 for T,,,.; sill,4  = 10, sill, 

= 23.1 and Sjllg  = 32.46 for Tm  ; and sill, = 20.0, sill, = 38.44 and Slug  = 49.3 for 

precipitation. 

The large scale temporal trends evident in Figure 5.6 operated on temporal 

separations > one month. As long as the implemented search strategy conditioned the 

estimate on a data subset taken from a window of <one month, the effect of seasonality 

on the estimate should be nil. Thus, for the methods that dynamically estimate m from 

the conditioning data the only remaining trend is the altitudinal lapse response for T 

and T,,, or the longitudinal effect for P. 
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Figure 5.6 Semivariograms of meteorological data from the Central Cascades study area. Data were de-trended prior to analysis. Spatial semivariograms 

(Yh:o) were constructed by considering pairs of observations from the same day at increasing spatial separations. Temporal semivariograms (7hu-0) 

were constructed from pairs of observations from the same station at increasing temporal separation, and plotted on a log axis for clarity. For all plots, 
detrended observations are shown as black crosses and semivariogram models are indicated as broken black lines. Grey points on the temporal plots 
are raw data prior to detrending. 
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Figure 5.7 Cross validation of daily meteorological data estimated at station 84 (Metolius Arm) by external drift Kriging (KED) with observations from the 
same station, for the period 2000-2005. The observations were excluded from the interpolation. The Tmin and Tmax KED estimates were conditioned on 
32 nearest neighbours in space, Whilst the P estimates used 4 spatial neighbours. No temporal neighbours were used. The light gray envelope indicates 
the 95% confidence interval of the estimate, the dark gray line indicates the KED estimate, and the crosses indicate non-zero observations. The station 
was selected because of its central position in the study region. 
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Table 	5.2 Cross validation comparison 	of 	interpolation 	methods 	for 	the 	three 

meteorological variables considered. Methods used were IDW = Inverse Distance squared 

Weighting, SK = Simple Kriging, OK = Ordinary Kriging, and KED = Kriging with an 

External 	Drift. 	The algorithms were conditioned on 32 	spatial neighbours, plus 32 

observations from each day in the temporal window (total = spatial + spatial*days) ;  a 

temporal window greater than zero incorporates both spatial and temporal autocorrelation 
into the estimate. Error statistics were calculated for each experiment: MAE = Mean 

Absolute Error, RMSE = Root Mean Squared Error. Also shows are r2 , % observations 

within ± 1 standard deviation of the estimate, and the % observations within the 95% 

confidence interval of the estimate; although calculation of these statistics was limited to 

the Kriging methods. 

Neighbours Minimum Temperature °C 

Method Spatial ± Days Total MAE RMSE 	r2 	% in SD % in Cl 

!DW 32 0 32 1.96 2.69 	0.81 	NA NA 

SK 32 0 32 1.95 2.61 	0.82 	61.7 87.2 

OK 32 0 32 1.95 2.61 	0.82 	61.7 87.2 

KED 32 0 32 1.82 2.48 	0.84 	65.9 88.5 

SK 32 7 256 1.95 2.61 	0.82 	61.6 87.2 

OK 32 7 256 1.95 2.61 	0.82 	61.5 87.2 

KED 32 7 256 1.88 2.55 	0.83 	64.2 87.7 

Neighbours Maximum Temperature °C 

Method Spatial ± Days Total MAE RMSE 	r2 	% in SD % in Cl 

!DW 32 0 32 2.19 2.93 	0.90 	NA NA 

SK 32 0 32 2.31 3.05 	0.90 	59.3 86.1 

OK 32 0 32 2.31 3.05 	0.90 	59.3 86.1 

KED 32 0 32 2.01 2.70 	0.92 	66.9 89.7 

SK 32 7 256 2.32 3.06 	0.89 	59.1 86 

OK 32 7 256 2.32 3.06 	0.89 	59.1 86 

KED 32 7 256 2.06 2.75 	0.91 	65.5 89.2 

Neighbours Precipitation mm 

Method Spatial ± Days Total MAE RMSE 	r2 	% in SD % in CI 

lOW 32 0 32 2.51 5.80 	0.32 	NA NA 

SK 32 0 32 3.53 16.91 	0.03 	20.5 34.1 

OK 32 0 32 3.53 10.97 	0.09 	73.9 82.8 

KED 32 0 32 3.51 11.00 	0.10 	74.2 82.9 

SK 32 7 256 3.92 48.58 	0.00 	11.8 16.6 

OK 32 7 256 3.91 11.91 	0.08 	71.7 81.1 

KED 32 7 256 3.92 11.93 	0.08 	71.9 81.1 
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Table 5.3 Comparison of mean absolute errors resulting from cross validation of search 
strategies implemented in the KED interpolation algorithm for all three meteorological 
variables. S is the number of spatial neighbours, t is the temporal window size in ± days 
(i.e. no window, I week, 2 weeks, 1 month). It was not possible to produce estimates for 
precipitation with more than 32 spatial neighbors, because not all days had an adequate 
number of stations for conditioning the estimates. 

Minimum Temperature °C 

to t3 	 t7 t15 

s4 3.86 3.74 	 3.75 3.77 

s8 2.71 2.71 	 2.72 2.73 

s16 2.53 2.56 	 2.58 2.60 

s32 2.48 2.53 	 2.55 2.57 

s64 2.49 2.53 	 2.54 NA 

Maximum Temperature °C 

to 0 t7 t15 

s4 4.31 4.27 4.23 4.21 

S8 2.97 3.00 2.98 2.98 

s16 2.73 2.77 2.77 2.77 

s32 2.70 2.75 2.75 2.76 

s64 2.71 2.75 2.76 NA 

Precipitation mm 

to t3 t7 t15 

s4 9.83 9.44 9.24 9.14 

s8 10.24 10.70 10.80 11.07 

s16 10.77 11.36 11.48 11.75 

s32 11.00 11.78 11.93 12.25 

5.5.4 Comparison of Interpolation Algorithms 

In all cases KED with no temporal neighbours performed best out of all the 

geostatistical algorithms considered, although the relative improvement in skill was in 

some cases marginal (Table 5.2). KED with no temporal neighbours improved 

interpolation skill over IDW by 7% for and 8% for Tm  The baseline interpolation 

of P by IDW outperformed all other methods (Table 5.2), but KED provided a 2% 

improvement in skill over SK and OK for P. For T, and Tm  the lowest interpolation 

errors were observed when using moderately large numbers of spatial neighbours (n, 16 

- 32), with no temporal neighbours. Temporal neighbours only improved interpolation 
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Table 5.4 Effects of increasing temporal aggregation on estimation error (RMS) derived by 
cross validation resampling of the station network for all three meteorological variables 
considered. Interpolation results are from external drift Kriging (KED) with 32 spatial 
neighbours, and no temporal interaction in the case of Tmin and Tmax, and KED with 4 
spatial neighbours and no temporal interaction for precipitation. 

Mean Tmin , °C 

RMSE MAE % Error 	Bias Gain % Bias 

Daily 2.5 1.8 52 	0.2 0.9 6 0.84 

Weekly 1.9 1.4 40 	0.1 0.9 2 0.88 

Monthly 1.7 1.2 36 	0.0 0.9 1 0.89 

Annual 1.5 1.1 32 	0.4 0.8 13 0.71 

Mean 	°C 

RMSE MAE % Error 	Bias Gain % Bias 

Daily 2.7 2 13 	0.9 0.9 6 0.92 

Weekly 1.7 1.3 8 	0.2 1.0 2 0.96 

Monthly 1.5 1.1 7 	0.2 1.0 1 0.97 

Annual 1.3 0.9 6 	3.2 0.8 20 0.72 

Total precipitation mm 

RMSE MAE % Error 	Bias Gain % Bias 

Daily 9.8 3.2 128 	1.9 0.5 51 0.12 

Weekly 34.2 14.6 91 	9.5 0.7 39 0.24 

Monthly 104.7 49.7 69 	32.7 0.8 31 0.34 

Annual 548.2 311.0 50 	176.3 1.0 26 0.51 

skill when very few spatial neighbours were implemented. For P, the most successful 

Kriging results resulted from KED with 4 spatial neighbours. In all cases, the use of 

large numbers of spatial neighbours produced increased estimation error (Table 5.3). 

We were able to reproduce regional climatology for a time period of five years 

using KED with expected patterns of temporal variation reproduced for all variables 

(Figure 5.7). Estimation skill for T,,iin  and T. was reasonable (RMSE = 2.5, Tm  = 

2.7), large errors were rare, and were associated with extreme events which are poorly 

reproduced using least squares techniques such as Kriging, which tend to smooth the 

estimate of (u,i). There was a strong linear relationship (r 2  T., = 0.84, Tm  = 0.92) 

between the observed and predicted temperature variables, indicating good overall 

interpolation performance. 
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Figure 5.8 Spatial plots of minimum daily temperature (T mjn) taken on 4 consecutive days 
(10 — 

13th  January 2000). Plots on the left of the figure indicate the external drift Kriging 
estimates, whilst plots on the right indicate the variance of the estimate. T mjn contours are 
at 2 °C intervals, ranging from -15 to 5 °C. Standard deviation contours are plotted at 0.3 

°C intervals, ranging from 0 to 3 °C. Low values are plotted in darker colours. Active 
stations are indicated as black points, whilst stations with missing data are indicated as 
open points. 
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Figure 5.9 Error scaling with increasing temporal aggregation for predicted precipitation 
fields. 

Results for P were poorer, with RMSE P = 9.8 mm, corresponding to 128% of 

the daily average observation for the study site, (Table 5.4). Although the magnitude of 

precipitation events was poorly reproduced by KED, with a general overestimation by 

1.9 mm (Table 5.4), the temporal patterns of drought and storm events appear to be 

well represented in Figure 5.7. However, in binary terms, rainfall was successfully 

predicted in 27% of all cases, whilst dry events were successfully predicted in 44% of all 

cases. False positives (P> 0) occurred in 22% of all dry events, whilst only 7% of all 
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rainfall events were predicted as dry. The spatial patterns of variation were well 

reproduced, with the longitudinal gradient in climatology in evidence for all variables (P 

< 0.001) (Figure 5.8). The spatial patterns due to elevation were recreated in the 

interpolations, with good agreement between the overall predicted lapse response and 

that of the data (T, = -0.8, P = 0.42; T = 0.5, P = 0.65; P z = -0.2, P = 0.85). 

Estimation uncertainty as reflected by the Kriging variance was typically low for 

most of the study site (< ± 2 °C for Trrun  and T, < ± 2 mm for P), and scaled with the 

distance to the nearest observation (Figure 5.8). We note the increase in the Kriging 

variance of temperature estimates when the KED algorithm extrapolated the trend 

model to elevations outside the data range (Figure 5.8). 

For all variables considered, recreation of spatio-temporal behaviour improved 

with increasing temporal aggregation (Table 5.4). The r 2  of predicted versus observed on 

the monthly timescale was 89% for T, 97% for T and 34% for P. Temporal 

aggregation of the estimate improved interpolation skill particularly strongly for total 

precipitation (Figure 5.9); as aggregation increased, the comparison between observed 

and estimated data became increasingly linear, and r 2  generally increased. For Tnin  and 

Tm , annual climatology was not as well reproduced as monthly aggregates (Table 5.4). 

For all variables considered, positive bias in the results indicated a general 

overestimation, although this was relatively mild for the temperature variables (typically 

<3% of the observed mean). Bias was higher for annual aggregations (T 12%; min 

20%); positive bias for the P estimations were much more serious, typically -37% of the 

observed mean (Table 5.4). 
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Figure 5.10 Predictive skill of the external drift Kriging estimate for all meteorological data 
for the central Cascades study area, 2000-2004. The left-hand panels shows the estimates 
vs. the observations for each variable, with the 1:1 line in solid gray, and a linear fit 
between observed and estimated meteorology as a broken dark gray line. The right-hand 
panels show the distributions of the residuals (seeTable 5.3). 

Errors appeared to be normally distributed (Figure 5.10), but were spatially 

coloured with respect to hygric continentality. Mean absolute error (MAE) for the 

hygric maritime region was 1.6 °C for T, 2.0 °C for T, and 4.7 mm for P, whilst 
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MAE for the hygric continental region was 2.8 °C for T, 2.6 °C for Tm, and 1.7 mm 

for P. These differences for all three variables were highly significant (P < 0.001) under t 

tests, despite the lower overall bias for T. 

5.6 Discussion 

We were able to produce temperature surfaces with good accuracy using Kriging 

with an external drift, achieving good correspondence with temperature observations 

(Tn,i. r2  = 82%, Tmax  t2  = 94%). The errors for daily temperature variables were typically 

2 °C, and compared very favourably with the mean daily temperature range over the 

study area (-12 °C, a = 3.8 °C). However, results for precipitation were generally poor 

under the Kriging algorithms (r2  - 10%). 

Of the Kriging algorithms implemented, the best results were always achieved 

through Kriging with an external drift. Increasing model complexity reduced errors. 

However, the added complexity of incorporating temporal covariance did not improve 

interpolation performance for any of the three variables (Table 5.2), and thus we reject 

Hi. 

Performance was linked to the number of available data points, with T (the 

variable with the most observations overall) performing best (Table 5.3). The poor 

performance of the geostatistical technique for regionalization of precipitation was most 

likely due to the highly left-skewed distribution of the data, which violated the 

underlying Gaussian assumption of the method (Deutsch and Journel, 1998). The 

improved linear fit of the temporally aggregated precipitation data (Figure 5.9) was a 

result of central limit theorem, with increasing normality of observations, and filtering 
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of temporal stochastic noise, for the less temporally continuous precipitation data, as 

reflected by the temporal range (q, = 2 days). 

Geostatistical methods exist for interpolation of non-normally distributed data 

(Armstrong and Matheron, 1986a; Armstrong and Matheron, 1986b), based on analysis 

of the distribution by some anamorphosis function; e.g. decomposition by Hermite 

polynomials (Wackernagel, 1998). Distribution-free methods based on indicator Kriging 

of binary data codings at various thresholds have also been used (Cressie, 1991 pp.  281-

283), but these have been criticized due to the 'destucturation' effect at higher threshold 

cutoffs (Armstrong and Matheron, 1986a), whereby spatial structure is artificially diluted 

by data scarcity at the extremes of the distribution. Further exploration of these 

techniques may prove fruitful for improving interpolation skill of precipitation. 

It is clear from the results that to make informed estimates of meteorology for 

any reasonably sized space-time region, some knowledge of the effects of topography 

on climate is required. This is well illustrated by the consistent improvement in 

performance of KED over OK, which utilizes no topographic information able 5.2). 

The variability in the strength of these topographic relationships over time is 

noteworthy (Table 5.1), and it seems that any model attempting to reproduce the 

observed large-scale spatio-temporal trends requires some dynamic temporal trend 

component. The fixed slope trend model that was removed from the data prior to 

interpolation by SK was less able to reproduce the observed meteorology than a model 

fit on a day-by-day basis by the KED algorithm (Table 5.2). As such the best results 

were generally obtained from KED (although we note the poor performance of all 

Kriging algorithms for precipitation), which locally fitted the trend model as part of the 

interpolation scheme (Table 5.2). The superiority of KED was particularly true for T, 

with less sophisticated Kriging algorithms outperformed by the baseline IDW 
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interpolation. The temporal cycle in the thermal lapse gradient was likely due to 

adiabatic rise in the summer months 'diluting' the lapse response. Temporal cycling in 

the longitudinal precipitation gradient was likely due to the low precipitation rates 

uniformly observed across the region during the summer months. 

Somewhat surprisingly, incorporation of temporal information did not improve 

interpolation skill for any of the Kriging algorithms implemented (Table 5.3). We 

believe this to be due to excessive smoothing of the estimate of the local mean. 

Increasing the size of the temporal window tends to filter off extreme events, which are 

poorly reproduced by least squares methods such as Kriging. Similarly, the use of very 

large numbers of spatial neighbours (n> 32) had a detrimental effect on interpolation 

skill, which we attribute to over-smoothing of the estimates. Too few neighbours 

produced poor interpolation results, and it seems that for all parameters, a search 

strategy comprising 16 - 32 spatial neighbours and no temporal window produced the 

best results. The optimal size of search strategy is a function of the data distribution, as 

the secondary information required to fit the external drift parameters must have an 

adequate range; Kriging variances increased for high elevations when conditioning data 

was from stations at lower elevations (Figure 5.8). Thus enough data are required to give 

a good range of secondary data values, but a small enough data range to prevent over 

smoothing of the trend function. 

Bias in the estimates was found to be spatially coloured, and largely 

corresponded to the climatic regimes imposed by the topography. On the maritime side 

of the study region, lower temperature errors were found, whilst precipitation errors 

were higher than those observed at stations on the continental side of the Cascades. 

These contrasts can be explained by the general climatic differences between the two 

halves of the region. On the maritime side, the thermal inertia of the Pacific Ocean 
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provided thermal stability, reducing the variability of the temperature signals, and 

making them more ameliorable to interpolation. The higher degree of stochasticity in 

the thermal climate of the continental region made interpolation more challenging. With 

respect to precipitation, it is likely that the reduced frequency of rainfall events on the 

eastern side of the Cascades reduced error, because precipitation estimates were 

truncated at zero. Temporal bias for the temperature variables was weakly positive, 

equal to 6% of the mean of the daily observations for both and Tm • The temporal 

bias in the precipitation fields is of much greater concern, with daily biases equal to 51% 

of the mean daily observations (Fable 5.4). 

Increasing temporal aggregation of the interpolation results generally led to 

decreased error and percent bias (Table 5.4, Figure 5.9), and thus we cannot reject H2. 

This is in accordance with the findings of an earlier study (Ashraf et al., 1997), showing 

that interpolation of monthly or annual averages was more successful than interpolation 

of daily data. This improvement is likely due to smoothing of extremes (which are 

poorly reproduces by LS estimators), and the reduction in stochastic errors over larger 

temporal units as errors 'cancel out'. Whereas Ashraf et al. (1997) examined error 

reduction when interpolating temporally aggregated data, our approach was to examine 

error reduction when aggregating daily estimates over various temporal supports (i.e. post 

hoc processing), in a way which more closely reflects error reduction over longer time 

scales for state variable models. These results indicate that instantaneous error may be 

diluted for phase lagged or integrating elements of the state vector (e.g. soil moisture) 

when implementing such surfaces in modelling applications. 

While previous studies have found Kriging to be marginally better in terms of 

predictive skill (Thornton et al., 1997), simpler methods such as IDW are much easier 

and computationally cheaper to implement. Here we find a similar result for 
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temperature variables, but an increase in interpolation skill for precipitation when using 

simpler IDW methods. 

The critical advantage of geostatistical methods is in providing spatial 

uncertainty estimates on the meteorological variables. The meteorological driver 

uncertainty can be propagated through the ecological or hydrological models (Williams 

et al 2001b) to determine the effects on model prediction uncertainty. Policy makers, 

land use managers and environmental stakeholders are increasingly reliant on landscape 

models for decision support. A detailed quantification of model uncertainty is vital in 

this regard. The geostatistical methods described here provide a means to locate areas 

of higher predictive uncertainty, and allow end users to take account of this information. 

5.7 Conclusions 

We reject hypothesis HI that incorporating temporal information improves the 

regionalization of meteorological data, as we were unable to produce a statistically 

significant increase in interpolation skill when incorporating data from any temporal 

window larger than zero. We could not disprove hypothesis H2, that increasing 

temporal aggregation of meteorological variables reduces stochastic errors, and we 

observed a general improvement in interpolation skill with increasing temporal 

aggregation, with a corresponding reduction in bias. 

Despite the poor performance of geostatistical techniques for describing the 

spatio-temporal variation of precipitation, temperature fields were well represented. We 

maintain that the techniques are useful, particularly in the provision of spatio-temporal 

uncertainty estimates. Issues of positive bias for the precipitation fields are serious, and 

limit the usefulness of the outputs. Further investigation into more suitable interpolation 
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schemes is necessary before usable high-resolution precipitation products can be 

provided. 

The decrease in error associated with temporal aggregation indicates that errors 

in the daily meteorological surfaces may be unimportant for some ecological or 

hydrological processes with larger time constants, such as soil moisture, and this finding 

warrants further study. 
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6.1 Declaration 

The following chapter is intended for submission to Global Change Biology. I 

conducted all the analyses reported, except for the production of the parameter 

ensemble, which was undertaken by M. Williams using his Ensemble Kalman Filter 

code. All of the model runs reported were produced using a version of the DALEC 

model coded by me with reference to M. Williams' original code. I wrote all the body 

text, except for the sections Modelling daily exchanges of C and water (6.4.2) and DALEC 

parameterisalion (6.5.1), which were provided by M. Williams. M. Williams also provided 

comments and made editorial changes to the text. 
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6.2 Abstract 

We present an analysis of the relative magnitude and contribution of parameter 

and driver uncertainty to the uncertainty of estimates of net carbon fluxes. Model 

parameters may be difficult or impractical to measure, whilst driver fields are rarely 

complete, with data gaps due to sensor failure. Parameters are generally derived through 

some optimisation method, whilst driver fields may be interpolated from available data 

sources. For this study, we used data from a young Ponderosa pine stand at Metolius, 

Central Oregon, and a simple model of coupled carbon and water fluxes (DALEC). We 

retrieved a set of 375 acceptable parameterisations via an Ensemble Kalman filter, which 

used observations of net C exchange to retrieve model parameters. We generated an 

ensemble of meteorological driving variables for the site, consistent with the spatio-

temporal autocorrelations inherent in the observational data via geostatistical simulation. 

The simulated meteorological dataset was propagated through the model to derive the 

uncertainty on the CO 2  flux resultant from driver uncertainty typical of spatially 

extensive modelling studies. Furthermore, we partitioned the model uncertainty between 

temperature and precipitation, to examine which driver contributes the most to the net 

flux uncertainty. Our results indicated that driver uncertainty was relatively small ( 10 

% of the total net flux), whilst parameterisation uncertainty was larger, -P50 % of the 

total net flux. The largest source of driver uncertainty was due to temperature (8% of 

the total flux). The combined effect of parameter and driver uncertainty was '-53 % of 

the total net flux. We discuss issues of bias in contributing to flux errors, and identified 

bias problems with both temperature and precipitation data. We recommend better 

constraint of temperature fields when attempting regional to catchment scale modelling, 
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but suggest that parameterisation issues are of greater importance to constrain the CO2 

flux, presenting novel challenges for regionalised modelling of C dynamics. 

6.3 Introduction 

Modem catchment scale studies of environmental phenomena commonly 

employ some sort of modelling approach for extrapolation and prediction (Law et al., 

2001a; Running, 1994; Runyon et al., 1994; Williams et al., 2001b; Williams et al., 

2005b). In general, the practitioner is faced with the problem of upscaling detailed 

observations made at a small number of sites to a wider area, due to the expense and 

technical difficulties associated with direct observation (Thornton et al., 1997; Williams 

et al., 2005b). Process based models formalise knowledge of ecological processes, and 

allow integration of observations at various scales to be incorporated into regional 

analyses (Canham et al., 2003; Heuvelink and Webster, 2001; Williams et al., 2005b). 

Such models typically require initial estimates of rate parameters and surface 

characteristics, along with a set of meteorological driving variables, from which 

estimates of the state vector are derived. 

The situation is complicated by the difficulty in measuring and setting 

parameters, and finding adequate data to drive the model. On one hand, parameters may 

be difficult or impossible to measure in practice, particularly if the rates of the processes 

they represent are slow, with time constants greater than a few months. On the other 

hand, sourcing adequate data to drive the model over the required spatio-temporal 

extent may be difficult due to sparse sensor networks and missing observations resultant 

from sensor failure etc. (Thornton et al., 1997). 
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In general we rely on some optimisation procedure to infer appropriate 

parameter sets (e.g. Klemedtsson et al., 2007; Williams et al., 2005b), and utilise 

interpolation schemes to gap-fill meteorological drivers (e.g. Daly et al., 1994; 

Goovaerts, 2000; Hudson and Wackernagel, 1994; Hungerford et al., 1989; Running et 

al., 1987; Thiessen, 1911; Thornton et al., 1997). The errors resultant from these 

activities are difficult to quantify, and in the case of driver interpolation rarely explored 

(Fuentes et al., 2006). 

Parameter errors can be explored through a variety of techniques, usually based 

on Monte Carlo analyses: Parameters may be perturbed by a series of fixed percentages 

to probe the effect on the state vector (e.g. Oijen et al., 2005; Williams et al., 2005b). 

More formally, we may chose to parameterise the model using a Bayesian framework, 

and directly sample parameter error from the posterior distribution of the parameter set 

computationally (Kennedy et al., 2008; Klemedtsson et al., 2007; Verbeeck et al., 2006). 

Here we explore an alternative Bayesian technique, whereby an a priori parameter set is 

updated by comparing the model trajectory with observations via data assimilation. This 

technique has been popular amongst meteorologists and oceanographers (Eknes and 

Evensen, 2002; Evensen, 1994), and confers the advantage of balancing the observation 

and model error in an optimal sense (Maybeck, 1979). 

Quantification of error resultant from meteorological driver uncertainty may be 

assessed through geostatistical simulation techniques (Fuentes et al., 2006; Goovaerts, 

2001). We generate a moderately large (n 1000) ensemble of equi-probable 

meteorological fields from the available observations, honouring the spatio-temporal 

autocorrelation structure of the data. The error magnitude of the state vector is 

quantified after propagating the ensemble through the model via Monte Carlo analysis 

of the n model estimates (e.g. Fuentes et al., 2006). 
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In a previous paper we illustrated the issue of driver error inflation with data 

scarcity when utilizing geostatistical upscaling of meteorological drivers over a 

moderately large spatio-temporal extent (Spadavecchia and Williams, In review). 

However, it is not clear how errors in the meteorological fields affect the state vector, 

especially in the light of error reduction over increasing temporal support (Spadavecchia 

and Williams, In review): Processes which respond instantaneously to the driver fields 

are likely to have larger error magnitudes than those which integrate driving variables 

over time. As a result, driver errors, which in some cases are appreciable (Spadavecchia 

and Williams, In review), may in fact cancel out over the model run. 

We present an analysis of the sources and magnitude of model errors using 

DALEC; a simple process-based ecosystem model of coupled carbon and water 

dynamics. The model is multi-output, supplying estimates of C stocks, soil moisture and 

fluxes of carbon and water on a daily time-step. We parameterise the model for a well-

sampled Ponderosa pine forest at Metolius, Central Oregon via the Ensemble Kalman 

filter (EnKF) (Evensen, 2003), and sample the uncertainty in the net ecosystem carbon 

exchange (NEE) associated with parameter uncertainty. We then replace the observed 

meteorology with an ensemble of geostatistical simulations conditioned on observations 

surrounding the study site, and run the parameterised model to sample the resultant 

uncertainty in NEE due to driver uncertainty. Finally, we undertake a full uncertainty 

analysis via Monte Carlo sampling of both parameter and driver sets to examine the 

cumulative uncertainty of the NEE. 

The objectives of this paper are to examine and compare the magnitude of 

model error resultant from parameter uncertainty and driver uncertainty on a fine 

temporal support of one day. Furthermore, we intend to characterise the error 

magnitude resultant from uncertainty in a variety of daily driver fields, to diagnose 
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which fields are critical to constrain model predictions. In doing so we aim to address 

the following hypotheses: 

Hi: Driver error will be larger than the parameter error, since the likely range of 

parameters are well constrained locally, whilst meteorological simulations are 

conditioned on patchy, spatially dispersed data. 

H2a: Precipitation will contribute most to model uncertainty: Precipitation has 

the largest interpolation error, and ecosystem production is drought-limited in 

the study region (Law et al., 2001a; Van Tuyl et al., 2005). 

H2b: Temperature will contribute most to model uncertainty: Errors associated 

with precipitation will average out over time, as plant response to precipitation is 

resultant from drought. Drought integrates precipitation uncertainty over time 

through soil moisture content, so instantaneous temperature effects on 

heterotrophic processes will dominate the NEE error signal. 

6.4 Methods 

6.4.1 Study Site 

The Metolius young Ponderosa Pine site is located on a private forestry 

concession near the Metolius Natural Research area (44°26'N, 121°34'W, elevation 

1165m) (Figure 6.1). The site was clear-cut in the late 1980s, and since then has been 

allowed to naturally regenerate, with some thinning in 2002. The canopy layer is 

exclusively comprised of Pinus ponderosa, with an understory of Purshia tridentata and 

Pteridium aquilinum, and a herb layer of Fragaria vesca. From 2000-2002 the site had a 

continuously functioning eddy covariance system, forming part of the Ameriflux 

observational network. Fluxes were measured at —9m above the canopy. The site is 
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Figure 6.1 Metolius Young Ponderosa pine site and surrounding area, Deschutes County, 
Oregon. Two other Ameriflux towers are situated to the north. The area is extensively 
forested with Ponderosa pine and mixed coniferous vegetation (vegetation data courtesy 
of USDA forest service: Sisters Ranger Station, Sisters, Oregon). 

characterised by warm dry summers and wet cool winters. Diurnal temperature variation 

can be high (1.5 - 18.6 °C), and the site is prone to drought (mean annual precipitation 

= 402 mm, mean number of dry days = 224). Two other flux towers are positioned to 

the north of the site, one of which (Metolius intermediate Ponderosa Pine site) has been 

in continuous operation since 2002. No flux data from these towers is employed in this 

study, although Meteorological observations from the intermediate tower are used: The 

locations are indicated primarily to provide context with earlier studies. 
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6.4.2 Modelling daily exchanges of C and water 

6.4.2.1 Canopy processes 

The model consists of a 'big leaf' photosynthesis (GPP) and evapotranspiration 

(El) model (Aggregated Canopy Model, ACM: Williams et al., 1997) coupled to a 

module that tracks the allocation and mineralisation of carbon, and a module that tracks 

the dynamics of soil moisture. This coupled model is henceforth referred to as the data 

assimilation linked ecosystem carbon model, or DALEC model (Figure 6.2). 

The ACM calculates GPP and ET as a function of vegetation properties (leaf 

area index, and foliar N for GPP), meteorology (maximum daily temperature, daily 

temperature range, maximum daily vapour pressure deficit, total daily irradiance) and 

soil properties (soil hydraulic resistance and soil water potential). The ACM model was 

parameterised from locally calibrated SPA predictions of GPP and ET (Schwarz et al 

2004), using the approach laid out in Williams et al. (1997). 

6.4.2.11 C cycling 

The carbon module apportions the predicted gross primary production (GPP) 

into autotrophic respiration and the growth of plant C pools (DALEC: Williams et al., 

2005b) and then tracks additions to and mineralisation of litter and soil organic matter 

(SOM). DALEC requires the specification of ten carbon parameters to control the fate 

of C in the ecosystem. These parameters relate to the rate of decomposition, fraction of 

GPP respired, fraction of NPP allocated to foliage, fraction of remaining NPP allocated 
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Figure 6.2 DALEC C and Water dynamics model. Pools are shown as grey boxes, whilst 
fluxes are represented as arrows. The left hand plot illustrates the C module: GPP (gross 
primary production) is allocated to foliage (f), roots (r) or woody (w) material. Allocation 
fluxes are marked A, whilst losses are marked L. C loss is through respiration fluxes (R), 
split between autotrophic (a) and heterotrophic (h) sources. The right panel details the flow 
of water through the model: Precipitation (P) is allocated between 10 soil water layers 
(W110). Vertical drainage flows (F 1  ... g) occur when soil layers are saturated. Water may be 
lost through gravitational drainage (F 9) to groundwater or evapotranspiration (El). 

to fine roots, turnover rates of foliage, wood ,fine roots, litter and SOM, and the 

temperature sensitivity of litter and SOM mineralisation. DALEC also requires an initial 

estimate of the C stock present in five pools; foliage, fine roots, woody stems, litter and 

SOM (see Williams et al., 2005b). 

The model takes daily inputs of minimum temperature (T), maximum 

temperature (T,,), and precipitation (1'). Temperature observations are converted to 

daily average temperature (T), maximum daily vapour pressure deficit (T/PD), and solar 

radiation (RAD) using well-tested relationships (Running et al., 1987; Thornton et al., 

1997). 1/PD is estimated using Murray's formula (Murray, 1967), whilst RAID is 

predicted using the Allen model (Allen, 1997). Details of these models are provided in 

the appendix. 
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64.2.111 Modelling soil water dynamics and drought stress 

Based on intensive hourly modelling studies at the site (Williams et al. 2001, 

Schwarz et al 2004), we generated a simple daily model of soil water dynamics. The 

model tracks water inputs and outputs in a 10 layer 'bucket' model extending to 3 m in 

depth. Moisture is drained from soil layers when water content exceeds field capacity. 

We used relationships from Saxton et al (1986) and local measurements of soil texture 

to determine porosity and field capacity. Soil hydraulic resistance was determined based 

on soil texture, root biomass and water fraction in each soil layer (Williams et al 2001). 

Soil water potential (P) was generated from a locally determined empirical relationship 

(P-1.74+3.9976) on soil water fraction (0). Rooting depth was determined as a 

function of root biomass using data from nearby ponderosa pine stands (Schwarz et al 

2004). More details of this approach are provided in Fisher et al. (In press). 

6.4.3 Data 

6.4.3.i Flux Observations 

We used three years of data from the Metolius young Ponderosa pine plot (Law 

et al., 2001a; Law et al., 2001b) to parameterise DALEC. The data consist of records of 

net ecosystem exchange (NEE), total ecosystem respiration (Re), evapotranspiration 

(El) and a set of meteorological observations, sampled at the daily time-step. Direct 

observation of T, Tm  Ta, P, I/PD and RAD were made simultaneously with the flux 

data. 

There were 684 daily NEE observations over the 1096 days from 2000-2. Gaps 

in the data resulted from sensor failure and filtering to remove observations with low 

friction velocity (i/), or physically implausible magnitudes (IFl > 25 tmol m 2  sec') 
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6.4.3.11. Canopy Density Observations 

In order to constrain the parameterisation of DALEC, we utilised observations 

of the leaf area index (LA1) of the forest canopy. Observations were made at four times 

during the three-year period, using an LPJ-2000 plant canopy analyser (LI-COR, 

Lincoln, NE, USA). Observations were collected on a 10 m square grid, and were 

corrected for clumping at the needle, shoot and stand levels (Law et al., 2001c; Law et 

al., 2001d). These observations were related to the model foliar carbon estimate via 

direct measurements of the specific leaf mass from foliage samples, see Williams (2005) 

for further details. 

We augmented this set of observations with retrievals of LAI from the MODIS 

satellite (Knyazikhin et al., 1998; Myneni et al., 2002), with a sampling frequency of eight 

days. We filtered the MODIS LAT observations using the provided QC flags, to reject 

data from cloudy days or aberrant spectral signatures (Knyazikhin et al., 1998). 

6.4 .3.111 Meteorological Observations 

In order to generate meteorological simulations at the study site, we sourced the 

13 closest meteorological monitoring stations with data available for the period 2000-

2002 (Table 6.1, Figure 6.3). These stations were selected so that there would be a 

minimum of 8 Tm , and P observations per day on which to condition 

meteorological simulations. Observations were filtered such that the values would not 

exceed the state extremes for Oregon (National Oceanic and Atmospheric 

Administration (NOAA), Silver Spring, Maryland, USA). Meteorological records for 

stations further than 25km away were also sourced to examine the effect of data scarcity 

on NEE uncertainty Figure 6.3. 
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Table 6.1 Locations and data summary for surrounding meteorological stations 

Records Distance 
Name East* North* Elevation Network Began to Sitet Tmjn °C Tmax °C Precip. mm 

Be/nap Springs 577110 4905648 677 COOP 1960 40 2.8 (4.8) 16.3 (10.5) 6.7 (15.2) 

Marion Forks Hatchery 583329 4939053 804 COOP 1948 35 2.0 (4.6) 15.1 (9.8) 4.3 (8.8) 

Redmond FAA Airport 647656 4903155 935 COOP 1948 38 0.3 (6.2) 17.5 (9.7) 0.7 (2.2) 

Santiam Junction 582241 4920523 1121 COOP 1986 32 -1.0 (5.1) 13.0 (10.1) 5.3 (11.5) 

Sisters 615665 4906216 966 COOP 1958 15 -0.3 (5.9) 16.1 (10.5) 0.8 (3.0) 

Colgate 610384 4907884 1010 RAWS 1985 14 0.1 (5.6) 17.8 (10.2) 0.9 (3.5) 

Haystack 649826 4923610 985 RAWS 1985 36 3.9 (6.5) 16.0 (9.9) 0.4 (2.2) 

Metolius Arm 610194 4942510 1029 RAWS 1991 21 3.4 (6.2) 15.5 (10.3) 1.4 (5.0) 

Pebble 580919 4898658 1076 RAWS 1991 40 2.9 (5.3) 15.4 (9.1) 3.4 (7.9) 

Marion Forks 582030 4937184 1111 SNOTEL 1981 36 2.4 (4.6) 14.0 (10.5) 4.4 (9.7) 

Santiam Junction 584894 4920557 1165 SNOTEL 1979 29 0.0 (5.1) 13.6 (9.4) 4.4 (9.2) 

Hogg Pass 590225 4918777 1439 SNOTEL 1980 24 0.5 (5.8) 11.5 (9.6) 5.1 (9.8) 

Otter Intermediate Tower 614792 4923138 1253 AMERIFLUX 2001 2 4.1 (7.1) 12.4 (8.9) 0.5 (1.9) 

Mean meteorological observations. Standard deviations indicated in parentheses. 
* Coordinates in meters UTM zone 10, WGS84 datum. 

Distance to Metolius Young Ponderosa pine site (km). 
t Daily mean precipitation (mm); insufficient data at some sites for reliable annual averages. 
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Figure 6.3 Meteorological monitoring stations surrounding the Metolius Young Ponderosa 
pine site, indicated as a gray point. Crosshairs represent the 13 core stations used for the 
simulations, whilst auxiliary stations at increasing distance from the study site are indicated 
as open circles. Light grey lines indicate county boundaries. The extent of figure 6.1 is 
indicated as a broken black rectangle, which lies in Deschutes County. 

6.4.4 DALEC Parameterisation 

Many of the parameters associated with the processes of photosynthesis, 

evapotranspiration and soil water physics have been derived from the literature or from 

previous research at the study site (Schwarz et al., 2004; Williams et al., 2001a; Williams 

et al., 2005a). The most uncertain parameters are the 10 associated with respiration, 

turnover and allocation of C among plant and soil pools. We add an eleventh parameter 
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to these, the parameter from the ACM GPP model that relates foliar N content to 

photosynthetic capability, to include an estimate of uncertainty in the GPP calculations. 

We used an Ensemble Kalman filter (EnKF, Williams et al 2005) to estimate the 

likely distributions for these uncertain parameters. The EnKF combines a model of a 

system (i.e. DALEC) with observations of that system over time (i.e. NEE and LPd 

observations). The model generates predictions of the state vector (C pools and fluxes, 

soil moisture and water fluxes) for each time step. NEE and LAII predictions are then 

compared with independent observations. Based on an assessment of model forecast 

and observational uncertainty, the predicted NEE and LAT are adjusted. The model 

error covariance matrix, as determined in the EnKF, is then used to adjust the full state 

vector accordingly. 

We adjusted the EnKF approach used in Williams et al. (2005) from a state 

estimation problem to a parameter estimation problem. We added the 11 model 

parameters to the state vector supplied to the EnKF. We set the model error on the 

fluxes and pools of C and water to relatively low values (0.01%) compared to the 

uncertainty on the 11 parameters (0.2%). The error on the NEE observations was 

estimated at 0.7 gC m 2  d 1  and on LAd estimates at 10%. The number of ensembles used 

was set at 400. 

The initial EnKF analysis used parameter estimates from an earlier study 

(Williams et al. 2005). After the initial analysis, we used the final parameter estimates to 

reinitialise the parameters, and ran the EnkF again. We repeated this process again, at 

which point the parameter ensembles stabilised. 

We then ran the model with each element of the acceptable parameter ensemble 

in turn to evaluate the effect of parameter uncertainty on the NEE estimate (experiment 

1). 
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6.4.5 Meteorological Simulation 

In order to quantify the uncertainty of interpolated driving variables at the 

Metolius site, we employed the sequential Gaussian simulation (SGS) (Goovaerts, 1997), 

which may be regarded as an extension of the commonly used Kriging technique (e.g. 

Ashraf et al., 1997; Goovaerts, 2000; Hudson and Wackernagel, 1994; Spadavecchia and 

Williams, In review). 

Kriging estimates represent the most likely value of the estimate given the 

surrounding observations, based on a probabilistic model. Kriging variances produce a 

valid estimate of uncertainty for the estimate when taken in isolation, but they are less 

useful for assessing the uncertainty of the regionalisation as a whole (Goovaerts, 1997). 

SGS expands on Kriging by drawing equally possible realisations of the whole field from 

the probabilistic model, preserving the surface roughness of the estimated field and 

avoiding the characteristic smoothing effect of Kriging (Deutsch and Journel, 1998; 

Goovaerts, 1997; Goovaerts, 1999; Goovaerts, 2001). The outcome is a set of equally 

likely estimates of the meterology at the study side given our limited knowledge. 

We modelled the autocorrelation structure of the T, Tm  and P observations at 

the meteorological stations by calculating theft empirical semivariograms. The 

semivariogram y quantifies the dissimilarity between pairs of observations separated by 

increasing spatiotemporal lag distances: 

1 	
N(h,h,) 

y(h,h) = 	 + h, t1  + h)]2 	 (6.1) 
2N(h,h) 

Where h and h are the separation lags in space and time respectively, r<(u,t)  is the 

observed variable at a given spatio-temporal coordinate, N(h0h) is the number of pairs 

in the lag. 
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We selected and fit permissible semivariance models (Christakos, 1984; 

Gringarten and Deutsch, 2001; Mcbratney and Webster, 1986) to summarise the 

empirical semivariograms. The spatial and temporal semivariogram models were then 

combined using the product-sum covariance model of De Cesare et al. (De Cesare et al., 

2001; De Taco et al., 2001). 

Simulation proceeded as follows: 

Initialise a random visiting schedule for the grid of G locations, with a 

data heap of n observations. 

Visit the 1b  node of the grid and estimate the mean and variance iiia 

Kriging conditioned on the values in the data heap. 

Draw a random value from the Gaussian distribution of the node, 

defined by the Kriging estimate (mean) and Kriging variance. The 

resultant value was the SGS estimate z. 

The realization 	was then treated as an observation for subsequent 

estimates, and added to the data heap (n+i conditioning data). 

Iterate from 2 until all grid locations were visited (i=G). 

As in all geostatistical techniques, it is possible to incorporate covariates into the 

simulations: We specified a linear lapse relationship between elevation and temperature, 

and a longitudinal gradient in precipitation, the parameters of which were estimated as 

part of the simulation process, via the external drift method (Hudson and Wackernagel, 

1994; Wackernagel, 1998). 
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6.4.6 Partitioning Driver Uncertainty 

We generated 1000 simulations of T, Tm  and P at the Metolius site for the full 

three years of the study conditioned on data from the 8 closest spatial neighbours over a 

temporal window of ± 10 days (88 observations) iiia SGS. Meteorological observations 

at the site were excluded so as to explore the uncertainty resultant from modelling C 

dynamics over sparsely sampled regions. We then ran the parameterised model with 

each of the 1000 simulations in turn, to inspect the variability in the predicted NEE 

ensemble. We then ran three experiments; (2.i) locally observed temperatures, VPD and 

RAD with simulated precipitation, (2.ii) locally observed precipitation with simulated 

temperatures, VPD and RAD (2.iii) locally observed precipitation, I/PD and RAD with 

simulated temperatures. Experiment 2.iii was devised to decouple the NEE uncertainty 

resultant from deriving VPD and RAD from temperature within the model. Finally, 

having generated a parameter ensemble and 1000 equi-probable meteorologies, we 

generated a sample of 1000 parameter and meteorology permutations to test the 

combined effect of parameter and driver uncertainty on the model (experiment 3). 

In order to test H2 we compared the precipitation regime of the data with the 

simulated rainfall trajectories. We calculated the number of days since a precipitation 

event (n) for the 1000 simulations generated in experiment 2.i. We subtracted the 

number of days since a precipitation event in the local observations from n 0  to 

generate a metric of drought (L1). We considered data where /i was positive (i.e. 

simulations with longer dry spells than observed in the data) to examine the effect of 

drought on the uncertainty of the NEE trajectory. 
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Figure 6.4 Marginal parameter distributions retrieved from an ensemble of 375 elements 
derived from the Ensemble Kalman filter and passing a goodness-of-fit test against the 
observed NEE time series 2000-2002. The resultant total net ecosystem exchange (NEE 
gC m 2 ) over three years is also indicated. 

6.4.7 Sparsity of Meteorological Conditioning Data 

Given that interpolation uncertainty is related to the distance to the nearest 

neighbours (Spadaveccbia and Williams, In review), we investigated the effect of 

increasing data sparsity by conditioning simulations on data from increasing search radii 

(Figure 6.3), ignoring weather stations closer than the threshold distances of 25, 50, 75 

and 100 km. In each case, the closest 4 stations beyond the threshold distance were used 

to condition the simulations. We ran the model with each of these meteorological 

ensembles to test the robustness of the comparison of meteorological and 

parameterisation uncertainties on the uncertainty of the final NEE analysis (experiment 

4) 
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Figure 6.5 MODIS leaf area index (LAI) distribution for the Metolius Young Ponderosa pine 
site for a three-year period (2000-2002). Reported distributions from the literature are also 
indicated as solid and broken black lines. The finely broken black line indicates the 375-
element ensemble mean retrieved from the Ensemble Kalman Filter. 

6.5 Results 

6.5.1 DALEC Parameterisation 

The EnKF propagated observations of NEE and LAI into an ensemble of 400 

state vector predictions, thereby generating estimates of the 11 parameters included in 

the state vector. These ensembles were subject to a Chi-Squared goodness of fit test of 

the NEE observations as a check on the parameterisations. The DALEC model was 
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Figure 6.6 Model data comparison for four fluxes. In all cases the dark grey line indicates 
the mean trajectory of the 375-element ensemble trajectory retrieved from the Ensemble 
Kalman filter. Observations are indicated as black crosses. The modelled LAI is compared 
with ground based Li-Cor LAI2000 observations and MODIS satellite retrievals. LAI error 
bars are included to show the high variability of the satellite retrievals. 

run in normal forward mode (i.e. without the EnKF) using each of the 400 sets of 

parameter estimates, and the chi-squared test was applied on the predictions and 

observations of daily NEE to test their similarity. Of the 400 parameter sets, 375 passed 

this test (c2  = 717, DF = 656, P > 0.95) and were used in further analyses. The 

distribution of the parameter ensembles is illustrated in Figure 6.4, along with the 

resultant total NEE distribution. 

The model ensemble appeared to represent the LAT reasonably well, and seemed 

to be in good agreement with the various available data sources for the site (Figure 6.5). 

A t-test indicated no significant difference between the means of the LP12000 and 
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Table 6.2 Summary of model fits for various model outputs 

Data Source r2  RMSE Pearsons r kendalls t 

NEE* 0.39 8.70 0.62 0.44 

ET' 0.55 9.90 0.74 0.55 
LiCorLA!2OOOt 0.70 0.12 0.84 0.67 

MODISLAF 0.03 1.34 0.17 0.15 

R0' 0.78 13.00 0.88 0.67 

* Net ecosystem exchange, gC m day' 
t Evapotranspiration, mm m 2  day- ' 
j Leaf Area Index, unitless 

§ Total ecosystem respiration, gC m 2  day 1  

MODIS distributions (t = -1.7, P = 0.09), although this is may have been due to the 

large uncertainties attached to the MODIS retrievals. Despite the good match between 

MODIS LAI and the ground observations, the model LAI was found to be significantly 

different (t = -142.9, P<0.001); the mean MODIS LAT was 1.5, significantly higher than 

the mean model LAI of 1.1. 

Visually examining the mean ensemble trajectory for four major components of 

the flux indicated that NEE and LAI were well reproduced, while the trajectories of 

total ecosystem respiration (R e) and evapotranspiration (El), data not used in the 

assimilation, were reasonably replicated (Figure 6.6). Quantitative tests revealed the 

model to be performing well with respect to all data streams, except the MODIS LAI, 

which appeared to be an overestimate with respect to the model trajectory (Table 6.2). 

The optimised model estimated a total carbon uptake of 423 gC m 2  over three 

years, with a 95% confidence interval of ± 213.64 gC. The NEE uncertainty resultant 

from parameterisation was therefore substantial, representing 51% of the total net flux. 

A detailed analysis of the NEE error indicated relatively unbiased estimates; a simple 

linear regression between the estimates and observations indicated an intercept of -0.299 

and a slope of 0.302 (Figure 6.7), suggesting that the model tended to smooth the NEE 
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Figure 6.7 Net ecosystem exchange (NEE) model data comparison. Model values are the 
375-element ensemble means retrieved from the Ensemble Kalman filter. The model error 
distribution is indicated in the right panel. The heavy right hand tail indicates an 
underestimate of the summer C uptake. 

trajectory, underestimating the distribution at the extremes, with a small bias towards 

underestimation of the daily C uptake. 

6.5.2 Meteorological Simulation 

In order to simulate an ensemble of meteorological regimes we first calculated 

semivariograms for T, Tm  and P. We modelled the spatial variation of T and T,, 

with a nested spherical (q  T = 23.8 km, 9 4,b Tm  = 9.67 km), exponential model 

= 154.2 km, 	= 196.6 km). For P, a Gaussian model (q 	= 34.7 km) 

with a small nugget effect (r = 0.2 mm) best captured the patterns of spatial variation. 
/ 

All three variables displayed exponential semivariance structures in time, with ranges of 

-4 week for and T,,,, and a shorter temporal range of 2 days for precipitation, 

indicating lower temporal continuity in the time series. The sill parameters fitted for 

each variable were sill. = 6.4, sill, = 11.69 and Silig  = 12.8 for T; si/la  = 10, sill, = 23.1 
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Figure 6.8 Semivariograms of meteorological data from the Central Cascades study area. Data were de-trended prior to analysis. Spatial semivariograms 
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are raw data prior to detrending. 
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Table 6.3 Simulation versus data comparison for the Metolius Young Ponderosa pine site 

Driver Simulated Observed Bias Gain r 

Tmjn °C 2.8 (6.6) 1.3 (5.6) 0.95 0.79 0.88 

Tmax °C 12.8 (9.2) 13.6 (9.8) 0.34 1.04 0.96 

TB  0C 7.78 (7.7) 8.7 (7.9) -0.88 1.01 0.97 

Precip mm *  657.8 (273.6) 402.4 (60.9) 0.69 1.01 0.56 

RADMJm 2 day 1  12.4 (7.5) 13.6 (8.5) -0.78 1.03 0.82 

VPDkPa 1.2 (1.0) 1.3 (1.2) -0.04 1.13 0.91 

Mean daily meteorology. Standard deviations indicated in parentheses. 
*Mean  annual precipitation (mm) 

Table 6.4 Summary of 375 element parameter ensemble retrieved from ENKF fitting 

Name Parameter Mean SD Scale 

t 1  Decomposition Rate 3.80 (0.40) x10 6  

t2 Respiration Fraction 4.41 (0.22) x10 1  

t3 Foliar Fraction 3.30 (0.25) x10 1  

U Root Fraction 4.61 (0.19) x10 1  

t5  Foliar Turnover 3.64 (0.37) x10 3  

t6 Woody Turnover 1.90 (0.26) x10 

Root Turnover 6.64 (0.58) x10 3  

t8 Litter Mineralization 1.63 (0.19) xl 0.2 

t9  SOM Mineralization 1.07 (0.12) X10-5 
 

t10 Soil T Sensitivity 6.79 (0.22) xl 02 

t11  Photosynthetic scalar 8.13 (0.39) 

and sills  = 32.46 for T ; and sill, = 20.0, sill, = 38.44 and si11 = 49.3 for precipitation 

(Figure 6.8). The large-scale temporal trends (Figure 6.8) operated on temporal 

separations greater than one month. This temporal separation was smaller than the 

implemented search strategy of ± 10 days, and was therefore irrelevant for the 

generation of simulations. 

1000 simulations were drawn from the data using the specified covariance 

models. We generated estimates of 1/PD and RAID from T i,, and Tm  via Murray's 

formula (A = 0.978, B = 22.23, C = 243.95) and the Allen model (Kra  = 0.17), which 

were calibrated locally. We were able to reproduce the observed meteorology 
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Figure 6.10 Effect of drought on NEE error. Ap is the number of days simulated as dry on 
which precipitation events were measured: Ap records the number of days that Psjmtgafed= 0 
whilst Pobsen,ed > 0. As A, increases the model goes into mis-specified drought, as 
indicated by the modelled soil water fraction (right axis). The deviation in modelled and 
observed NEE trajectories attributable to mis-specified drought is plotted on the left axis as 
the root mean squared error (RMSE). The background RMSE of the model resultant from 
precipitation uncertainty is 0.7, indicated as a broken grey line. 

successfully for all variables (Figure 6.9), with r 2  values exceeding 0.8 for all variables 

except P, which had an r 2  of 0.56 and a considerable positive bias (Table 6.3). 

We propagated the 1000 meteorological realisations through DALEC to sample 

the NEE uncertainty resultant from driver uncertainty. All experiments were run using 

the mean parameter Set retrieved from the EnKF (Table 6.4). With all meteorological 

observations replaced with simulated values, the model predicted a total NEE of -425 

gC m 2  with a 95% confidence interval of ± 37.24 gC. The mean daily ensemble variance 

for the parameter and meteorological trajectories were 0.24 and 0.12 gC m 2  day-' 

respectively, indicating significantly greater sensitivity of the model to parameterisation 

uncertainty (t = 24.03, P<0.0001). Replacing only P with simulated values (experiment 

2.i) resulted in a total flux of -513 ± 16.9 gC m 2. Replacing all temperature (T,.io  T T) 

and temperature derived variables (VPD, FAD) with simulated values (experiment 2.11) 
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resulted in a total NEE of -338 ± 23.66 gC m 2. When we replaced only the 

temperature observations with simulated values (experiment 2.1), a total NEE of -337 

± 23.66 gC M-2  Wasobserved (Table 6.5). Although NEE uncertainty attributable to the 

drivers was relatively small (typically < 40/6), larger differences in the total flux were 

observed. The directions of bias for P and temperature were opposite, but of similar 

magnitude (85 gC ma), and seemed to cancel each other out when the full 

meteorological uncertainty was propagated through the model (Table 6.5), and the total 

NEE estimated in experiments I and 2 were well within one standard deviation of each 

other, and were not significantly different (t = 0.37, P = 0.71). 

We examined the temporal period over which drought stress occurred, by 

comparing the number of days since the last predicted rainfall event for each simulation 

with the observed rainfall regime (A r). Positive values of A indicated that the model was 

going into drought while the observed P was greater than zero (mis-specification). The 

maximum value of A was 55 days, whilst the mean iI was -3, indicating an overall 

positive bias in the number of simulated rainy days. Mis-specified droughts had a mean 

length of 3.5 days with a standard deviation of 3.9 days. The mean number of days 

between rainfall events for the observations was 4.1, with a standard deviation of 6.9. 

Increasing A was linearly related to a decrease in modelled soil water content (r 2  

= 0.58, P < 0.0001), and a corresponding decrease in ET (r 2  = 0.29, P < 0.001). The 

RMS error of modelled versus observed NEE decreased with increasing drought stress 

(r 
2 = 0.46, P < 0.0001). Drought was initiated after approximately 30 dry days, as 

indicated by the step change in Figure 6.10. The background RMSE attributable to 

precipitation uncertainty was 0.7. When Ap < 30 the RMSE was approximately equal to 

background levels (0.71). However, as A, > 30 the RMSE dropped to 0.39. 
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Table 6.5 Total NEE estimates from various uncertainty sources. 

NEEgC m 

Experiment Source of Variation 2000 2001 2002 Total 

I Parameters -120 (28) -148 (44) -155 (41) -423 (109) 

2 Meteorology -115 (10) -152 (12) -159 (7) -425 (19) 

2.i Precipitation -143 (5) -186 (7) -183 (4) -513 (10) 

2ii Temperature VPD and RAD -84 (6) -114 (8) -140 (6) -338 (14) 

2.iii Temperature -82 (7) -101 (8) -155 (6) -337 (14) 

3 Total -114 (30) -148 (44) -147 (45) -409 (111) 

Values are in gC m 2  per time period. Standard deviations are indicated in parentheses. 

Table 6.6 Effect of increasing data scarcity on NEE uncertainty. Simulations were run using the mean parameter 
values from Table 6.4. Meteorological data scarcity was increased via a reduction in the proximity of conditioning 
data through exclusion of data below the search threshold. Simulations were conditioned on the four closest stations 
for each search threshold. 

Search Threshold 2000 2001 2002 Total 

(Closest Station) Mean SD Mean SD Mean SD Mean SD 95% Cl* 

<25km -113 (11) -152 (12) -158 (7) -424 (20) 9 

>25km -103 (11) -139 (14) -165 (14) -408 (27). 13 

>50km -123 (11) -169 (13) -185 (17) -477 (28) 11 

>75km -120 (12) -165 (14) -188 (19) -473 (33) 14 

>100 km -111 (14) -169 (19) -191 (21) -471 (47) 19 

Mean NEE m per time period. Standard deviations indicated in parentheses. 
*95% Confidence interval of NEE expressed as a percentage of the total flux. 
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6.5.3 Monte Carlo Sampling of NEE Uncertainty 

We generated 1000 permutations of parameter and driver combinations at 

random from the pool of 375 parameter sets and 1000 driver sets (sampling with 

replacement) and ran the model with each in turn. These runs resulted in a total 

predicted NEE for 2000-2 of -409 ± 217.56 gC m 2  (Table 6.5). A comparison of the 

daily flux estimates for the main experiments (1, 2 and 3) revealed broadly similar 

ensemble trajectories (Figure 6.11). However, the range of experiment 2 was 

asymmetrical about the mean, with a greater deviation in the positive (weaker uptake) 

direction. As such, the summer extremes in uptake appear to be less well replicated in 

experiment 2 than experiment 1. Furthermore, winter uptake appeared weaker in 

experiment 2 in comparison with experiment 1. 

Whilst the NEE variability of experiment I exceeded that of experiment 2, we 

examined the robustness of this result by increasing the variability of the meteorological 

ensemble in experiment 4: We decreased the amount of conditioning data to four 

neighbours whilst sequentially increasing the minimum distance to an observation 

(Table 6.6). In all cases, the NEE uncertainty attributable to meteorological uncertainty 

was less than the uncertainty attributable to parameter uncertainty (9 - 19% and 51% 

respectively). The results of experiment 4 indicate a general increase in NEE uncertainty 

with increasing distance to conditioning data, although results from the 25 km threshold 

distance were more uncertain than the results from the >50 km threshold (Table 6.6). 

A comparison of the cumulative NEE allowed an examination of the growth in 

uncertainty over time for the three main experiments (Table 6.5, Figure 6.12). Again, the 

mean ensemble trajectories appear broadly similar, with little difference in total uptake 
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Figure 6.11 NEE trajectories for three years (2000-2002) under different uncertainty 
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Figure 6.12 Cumulative NEE estimates over three years (2000-2002) under different 
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represented as a dark grey polygon. The individual ensemble members are indicated as 
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for inter-annual comparisons, which were approximately within one standard deviation 

of each other. However, it was clear that the greater variability in NEE imposed by 

parameter uncertainty compounds to a much larger annual uncertainty than for driver 

uncertainty. The total cumulative uncertainty (experiment 3, Figure 6.12c) was not very 

different to experiment 1, save for exaggerated extremes and a more pronounced end of 

season die-back, also exhibited in experiment 2 (Figure 6.12b). 

6.6 Discussion 

We were able to retrieve an unbiased flux estimate when parameterising DALEC using 

the EnKF, resulting in a total net C flux estimate consistent with the data and previous 

literature for the site (Law et al., 2003; Williams et al., 2005b). We found a large range of 

permissible parameter sets, resulting in cumulative NEE uncertainties over the three 

years of the study corresponding to -50% of the total net flux (95% confidence interval 

of NEE expressed as a percentage of the total flux). The cumulative NEE over three 

years using EnKF for parameter estimation was 423 ±90 gC m 2  (mean ± SD of 

ensemble). This mean analysis was very close to that reported by Williams et ad. in an 

earlier study using the EnKF at the same site for state (rather than parameter) 

estimation, 419±29 gC m 2  (Williams et ad. 2005). The larger uncertainty associated with 

the parameter estimation approach was due to the constraint of setting constant 

parameter values for the entire 3 year run. In the state estimation approach, 

adjustments to the analysed C fluxes and pools were made throughout the three year 

period according to the observations, resulting in a closer fit to the data. 

MODIS LAI retrievals compare well with ground observations (Law et al, 2003; 

Williams et ad., 2005b) and model retrievals via data assimilation (Williams et ad., 2005b). 
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However, MODIS retrievals of LAT were significantly different from the modelled LAT, 

and in general seem higher than we expect for the site. The fundamental issue of scale 

when validating 1 km' pixels against ground surveys undertaken at a scales orders of 

magnitude smaller makes direct comparison difficult (Tan et al., 2006; Yang et al., 2006), 

although published comparisons for the site report an r 2  of 76% with minimal bias 

(Cohen et al., 2006). Despite the large uncertainties associated with the MODIS LAI 

data stream, it still provides useful information due to its dense temporal coverage (8 

day return period). Recent studies have indicated the use of satellite measured radiances 

may be preferable to LAJ products in the case of assimilation, and novel ways to utilise 

such data streams may improve parameter constraint in the future (Quaife et al., 2008). 

Meteorological simulations for the three-year period display a high degree of 

variability, which decreases in the final year (Figure 6.9). This decrease in uncertainty is 

due to observations at the nearby Metolius 'Intermediate' tower starting on project day 

732 (1 January 2002). Geostatistical simulation techniques are able to reproduce the 

roughness of the driver fields, preserving data extremes, which may be particularly 

important for regionalisation of precipitation: The precipitation signal comprises of a 

background fluctuation -Omm, with rare but sizable events which may be on the order 

of 100 mm day'. Thus, reproduction of extreme events over the average behaviour may 

be critical, and it is in this respect that SGS confers an advantage over Kriging 

techniques. In general we were able to satisfactorily replicate the meteorology for the 

site, but issues of bias arose, particularly for precipitation. 

Positive bias in precipitation simulations resulted in a positive bias in NEE 

estimates when all other meteorological drivers were held at their observed values. 

Whilst precipitation variability was comparatively large, its effects did appear to be 

temporally buffered by the effect of soil capacitance (Figure 6.10). A reduction in RMSE 
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error was observed with increasing drought stress that reflected a decrease in the 

positive bias imposed by the simulated precipitation. Drought stress manifested itself 

after -30 days without rain. The mean length of mis-specified drought events was 3.5 

days, whilst on average the simulations had an increased frequency of precipitation 

events with respect to the observations: On average, simulated dry spells were 3 days 

shorter than those measured at the site. This indicates that the time scales on which 

precipitation errors occur in the simulations are much shorter than the temporal scales 

over which drought operates in the model. Thus precipitation errors are reduced by the 

model, since temporal aggregation has previously been shown to reduce driver 

uncertainty (Spadavecchia and Williams, In review). 

Despite considerable uncertainty in the simulated driver sets, the resultant NEE 

uncertainty was 9% of the total flux, contributing only —3% to the total combined NEE 

uncertainty, and well within the uncertainty attributable to parameterisation. This result 

was robust under significant degradation of the meteorological data set, with a 

maximum driver uncertainty of '--'20% when conditioning simulations on four 

neighbours separated by distances greater than 100 km from the study site. We therefore 

reject Hi; that the dominant source of NEE uncertainty is due to driver uncertainty. 

Experiments on the effect of data scarcity indicated a general increase in NEE 

uncertainty with increasing distance to conditioning data. This result is expected, given 

Tobler's first law of geography (Tobler, 1970), specifying that similarity of observations 

is directly related to separation distance. The slight increase in uncertainty of the run 

conditioned on data >25 km from the site over the run conditioned on data >50 km 

away is most likely due to the large elevation difference between the conditioning data 

and study site at 25 km, as this roughly corresponds to the distance between the study 

site and the peaks of the Cascade mountain range to the West. 
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Examining the error contribution of each driver to the NEE trajectory revealed 

interesting bias effects: The positive bias in simulations of precipitation elevated the 

estimated C uptake by '-'30 gC m 2  yeaf1 , whilst smoothing of the temperature signal 

(overestimation of mean T,,,,, underestimate of mean T,,,,,J resulted in underestimation 

of C uptake by '-'30 gC m 2  year-'. These opposing signals act to cancel out when 

considering the total meteorological uncertainty, resulting in an unbiased estimate of 

total NEE, with a small uncertainty (Table 6.5). 

Bias issues in the meteorological simulations are a concern, and whilst in this 

study the precipitation and temperature biases cancel out, it is not clear whether this was 

by chance alone. It is likely that the bias cancellation was fortuitous for our study site, 

and there may be significant bias problems for other locations and ecosystems. A 

broader study of these bias issues for regional meteorological drivers is thus vital. 

Of the meteorological drivers considered, temperature appeared to have the 

largest impact on NEE uncertainty, with approximately twice the influence of 

precipitation on the signal. As such we reject H2a, and accept the alternative proposition 

that instantaneous temperature variability dominates the flux uncertainty. This is likely 

due to the sensitivity of both GPP and heterotrophic respiration (via a Q10  relationship) 

to daily air temperature in DALEC. Decoupling the effect of deriving VPD and daily 

insolation from temperature drivers in DALEC indicates that indirect estimation of 

these drivers have a minimal impact on the total NEE. 

6.7 Conclusions 

We were able to retrieve statistically permissible parameter sets at a data rich 

location, but still faced appreciable uncertainties in flux estimates resultant from 
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parameter uncertainty. As such, spatially explicit modelling exercises may struggle to 

characterise the regional flux without considerable fieldwork, or investment in remote 

sensing methodologies to retrieve well-constrained parameter sets for the region of 

interest. Modelling the young ponderosa pine site at Metolius is challenging, because the 

system is aggrading rapidly. Observed annual increases in LAT result in increasing rates 

of C cycling. So the model parameterisation must be able to allocate C to grow the plant 

tissues realistically. 

Minimisation of uncertainty in regionalisations of meteorological drivers may 

not be critical in terms of quantification of the regional carbon budget. We found 

considerable variability in simulated driver trajectories resulted in a small contribution to 

the net uncertainty. Issues of bias in meteorological upscaling are of much greater 

concern, but seemed to cancel out over time when propagated through the model. It is 

likely that the cancellation of bias due to temperature and precipitation is by chance 

alone, and further research into issues of bias in driver fields is warranted. 

We have presented a robust analysis of the relative magnitude of 

parameterisation and driver errors using novel techniques. Quantification of the 

uncertainty associated with regionalised meteorological fields at relevant resolutions for 

catchment scale studies has been presented for the first time, with significant utility for 

policy making, and represents a key step in the application of data assimilation 

approaches on the catchment scale. It appears that improved model parameterizations 

and calculations of bias in meteorological fields are a research priority for spatially 

explicit regional modeling exercises, especially where data may be sparse. 
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6.10 Appendix 

In order to derive estimates of mean temperature (I), vapour pressure deficit 

(I/PD) and incoming solar radiation (RAD) we implement well tested models from the 

literature. T was derived through the relationship provided in Thornton et at (1997): 

= 0.606.T1  + 0394Tmjn 	 (6.2) 

We derive I/PD through a locally calibrated version of Murray's formula 

(Murray, 1967): 

VPD = e - em  

T 
e =A.exp B. a 

c+i; 

e. 
 

=A.exp m 	 C + T i.  

Where e1  is the saturation vapour pressure, em  is the ambient vapour pressure, 

and A, B and Care empirical constants. 

(6.3) 

Luke Spadavecchia 	 - 170 -  	 2008 



Partitioning Sources of Model Error 

R,4D was determined using the Allen model (Allen, 1997), which relates the 

atmospheric transmissivity to daily temperature range and site elevation (through 

atmospheric pressure): 

RAD=R A .K,.(T —T.' mm' °5  

05 

max  

K,. = K0() 
(6.4) 

Where RA  is the Angot (extraterrestrial) radiation in MJ m 2  day 1 , P is the 

atmospheric pressure at the site in kPa, and P0  is the sea level atmospheric pressure 

(101.3 kPa). Kr  is an empirical constant, which takes values '-0.17 for inland regions, 

and values of —0.20 for costal regions. 
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7.1 Declaration 

I am the sole author of all text and program code described in the following 

chapter, although the text draws heavily from sources referenced in the text. All 

references are cited, and I declare the text to be my own work. Fortran 90 code for the 

programs described is included in electronic format in an appendix. 
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7.2 Abstract 

We document a set of Fortran 90 programs (the Edinburgh Space-Time Geostatistics 

• Package) for the spatio-temporal regionalization of data via geostatistical methods. The 

programs utilize the product and product sum covariance representations of spatio-

temporal data interactions. The code described allows interpolation of a data set over 

and arbitrarily spaced grid in continuous spatial and temporal coordinate systems. Error 

analyses are provided via the Jack Knife. The resultant spatio-temporal fields represent 

the expectation of a random function (RF), conditioned on the observed data and 

covariance model. The techniques implemented allow production of fields of estimation 

variance. We also provide code for simulation from the RF, via Sequential Gaussian 

Simulation (SGS). The SGS technique makes random draws from the RE, and allows 

the user to quantify the uncertainty of the interpolated field. SGS allows Monte Carlo 

analysis of the regionalisation by ensuring draws from the distribution (described by the 

expectation and estimation variance) conform to the observed spatio-temporal 

covariance of the data. The SGS technique is particularly useful in cases where the user 

intends to parameterise a model with a regionalised field, as the interpolation uncertainty 

can be propagated through the model to produce appropriate confidence intervals. 

Instructions for the use of the software are provided, along with sufficient background 

theory to successfully implement spatio-temporal regionalisation. A section discussing 

practical aspects of geostatistical modelling is also provided as an aid to first time users. 
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7.3 Introduction 

The Edinburgh Space-Time Geostatistics software is a collection of three 

programs for the purpose of upscaling observations of a variable of interest to a set of 

coordinates distributed over some region of interest. The programs allow upscaling of 

data using the inverse distance weighting method (IDW".exe) and Kriging (Geostats.exe), 

Use of the Kriging algorithm generates estimates at unsampled locations using a random 

function model, specified from the data distribution and a description of the spatio-

temporal relationship between observations. Simulations can be drawn from this model 

using the program Gaussim.exe. 

The field of geostatistics has been in development since the late 1960s (Cressie 

1990), and in the last decade, geostatistical techniques have expanded to encompass 

spatio-temporal estimation problems (Kyriakidis and Journel 1999, Christakos 2000, De 

Cesare et al. 2001b, De Taco et al. 2001). While multi-dimensional implementations 

existed prior to this, unique challenges of spatio-temporal implementations remained: In 

particular, describing the space-time autocorrelation structure of the data was 

problematic (Kyriakidis and Journel 1999, De Cesare et al. 2001a, Gneiting 2002b, 

Gneiting et al. 2005). In 2001, De Taco et al. introduced the product-sum covariance 

model (De Taco et al. 2001), allowing intuitive and simple construction of spatio-

temporal descriptions of autocorrelation, and provided Fortran 77 code for estimation 

via these techniques (De Cesare et al. 2002). 

A wealth of software exists for geostatistical estimation (e.g. Deutsch and 

Journel 1998, De Cesare et al. 2002) prompting the question, why develop a new set of 

tools at all? The intention of the current software and documentation is to provide a 

user friendly and flexible implementation of spatio-temporal geostatistical methods as 
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described by De Cesare et al. (2001a) with custom built Fortran 95 software, rather than 

the modified GSLIB (Deutsch and Journel 1998) code implemented by De Cesare et al. 

(2002): In particular, we wished to allow cross-validation of entire time series, rather 

than the 'one observation at a time' method implemented by De Cesare et al. (2002), 

and to provide additional outputs not provided by the GSLIB code. 

Theoretical introductions to geostatistical techniques are abundant (Clark 1979, 

Isaaks and Srivastava 1989, Cressie 1991, Goovaerts 1997, Deutsch and Journel 1998, 

Wackernagel 1998), and relevant material for spatio-temporal implementations can be 

found in (Kyriakidis and Journel 1999, De Cesare et al. 2001b, a, De laco et al. 2001, 

Heuve]ink and Webster 2001, De Cesare et al. 2002, Gneiting 2002b, De Taco et al. 

2003, Gneiting et al. 2005). It is not our intention to re-cover this material: Whilst we 

provide a brief introduction to the relevant material necessary to successfully implement 

the techniques described, we assume some familiarity with the theory behind Kriging, 

and focus on a more applied description of spatio-temporal estimation techniques as 

implemented in the accompanying software, in the hope that they may prove useful to 

others. The program is supplied with the GNU general public license agreement: Please 

acknowledge the authors when using this software. 

7.4 The Random Function Model and the Requirement of 

Stationarity 

Linear geostatistical methods employ a probabilistic approach to upscaling; each 

data point is conceived of as a draw from a normal distribution, referred to as Gaussian 

random variable (1W). This collection of RVs are related to each other by some 
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quantifiable distance metric. This collection of spatio-temporally dependent random 

variables is known as a random function. 

Kriging produces an estimate by calculating the conditional expectation of the 

random function (RF) for the estimation location, given the observed values. The 

expectation of the RF is fully defined by the expectation and covariance structure of the 

RF. Local spatial uncertainty can be explored by repeated draws from the RE iiia 

sequential simulation (see section 7.9.1.iv). Generally, the statistical description of 

autocorrelation is provided by the semivariogram, although other choices are possible 

(see section 7.5.2). We generally infer the covariance structure from the sernivariogram. 

In order to make inferences about any distributional characteristic (expectation, 

variance etc.) of an RV it is useful to have repeated measurements from its distribution. 

Therefore, in order to estimate the autocorrelation between (the RVs representing 

observations separated by distance h, it is useful to have multiple observations on their 

joint distribution: Such a set of observations are never truly available, since subsequent 

samples at any location will be drawn at different temporal coordinates. 

In the absence of repeated measures, we may substitute spatial replication for in 

situ repetition. The intention is that by grouping together all observation pairs separated 

by distance h (± some lag tolerance), we can reconstruct the RVs, providing the 

following condition is met: To ensure that the description of autocorrelation is readily 

calculable, we require that all RVs in lag h share same distribution. This implies that the 

mean and variance of the data must be translation invariant (homogenous) across the 

region of interest, a condition referred to as second order stationarity. However it is 

sufficient that the mean and variance are homogenous only within the lag h; referred to 

as intrinsic stationarity. If this condition is satisfied, the similarity of data pairs can be 

defined purely in terms of their separation distances, greatly simplifying the specification 
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of the RF. If the underlying function is not intrinsically stationary, it may be possible to 

model a regionalisation using the relative semivariogram (Cressie 1985b). Further 

discussion can be found in (Cressie 1991, Goovaerts 1997, Deutsch and Journel 1998). 

In order to satisfy second order stationarity in practice, it is often necessary to 

remove trends from the observations via some model. These trends can either be 

removed form the data and added back to interpolated estimates of the residuals, or 

incorporated directly in the interpolation scheme (see sections 7.8.2.i and 7.8.2.iii). 

7.5 Initial Data Modelling 

7.5.1 Accounting for Global Trends 

Geostatistical methods model a RF as a combination of the mean m and a 

spatially coloured, normally distributed noise process E. The mean is not necessarily 

uniform across the domain, and may be defined by some global trend function, whilst 

is defined by a model of autocorrelation. This decomposition of the process into a large-

scale trend component and small-scale autocorrelated noise is familiar from time series 

analysis (Cressie 1991), and forms the rationale of non-stationary geostatistics. 

Large-scale trends in the data may cause problems in estimating a model for E, 

and may often cause statistics such as the semivariogram to become unstable, tending to 

infinity as separation distances become large (see section 7.5.2.i). On the other hand, 

large-scale trends may provide another source of information for constraining estimates, 

and may provide realistic physical dependencies in the resulting estimates. Furthermore, 

it is conceptually useful to partition data variation between known, measured trends and 

dependencies, and a stochastic but structured error component; this latter component 

reflects the unknown or unknowable latent variables which are either unmeasured, or 
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effectively too complex to control for in data collection. In either case, it is necessary to 

account for these trends and appropriately quantify them. Large-scale trends can be 

effectively modelled either through process-based knowledge of the variable of interest, 

or empirically through the use of trend surface analysis (Haining 2003) or the median 

polish (Tukey 1977), as popularised by Cressie (Cressie 1984, Cressie 1991). 

All three programs provided in the Edinburgh Space-Time Geostatistics package 

allow for incorporation of large-scale trends in the estimation procedure. When large-

scale trends are present in the data, it is necessary to remove them prior to the 

calculation of the semivariogram. If the trends are related to secondary variables that are 

known across the study site, non-stationary methods of geostatistics may be applicable 

(see sections 7.8.2.i and 7.8.2.iii). However, in the case of linear longitudinal trends or 

similar, non-stationarity may be accounted for by appropriate choice of kriging 

neighbourhood (see section 7.8.2.ii), providing local stationarity is achieved for the 

conditioning data (see Journel and Rossi 1989 for further details). 

7.5.2 Accounting for Autocorrelation 

7.5.2.1 The semivario gram 

The semivariogram is a method for summarizing the pattern of spatial or 

temporal variation (autocorrelation) of an observed phenomenon (Hudson and 

Wackernagel 1994, Gringarten and Deutsch 2001); describing the way in which similar 

observation values are clustered in space or time, in accordance with Tobler's first law 

of geography (Tobler 1970). The semivariogram is therefore a measure of the dissimi1an(y 

of data pairs as the separation between them increases, and is essentially the inverse of 

the auto-covariance of the data (Deutsch and Journel 1998). 
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The term semivariogram is often loosely applied to describe a whole series of 

possible statistics applied to a set of observations with attached coordinates, but most 

correctly it applies to Matheron's 'classical estimator' (Matheron 1962) of 

autocorrelation: For a set of n observations, we may choose any pair of data values, 

and with associated coordinates u1  and uS,. The dissimilarity of the data pair can then be 

calculated as half the squared difference between the observed values: 

[z(u 1 )— z(u 3 )] 2  
Yji = 

2 

Plotting the differences y 	separation distance results in the variogram 

cloud. The variogram cloud is typically diffuse, and suffers from pointwise instability 

(Diggle et al. 2002). By averaging the pairwise dissimilarities over a set of n spatial lags H 

={h 1,. . .,h} we arrive at the more stable semivariogram, denoted f (h): 

1 	N(h) 

Yh 2N (h) 	
[z(u 1 ) - z(u, + h)] 2  

This is actually the first moment of inertia of the lag (lsaaks and Srivastava 

1989), reflecting the width of the scatter of z on b from the 450  line, where a is any 

location in the region of interest and his a separation vector.' 

Goovaerts (1997) points out that a generalised semivariogram estimator is 

possible by changing the power of equation 7.2 from 2 to w: 

N(h) 

Yh 
= 	 (h) 	

[z(u 1 ) - z(u, + h)j° 
2N  

(7.3) 

NOTE: The semivariogram can be used to derive an estimate of the fractal dimension of a process, 
which relates to the surface roughness of the RF. Fractal dimension can be calculated from the slope 
of the linear portion of the log-log plot of semivariogram (Palmer 1988, Leduc et al. 1994). An 
interesting extension is provided in (Gneiting and Schlather 2004). 

(7.1) 

(7.2) 
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For w = 2 we arrive at the 'classical' estimator, but by reducing the value of w 

we can reduce the influence of extreme values on the measure Values of note are w 

= I and w = 0.5, returning the mean absolute deviations, and square root deviations 

(known as the madogram and rodogram respectively), and are commonly used alternatives 

(Deutsch and Joumel 1998). These more robust alternatives may help to make 

inferences about the nature of the autocorrelation of a process when used in 

conjunction with the semivariogram. 

Providing the mean and variance of the observed phenomenon is translation 

invariant (i.e. identical for any subregion of the domain), the semivariogram is a valid 

description of the spatial autocorrelation structure of the data (Cressie 1991). If the 

above condition is satisfied, the difference between any pair of data points at arbitrary 

separation is purely a function of their separation vector h, and the phenomenon is 

referred to as a stationary process. 

For a stationary process, we generally observe an increase in semivariance with 

increased separation vector h, up to some threshold distance, referred to as the range. At 

separation distances greater than the range, the semivariance remains at a constant 'sill' 

value. 

In the case of large-scale trend structures (for example, an East-West gradient), a 

parabolic structure is commonly observed (Clark 1979), where the semivariance values 

rise in an unbounded fashion. In this case, the phenomenon is said to be non-stationary 

(Deutsch and Journel 1998), and some method of trend removal is necessary (see 

section 7.5.1), before the residual values can be analyzed. 

In many cases, the semivariogram will display a discontinuity at the origin. This 

behaviour is commonly referred to as a 'nugget effect', as it reflects the condition where 

values of the observation vary abruptly at the microscale. This term was coined in 
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mining geostatistics, where nuggets contained in samples from gold grades tended to 

produce this effect. Discontinuous behaviour of the semivariogram at the origin can 

usually be accounted for by a combination of microscale variability below the resolution 

of the sampling equipment, and sensor noise. 

7.5.2.11 The Covariogram 

The covariogram is the covariance between data pairs at each lag. By 

convention, the first value in the comparison is referred to as the 'tail' value, and the 

second vale in the pair is called the 'head' value [tail _h  head] (Goovaerts 1997, 

Deutsch and Journel 1998): 

N(h) 

c(h) = 1 
	

+ h)— m(—h).m(+h) 
N(h) 

where 

1 	N(h)  
m(—h) = 	z(u 1 ) 

N(h) 

1 N(h)  
m(+h) = 

	
z(u 1  + h) 

N(h) i-I 

Where m(-h) and m(+h) are the tail and head value means respectively (lag 

means). 

Whilst the semivariogram is the most common description of autocorrelation 

used in the practice of geostatistics, in general the covariogram is used in the kriging 

algorithm, because of difficulties in using the semivariogram representation for simple 

kriging, and improvements in computational efficiency (Goovaerts 1997). The 

covariogram is readily obtained from the semivariogram by subtracting the 

semivariogram from the sill variance (see section 7.5.2.i). 

(7.4) 
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Unbounded models have no covariance counterpart; in this case pseudo- 

covariance is calculated by subtracting the semivariogram from a sufficiently large 

constraint, such that the resulting value 2- 0. 

7.5.2.111 The correlo gram 

In some cases we may wish to discuss data dependency in terms of 

autocorrelation, as is common in time series analysis. The correlogram is defined by the 

correlation between the data values in each lag. It is easily obtained from the 

covariogram by standardisation: 

p(h)= 	
c(h) 

Io2 (h).a2 (+h) 

where 

1 	
N(h)  

a2  (—h) = N(h) [z(u) - m(—h)]2 	
(7.5) 

1 	N(h) 

or (+h) = N(h) [z(u, + h) - m(+h)]2  

Where d(-h) and o2(+h) are the variances of the tail and head values respectively 

(lag variance). 

7.6 Continuous Models of Autocorrelation 

Having established the pattern of autocorrelation by calculation of the 

semivariogram, it is desirable to express this structure in continuous terms. Modelling of 

the semivariogram is necessary for geostatistical estimation, and allows inference to be 

drawn on various properties of the autocorrelation, such as its effective range and 

asymptotic variance (known as the sill). 
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Figure 7.1 Powered exponential model with varying smoothness parameter w. As w increases 
semivarinace increases more slowly at the origin, indicating a very continuous process. 

The semivariogram can be modelled with any conditionally negative definite 

function (Mcbratney and Webster 1986). Rather than testing proposed models for 

permissibility (e.g. Christakos 1984), it is usual to use one of a set of basic models that 

are known to be permissible. There are many such models in common use (see Deutsch 

and Journel 1998), and these basic model structures may be combined in a linear 

manner to form complex models (Goovaerts 1997). 

7.6.1 Permissible Semivariogram Models 

The following models are available in the Edinburgh Space-Time Geostatistics 

programs: Powered exponential, Gaussian, Spherical, Rational quadratic, Power, Hole 
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effect and dampened hole. These models provide a wide range of functional forms 

reflecting different surface characteristics. Details of their use and limitations are 

presented below: 

Powered Exponential Model 

Yh =1— exP[_3()] 

where 
	 (7.6) 

O<w:r.2 

Where w is a smoothness parameter (Figure 7.1). Note that (oO is not a valid 

model. When w=2 the model is equivalent to the Gaussian model presented below. 

Gaussian Model 

3h 2  
yh=1-exp 	

2 ) 

(7.7) 

The Gaussian model reflects a very smoothly varying process. It may exhibit 

unstable behaviour, and is not recommended for use without a nugget effect. 

Spherical Model 

if hr.çb 
Yh1 	 (7.8) 

[1.0 	 if h>Ø 

The spherical model is widely used in the literature. It provides a model with 

almost linear behaviour near the origin, which abruptly levels to the sill value. 
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Rational Quadratic Model 

2 	1+h2 
Yh=h

0 ) 

(7.9) 

The rational quadratic model is roughly sigmoidal with moderate smoothness 

near the origin, having a shorter left hand tail than the powered exponential. It displays 

linearity at low to intermediate ranges, with a pronounced smooth shoulder towards the 

sill. Despite its somewhat similar appearance to powered exponential models with high 

values of w, the rational quadratic model displays less smoothness at short range and 

greater stability than the powered exponential. 

Power Model 

Yh 
	 (7.10) 

Where w is the power law, describing the rate of decay in autocorrelation as 

distance increases; lower values therefore imply a smoother interpolated surface. The 

power model has no covariance counterpart, as it is unbounded (h - for large h): 

We implement the model using a pseudo-covariance counterpart (see section 7.5.2.ii). 

Given that parabolic semivariograms indicate non-stationarity (see section 7.5.2.i), we do 

not recommend the use of the power model, and include it only for completeness; we 

recommend de-trending the data (see section 7.5.1) prior to semivariogram modelling to 

avoid its use. 
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Hole Effect (Cosine) Model 

Yh =i —Cos () 
	

(7.11) 

The hole effect describes a periodicity in the underlying features, such as 

seasonality or diurnal cycling. The range 0 describes the wavelength of the periodicity. 

The hole effect is intended for use in nested models (see section 7.6.1.ii). In order for 

the resulting semivariogram to be valid (positive definite), the hole effect can only be 

applied in one direction: Therefore its use in time is straightforward. To implement the 

hole effect spatially, the user should specify an appropriate geometric anisotropy ellipse 

(see section 7.6.1.iii), with a very large range in the direction perpendicular to the 

periodicity. 

Dampened Hole Model 

Yh = 1— ex(T-).cos(7r) 
	

(7.12) 

The dampened hole effect model decreases the level of periodicity as distance 

increases. Again, the range 0 describes the wavelength of the periodicity, whilst 

parameter d defines the distance at which 95% of the periodicity is removed from the 

signal. 

In all cases h is the lag distance and 0 is the range over which the data exhibit 

autocorrelation. Functional forms for all models are presented in Figure 7.2. For the 
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Figure 7.2 Semivariogram models available in Edinburgh Space-Time Geostatistics. (a) 
Powered exponential model (equation 7.6). The solid line illustrates w=1, whilst the broken 
line illustrates w=2, equivalent to a Gaussian model (equation 7.7). (b) Spherical model 
(equation 7.8). (C) Rational quadratic (equation 7.9). (d) Power model (equation 7.10). (e) 
Hole effect (equation 7.11). (f) Dampened hole (equation 7.12). 
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exponential and Gaussian models 0 is the effective range, interpreted as the distance at 

which semivariance reaches 95% of the asymptotic 'sill' variance: The factor of 3 in the 

numerator solves for effective range. The models are rescaled with a contribution 

parameter c to reflect the variability of the data set, and may have a 'nugget' 

discontinuity Tat the origin (see section 7.5.2.i). 

It is worth noting that many of these models can be recreated or approximated 

by the more general Matern class of covariance functions (Wackernagel 1998, p336, 

Gneiting 2002a). 

Although Whittle-Matern type models are very flexible, we chose not to 

implement them due to their computational expense, which must be undergone twice 

for every prediction location (once for the observation covariance matrix, once for the 

estimation covariance matrix; see section 7.9). Although this may seem limiting, 

significant flexibility can be achieved through the much simpler powered exponential 

model (Figure 7.1). Detailed notes on seniivariogram specification can be found in 

section 7.11.2.v. 

7.6.1.11 Nested models 

The choice of permissible models may at first seem restrictive; however, additive 

combinations of permissible models always give rise to a permissible semivariance 

function. Hence, any number of semivariogram models can be combined in a linear 

additive manner to form complex nested models, which considerably increases the 

range of RE models possible. Although any number of models may be combined, the 

principle of parsimony is sensible when building a semivariogram model, as more 

2  Note: sometimes the exponential model is presented without the factor of 3 in the numerator (e.g. 
Cressie, 1990, pg. 61), in which case the less intuitive 'integral range' is solved for (Deutsch and 
Journal, 1998, pg. 25); all programs in the Edinburgh Space-Time Geostatistics package use the 
effective range convention in their calculations. 
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complex models do not necessarily improve results, and increase computation time. We 

recommend that the model should be as simple as possible, and generally comprise of 

less than three functions, which should preferably relate to the physical characteristics of 

the variable of interest. 

7.6.1.111 Accounting for anisotropy 

It is sometimes the case that the range of autocorrelation in a data set varies with 

the direction of the data pairs under consideration. This situation is referred to as 

geometric anisotivpy, and is often observed when the underlying physical processes 

involved display directionality (e.g. down-wind dispersal of a Gaussian plume). Similarly 

it is possible to find a variation in the sill value of the semivariogram with direction; a 

situation referred to as Zonal anisotropy. Whilst zonal anisotropy is not impossible per se, it 

is rarely encountered in practice, and often is apparent in cases where the sample space 

does not adequately cover the range of variation in all directions (Isobel Clark, personal 

communication). Zonal anisotropy can be incorporated by setting a very large range on the 

major axis of variation, such that the effect of the covariance structure is essentially nil 

perpendicular to the minor axis. 

Anisotropy is dealt with by deforming the coordinate system such that all ranges 

appear equal (Figure 7.3). This is achieved by an affine transformation of the separation 

vector h: 

h'= h + h.lsin(0).pl 
where 

Omin 

0. 

(7.13) 
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Figure 7.3 Affine transformation of anisotropy ellipse to isotropic coordinate system h'. The 
minor axis of variation is stretched until it is equivalent to the major axis using equation 4.8. 
The degree of stretching is dependant on the angle 0 subtended by the distance vector h and 
the major semi-axis of variation, and the eccentricity of the anisotropy ellipse V. 

The value i,ii is the ratio between the minimum range and the maximum range of 

the semivariogram, and describes the eccentricity of the anisotropy ellipsoid. 0 describes 

the angular difference between the coordinate vector and the direction of the axis of 

maximum variation Øm•  The new distance in the transformed coordinate system h' is 

then used to construct the covariance arrays for estimation. 
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7.6.1.iv Model Fitting 

The method by which these models should be fit is subject to some dispute (see 

Goovaerts 1992, Diggle et al. 2002 for contrasting views); one school of thought is to fit 

the model by eye, so that the model appears visually satisfactory. Others use automated 

fitting procedures, either by least squares (Cressie 1985a) or likelihood based procedures 

(Diggle et al. 2002). 

Whilst least squares (LS) methods provide a fit which is generally visually 

pleasing, fits may be sensitive to outliers, and in general the sensitivity of the 

sernivariogram to changes in the conditioning data (as assessed by random draws from 

simulated surfaces) indicates that excessive 'trust' in the data points may produce 

misleading results (Diggle et al. 2002). Fitting by maximum likelihood (ML) generally 

requires some notion of the data error distribution, and although such approaches allow 

balancing of model fit and data uncertainty, they are open to criticism for subjectivity in 

the choice of distribution parameters, functional form for the prior error model etc. 

Kriging estimates can be fairly resilient with respect to changes in the 

semivariogram specification (Cressie and Zimmerman 1992), although the estimation 

(Kriging) variances are sensitive to such changes. As a rule of thumb, LS fitting 

approaches work well when the purpose of the study is estimation, whilst ML based 

methods are more appropriate when inferences on the parameters of the spatio-

temporal distribution are of more interest. We leave decisions on model fitting 

procedures to the discretion of the user, but urge against 'black box' fitting methods and 

favour a more interactive approach. 
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7.7 Modelling a Space-Time Regionalization 

So far we have only discussed modelling of semivariograms in terms of spatial 

or temporal coordinates. Combining the spatial and temporal autocorrelation structures 

to form a complete model for the regionalisation has been an active area of research in 

the past decade, and comprehensive reviews can be found in (Kyriakidis and Journel 

1999, De Cesare et al. 2001a, Gneiting 2002b, Gneiting et al. 2005). Strategies for 

combining spatial and temporal autocorrelation structures (which are generally discussed 

in their covariance form) can be broadly divided into separable and non-separable classes of 

models. 

The earliest attempts at producing spatio-temporal covariance functions made 

use of separable models, with somewhat simplistic assumptions about the nature of 

spatio-temporal variability; either combining spatial and temporal covariance in an 

additive or multiplicative manner. The separable construction is tantamount to ignoring 

spatio-temporal interactions, and stating that spatial and temporal covariance display 

complete independence (Kyriakidis and Journel 1999). Few observed processes behave 

in this manner, and considerable effort has been made in seeking alternative non-

separable representations. 

Development of non-separable covariance functions began with metric models 

(Dimitrakopoulos 1994), whereby spatial and temporal separation units were converted 

to some common metric, and standard three-dimensional zonal anisotropy techniques 

used to produce the regionalisation (e.g. as implemented in GSLIB: Deutsch and 

Journel 1998). The attractive simplicity of this approach is somewhat offset by 

difficulties in specifying a common metric, and the loss of intuitive units to describe 

autocorrelation. 
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Subsequent to this, Cressie and Huang developed a set of permissible non-

separable space-time covariance functions through Fourier inversion of one-

dimensional covariance functions (Cressie and Huang 1999). Gneiting developed this 

approach to a Fourier free representation (Gneiting 2002b). These developments were 

an important step forward in spatio-temporal geostatistics, but it was not until the 

contribution of De Taco et al. (2001) that these forms of stationary, non-separable 

covariance functions became generalized and straightforward to implement (see De 

Cesare et al. 2001a, b). 

The product-sum covariance model of De Taco (2001) allows the linear 

combination of arbitrarily complex covariance structures (including zonal and geometric 

anisotropy) in space and time, with full interaction. The product-sum representation 

incorporates the Cressie-Huang family of covariance functions and provides new, non-

integrable forms that cannot be obtained through the Cressie-Huang representation (De 

Taco et al. 2001). Due to the simplicity and ease of use of the product-sum 

representation, it is the representation of choice for non-separable covariance 

specification in all programs in the Edinburgh Space-Time Geostatistics package. 

Non-stationary space-time covariance structures have been discussed (Kyriakidis 

and Journel 1999, 2001 a), and generally rely on treatment of semivariogram parameters 

themselves as Gaussian RFs for the region of interest. Kiriakidis and Journel provide an 

interesting example of this hierarchical RF implementation for European pollution data 

(Kyriakidis and Journel 2001b). Although this implementation is powerful, it requires 

multiple regionalisations in order to build the nonstationary RF model, and requires a 

considerable investment of time in terms of semivariogram modelling and 

computational load. If such models are required, initial regionalisations may be 
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undertaken with the existing software, whilst final implementation is possible with 

minimal modification to the code. 

In the discussion of models spatio-temporal covariance structures the following 

notational conventions will be used: Whenever referring to a property concerning 

patterns of spatial covariance, a subscript ii will be applied. For properties of the 

covariance structure concerning time, a subscript t is applied. As in previous sections, h 	- 

denotes separation distance, whilst 9 indicates the semivariance, C denotes covariance, 

and the definitions of the semivariogram parameters (qi and t) remain the same (see 

section 7.6.1). We denote the spatiotemporal semivariogram j, and refer to subsets of 

by indicating the range of separation distaces parenthetically, for example 

= 0) is the subset where all temporal separations are zero, i.e. only the spatial 

element of 
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7.7.1 Separable Space-Time Covariance: The Product Model 

The simplest way to arrive at a permissible space-time covariance function is the 

product model, which is simply a scaled product of the separate spatial and temporal 

covariance models. An example of a product semivariogram model is provided in Figure 

7.4. Fitting of this model proceeds as follows: 

First, only the simple spatial and temporal semivariograms are 

considered 	(h., h, = 0) and 	= 0,h1 ) respectively), where h 

and h, are the spatial and temporal separations. Valid semivariogram 

models must be fit to them (see section 7.6.1), estimating the spatial and 

temporal 'partial' ranges (, q) and sills (sill, sill;), and adding a 'nugget' 

discontinuity (vs, r) at the origin to reflect spatial uncertainty if required. 

Having described the spatial and temporal behaviour separately, we 

examine the values of the semivariogram beyond the spatial and 

temporal ranges 	> 	> 4,)) to find the global sill (sil). 

Calculate the weighting parameter k: 

sill 
k= 	g 	 (7.14) 

sill .sill 

The full covariance model is then arrived at as follows: 

C(h,h1 ) = k.C(h).C(h) 

where 
(7.15) 

C. (h,,) = sill - 	= 0) 

C, (h,) = sill, - 	= 0, h' ) 

Luke Spadavecchia 	 - 196 - 	 2008 



Spatio-Temporal Geostatistical Methods 

7.7.2 Non-Separable Space-Time Covariance: The Product-Sum 

Model 

In order to fit a product-sum covariance model, we proceed as described by De 

Taco et al (2001): 

First, only the simple spatial and temporal sernivariograms are 

considered 	(h., h, = 0) and 2,(h = O,h) respectively), where h 

and h, are the spatial and temporal separations. Valid semivariogram 

models must be fit to them (see section 7.6.1), estimating the spatial and 

temporal 'partial' ranges (, (p) and sills (sill, sill), and adding a 'nugget' 

discontinuity (v0  ;) at the origin to reflect spatial uncertainty if required. 

Having described the spatial and temporal behaviour separately, we 

examine the values of the sernivariogram beyond the spatial and 

temporal ranges 	> 0, h, > )) to find the global sill (sill). 

We then check the validity of the fitted model, using the values of sill, 

sill, and Sillg  via the diagnostics detailed in De Cesare et al (2001), to 

ensure the resulting space-time semivariance function is conditionally 

negative definite. We calculate three diagnostic values k,, k2  and k3  as 

follows: 

Sill. + sill, - Slu g  
Ic1 

= 	sill.sill1 	

(7.16) 
Slu g  - sill, 

k2 = 
	silly 

Slug - silly 
k3 = 

 

sill, 
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Figure 7.4 Comparison of spatiotemporal semivarogram representations: (a) product model 
(7.7.1). (b) product-sum model (7.7.2). Note the increased interaction in the product-sum 
model. Both plots share the same structures and parameters, and differ only in the 
spatiotemporal combination method. 

To ensure conditional negative defmiteness of the resultant 

semivariogram is in necessary that k, > 0, k2  0, and k3  2 0. If the 

above diagnostic constraints are met, the RE model is permissible and 

may be used for estimation/ simulation purposes. 

The full covariance model is then arrived at as follows: 

Cut (hu ,hr ) = k 1 .C(h).C(h) + k2 .C(h) + k3 .C(h) 

where 
(7.17) 

C. (h.) = sill - 	= 0) 

C, (h)= sills  - 9.'t  (h = 0, h t ) 

A comparison of the product-sum and product representations is provided in 

Figure 7.4. 
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7.8 Spatio-Temporal Estimation 

All of the interpolation methods implemented in the Edinburgh Space-Time 

Geostatistics package produce estimates through weighted linear combination of a 

subset of the data Z = { z 1 (u,t) ... z(u,t)}, selected on the basis of spatial and temporal 

distance from the estimation datum. Spatial effects are decomposed into a global trend 

m, and a high frequency autocorrelated residual component, formed from a weighted 

linear combination of the residuals. Therefore the only difference in the prediction 

algorithms is the method by which the weights (A) are derived: 

z*(u,t) = m(u,t)+ 	A,(u,t)[z 1 (u,t)-m(u,t)] 	 (7.18) 

7.8.1 Inverse Distance Weighting 

Inverse distance weighted averages produce estimates of the variable of interest 

by linear combination of the observations, such that data points closer to the estimation 

location are ascribed more prominence than those further away. Weights are ascribed to 

a subset of the total data pool, such that the conditioning data follow a spatial power 

law. The weights are rescaled such that they sum to one, preventing the estimation 

exceeding the range of the conditioning data. Any power w can be used, but most 

commonly an inverse squared power law is encountered in the manner of Newton's 

Gravity model; hence the alternative moniker 'Spatial Gravity Models'. Estimates are 

calculated as follows: 
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n 

z(u,t) = 	w1 (u,t).z 1 (u,t) 

where 

w1(u,t)= 1/di- 
n 

;_ 1 
/ d 

(7.19) 

Where w are the weights, and 4 is the separation distance between (u,t) and . 

If the estimation location is coincident with an observation, the estimate takes the value 

of the observation. In the case of global trends, residual data may be interpolated, and 

the trend added back in after interpolation. 

Currently IDW.exe does not incorporate temporally adjacent data into the 

conditioning data; estimates are produced one time step at a time from the available 

spatial neighbours. 

7.8.2 Kriging Methods 

Kriging refers to a set of is a multiple linear regression procedures by which the 

best linear unbiased estimate of an unobserved datum value is arrived at by the weighted 

linear combination of surrounding observations, such that the prediction error is 

minimized. A good introductory text is provided by Isaacs and Srivastava (1989);for a 

historical perspective, see Cressie (1990). The weights ascribed to each observation take 

into consideration the clustering of the data locations, and the proximity of each 

observation to the prediction location. These spatial effects are included via reference to 

the autocorrelation structure of the data set, as summarized by the semivariogram. The 

result of considering distances between the conditioning data is that points from over-

sampled locations are down weighted. 
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Kriging is a regression procedure of the formj = mx + c. In standard notation, 

we write: 

z *(u,t) = A(Z_ m ) +m 	 (7.20) 

Where 	is the value of an unobserved spatio-temporal location u,t to be 

estimated, A is the vector weights, Z is the vector of observations and m is the mean. 

Typically we work with a sub-set of observations, say the n = 12 closest observations to 

(u,t). In this case, m is the local mean m*.  Thus *(u,t)  is predicted by the sum of the 

local mean, plus the spatially autocorrelated deviation from that mean. Differences 

between Kriging methods reside in the m*  term of equation 7.20. An excellent summary 

of all Kriging methods described is included in Goovaerts (1999). 

7.8.2.1 Simple Kriging 

Simple Kriging is used in the situation where the mean of the variable of interest 

m is known across the whole study region. This mean need not be the same at all 

locations, but the assumption is that the sampling design is sufficient to ensure that 

calculation of the mean is not affected by data clustering. The mean is subtracted from 

the observations prior to estimation, and the residual values are used to correct the 

estimation surface, by the addition of spatially coloured noise. The local correction is a 

function of the data locations (clustering) and the distance between the conditioning 

data and the estimation datum, imposed through the Kriging weights A. The weights are 

arrived at by solving the following system of linear equations: 
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z*(u,t) = m(u,t)+ 

~ X,(u,t).C[z(u,,t,)—z(u j ,tj )]=C[z*(u,t)—z(u i ,ti )I where j=1,...,n 

(7.21) 

Here C[(u,t)-(u,t)] and C[((u,t)-(u1,t)] are the covariance between 

observations, and the covariance between observations and the prediction location u,t 

respectively. These values are obtained by looking up the separation distance h against 

the semivariogram model. In the case of an underlying trend across the region of 

interest, the m can take the value of the deterministic trend, which is calculated in 

advance for each estimation datum. 

7.8.2.11 Ordinary Kriging 

In the case that the mean value is known in advance, we proceed by Simple 

Kriging (SK), and m takes the known value of the mean. However, more often the mean 

is unknown, or is not easily calculated in advance due to data clustering. Estimation then 

proceeds by ordinary Kriging (OK), where the unknown mean m must be estimated 

simultaneously with the autocorrelated residual component. 

Usually we condition on a subset of n available data, and thus m(ti,t) represents 

the local mean of the variable of interest. Given that we only require constant mean and 

variance within the neighbourhood of the selected data, such moving window 

approaches allow some degree of robustness to the assumption of stationarity. The OK 

estimate is thus arrived at by solving the following system of equations: 
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z*(u,t) = 	A 1 (u,t).z(u,t) 

= C[z *(u,t)_ z (u,,tj )] 

where j=1,...,n 

~ x i (u, t) = 1 

(7.22) 

As before C[(u,t)-Ju,t)] and C[((ut)-(ut)] are the covariance between 

observations, and the covariance between observations and the prediction location ti,t 

respectively. These values are obtained by looking up the separation distance h against 

the semivariogram model. The main difference between SK and OK is in the system of 

equations governing the calculation of A. Equation system 7.21 is modified by the 

addition of a Lagrange multiplier u, necessary to satisfy the un-biasness constraint that 

the weights sum to one. 

7.8.2.111 Krlging With an External Drift 

A more complex spatio-temporal regression model can be formulated by 

extending the framework established in equation 7.20 to include extra covariates in 1. 

This leads to a family of Kriging systems referred to as Kriging with a trend (KT). Here 

m* contains more terms than the intercept only solutions illustrated above: The m* 

component of a KT system contains an intercept b0, and k slope parameters b,. . . bk. This 

generalisation allows fitting of linear, polynomial, or Fourier type basis functions 

combined in arbitrarily complex trend models. However, in practice k typically :r. 5, and 

trend models are restricted to low order polynomials (Deutsch and Journel 1998). This 

partitioning of the data into a large-scale trend component, and a stationary, spatially 

autocorrelated residual component is the rationale of non-stationary geostatistics: 
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z *(u,t) = A(Z_ m *) +m* 

where 
	 (7.23) 

= b0  + bkSk 

Where is value of the unobserved datum location u to be estimated, A is the 

vector weights, Z is the vector of observations, b0  is the intercept, b are slope 

parameters and Sk  are vectors of auxiliary variables recorded at all observation and 

prediction locations Sk = 4(u,t)...s(u,t)j. 

Universal Kriging (UK) is the simplest form of KT system, where m is a 

function of the coordinates, allowing large scale gradients to be dealt with by the 

Kriging system (i.e. non-stationary problems can be solved). The ordinary Kriging 

system can be seen as a special case of UK, where k=O (Goovaerts, 1999). 

Kriging with an external drift (KED) refers to the case where we use secondary 

covariates 'external' to the semivariance calculation for our data. Here we require that 

the variation of the secondary data be smoothly and linearly related to the variable of 

interest (Deutsch and Journel, 1998). The covariates must be sampled at all observation 

and all prediction locations. 

Typically KED systems are restricted to a single covariate, although 

theoretically, any number of covariates may be included. The idea is that the extra 

covariates inform the interpolation, so that more easily available data, such as remote 

sensing observations, can be used to improve interpolation skill. The method may also 

be used to impose known physical trends on the interpolation, for example, the decrease 

in temperature with increased elevation (Hudson and Wackernagel 1994), or as a form 
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of model-data fusion, using model output as the external drift (e.g. Wackernagel 1998 

p297). 

Again, we usually condition on a subset of n data points, with m7u,t) returning 

the local trend. Estimation proceeds by solving the following system of equations: 

n 

z*(u,t) = 	A(u,t).z(u 19 t) 

[Ai(ut).C[z(ui,t) - z(u,t1)] + A (Ult)  + (u,t).s(u,t 1 ) 

= C[z* (u,t) - z(u,,t)] 

A 1 (u,t) = 1 
	 where j=1,...,n 

= s(u,t) 

(7.24) 

Here we add a further constraint to equation system 7.22, requiring an extra 

Lagrange multiplier y, This ensures that the dot product of the weights (A) and the 

vector of secondary variable (3) equals the observed value of the secondary variable at 

the prediction location. It is possible to retrieve local values of the intercept and slope 

parameters with simple modifications to equation system 7.24 (see section 7.9.1.iii). This 

is particularly useful in the model-data fusion case, where model efficiency can be 

assessed locally by tracking deviations from b0  = 0 and b1  = 1. 

Addition of extra trend terms would require an additional Lagrange multiplier 

for each term, involving minor code modifications. Further details and examples can be 

found in Wackemagel (1998). 
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7.9 Practical Aspects of Kriging 

7.9.1.1 Calculating Kriging weights 

For all Kriging algorithms implemented, the solution of the linear equations to 

derive A follows the same general pattern. An illustration of the technique in matrix 

formulation highlights the similarities between the various algorithms. 

In order to retrieve A from the observed data values, we first produce two 

distance tables °°b  and OE b . Matrix °°b  is the square n by n distance matrix for the 

conditioning data, whilst vector OE b  contains the distances between the conditioning 

data and the estimation datum: 

[h(z1 ,z1 ) h(z 2 ,z1 ) 

[  
OOh 	

h(z 1 ,z 2 ) 	(z,, z,) 
= 

h(z 1 ,z) 

h(z,z) 	h(zi,z*) 

h(z,z2) OEh = h( z2,z *) 

h(z,z) 	h(z,z*) 

(7.25) 

These distances are easily converted to covariances, by reference to the 

semivariogram model (see section 7.5.2.11): Matrix 00 is now the observation 

covariance matrix, and vector OE is the observation-estimation covariance vector. To 

calculate simple Kriging weights, we invert matrix 00, and multiply by vector OE: 

{A1  1 [C(z11 z1 ) C(z2,z1) . C(z,zi)1
-1 

[C(z 1 ,z
* 
 ) 1 

A 2 C(z 11 z 2 ) C(z21z2) . C(z,z2 )l 	I C(z2 , z * ) I 
X 	 I 	 (7.26) 

{A n J [cz1 ,z n ) 	• 	. C(z,z)1 	
[C(z,z*)j 

In the case of SK weights, the vector A = . . .A } sums to zero. However, in 

the case of OK or KED, we require that the weights sum to one. The problem is one of 
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A1  C(z 1 ,z 1 ) 	C(z 2 ,z 1 ) 

A2  C(z 1 ,z 2 ) 	C(z 2 ,z 2 ) 

All = C(z 1 ,z) 	C(z 2 ,z) 

11 S 	 s 

Ilk S 1 	 S 

C(z,z 1 ) s . 	s 

C(z,z2) S2' . 	s 

C(z,z) s . 	s 

S ill  0 . 	0 

S k 0 . 	0 

C(z 2 ,z ) 

XI C(z,z *) 

S 

S.
k 
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minimisation with a constraint, which can be achieved by via the use of Lagrange 

multipliers. The Lagrange multipliers allow us to solve for m simultaneously with the 

solution for the weights. 

For each extra term in m, we require a Lagrange multiplier M = 	...  I  where 

k is the number of model terms. In the case of simple Kriging k=0, whilst for ordinary 

Kriging k=1: We solve for the intercept only (null model) by adding an extra row and 

column to 00 and OE in which all values equal one, except the bottom right element 

of 00 which contains a zero. An additional row on the weights vector then 

accommodates the Lagrange multiplier: 

C(z 1 ,z 1 ) 	C(z 21 z 1 ) 	. 	C(z,z 1 ) C(z1 ,z) 

A 2  C(z 11 z 2 ) 	C(z 2 ,z 2 ) 	. 	C(z,z 2 ) 	1 C(z2,z*) 

= . 	 . 	. 	. 	. x . (7.27) 

A C(z 1 ,z 2 ) 	C(z 2 ,z) 	. 	C(z,z) 	1 C(z,z*) 

0 1 

For more complex regression models /e>1, and we implement the KED 

algorithm. Addition of terms follows the same pattern as above, augmenting 00 and 

OE with extra rows and columns for the additional Lagrange multipliers. Retrieving A 

for an arbitrarily complex regression model KED is then: 

(7.28) 
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Where k is typically less than five. S' is normally a vector of ones, to solve for 

the intercept, whilst S2  to are vectors of secondary variables, which are linearly related 

to the variable of interest (see section 7.8.2.iii). Again, the bottom right section of 00 is 

filled with zeros. 

Sometimes a multiple intercept model is desirable, e.g. to impose different 

means by vegetation or soil type. In this case, vectors S' to S contain dummy variables, 

with binary coding for the factor levels. Mixed effects models are readily incorporated 

by combination of the above techniques. The only limit to the complexity of the model 

is the need to invert matrix 00, a time consuming and not always stable process: As the 

complexity of the model increases, the likelihood of producing a singular (degenerate) 

matrix 00 increases. Again, the principle of parsimony is a good guiding rule. 

Currently, the programs in the Edinburgh Space-Time Geostatistics package 

only allow for simple linear models with k<2. However, more complex models are 

possible with minor alteration to the code. 

7.9.1.11 Kriging Variances 

One of the major attractions of the Geostatistical method is the ability to 

retrieve estimation variances. Kriging variances are easily obtained by subtracting the 

dot product of the observation-estimation covariance vector OE and the weights vector 

A from the global sill (C00). In the case of OK or KED, the full augmented vectors are 

used, so the resulting variance takes into account the uncertainty associated with the 

trend model m 
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T 	
C(z1,z) 

C(z 2 ,z) 

a2 (u,t) = C00  - A 	x C(z,z) 

12i 

S. 

n 	 k 

= C00 

_AiC(z',z*)—

s.' 	(7.29) 

7.9.1.111 Parameter Retrieval and Filtering 

In the case of OK and KED, it is often desirable to retrieve the local parameters 

B = {b...b} from equation 7.23. In the case of OK, we may be interested in 

declustered local mean of the n conditioning data; in this case we must filter off the high 

frequency autocorrelated noise e to obtain the value m. This is easily achieved by 

modification of the Kriging weights (equation 7.27) to ignore the effect of the 

conditioning data. We filter e by setting the first n elements of OE to zero: 

A1  C(z 11 z 1 ) 	C(z 21 z 1 ) 	. 	C(z,z 1 ) 	1 
-I  

0 

A 2  C(z 1 ,z 2 ) 	C(z 21 z 2 ) 	. 	C(z,z 2 ) 	1 0 

= . 	 . 	. 	. 	. x . (7.30) 

A C(z 1 ,z 2 ) 	C(z 2 ,z) 	. 	C(z,z) 	1 0 

0 1 

The value of m is then Kriged with the modified vector A. 

In the case of KED, the value mis retrieved as above, by setting elements OE,. 

to zero, and OE n+I:k  to ones. Individual KED parameters B = {b,...b} can be 

retrieved by substituting OE for the Kronecker delta function (6 1 ) centred on the /" 
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trend parameter, which is one for OE ',, and zero otherwise; i.e. OE' contains a binary 

coding for the parameter we wish to retrieve: 

OE' 5 	
1I if 

t.  jon+i 
where j=1 ... n+k (7.31) 

7.9.1.iv Exactitude of Kriging 

In general, discussions of Kriging specify the nugget variance at hO as zero, and 

r elsewhere (Goovaerts 1997): This formulation ensures that the Kriging estimate for a 

location at which a conditioning observation exists is exactly equal to the observed 

value. In this sense, Kriging is referred to as an 'exact interpolator'. This is desirable if 

we believe our data is infallible, and assumes the primacy of the data over the specified 

RF model. This approach leads to very 'spiky' surfaces where observations are 

collocated with grid nodes, due to the discontinuity in the sernivariogram model. 

In reality, we are faced with imperfect data and an imperfect model 

representation; whilst the observations correct the local model m in the kriging estimate, 

we may also wish m to correct the observations when f is collocated with a 

conditioning datum. If we allow the nugget variance to equal r for all b we no longer 

strictly honour the observations, and the estimate Z at an observation location is 

equivalent to a spatio-temporal assimilation of the observations with m. In this case the 

estimate at an observation location will be heavily weighted towards the observed value, 

but the estimate will be drawn towards a value concurrent with the surrounding 

observations (subject to the semivariogram) and any additional external variables 

included in the trend model. The degree to which surrounding observations and m 

correct the data is specified by the magnitude of r. 
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It is our contention that the model data fusion approach resultant from allowing 

a non-zero nugget effect when hO confers a considerable advantage for the poorly or 

pseudo-replicated data sets generally used in upscaling studies, and from which the 

intrinsic stationarity assumption arises (see section 7.4). As such, all semivariance 

models in the Edinburgh Space-Time Geostatistics package are implemented with a 

nugget effect equal to r for all separation distances. 

7.10 Assessing Spatio-Temporal Uncertainty 

When simple estimation is the goal of a study, evaluation of the RF at a set of 

locations via Kriging provides an unbiased estimate of the variable of interest, and a 

Kriging variance, reflecting the uncertainty associated with the draw from the RE. The 

Kriging variance reflects our prior conception of the data; that it is normally distributed, 

intrinsically stationary, and autocorrelated with a known and accurately described 

covariance structure, as inferred from the semivariogram. 

Although values derived from Kriging provide optimal estimates in the least 

squares sense, the results tend to be smoothed, losing the extremes of the data 

distribution. This smoothing is non-uniform, and occurs mainly at locations separated 

by large distances from the conditioning data; thus local variability appears (non-

intuitively) greater where more observations are present (Goovaerts 1997). Furthermore, 

the semivariogram is only honoured if we compare observation locations with 

estimation locations, although short scale variation may be smoothed by the Kriging 

algorithm: In general Kriging estimates do not reproduce the semivariogram globally, 

although these effects may be mediated to some degree by post-hoc processing (Olea and 

Pawlowsky 1996). 
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Whilst Kriging variances appropriately describe model uncertainty, they do not 

directly relate to error in the sense of model data divergence. In fact, the Kriging 

variances are arrived at by reference only to the spatio-temporal arrangement of data 

values, and ignore the data values entirely. In this sense the Kriging valance is essentially 

a ranking score of the data configuration (Journel and Rossi 1989). This is not entirely 

satisfactory if the goal of the study is to make inferences on the errors associated with 

estimation of the variable of interest, e.g. when the resulting estimated fields are to be 

used as inputs to a model; a common application of upscaled surfaces. In this case, a set 

of random draws from the spatio-temporal RF via simulation is more appropriate. One 

such method of drawing realisations from the RF is Sequential Gaussian Simulation. 

Discussions of alternatives can be found in (Deutsch and Journel 1998). 

7.10.1 	Sequential Gaussian Simulation 

Sequential Gaussian simulation can be employed in order to produce estimates 

of local error which reflect the data values, and globally preserve the 'texture' of the data 

variability. The procedure is very similar to the Kriging methods outlined above, with 

one critical difference: Upon estimation, a draw from the RV *(u,t)  is added to the data 

heap used to condition subsequent estimates. Thus as we step through the estimation 

locations, the size of the conditioning data pool increases, and each estimate is 

conditionally dependant on all other values in the estimation field. The algorithm 

functions as follows: 

Initialise a random visiting schedule for the grid of G locations, with a 

data heap of n observations Z = { z 1 (u,t) ... z(u,t)}. Initialise with 1=  1. 

Visit the ,b  node of the grid and estimate the expectation and variance via 

Kriging conditioned on the values in the data heap. 

Luke Spadavecchia 	 - 212 -  	 2008 



Spatio-Temporal Geostatistical Methods 

Draw a random value from the Gaussian distribution of the node, 

defined by the Kriging estimate (mean) and Kriging variance. The 

resultant value was the SGS estimate . 

The realization 	was then treated as an observation for subsequent 

estimates, and added to the data heap (n+i conditioning data). 

Iterate from 2 until all grid locations were visited (i=G). 

As in all geostatistical techniques, it is possible to incorporate covariates into the 

simulations. Randomisation of the visiting schedule ensures each field simulated from 

the RF will be a unique realisation of the spatio-temporal model, whilst conditioning on 

all values in the heap ensures reproduction the semivariogram globally. 

Sequential Gaussian simulation is available in the Edinburgh Space-Time 

Geostatistics package using the Gaussim.exe program. 

7.11 Program Notes and Instructions 

7.11.1 	IDW.exe 

7.11.1.1 Data format 

All input and output to ID W.exe is handled via tab delimited text files. Data are 

supplied with a strict format: The first line contains a heading in inverted commas. The 

second line contains, seven column names, and subsequent lines contain the sequence 

of observations. Missing data flags are not supported. Each data table entry must 

contain a unique observation ID, a station ID, a sequence of three spatio-temporal 

coordinates, an observation value and a secondary mean/trend value. Observation Ids 
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(OlD) identify each unique datum, whilst station IDs (SID) identify the time series to 

which each observation belongs: 

11 3164 January temperature observations from 112 sites across Oregon, USA" 

OlD SID EAST NORTH TIME TEMP.0 MEAN.0 

1 1 633717.8 4878503 1 7.778 3.429 

2 1 633717.8 4878503 2 6.110 1.836 

3 1 633717.8 4878503 3 6.672 3.319 

3163 112 614058.7 4921431 30 -4.693 1.940 

3164 112 614058.7 4921431 31 6.679 4.661 

	

7.11.1.11 	Notes 

The mean is removed from the observations by the program prior to 

interpolation then added to the estimates before output. As such, the observation values 

should be raw. 

	

7.11.1.111 	Grid file 

IDWKexe requires a list of the estimations coordinates for interpolation. 

Coordinates should be supplied as a tab delimited text file containing a header followed 

by a list of spatiotemporal coordinates and a mean function. The file must be in the 

following format: 

EAST NORTH TIME MEAN 

562618 4903722 1 3.429 

563618 4903722 1 3.429 

564618 4903722 1 3.429 

661618 5003722 31 4.661 

662618 5003722 31 4.661 

The secondary data may contain the (local) mean or the values of a trend model. 
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7.11. 1.iv 	Parameter file 

IDIV.exe is parameterised with a tab delimited text file laid Out in strict format: 

FILENAMES [Data,Grid,Output] 

-/EDSTGeostats/Data/Data .txt 

-/ED ST Geostats/Data/Grid. txt 

-/EDSTGeostats/OutputS/IDW_OUt .txt 

WEIGHTING FUNCTION: 

2 

MODE [O=Debug, 1=Default, 2=Jack-knife] 

1 

SEARCH STRATEGY [Neighbours] 

16 

• Lines 2:4 contain the path and filename of the data file, grid file and 

output file respectively. 

• Line 7 contains the power to use for inverse distance weighting 

Line 10 contains a mode switch, selecting between debug, default or 

jack-knife modes: 

Debug Returns a screen prompt containing information on the 

conditioning data and interpolation result for each point in the grid file. 

This is a good way to experiment with parameterisation of the program. 

Results are stored in the output file. 

Default: Interpolates each point in the grid file in turn with minimal 

output to screen. Results are stored in the output file. 

Jack-knife: Temporarily excludes one data point at a time from the 

observations, and estimates its value from the remaining data set. This is 

a good way to assess the interpolation skill given the selected parameters. 

Results are stored in a modified output file. 
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Line 13 contains the number of conditioning data to use in the 

estimation: the n data points closest to the estimation grid coordinate are 

selected. 

7.11.1.v 	Output file 

IDW.exe returns a tab delimited text file containing various pieces of 

information on the interpolation, depending whether the program was run in 

debug/default or Jack-knife mode. Standard output contains the following columns: 

Columns 1:3 contain the spato-temp oral coordinates of the datum. 

Column 4: The IDW estimate. 

Column 5: The supplied trend value. 

Column 6: The interpolated residual value (estimate minus the trend). 

• Column 7: The nearest neighbour distance. 

• Column 8: The mean distance of the conditioning data. 

• Column 9: The SID of the nearest conditioning datum. 

When running in Jack-knife mode, the following columns are returned: 

e Column 1: The SID of the Jack-knifed observation. 

• Columns 2:4 contain the spato-temporal coordinates of the datum. 

• Column 5: The IDW estimate. 

Column 6: The supplied trend value. 

• Column 7: The interpolated residual value (estimate minus the trend). 

• Column 8: The observed value. 

• Column 9: The error (observed minus estimated). 

• Column 10: The nearest neighbour distance. 

• Column 11: The mean distance of the conditioning data. 
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Column 12: The SID of the nearest conditioning datum. 

7.11.2 	Geostats.exe 

7.11.2.1 Data format 

All input and output to Geostats.exe is handled via tab delimited text files. Data 

are supplied with a strict format: The first line contains a heading in inverted commas. 

The second line contains, seven column names, and subsequent lines contain the 

sequence of observations. Missing data flags are not supported. Each data table entry 

must contain a unique observation ID, a station ID, a sequence of three spatio-temporal 

coordinates, an observation value and a secondary value. Observation Ids (OIL)) 

identify each unique datum, whilst station IDs (SID) identify the time series to which 

each observation belongs: 

11 3164 January temperature observations from 112 sites across Oregon, USA" 

OlD SID EAST NORTH TIME TEMP.0 MEAN.0 

1 1 633717.8 4878503 1 7.778 3.429 

2 1 633717.8 4878503 2 6.110 1.836 

3 1 633717.8 4878503 3 6.672 3.319 

3163 112 614058.7 4921431 30 -4.693 1.940 

3164 112 614058.7 4921431 31 6.679 4.661 

7.11.2.11 	Notes 

In the case of SK the mean is removed from the observations by the program 

prior to interpolation, then added to the estimates before output. As such, the 

observation values should be raw, and the secondary value should contain the (local) 

mean. 

SK can be used to incorporate complex trend models or remotely sensed 

products with the data; in this case the secondary data values should contain model 
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predictions for each datum. Again, raw observations of the primary variable should be 

supplied. 

In the case of OK, the secondary data value is redundant. However, the 

program will encounter an error if the column is not filled; a reference value may be 

included, or zero padding employed. 

If global trends are present and the user wishes to interpolate the residuals with 

OK, trends should be removed from the data prior to analysis with Geostats.exe and 

added into the estimates manually. 

In the case of KED, the secondary value can be any auxiliary data linearly 

related to the primary variable. Again, raw observations of the primary variable should 

be supplied. 

7.11.2.111 	Grid file 

The Geostats.exe grid file is identical in format to that of IDW.exe. However, in 

the case of Geostats.exe, the purpose of the secondary data changes with the Kriging 

method selected. 

In the case of SK, the secondary data values are used in an identical fashion to 

IDIVexe, i.e. the interpolated residuals are added to the grid secondary data value to 

form the estimate. 

In the case of OK, the secondary data value is redundant. However, the 

program will encounter an error if the column is not filled; a reference value may be 

included, or zero padding employed. 

In the case of KED, the secondary data value contains the auxiliary variable, 

which must be known at all observation and grid locations. 
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7.11.2.iv 	Parameter file 

Parameters are supplied to Geostats.exe in a tab delimited text file with strict 

format: 

FILENAMES [Data,Grid,Output] 

-/ED ST Geostats/Data/Data .txt 

-/ED ST Geostats/Data/Grid. txt 

-/ED ST Gèostats/Outputs/KED out .txt 

METHOD [0=SK, 1=0K, 2=KED] 

2 

MODE [0=Debug,1=Default,2=Jack-knifel 

1 

SEARCH STRATEGY [Neighbours,Window): 

32 	7 

STRUCTURES [Spatial,Temporal]: 

2 	1 

TAU [Spatial,Temporall 

0.02 	0.0 

GLOBAL SILL: 

32.46 

COVARIANCE MODEL [0=Product,1=Product-Sum] 

1 

Spatial 	 I ----------------Theta -----------------{ Rotation 

Spherical 	 3.01 	9.67 	 9.67 	0.0 	0.0 

Exponential 	 6.99 	196.55 	196.55 	0.0 	0.0 

Temporal 	 I ------- ----- Theta ------------ 

Exponential 	 23.13 	6.6 	 0.0 

Lines 3:4 specify the data file, grid file and output file names respectively 

Line 7 contains a mode switch to select between the Simple Kriging 

(SK), Ordinary Kriging (OK) and Kriging with an External Drift (KED) 

algorithms. 
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Line 10 contains a mode switch, selecting between debug, default or 

jack-knife modes: 

o Debug: Returns a screen prompt containing information on the 

conditioning data and interpolation result for each point in the 

grid file. This is a good way to experiment with parameterisation 

of the program. Results are stored in the output file. 

o Default: Interpolates each point in the grid file in turn with 

minimal output to screen. Results are stored in the output file. 

o Jack-knife: Temporarily excludes one temporal vector at a time 

from the observations, and estimates its values from the 

remaining data set. This is a good way to assess the interpolation 

skill given the selected parameters. Results are stored in a 

modified output file. 

Line 13 parameterises the search strategy: it should consist of two 

integer values enumerating the number of data values to select from 

each time step, and the size of the temporal window to use. 

o Neighbours specifies the number of values to select from each 

window increment; the total number of conditioning data is 

therefore nezghbours+ (neighbours*window). 

a Window specifies the number of timesteps to include in the 

search. The strategy is ± window, so a value of 7 will incorporate 

data from a one fortnight window. 

Line 16 contains two integer values specifying the number of 

semivariogram structures (not including the nugget) to implement in 

space and time respectively. 
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Line 19 contains the nugget variances for the spatial and temporal 

semivariograms respectively. 

Line 22 contains the global sill. 

Line 25 is a binary switch to select between the separable product, or 

non-separable product-sum covariance models. 

Lines 29 onwards specify the sernivariogram models in space and time. 

7.11.2.v 	Semivario gram specification 

Spatial model specjfictaion 

Each line of the semivariogram specification should contain six elements: a 

structure name, a vector of four parameters, and a rotation parameter. 

Structure name: Linear, Power, Exponential, Spherical, Gaussian, 

Quadratic, Hole or Dampened Hole (see section 7.6.1). 

Thetal specifies the contribution of the structure, and can take any non-

zero real value. 

Theta2 and Theta3 are the ranges of the minor and major semi-axes of 

the anisotropy ellipse respectively. In the case of the linear and power 

models, these values are redundant, and can be zero padded. 

Theta4 is an auxiliary parameter required by some models, taking on the 

following values: 

The power value w for the powered exponential and power models. 

The dampening length for the dampened hole model. 

Rotation: A rotation parameter to specify the direction of the major axis 

of variation in degrees from north (north = 0). 
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Temporal Model Specification 

Each line of the temporal model specification should contain a list of four 

elements: A structure name, and a sequence of three parameters. 

Structure name, as above. 

Thetal is the contribution of each structure of the model. 

Theta2 is the range of the structure. 

Theta3 contains auxiliary parameters, required by some models: See 

above. 

7.11.2.vi 	Output file 

Geostats.exe returns a tab delimited text file containing various pieces of 

information on the interpolation, depending whether the program was run in 

debug/default or Jack-knife mode. Standard output contains the following columns: 

• Columns 1:2 contain the spatial coordinates of the datum. 

• Column 3: The supplied secondary value. 

• Column 4: The temporal coordinate. 

• Column 5: The local mean m. 

Column 6: The Kriging estimate. 

Columns 7:8 contain the Kriging variance and standard deviation 

respectively. 

Column 9:10 contain the retrieved intercept and slope parameters when 

using KED. 

Column 11: The nearest neighbour distance. 

• Column 12: The mean distance of the conditioning data. 

• Column 13:The mean secondary value of the conditioning data. 
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Column 14: The SID of the nearest conditioning datum. 

When running in Jack-knife mode, the following columns are returned: 

Column 1: The SID of the Jack-knifed temporal vector. 

Columns 2:3 contain the spatial coordinates of the datum. 

Column 4: The supplied secondary value. 

Column 5: The temporal coordinate. 

Column 6: The observed value. 

Column 7: The local mean m. 

Column 8: The Kriging estimate. 

Columns 9:10 contain the Kriging variance and standard deviation 

respectively. 

Column 11:12 contain the retrieved intercept and slope parameters when 

using KED. 

• Column 13: The Jack-knife error (observed value - Kriging estimate). 

• Column 14: The nearest neighbour distance. 

• Column 15: The mean distance of the conditioning data. 

• Column 16: The SID of the nearest conditioning datum. 
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7.11.3 	Gaussim.exe 

Input and output formats for Gaussim.exe are identical to those of Geostats.exe. 

7.11.3.1 Parameter File 

FILENAMES [Data,Grid,Output] 

-/EDSTGeostats/Data/Data .txt 

--lED ST Geostats /Data/Grid.txt 

-/ED ST Geostats /Outputs /Simulation 

METHOD [0=SK, 1=0K, 2=KED] 

2 

MODE [0=Debug,1=Default,2JaCk-kflifel 

1 

SEARCH STRATEGY [Neighbours,Windowl: 

32 	7 

STRUCTURES {Spatial,Temporal] 

2 	1 

TAU [Spatial,Temporal] 

0.02 	0.0 

GLOBAL SILL: 

32.46 

COVARIANCE MODEL [0=Product,lProduct-SUmI 

1 

SIMULATIONS 

1000 

Spatial 	 I ------- --------- Theta -----------------[ Rotation 

Spherical 	 3.01 	9.67 	 9.67 	0.0 	0.0 

Exponential 	 6.99 	196.55 	196.55 	0.0 	0.0 

Temporal 	 I ------------ Theta ------------ 

Exponential 	 23.13 	6.6 	 0.0 
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The file is identical to the Geostats.exe parameter file, with the addition of the 

SIMULATIONS heading on line 27. The desired number of realisations from the 

specified RF should be entered on line 28. The program will automatically append the 

simulation number and a .t.,d file extension to the filename specified on line 4. 
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8. Discussion 

The primary aim of this thesis was to examine and reduce the sources of 

uncertainty for the estimation of regional to catchment scale carbon budgets. We 

initially partitioned this task into the influence of the parameterisation of the exchange 

surface (primarily quantified by LAI), and uncertainties in meteorological driving 

variables. An investigation of these issues was followed by an analysis of the relative 

magnitude of uncertainties in the C budget attributable to parameterisation and driver 

errors respectively. We demonstrated that the dominant source of uncertainty in the 

final analysis of the C budget was land surface parameterisation, although issues of bias 

in driver upscaling remain to be resolved. 

Land surface parameterisation must be improved to make reliable estimates of C 

budgets on a regional scale. In Chapter 3 we report persistence of the functional form 

and approximate error magnitude for LAT NDVI relationships at multiple scales 

(Williams et al., 2008). However, despite this promising result we demonstrate that it is 

insufficient to rely on EQ derived vegetation indices to provide land surface 

parameterisations, with weak but significant relationships between key ecosystem 

variables (LAI) and NDVT (chapters 3 and 4). 

On a global scale, DGVMs tend to parameterise the land surface based on a 

vegetation classification of plant functional types (PFTs) (e.g. Woodward et al., 1995). 

Results from chapter 4 seem to bear out the validity of this approach. However, the 

clear variation within PFTs evident in chapter 4 indicates that community dependent 

topographic relationships may play an important role in regional land surface 

parameterisation. 
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Approaches based on topographic predictors of LAT were examined in Chapter 

4, and appear to offer stronger relationships than EQ based approaches. We report at 

50% stronger relationship between LAI and topography than LPd and NDVI. In 

particular, scale dependent relationships between elevation and shelter (as quantified by 

TOPEX) are good predictors of LAI. 

It is important to remember the dictum that correlation does not imply 

causation, and whilst statistical relationships between LAI and topography may be 

useful in a descriptive sense, it is important to develop a mechanistic understanding of 

the ecophysiology at work in order to successfully implement these findings in an 

operational sense. It is likely that the large-scale elevation trend is related to temperature, 

whilst the microscale relationship between LAT and exposure may be explained by local 

variations in snow accumulation, thaw dates and hence soil nutrient distributions 

(Wielgolaski et al., 1975). Further experimental work at Abisko is necessary to build 

process-based understanding of these issues for future modelling work. 

We compared various methods of regionalising LAI in the Arctic tundra, to see 

if statistically optimal interpolation techniques such as Kriging could outperform 

simpler and computationally cheaper regression techniques. We report broadly similar 

interpolation skill for various Kriging techniques, inverse distance weighting (IDW) and 

linear regression, despite the utilisation of different combinations of data streams. 

Despite results in chapter 3, where geostatistical methods provided no 

improvement in interpolation skill over simpler upscaling techniques, geostatistics are 

likely to remain an important part of any regionalised modelling activity. A common 

misconception about geostatistical methods is that they are limited to smoothly varying 

Gaussian fields with a constant mean: Geostatistical methods exist to deal with non-

normality (Armstrong and Matheron, 1986a; Armstrong and Matheron, 1986b), discrete 
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boundary transitions (Goovaerts and Journel, 1995; Heuvelink and Webster, 2001) and 

secondary covariates (Goovaerts, 2000; Hudson and Wackernagel, 1994). 

Geostatistics provide the ability to assimilate autocorrelated observations into 

arbitrarily complex regression models, making the techniques an ideal choice for future 

studies combining PFTs derived from EO vegetation classifications, radiance derived 

vegetation indices and topographic trends. Mixed effect type models (Pinlieiro and 

Bates, 2000) are readily specified with slight modifications to the standard geostatistical 

methodologies (see chapter 7.8.2 and 7.9.1.i), providing a framework for the integration 

of such disparate data sources. Thus geostatistics remain a relevant research area given 

the significant advantage of offering spatial estimates of parameter variance, which is a 

key step to developing the potential for spatial data assimilation. 

In the second section of the thesis, we turned our attention to problems of 

upscaling meteorological driving variables. There is a long tradition of such interpolation 

work in the literature (Ashraf et al., 1997; Hudson and Wackernagel, 1994; Running et 

al., 1987; Thiessen, 1911; Thornton et al., 1997), although in general this has been 

attempted at coarser spatio-temporal resolutions (Fuentes et al., 2006). Regionalising 

precipitation fields is considerably more problematic at fine temporal resolution 

(Thornton et al., 1997), and we report consistently poor regionalisation of rainfall fields 

(chapter 5). Geostatistics have previously been reported to provide slight improvements 

over other methods of regionalisation, and we find broadly similar results to those 

previously published (Diodato and Ceccarelli, 2005; Goovaerts, 2000): Although 

geostatistical methods provide an improved analysis over IDW approaches, the relative 

improvement may be small (Thornton et al., 1997); for example in the case of 

precipitation our geostatistical analysis provided worse results than IDW. 
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We implemented state of the art spatio-temporal geostatistical techniques to 

investigate potential improvements to high-resolution meteorological fields over simpler 

Kriging techniques that ignore temporal autocorrelation. In every case we report a 

poorer interpolation skill for the spatio-temporally explicit regionalisations (chapter 5). 

As such, one may question the merit of geostatistical techniques given their perceived 

complexity, computational cost and marginal improvement in interpolation skill. 

However, we reiterate the importance of attaching estimates of uncertainty to 

regionalised variables, which Kriging and its variants (geostatistical techniques subsume 

spline fitting methods (Matheron, 1981; Serra, 1987)) are uniquely able to achieve. 

We examined the effect of post hoc temporal data aggregation on estimated fields 

of meteorology, and report a decrease in error as the sire of temporal window increases. 

This led us to hypothesise that the somewhat large interpolation errors may cancel out 

over time in the model structure. Specifically, we hypothesised that integrating processes 

in the model structure would 'smooth out' errors, whilst rapid processes which react 

instantaneously to driving variables would display greater error (chapter 6). We report 

that temperature was the largest component of the meteorological uncertainty, 

supporting the hypothesis that instantaneous effects dominate the uncertainty of the 

NEE trajectory. Despite precipitation having the largest uncertainty and poorest r 2  when 

compared with observations, the resultant impact on NEE uncertainty was minimal. We 

demonstrated the temporal buffering of uncertainty attributable to precipitation, and 

suggest this is because the effect of precipitation on vegetation is manifested through 

drought; an integrative effect related to soil texture and water holding capacity. 

The second aim of the thesis was to compare the magnitude of the effects of 

parameterisation and driver uncertainty on the total C budget. In chapter 6 we present 

an analysis with significant novelty, being the first study to implement an Ensemble 
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Kalman Filter (ENKf) to provide constrained parameter uncertainty distributions for a 

C dynamics model. Furthermore it is the first study to implement spatio-temporal 

geostatistical simulation via the product-sum covariance model (De Cesare et al., 2001) 

to provide an ensemble of probable meteorological scenarios. We report that despite 

sizable uncertainties in driver fields, only small NEE uncertainties were attributable to 

meteorology. This was true even under extreme data scarcity, simulated by ignoring all 

available data <100 km from the study site. Conversely, the uncertainties associated 

with parameterisation accounted for up to 50% of the total NEE predicted by the 

model. 

The ability of data assimilation to correct parameters based on incoming data 

streams was demonstrated in Chapter 6, indicating that the tools necessary to constrain 

and reduce the uncertainties associated with the exchange surface are already in place. 

The ability of DA techniques to reduce model uncertainty has been proven elsewhere 

(Evensen, 1994; Quaife et al., 2008; Williams et al., 2005), and such model correction is 

likely to continue to be important with the arrival of new EO data streams e.g. NASAs 

Orbiting Carbon Observatory (OCO) (Crisp and Johnson, 2005), and ESAs 

forthcoming Earth explorer mission (e.g. BIOMASS) (Bensi et al., 2007). It is the 

opinion of the author that geostatistical and DA technologies are amongst the most 

promising and relevant areas of C cycle science at present, and are worthy of 

considerable attention in the future. 
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Conclusions 

9. Conclusions 

The dominant source of uncertainty for regional scale C models is the 

parameterisation of the land surface. Critically, LAT and foliar N (which may be closely 

coupled to LPd) must be adequately specified at the working scale to produce 

reasonable estimates of NEE. EQ data sources alone are inadequate to characterise the 

rapid transitions in LAd typical of Tundra ecosystems and apparent in high-resolution 

studies. The use of topographic indices derived from high quality DBMS such as those 

derived by LIDAR may go some way to improving land surface parameterisation. 

Despite issues of bias in meteorological upscaling, driver uncertainty contributes only 

marginally to the net uncertainty in C, even in cases of extreme data scarcity. We 

therefore conclude that future studies should concentrate resources on improving 

regionalisation of land surface parameters, although an analysis of driver uncertainty is 

advisable. State of the art spatio-temporal interpolation techniques did not improve 

driver surface accuracy over those that ignore temporal autocorrelation. We conclude 

that simpler solutions to upscaling are preferable in terms of computational cost and 

quality of output. Geostatistical techniques are essential for the calculation of surface 

error statistics, which are a key step towards regional scale DA implementation; we 

therefore suggest that regression based techniques or IDW are unsuitable for such 

studies. DA techniques have proven useful in the correction of model parameterisation, 

and are likely to provide improvements in model uncertainty in the future, especially if 

undertaken in 'online' mode such that assimilated observations can adjust parameter 

trajectories over time. 

Luke Spadavecchia 	 - 235 - 	 2008 


