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ABSTRACT 
 

Traffic flows over time and space. This spatio-temporal dependency of traffic flow 

should be considered and used to enhance the performance of real-time traffic 

detection and prediction capabilities. This characteristic has been widely studied 

and various applications have been developed and enhanced. During the last 

decade, great attention has been paid to the increases in the number of traffic 

data sources, the amount of data, and the data-driven analysis methods. There is 

still room to improve the traffic detection and prediction capabilities through 

studies on the emerging resources. To this end, this dissertation presents a 

series of studies on real-time traffic operation for highway facilities focusing on 

detection and prediction. 

First, a spatio-temporal traffic data imputation approach was studied to 

exploit multi-source data. Different types of kriging methods were evaluated to 

utilize the spatio-temporal characteristic of traffic data with respect to two factors, 

including missing patterns and use of secondary data. Second, a short-term 

traffic speed prediction algorithm was proposed that provides accurate prediction 

results and is scalable for a large road network analysis in real time. The 

proposed algorithm consists of a data dimension reduction module and a 

nonparametric multivariate time-series analysis module. Third, a real-time traffic 

queue detection algorithm was developed based on traffic fundamentals 

combined with a statistical pattern recognition procedure. This algorithm was 

designed to detect dynamic queueing conditions in a spatio-temporal domain 

rather than detect a queue and congestion directly from traffic flow variables. The 

algorithm was evaluated by using various real congested traffic flow data. Lastly, 

gray areas in a decision-making process based on quantifiable measures were 

addressed to cope with uncertainties in modeling outputs. For intersection control 

type selection, the gray areas were identified and visualized. 
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INTRODUCTION  
 

Traffic congestion on a highway is one of the most interesting phenomena in 

traffic management and operations. A great deal of effort has been made to 

develop and enhance solutions to cope with traffic congestion.  

Assessing current traffic conditions and accurately predicting the future in 

real time are essentials that have not been definitively resolved. Advancement in 

these capabilities is vital for fast decision making, timely responses, and 

appropriate proactive traffic controls to mitigate the impact of congestion on 

traffic flow.  

One purpose of traffic flow analysis is to understand the continuous 

movement of traffic over time and space. The traffic variables including speed, 

density, and traffic volume depend on a spatio-temporal domain. Without 

considering this feature of the data in an analysis, one can make only limited 

inferences. Thus, more efforts to exploit the spatio-temporal dependency in traffic 

flow studies are desirable.  

Traffic data collected from intelligent transportation systems (ITS) and 

mobile devices have increased rapidly with significant progress in computing 

capabilities and data-driven analysis methods. Data sources include conventional 

traffic data from detectors as well as location-based data from cellphones, car 

navigation devices, and multiple sensors embedded in connected and 

autonomous vehicles. In order to conduct further analysis using these data, one 

must address a missing data issue. Missing data appears frequently in a real 

traffic data collection process. This is mainly because collecting data from 

transportation systems is different from collecting it under well-controlled 

experimental conditions. If a great deal of data is missing, it can lead to an 

erroneous analysis.   

For traffic flow analysis, the wide variety of sources provides data that 

represent traffic flow conditions. Speed is one essential type of these data. 
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Speed is a fundamental variable of traffic flow, and is frequently used for highway 

capacity analysis, although it is not directly used as a level of service measure. 

Various traffic phenomena occur in a highway system due to weaving, merging, 

diverging, and other traffic events that are often measured and explained by 

speed. Therefore, traffic flow analysis using speed data can provide important 

information for detecting and predicting traffic conditions.  

This dissertation presents studies focused on the development of a traffic 

flow detection and prediction framework that uses data-driven approaches to 

support the proactive traffic controls and operations for highways. The 

dissertation compiles four research papers in the following chapters. These 

chapters are organized in a journal article format because each chapter is either 

published, submitted, or to be submitted. 

 Chapter I proposes and evaluates spatio-temporal cokriging methods 

for missing data imputation in spatio-temporal domain. Different 

missing data patterns and use of secondary data are considered for 

enhancing imputation accuracy. 

 Chapter II proposes a short-term traffic speed prediction algorithm. A 

nonparametric time series analysis method with a data dimension 

reduction technique is evaluated for short-term prediction and 

compared with a parametric model. 

 Chapter III presents a real-time traffic queue detection algorithm based 

on traffic flow fundamentals using traffic detector data. The queue 

detection and additional shock wave analysis results are provided 

using real traffic data. 

 Chapter IV introduces gray areas in a decision-making process using a 

quantifiable performance measure to address uncertainties in modeling 

output. The gray areas are identified and visualized in a case study of 

intersection control type selection.  
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CHAPTER I 
MISSING DATA IMPUTATION FOR TRAFFIC SPEED USING 

SPATIO-TEMPORAL COKRIGING 
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This chapter presents a modified version of a research paper by Bumjoon Bae, 

Hyun Kim, Hyeonsup Lim, Yuandong Liu, Lee D. Han, and Phillip B. Freeze.  

 

Abstract  

  

Modern transportation systems rely increasingly on the availability and accuracy 

of traffic detector data to monitor traffic operational conditions and assess system 

performance. Missing data, which occurs almost inevitably for a number of 

reasons, can lead to suboptimal operations and ineffective decisions if not 

remedied in a timely and systematic fashion through data imputation. A review of 

the literature suggests that most traffic data imputation studies considered the 

temporal continuity of the data but often overlooked the spatial correlations that 

exist. Few of the studies explored the randomness of the patterns of the missing 

data.  Therefore, this paper proposes two cokriging methods that exploit the 

existence of spatiotemporal dependency in traffic data and employ multiple data 

sources, each with independently missing data, to impute high-resolution traffic 

speed data under different data missing pattern scenarios. The two proposed 

cokriging methods, both using multiple independent data sources, were 

benchmarked against a classic ordinary kriging method, which uses only the 

primary data source. An array of testing scenarios were designed to test these 

methods under different missing rates (10~40% data loss) and different missing 

patterns (random in time and location, random only in location, and non-random 

blocks of missing data). The results suggest that using multiple data sources with 

the spatiotemporal simple cokriging method effectively improves the imputation 

accuracy if the missing data were clustered, or in blocks. On the other hand, if 

the missing data were randomly scattered in time and location, the classic 

ordinary kriging method using only the primary data source can be more 

effective. Our study, which employs empirical traffic speed data from radar 
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detectors and vehicle probes, demonstrates that the overall predictions of the 

kriging-based imputation approach are accurate and reliable for all combinations 

of missing patterns and missing rates investigated. 

 

Introduction 

 

Traffic detector data collected from transportation facilities are essential inputs for 

modern transportation systems to monitor traffic conditions and assess system 

performance. A challenge for using the data is ‘missingness’ in the data 

collection processes of the systems [1, 2]. This includes (but is not limited to) the 

malfunctions of hardware or software, communication network problems, 

restricted power supply conditions, scheduled maintenance, and so on. As 

Orchard and Woodbury [3] remarked, it is obvious that not to have missing data 

is the best way to address the missing data issue; however, this ideal 

circumstance rarely happens. 

The effects of missing data and imputation methods have been examined 

in other disciplines, such as statistics, sociology, and epidemiology because 

analysis results are considered rough when data are missing [1]. Unfortunately, 

this issue has not been well addressed in transportation studies [4, 5]. Measuring 

the effects of missing data and treatments to impute them are rarely investigated, 

even though the issue of handling missing data has been addressed to some 

degree in transportation modeling. Meanwhile, the need to measure the 

performance of transportation systems such as delay, travel time reliability, and 

emissions has been underlined in transportation systems management and 

operations. In this context, the appropriate methods to impute missing data 

should be explored, otherwise, the results of such performance measures will be 

biased. 
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The effects of missing traffic flow data on transportation modeling and 

prediction can be divided into two categories [6]: First, it causes information loss 

for certain locations and time periods, which may be important to the objective of 

an analysis in transportation modeling and prediction. For instance, if traffic 

speed and traffic volume data are missing for a severely congested road 

segment during peak hours, the total vehicle emission will be underestimated. 

Second, it causes statistical information loss. In general, a sample size that is 

smaller due to missing data, i.e., smaller degrees of freedom, may lead to 

overfitting problems in the modeling process. More importantly, underlying 

assumptions of statistical methods used in an imputation analysis are violated by 

different missing patterns, resulting in biased solutions. 

Therefore, to avoid erroneous statistical inference, understanding missing 

patterns and missing mechanisms from the datasets used in a statistical analysis 

is as important as determining how to sample from a population. Rubin [7] points 

out that distributional inferences on the parameters of data are generally 

conditional on the observed missing patterns. According to recent works by 

Buuren [1] and Carpenter and Kenward [2], a typology of missing patterns 

associated with the impact on statistical analysis are identified with three types: 

missing completely at random (MCAR), missing at random (MAR), and missing 

not at random (MNAR). Few of previous studies explored the randomness of the 

patterns of the missing traffic flow data, but not fully investigated these missing 

patterns [8-11]. 

Imputation of traffic data such as volume, speed, and occupancy collected 

from traffic detectors aims to estimate the unobserved value at a specific location 

and time to improve the accuracy of further analyses (traffic speed prediction, 

traffic incident detection, and so on). Recent transportation studies paid attention 

to a geostatistical approach, called kriging, to estimate or predict traffic variables 

for unobserved locations [12-16]. Considering that traffic data have 

spatiotemporal dependency, kriging has an advantage over other statistical 
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approaches for improving imputation accuracy. This is because the method takes 

the observed neighboring data correlated with a missing value into account in 

space-time dimension. A recent kriging study extends the modeling dimension 

from a single spatial dimension to a spatiotemporal dimension to impute traffic 

speed data, arguably suggesting that spatiotemporal-kriging (ST-Kriging) 

outperforms the historical average and k-nearest neighborhood (KNN) methods 

[17]. 

The goal of this study is to extend the ST-Kriging approach to a 

multivariate framework (called spatiotemporal cokriging) for imputing high-

resolution traffic speed data collected from Remote Traffic Microwave Sensors 

(RTMS) on highways. As cokriging is inherently the multivariate extension of 

kriging [18], cokriging needs to input the secondary variables to complement the 

observed neighboring values of the primary variable to predict the value of a 

primary variable at a new location. The secondary variables are spatially 

correlated with the primary variable. Because available traffic data resources are 

abundant, using the information from multiple data sources is anticipated to 

improve the imputation results of the spatio-temporal cokriging approach. The 

effectiveness of cokriging relies on the pattern of missing data. To address this 

issue, we investigated the prediction performance of three different kriging 

methods based on three missing patterns (MCAR, MAR, and MNAR) in the traffic 

speed data. 

The next section presents a comprehensive literature review on imputation 

techniques and kriging in transportation studies and describes the data used in 

this study. The following section explains the kriging and cokriging methods. The 

last two sections provide a case study result of applying the spatiotemporal 

cokriging approach to impute traffic flow speed data, then conclusions follow. 
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Literature Review 

 

Missing data imputation methods can be either single imputation or multiple 

imputation [1, 2]. Hot-deck, average, and regression are commonly used as 

single imputation methods. Most of the imputation studies in transportation 

examine single imputation methods because of their fast-computational speed for 

real-time analysis. The historical average, expectation maximization (EM) 

algorithm [4], pairwise regression [19], moving average, ARIMA, and regression 

model with genetic algorithm [20] have been explored for imputing five or 10 

minutes loop detector data. 

In contrast, multiple imputation methods overcome the drawback of single 

imputation methods that derive standard errors of parameter estimates that are 

too small. This type of imputation generates multiple imputed datasets and 

estimates model parameters, then pools the estimates as a single value. Thus, it 

can deal with the inherent uncertainty of the imputations [1]. Ni and Leonard Ii [5] 

proposed a multiple imputation approach employing a Bayesian network and 

Markov chain Monte Carlo (MCMC) technique with 20-second detector data. The 

imputation method can account for the correlations between and within variables 

by using a Bayesian network to produce unbiased estimates and confidence 

intervals of the results from the MCMC. However, these studies exploited only 

time series information of the traffic data at the location of interest or the traffic 

data of closest surrounding detectors, which are selected arbitrarily on the basis 

of spatiotemporal relationship assumed in advance. 

Recent studies have focused more on both the spatial context of traffic 

data as well as temporal patterns [9, 11, 21]. Clearly, analyzing traffic dynamics 

in the context of space and time is useful since traffic status evolves in the 

spatiotemporal domain. Thus, efforts have been made to visualize and analyze 

traffic data projecting in three or more dimensions, including space and time [21, 

22]. Spatiotemporal properties of traffic detector data were also explored using a 
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cross-correlation analysis [23]. The results can be used to identify the influential 

area of a missing data point in a spatiotemporal domain. 

Kriging is a well-known geostatistics interpolation method developed by D. 

G. Krige [24] to estimate a value at an unobserved location from observations at 

nearby locations. Previous transportation studies exploring kriging methods were 

focused on estimating annual average daily traffic (AADT) for unobserved 

locations. Eom, Park [12] employed kriging to impute missing AADT data. In 

comparison with an ordinary least square (OLS) regression model, the kriging 

approach predicted AADT more accurately. Kriging was also used to predict 

future AADT with temporal extrapolation by OLS regression [13]. The study 

showed that kriging approaches perform better for road sections with moderate-

to-high traffic volumes. Under low traffic demand conditions, the proposed kriging 

method overestimates AADT. Since the spatial covariance considered in kriging 

is based on Euclidean distance between two locations, Zou, Yue [14] proposed 

an approximated road network distance, which is a Euclidean distance and 

approximately equal to the road network distance using isometric embedding 

theory. Therefore, the metric can be used for the traditional kriging and its 

covariance function. In comparison with the Euclidean distance, the proposed 

distance metric performed better for interpolating travel speed using local 

universal kriging, especially for a region with a complex road network structure. 

However, Selby and Kockelman [15] showed that using network distances, 

instead of Euclidean distance, did not significantly improve the prediction 

performance of a universal kriging method for AADT prediction. Shamo, Asa [16] 

compared three different kriging methods—simple kriging (SK), ordinary kriging 

(OK), and universal kriging (UK)—to predict AADT in Washington State in U.S. 

over a period of three years. The result showed that there is no superior kriging 

method from year to year due to the dynamic nature of traffic volume. Meanwhile, 

there are attempts to extend the spatial analysis dimensions of kriging to a 

spatiotemporal domain to better capture the spatiotemporal properties of data in 
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various disciplines [17, 25, 26]. However, there is virtually no available literature 

associated with imputation and prediction modeling. Given the theoretical 

advantage of cokriging, applying cokriging method to impute missing traffic data 

is promising in case any secondary data that are highly correlated with a primary 

data are available. Since multiple traffic speed data sources are available, it is 

worthwhile to explore the applicability and performance of cokriging for traffic 

data imputation. 

 

Data Description 

 

The primary data to be imputed in this study was obtained from the RTMS, 

monitored by roadside sensors in the Knoxville urban area; Knoxville is the third 

largest city in Tennessee. There are more than 200 detector stations for both 

directions on the interstates, including two major highways in the Knoxville 

region, I-40 and I-75. Figure 1-1 shows the selected RTMS station locations 

together with the station ID labels.  Twenty-eight stations in the 13.6 mile-long 

eastbound I-40 segment, ranging from mile marker 374.2 (west end) to 387.8 as 

(east end), were selected because it is a major city corridor. Along with Figure 1-

1, Table 1-1 summarizes the selected RTMS stations that are aligned to 12 links 

of the secondary dataset, called HERE on I-40 Highway in Knoxville, TN. There 

were 5,881 cases where both speeds were collected at the same spatiotemporal 

point. 

RTMS collects traffic count, speed, and occupancy information for each 

lane every 30 seconds. Speed is the essential variable for measuring the 

performance of the highway system in terms of travel time reliability, delay, 

emissions, and so on. To explore the cokriging approach for data imputation, the 

five-minute average speed data for 24 hours were collected on December 1, 

2015. This gave a total of 288 observations for each station if no missingness  
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Figure 1-1 Map of the selected RTMS stations on I-40 eastbound in 
Knoxville. 
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Table 1-1 Description of RTMS stations and corresponding HERE links. 

 RTMS     HERE  

 Station 
ID 

Mile 
Marker Direction  Link ID Link Length 

(mile) 
 3 374.2 Eastbound  121P04124 2.0 
 4 374.5 Eastbound    
 6 374.9 Eastbound    
 9 375.4 Eastbound  121P04125 1.2 
 11 375.9 Eastbound    
 13 376.2 Eastbound    
 14 376.6 Eastbound  121P04126 0.5 
 17 377.1 Eastbound  121P04127 1.3 
 19 377.5 Eastbound    
 21 378.0 Eastbound    
 23 378.4 Eastbound  121P04128 0.5 
 27 379.2 Eastbound  121P04130 0.8 
 33 380.4 Eastbound  121P04131 1.2 
 34 380.7 Eastbound    
 38 381.5 Eastbound  121P04132 2.3 
 40 381.9 Eastbound    
 41 382.2 Eastbound    
 43 382.6 Eastbound    
 48 383.6 Eastbound  121P04133 1.3 
 52 384.4 Eastbound    
 54 384.7 Eastbound  121P04144 0.8 
 56 385.1 Eastbound    
 58 385.4 Eastbound    
 61 386.1 Eastbound  121P04146 0.5 
 64 386.5 Eastbound    
 65 387.0 Eastbound    
 67 387.5 Eastbound  121P04149 0.2 
 68 387.8 Eastbound    
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occurred. The main reason to use five-minute data is for consistency with the 

aggregation scale of the secondary data used in this study. Note that the raw 

data were collected in 30 seconds interval; however, it was aggregated to 

remove the effect of unnecessary noise as it is prone to a biased distribution for 

imputation in our study. In our examination, the aggregation of the raw data at 

five-minute intervals was considered a reasonable time span for imputation. The 

secondary data used in the cokriging method called HERE is a commercial link-

based speed dataset collected mainly from probe vehicles. As mentioned, this 

data contains traffic speeds averaged in five minutes, totaling 288 observations 

per day for each road link. The HERE data were obtained at the same road 

segments on the same date of the RTMS dataset. Note that the RTMS dataset is 

point-based while the HERE dataset is link-based. Thus, to match the RTMS 

station locations with the links of HERE, a geographic information system (GIS) 

tool was used for the data matching allocation. 

In each dataset, the number of complete data points for a day should be 

8,064 (=28 stations 288 per day for five-minute interval). However, the obtained 

RTMS dataset had 6,954 observations and the HERE dataset contained 6,817 

observations, presenting the original missing rates of both RTMS and HERE 

samples in this study are 13.8% and 15.5%, respectively. Figure 1-2 shows the 

scatter plots of the RTMS (Figure 1-2(a)) and HERE (Figure 1-2(b)) observations 

in spatiotemporal dimension. Most of the missing values in the HERE data are 

observed at nighttime because HERE data are collected from probe vehicles that 

operate mostly in the daytime. Nevertheless, the HERE data are still useful for 

daytime analyses. In terms of missingness in the RTMS data, the missing pattern 

is a random pattern. 

Given the obtained dataset, two assumptions are made to use the RTMS 

and HERE data together. First, five-minute aggregated data from the original 30-

second RTMS are used for the consistency of the temporal scale of HERE. 

Consequently, the changes within five minutes of the raw RTMS data are  
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Figure 1-2 Collected five-minute average speed points: (a) RTMS and (b) 
HERE. Each dot represents an observation point in spatiotemporal 
dimension. 
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smoothed. This pre-processing has an advantage because the aggregation can 

reduce the impact of the noise in the raw data and improve computation 

efficiency [5]. Second, the resolution and accuracy of the secondary data, HERE 

are assumed to be sufficient to explain a part of the variation in the primary data 

within the proposed cokriging imputation framework. It is expected that the HERE 

data be helpful to impute missing RTMS values because the completeness rate 

of HERE is well established during daytime collection. 

 

Methodology 

 

Since kriging was first developed as an interpolation technique for geographical 

surfaces, it has become a representative geostatistical approach to predict an 

unknown value at an unobserved location by adapting various statistical 

assumptions and conditions in the modeling and has further advanced to 

different kriging methods. The interpolation was formulated as a weighted sum of 

the values of their known neighbors. In this study, the speed at an unobserved 

location is estimated using three different kriging methods: ordinary kriging (OK), 

ordinary cokriging (OCK), and simple cokriging (SCK). 

OK is the most commonly used kriging method [27]. With local second-

order stationarity assumption, OK is known as the best linear unbiased estimator 

(BLUE). In this study, the speed at an unobserved location  is calculated from a 

linear combination of the observed speed  at neighboring locations and its 

weight : 

where,  is a vector of the location where an observed RTMS speed  is placed 

on a spatiotemporal plane,  is a vector of the location where unobserved RTMS 
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speed  will be predicted, and  is the number of observed locations used for 

prediction. To obtain an unbiased estimate, the following constraint is added: 

OCK is a multivariate extension of OK. Using OCK, secondary variables 

can be added to predict a primary variable. OCK can be expressed as follows: 

where,  is unobserved speed of a primary variable, RTMS to be predicted and 

 is the number of variables, and  is the number of observed locations of th 

variable. A similar but conditional constraint of OK is added in OCK:  

Then, the main difference between OCK and SCK is how the mean value 

is specified for interpolation. A constant global mean is used in SCK, while the 

local mean is used in OCK, which varies depending on each set of neighboring 

data points. Therefore, the accuracy of the OCK-based prediction could decrease 

when no neighborhood data are available. Under such conditions, SCK is more 

useful since an estimation of a primary variable can be calibrated without having 

neighboring primary data [27]. SCK is expressed as: 
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where,  is the global mean of a primary variable, and  is the global mean of 

th variable. 

In kriging, the spatial dependency between two locations is analyzed by 

covariance or semivariogram where Euclidean distance between the observed 

data at any pair of locations is used to generate a best-fit semivariogram. 

Complete details about the semivariogram functions and underlying assumptions 

are available in Cressie [28], Eom, Park [12], and Zou, Yue [14]. As shown in 

Figure 1-2, time and space are represented with two dimensions. Notice that a 

road section is represented as a straight line in the Y-axis, and the observed 

locations are placed on the line scaled by their mile marker. Each data point was 

mapped on the grid in which each cell size is five-minute by 0.1-mile. Similar to 

what Zou, Yue [14] did, this design makes the network distance equal to the 

Euclidean distance, allowing the computation of spatial dependency to be more 

accurate and the visualization of results more effective. 

Figure 1-3 presents the procedure of the analysis design: (a) collecting 

and preprocessing RTMS and HERE data, including map matching and data 

extraction and aggregation; (b) analyzing the correlation between RTMS and 

HERE speed data, which is for verifying that HERE is an appropriate secondary 

variable; (c) generating three missing patterns in the collected RTMS data; (d) 

creating experimental semivariogram of both data and fitting theoretical 

semivariogram; (e) predicting the missing RTMS speeds and mapping the 

spatiotemporal distribution; and (f) evaluating the accuracy of the results of OK, 

OCK, and SCK given the missing patterns. 

 

Analysis Results 

Correlation analysis 

In order to justify the use of HERE as the secondary variable for imputing 

the RTMS data using cokriging, we carried out correlation analysis between two 
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Figure 1-3 Research design. 
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datasets. Pearson correlation coefficient (r) was used as Eq. (6). 

where,  is RTMS,  is HERE,  is sample size (n = 5,881), and  is a sample 

standard deviation of each data. As shown in Figure 1-4(a), the correlation 

between RTMS and HERE is 0.46. However, by taking log-transformation in 

Figure 1-4(b), the correlation is improved to r = 0.51. Empirically, this correlation 

is enough to justify taking the additional complexity of cokriging into account 

since it is known that cokriging results in better predictions than ordinary kriging if 

the correlation between two variables exceeds 0.5 and when a secondary 

variable is over-sampled [29, 30]. Most of the speed observations in both data 

are near 60 miles per hour (mph) and they seem to have a relatively low 

correlation, i.e., the cluster near 60 mph has a circular shape in Figure 1-4(a). 

This is mainly because of the resolution difference between both data. In other 

words, one HERE link covers up to 4 RTMS stations in this study. However, low 

speed below the free flow speed of near 60 mph is generally more important in 

an analysis for traffic flow since congestion represented by low speed is one of 

the most interesting phenomena in transportation studies. In that perspective, the 

low speed observations in both data show a linear relationship, which supports 

that HERE is an appropriate secondary data for imputing the missing RTMS 

data. 

Design of scenarios for missing patterns  

The definitions of three missing patterns – MCAR, MAR, and MNAR, are as 

follows: (a) the probability of a value missing at a certain location and time is 

completely independent in MCAR. (b) In MAR,  missingness is dependent on a 

certain condition, but independent within the condition [1]. (c) MNAR represents 

the pattern that a missing mechanism is neither MCAR nor MAR. Using three 
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Figure 1-4 Scatter plots between RTMS and HERE: (a) original speed, and 
(b) log-transformed speed. 
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missing patterns, a total of 12 missing scenarios were generated by four missing 

rates from 10% to 40% in increments of 10%. In MCAR scenarios, a portion of 

the individual data points was removed completely at random in time and 

location. In MAR scenarios, series of the data points were removed for randomly 

selected stations and time periods to satisfy the condition that the missingness is 

dependent on time, but not on locations. In MNAR scenarios, a set of data points 

in a block was eliminated from original data to generate a different pattern 

compared to MAR and MCAR. Figure 1-5 shows three examples of the RTMS 

scatter plot given missing patterns with a scenario of 10% missing rate. 

Semivariogram modeling 

Using the Geostatistical Analyst tool in ArcGIS 10.4, experimental 

semivariograms were computed, then theoretical semivariograms were estimated 

for OK, OCK and SCK. Note that no dominantly superior semivariogram model 

has been suggested for each of the three kriging methods for traffic flow data 

prediction and imputation in existing literature [16, 31], implying the best fitted 

semivariogram model needs to be designed depending on the data used in the 

cases. However, recent works by Shamo, Asa [16] and Yang [31] argued that 

spherical and exponential models could outperform others with traffic flow data 

from their empirical observations. In our study, the spherical model was fitted 

best in our case, thus, it was applied for three kriging methods to maintain 

consistency in comparing them.  

The HERE speed was used as the secondary variable in both cokriging methods 

(OCK and SCK). A theoretical semivariogram model measuring spatial 

dissimilarity of any pair of observations consists of three parameters: nugget (the 

minimum estimate of error), sill (the maximum dissimilarity), and range (the 

distance to reach to sill). Note that it is necessary to find the best fitting 

semivariogram for both data to set the equation of selected kriging methods that 

are best solvable in imputation. Figure 1-6 shows the best-fitted theoretical 
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Figure 1-5 Missing scenario plots with 10% missing rate: (a) MCAR, (b) 
MAR, and (c) MNAR. Each dot represents observation point in 
spatiotemporal dimension. 
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Figure 1-6 Theoretical semivariograms: (a) OK, (b) OCK, and (c) SCK. 
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semivariograms of the three kriging methods. The process to identify the best-

fitting theoretical semivariogram over experimental semivariogram is difficult if 

greater variability is present in the pattern of binned cloud [27, 28]. To tackle this 

issue, the log-transformation was applied to HERE data in OCK and the RTMS 

and HERE data were transformed as normal scores in SCK. This is because 

simple kriging requires the assumption that the true mean of data must be 

known, which is identified as the best theoretical semivariogram for SCK [32]. 

Evaluation of the results  

Given the missing patterns scenarios, a total 36 RTMS speed surfaces were 

generated to evaluate the imputation performance of the three kriging methods. 

Figure 1-7 is provided as reference patterns of the RTMS and HERE datasets 

(Figure A-1, Figure A-2, and Figure A-3 show the imputation results in Appendix). 

The removed observations in each analysis were used as ground truth for 

individual missing values. Note that the original missing RTMS values were not 

accounted for in the evaluation because their true values are not available. In 

order to evaluate imputation performance of OK, OCK, and SCK, mean absolute 

error (MAE) and mean absolute percentage error (MAPE) were used. Both 

measurements are formulated as follows:  

 

 

where,  is the th observed RTMS speed and  is the th predicted RTMS 

speed. 
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Figure 1-7 Imputed Speed using OK without missing values: (a) RTMS and 
(b) HERE. 
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The six plots in Figure 1-8 present the prediction performance of the three 

kriging methods under different missing data patterns and rates (The same 

results are presented in Table A-1 in Appendix). 

For the MCAR scenarios depicted in Figure 1-8(a) and Figure 1-8(b), where data 

are missing completely at random, ordinary kriging (OK) clearly outperforms the 

others. Since plentiful of neighboring RTMS data are present near each missing 

point in both space and time domains in the MCAR scenario, the availability of 

neighboring HERE data points does not contribute meaningfully to the imputation 

effort. Despite the different performances among the three kriging methods, the 

error range of 1.9 – 3.2 mph, which can be ignored for imputation, confirms that 

kriging is an effective tool for missing data imputation if a missing pattern 

presents with a form of MCAR. Figure 1-8(a) and Figure 1-8(b) indicate that 

kriging-based imputation can provide reliable results for the MCAR pattern. The 

performance of three kriging approaches is consistently stable with varying 

missing rate. Notice that a single data based kriging imputation (OK) provides a 

“good” result when supplementary data would play as a role of noise in MCAR. 

However, it is worth noting that the MCAR pattern is less likely to occur in real 

traffic detector data. 

The prediction errors of the MAR scenarios are shown in Figure 1-8(c) and 

Figure 1-8(d); the mean error (left) and mean percentage error (right) on average 

are 5.4 mph and 11.2%, respectively, both of which are higher than the ranges of 

MCAR results. The main reason for this result is that the missing values are more 

clustered as a form of time series in the scenarios compared to MCAR. This 

result concurs with the argument that temporal dependency of traffic detector 

data is stronger than spatial dependency, as proposed by Wang and 

Kockelman [13]. Another feature in the MAR pattern is that there is no distinct 

difference in the prediction errors among the three kriging methods. In 

comparison to the result of MCAR, the superiority of OK is canceled out in MAR if  
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Figure 1-8 MAE and MAPE comparisons. 
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there are a smaller number of neighboring RTMS data points explaining the 

temporal dependency. 

In the MNAR scenarios in Figure 1-8(e) and Figure 1-8(f), simple cokriging 

(SCK) outperforms the others, and the gaps in the error measures are much 

greater than those in the previous two missing patterns. The mean error of SCK 

ranges from 4.7 to 6.5 mph, while that of OK and OCK ranges from 9.4 to 11.4 

mph. Likewise, the range of the mean percentage error of SCK is from 9.3% to 

12.4%, while that of both ordinary kriging methods (OK and OCK) is from 16.1% 

to 21.0%. The prediction performances of OK and OCK are very similar in the 

MNAR scenarios. As discussed in the previous section, both ordinary kriging 

methods use an unknown local mean of a set of neighboring data points. In other 

words, the accuracy of the predicted value for OK and OCK could be lower than 

that of SCK when there are fewer or no reliable neighboring values. Since a 

block of data points was removed in the MNAR scenarios, the remaining 

neighboring data points are not as good as those in the previous two missing 

pattern scenarios for explaining the spatiotemporal dependency. Similar to the 

implication of MAR, the utility of cokriging approaches that take secondary 

variables into account for predicting unknown primary values is regarded as more 

effective when missing values are clustered over a relatively extensive 

spatiotemporal domain.  

Given our experiments, it is clear that the prediction errors of the MNAR 

scenarios decrease gradually as missing rate increases. This is mainly because 

the proportion of high-speed observations in the validation dataset of a higher 

missing rate scenario increases. Since these high-speed observations are similar 

to the mean of the RTMS data used in this study, the overall imputation error 

decreases as the size of missing block increases, consequently. 
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Conclusion 

 

Most of the traffic flow data imputation studies in the past have focused on 

investigating imputation techniques with a single data source. However, by 

increasing the number of data collecting sensors and other technologies over the 

last decade there are abundant alternative data sources that can be used to 

complement each other, suggesting the potential to use multi-source data to 

enhance imputation for missing traffic flow data. To this end, this study proposed 

a spatiotemporal cokriging approach to impute high resolution traffic speed data 

by using two complementary data sources, RTMS and HERE speed data. Two 

cokriging methods, ordinary and simple, were used and evaluated by comparing 

them with the spatiotemporal ordinary kriging method. The radar detector data 

(RTMS) and probe vehicle data (HERE) were used for the cokriging-based 

imputation approaches as primary and secondary variables, respectively.  

Three different missing patterns in the spatiotemporal domain with varying 

missing rates were tested to evaluate the prediction performances of the 

cokriging methods. Generally, all kriging methods provide reliable and consistent 

results over various missing rate under the MCAR patterns (random in time and 

location) with very small, negligible errors. Because sufficient highly correlated 

neighboring data points exist for each missing value in the spatiotemporal 

context, the prediction performance is hardly influenced by missing rates. Among 

the three methods, ordinary kriging outperforms the others. For MAR patterns 

(random only in location), the difference in the performances of all methods is not 

prominent. For this reason, using only a primary data source for MCAR and MAR 

patterns can be more cost-effective than using multiple data sources. Meanwhile, 

one possibility of improving the prediction performance of cokriging is to consider 

secondary data sources if they are highly correlated with the primary data. In this 

study, each HERE data link covers multiple RTMS stations, implying the lower 

resolution of the secondary variable and relatively weak correlation between two 
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data sources. This may cause the cokriging methods to have the test errors. 

Nevertheless, it was underlined that using secondary data sources with the 

simple cokriging can improve prediction results when the missing pattern follows 

MNAR (not random in time and location). Traffic flow data collected from 

detectors on roads usually have missing values for a variety of reasons. 

Considering the fact that traffic detector data may be missing because of system 

malfunctions, no power supply, and maintenance, the patterns are likely to be 

MAR or MNAR and using spatiotemporal cokriging with multiple data sources 

can be beneficial for imputation.  
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CHAPTER II 
SHORT-TERM TRAFFIC SPEED PREDICTION FOR A LARGE-

SCALE ROAD NETWORK 
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This chapter presents a modified version of a research paper by Bumjoon Bae, 

and Lee D. Han.  

 

Abstract 

 

Short-term traffic prediction has been an essential part of real-time applications in 

modern transportation systems for the last few decades. Despite the recent 

progress in the voluminous models and data sources, many existing studies have 

focused on prediction for either a single or a few locations. In addition, the spatio-

temporal dependency in the traffic data was narrowly accounted for. Therefore, 

this paper proposes a new short-term traffic speed prediction algorithm that can 

efficiently cope with the complexity and immensity of the prediction process 

derived from the network size and amount of data in order to provide accurate 

predictions in real time. This algorithm consists of two modules: (a) principal 

component analysis (PCA) for data dimensionality reduction and feature 

selection, and (b) multichannel singular spectral analysis (MSSA) for multivariate 

time-series data prediction. A large amount of traffic data is efficiently 

compressed by PCA with high accuracy, then used as an input in the 

nonparametric multivariate time-series analysis. The algorithm was compared 

with a vector autoregressive (VAR) model to predict traffic speeds five minutes 

ahead for a 21.3 mile-long highway segment, using the traffic detector data, and 

for 451 mile-long segment, using probe-based speed data in Tennessee. The 

proposed algorithm is found to provide accurate predictions with a computation 

time of less than one second without training. Furthermore, the proposed 

algorithm shows a better prediction performance under congested flow 

conditions, compared to VAR. This indicates that the proposed algorithm is 

suitable for real-time prediction and scalable for a large network analysis. 
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Introduction 

 

Traffic speed is one of the fundamental variables that characterize traffic flow. It 

is not only a traffic performance measurement of roadway systems, but also an 

input for estimating other measurements such as travel time, vehicle emission, 

traffic noise, and so on [33]. Hence, traffic speed prediction is a core function 

required in modern traffic management and operation systems. In the last few 

decades, various short-term traffic speed prediction models and algorithms have 

been developed for real-time intelligent transportation systems (ITS) applications.  

Although there is no absolute definition of how long the ‘short-term’ is, the 

prediction time step varies from one second to five minutes in the literature [34-

42]. And the prediction horizon has been set as the range from one minute to two 

hours in advance through multi-step runs [43].  According to a recent 

comprehensive review on short-term traffic forecasting by Vlahogianni, Karlaftis 

[43], the majority of the previous studies used univariate models with traffic 

detector data at a single location on a highway. Statistical time-series models 

and neural network (NN) type models present a noticeable frequency of use. The 

time-series models include vector autoregressive (VAR) models for multivariate 

prediction [38, 39], spatial temporal autoregressive moving average (STARMA) 

for considering spatiotemporal correlation [41], generalized autoregressive 

conditional heteroscedasticity (GARCH) for capturing unexpected speed dynamic 

shifts [40], and adaptive Lasso regression for improving prediction performance 

by minimizing error variance [44], and so on. On the other hand, a variety of NN 

based models has also been proposed for speed prediction. These models are 

known to provide a more accurate prediction for nonlinear traffic flow compared 

to the classical statistics models [45-47]. Further, these models have been tested 

with Kalman filters or wavelet transformation technique primarily for denoising 

traffic data [37, 48, 49]. 
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In the literature, the mean absolute prediction error (MAPE) of existing 

studies ranges from 2.5% to 15.0% for five-minute predictions [34, 35, 37, 38, 41, 

44, 45, 49]. Although the effects of variability in the time step on prediction 

performance has not been addressed sufficiently, the prediction error shows 

generally a linear association with the length of a prediction time step or the 

number of time steps increase [34, 35, 41, 44, 50]. A few studies compared the 

prediction performances of congested and non-congested traffic flow conditions. 

They showed that the prediction errors of congested conditions are 

approximately three times higher than those of non-congested conditions [38, 

40]. The speed threshold to define congestion varies over the studies, ranging 

from 30 miles per hour (mph) to 40 mph. 

Despite the extensive studies on short-term traffic speed prediction, few 

have attempted to address the following limitations. The existing studies applied 

five minutes as a prediction time step without considering its effects. This is 

mainly because five minutes had been used most frequently in literature and the 

available data resolution was five minutes. Furthermore, there was insufficient 

information in the literature on computation time evaluation as real-time 

applications, which is helpful for other researchers and practitioners. In addition, 

many of the previous studies have been done on the short-term prediction for a 

single or several locations, in which a spatio-temporal dependency of traffic data 

was not sufficiently considered.  

This paper proposes a new short-term traffic speed prediction algorithm 

for a large-scale road network. To support real-time and proactive traffic 

operations, the proposed algorithm aims to predict the future traffic flow 

conditions accurately and quickly without training a model. It is a nonparametric 

and data-adaptive algorithm that can handle a large-scale spatiotemporal speed 

data within a short amount of time. 

The remainder of this chapter is in this manner. The next section details 

the methodologies used in the proposed algorithm. Then, the data sources and 
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different aspects of testing performance are described. Next, the prediction 

performance of the proposed algorithm is compared with that of vector 

autoregressive (VAR) model that has been successful in the past 10 years [38, 

39, 43]. Finally, a discussion on the results and conclusion are drawn. 

 

Methodology 

 

The proposed algorithm consists of principal component analysis (PCA) and 

multichannel singular spectrum analysis (MSSA) (see Figure 2-1). First, PCA is 

used to extract features and reduce dimensions of the data. Then, MSSA is used 

for multivariate time-series prediction using the principal components from PCA. 

This approach has achieved satisfactory performance in medical image 

processing studies [51, 52]. 

Unlike the statistical prediction models such as autoregressive integrated 

moving average (ARIMA), MSSA, a multivariate extension of singular spectrum 

analysis (SSA) is a nonparametric, data-adaptive time-series analysis method 

that does not require any assumptions, such as stationarity of the data, linearity 

of the model, or normality of the residuals [53, 54]. These features make MSSA 

useful [53, 55-57]. Hence, SSA and MSSA have been widely applied recently in 

many disciplines such as economics, medical image processing, climatology 

research, etc. [51, 58, 59]. More theoretical and mathematical details of SSA can 

be found in [57] and [60]. Furthermore, using the principal components (PC) as 

an input of MSSA allows the prediction to be made based on spatio-temporal 

dependencies in the data. According to Asif, Kannan [61], PCA consistently 

provides high reconstruction accuracy over different compression rates for 

spatiotemporal traffic data. 
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Figure 2-1 Proposed speed prediction algorithm. 
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Principal Component Analysis (PCA) for Data Dimension Reduction and 
Feature Extraction  

Principal component analysis (PCA) is a widely used multivariate statistical 

procedure used for data dimension reduction and feature extraction [62]. It is an 

orthogonal transformation method that projects the original data onto the spaces 

of linearly uncorrelated variables where the variance is maximized based on 

eigenvalues and eigenvectors. Therefore, the principal components (PC), the 

transformed data can be used as an input for a variety of post analyses. 

The speed observation , , , with  representing 

location and  representing time, gives the multivariate time-series data as 

The covariance matrix is calculated as 

where, , which is the vector difference between the observations at 

time  and the mean of , . Since , the dimension of the 

covariance matrix  is .  

As the road network size to be analyzed is increased, especially when 

, calculating  and its eigenvectors becomes more intractable. In order to 

near-real-time analysis, Turk and Pentland [63] proposed to use  instead of 

, which reduces the dimension from  to .  This approach is 

very common in image processing analysis where the input data at each time 

step is usually a 2-dimentional image. For example, if the input data size is 

, the size of time-series data,  is , so  gives  
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covariance matrix. More details about the relationship of  with  is 

provided in Equation (11) through Equation (14).  

The eigenvector  is defined as  

where,  is the eigenvalue of  denoted by . If  is multiplied in 

both sides of Equation (11), 

and using Equation (10) and Equation (12),  

Then, Equation (13) can be expressed as  

Therefore,  and  have the same eigenvalues and their eigenvectors 

have the relationship as . 

Finally, the orthogonally transformed data,  is computed by using the 

 eigenvectors,  as follows. 

The resultant  matrix,  from Equation (15) is used as an input data for the 

following MSSA procedure. 

Multichannel Singular Spectrum Analysis (MSSA) for speed prediction 

The first step of MSSA is called embedding, which means mapping each 

univariate time series into multivariate series using subsets of the univariate time 

series. This procedure is similar to a time series analysis based on moving 
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average calculation [56]. For example, using the kth column of , 

, the resultant matrix of embedding, called trajectory matrix, is 

defined as  

where, M is the embedding dimension (also called window length) which is an 

arbitrary integer that  Alessio [55] provides a “reasonable” range of  

that is greater than the number of data points in which one oscillation to be 

detected and less than . However, it is better to choose the value of M based 

on the comparison of the results from different values of M. Therefore, a 

sensitivity analysis was conducted in the case study to investigate the effects of 

choosing the values of p and M in the next chapter.  

  is the centered matrix of  based on each row mean, the trajectory 

matrix of MSSA is made as 

where K is the number of selected PCs corresponding to the Kth largest 

eigenvalues in Equation (14) ( ).  is a  matrix and 

. What to be estimated is the next column of . This is defined as 
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In this study the number of PCs from Equation (15) are selected to explain over 

99.7% of the total variance in order to minimize losing information of the original 

data, X. In MSSA, the row length of matrix  gets longer as the road network size 

increases, compare to SSA. Then, the dimension becomes much larger after 

being squared in the following step. Figure 2-2 shows the percentage of data 

dimension reduction by using PCA for MSSA. Compare to the case of using 

MSSA without PCA, for example, the data dimension in MSSA is reduced by 

approximately 90% by PCA if the original data dimension of  is 

. A different number of PCs can be selected by employing information 

criteria, such as AIC, ICOMP, etc. 

 

 

Figure 2-2 Data dimension rate of MSSA by using PCA. 

 

The next step of MSSA is a singular value decomposition (SVD) of the 

squared trajectory matrix, . The elements of the lagged-covariance 

matrix  reflect the linear correlation between the all pair of patterns in the 
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embedding window. Thus, the recurring patterns in the time series result in a 

relatively high covariance in  [57]. Through SVD,  is decomposed into 

orthogonal eigenvectors as follows.  

where,  is the eigenvectors of  which are the singular vectors of , and  is 

a diagonal matrix that consists of ordered values, equal or greater than zero, 

whose square roots are the singular values of . Then, the L largest 

eigenvalues from  and corresponding eigenvectors from  are selected for 

prediction as Equation (20). In this study L=p is applied which is large enough to 

contain the most significant eigenvectors. Through this step, the recurring 

patterns in the time series can be separate and the noise in the data can be 

removed [56].  

Using the selected  eigenvector matrix the estimation of Z is 

given as the least-squares problem as follows [51, 52, 60]. 

This implies that the evolution of the next vector in the trajectory matrix follows 

the same law of the other adjacent vectors [64]. 

Then, Z can be decomposed as, 

where . The  and  restriction 

matrices, R and Q are defined as follows. 
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By decomposing Equation (21) with Equation (22), the future component of the 

time series data can be obtained as Equation (24) [51, 52] 

where, I is a  identity matrix.  

Finally, the predicted speed is calculated by re-centering the values of P 

and multiplying them with the eigenvectors from Equation (14). 

 

Case Study 

Data description 

The proposed prediction algorithm was applied to speed data for Interstate 40 (I-

40) in Tennessee from two data sources: (a) traffic detector data, named Remote 

Traffic Microwave Sensors (RTMS), which is collected every 30 seconds from 

over 1,000 traffic detector stations on interstate highways in Tennessee, and (b) 

probe-based link speed data, named National Performance Management 

Research Data Set (NPMRDS). For RTMS, the detector stations are located only 

in major urban areas of the state. Therefore, 41 stations in the 21.3 mile-long 

westbound I-40 segment were selected, which is a major corridor in Knoxville, 

Tennessee. The stations are on average 0.5 miles from each other. Traffic 

speeds for the intermediate locations in 0.1-mile increments between two 
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consecutive stations were interpolated using the adaptive smoothing method [65] 

in order to augment the spatial resolution of the data by 213.  

The speed data from September 23 and September 30 in 2016, both of 

which were Fridays, were collected from the detectors and averaged in five 

minutes, i.e., the data dimension is  for each day. Both days were 

selected based on the fact that there was no incident in the first day while there 

was a severe incident on the second day. The incident was verified by the traffic 

incident data log from the local transportation management center (TMC). Since 

prediction of unexpected events, such as crashes, adverse weather conditions, 

etc., in the spatiotemporal domain is highly intractable, it is worth testing how 

quickly the speed prediction algorithm can adapt or how sensitive it is to sudden 

changes in traffic conditions. 

In order to evaluate the proposed algorithm performance for a longer road 

segment, i.e., larger data dimension, the NPMRDS data were used. For 

NPMRDS, the spatial coverage is the entire interstate highway systems in the 

state. In this study, the five-minute average speeds of NPMRDS for the 298 road 

links of a 451-mile-long I-40 westbound segment on February 3rd, 2017 were 

collected. Please note that five minutes are the highest resolution for the 

available NPMRDS dataset, i.e., the data dimension is . Figure 2-3 

shows examples of the data visualizations. 

Performance measures 

To evaluate the prediction performance of the proposed algorithm, three error 

measures were used, which are the mean absolute error (MAE) and mean 

absolute percentage error (MAPE). They are defined as follows. 
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(a) 

 

(b) 

 

(c) 

 
 

Figure 2-3 Speed data visualizations: (a) RTMS – September 23, 2016; (b) 
RTMS – September 30, 2016; and (c) NPMRDS – February 3, 2017. 
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where,  is the observed traffic speed and  it the predicted traffic speed. 

Data resolution selection 

To choose an optimal prediction interval is an important issue which depends on 

the type of ITS applications, algorithms and data sources [43]. In order to 

investigate the effect of the data resolution on the short-term traffic speed 

prediction, a sensitivity analysis framework was applied. The need for a 

sensitivity analysis is mainly due to the nonparametric characteristic of PCA-

MSSA, i.e., it does not allow to test statistical significance of parameter 

estimates. Four datasets of the 24-hour traffic speeds from RTMS were 

generated by different aggregation levels: 0.5-, 1-, 2.5-, and 5-minute and used in 

a preliminary analysis. To make predictions for the target time in the future, the 

iterative predictions are made, i.e., the predicted values are added to the initial 

data for the next prediction. Table 2-1 shows the average prediction performance 

for 5-minute prediction. Each prediction was made using the past thirty data 

points. To predict the next five-minute traffic speed, for example, the prediction 

process is implemented ten times iteratively using the 30-second dataset. As the 

number of prediction steps increases, the prediction error increases. This is 

because the error in the current prediction is transferred to the next prediction 

step. Therefore, five minutes gave the lowest errors for the five-minute prediction. 

The following analyses were made using the data aggregated in five minutes. 

Input Data Dimension and Window Length Selection 

The effects of choosing different data length  and window length  were 

investigated in a sensitivity analysis. Here the range of 0.5-6 hours for both  

and  was considered using the 5-minute RTMS data of September 23 and  
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Table 2-1 Temporal scale effects on 5-minute prediction performance using 
RTMS. 

MOEs Data resolution (Number of prediction steps) 

0.5 min (10) 1 min (5) 2.5 min (2) 5 min (1) 

MAE (mph) 3.40 3.31 3.12 3.03 

MAPE (%) 9.67 9.16 8.23 7.94 
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September 30 in 2016 and NPMRDS data on February 3, 2017. In order to 

choose proper values of  and , MAPE and computation time for one-step 

prediction were compared as shown in Figure 2-4 and Figure 2-5. Please note 

that the vertical axis of Figure 2-4(a) and Figure 2-5(a) represent 1/MAPE for 

better recognition of the best result. Figure 2-4(a) shows that there is a gradual 

increase in MAPE with increase of both of  and  in the range of 1-5.5 hours. 

The computation time in Figure 2-4(b) also shows the same pattern; however, it 

increases much more rapidly as  and  get closer to six hours. Similar patterns 

were observed in Figure 2-5. Based on these sensitivity results,  (1.5 

hours) and  (1 hours) for RTMS – September 23, 2016,  (2 hours) 

and  (1.5 hours) for RTMS – September 30, 2016, and  (3 hours) 

and  (1.5 hours) for NPMRDS were applied. 

Prediction Performance 

Parametric versus Nonparametric Methods 

To evaluate the proposed algorithm, the speed prediction results for the next five 

minutes were compared to those of a parametric model, VAR(k). In this study, 

the order of the model k was determined to be within the range of 1-8 (i.e., 

) based on the goodness of fit of the model using Akaike’s information 

criterion (AIC) [66]. The 24-hour historical speed data were used for each 

prediction target time point to train the VAR(k) model. The RTMS dataset was 

used to make 288 predictions for September 23 and 30, 2016. In order to 

compare the computation time, both methods were implemented on the same 

platform with Intel® Core™ i7 processor (3.60GHz) with 8GB memory. 

In this study, restricted VAR models were used. Unrestricted VAR models 

using a full covariance matrix for parameter estimation is not suitable for real- 

time data analysis on a large-scale network for these reasons: First, the model 

estimation time is too long because a large number of parameters will be 

estimated. For example, an unrestricted VAR(1) model with n = 213 has 68,373  
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                              (a)                                                              (b) 

Figure 2-4 RTMS with different temporal dimension and window length 
(September 30, 2016): (a) MAPE and (b) computation time. 

 

 
                              (a)                                                              (b) 

Figure 2-5 NPMRDS with different temporal dimension and window length: 
(a) MAPE and (b) computation time. 

 

  



49 

 

 ( , where the number of the autoregressive matrix, 

) parameters to be estimated, while a restricted model has only 639 (

). Therefore, estimating an unrestricted VAR model takes too long when either 

the network n or the autoregressive lag k is large. Second, the residual process 

of the unrestricted model is likely to have a non-positive definite covariance 

matrix which makes parameter estimation impossible. 

In order to investigate the effect of applying PCA in the proposed 

algorithm, MSSA without PCA, referred to hereafter as MSSA, was also tested. 

In addition, based on the fact that it is more likely to use a pre-trained parametric 

model in practice, the VAR(k) model was separated into two types: (a) a model 

whose parameter estimates are updated for each prediction, denoted as On-

VAR(k); and (b) a model whose parameter values are fixed once the model is 

trained priorly, denoted as Off-VAR(k). Please note that the model order k of On-

VAR(k) is not updated for each prediction step; otherwise, training a model takes 

an excessive amount of time, making short-term prediction harder to achieve. 

Therefore, the same order k of Off-VAR(k) was applied to On-VAR(k). For the 

same reason, the On-VAR(k) model was trained using five-hour historical data 

for each prediction target time.  

Table 2-2 summarizes the 5-minute prediction performances of these four 

methods. For Scenario 1 non-incident condition, Off-VAR(7) outperforms the 

others. In this scenario, traffic flow is very stable in terms of speed except for the 

congestion around milepost 386 during afternoon peak hours. For such cases, 

the speed data hold high stationarity and the parametric model fits the data well. 

The error level of PCA-MSSA is slightly higher than both VAR models and 

MSSA. In comparison with Off-VAR(7), as depicted in Figure 2-6(a), the level of 

error of PCA-MSSA is slightly higher than that of Off-VAR(7) across the overall 

error range. This may result from the information loss of data in the dimension 

reduction procedure or the misspecified length of the input data and embedding 

window.   
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Table 2-2 Comparison of 5-minute prediction performance for RTMS. 

  PCA-MSSA MSSA On-VAR(k) Off-VAR(k) 

Scenario 1 

(No 

incident) 

Model selection  

 

 

 

  

MAE (mph) 2.31 2.26 2.19 1.96 

MAPE (%) 4.98 4.90 4.76 4.26 

Scenario 2  

(Incident) 

Model selection  

 

 

 

  

MAE (mph) 2.46 2.39 2.52 2.41 

MAPE (%) 6.56 6.40 7.02 7.26 

Average Computation time (sec) 0.05 6.78 114.20 0.22 

 

 

Figure 2-6 Prediction performance of PCA-MSSA and VAR. 
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Despite the different prediction performance in Scenario 1, traffic 

prediction for a free-flow condition is not challenging. In other words, prediction of 

traffic conditions during the transitions to and from congested flow over time and 

space should be paid attention more. The traffic condition in Scenario 2 shows 

such instability in the speed data caused by a severe incident. As shown in Table 

2-2, MSSA and PCA-MSSA outperform both VAR models. The MAPE of 6.40% 

from MSSA is slightly better than 6.56% from PCA-MSSA. Since the same 

dimension of input data was employed, it is probable that the different 

performance was caused by PCA. Contrary to the result in Scenario 1, On-VAR 

outperformed Off-VAR in Scenario 2 in terms of MAPE. On-VAR model predicts 

the congested flow better than Off-VAR by updating parameter estimates for 

each prediction. In order to evaluate the performance of PCA-MSSA for 

congested traffic flow, its prediction error range is compared with that of On-VAR 

in Figure 2-6(b). Although the cumulative probability error curves of both methods 

are very similar, they intersect at around 25%. This indicates that the average 

error level of PCA-MSSA is relatively lower for low speed conditions, compared 

to On-VAR.  

Figure 2-7 shows the predicted speed profiles of four methods at selected 

locations. The Figure 2-7(a) location is in a weaving section where two major 

interstate highways are merged. Recurrent afternoon congestion was intensified 

due to an incident that occurred downstream around 3:00 to 4:00 PM. All the 

predicted profiles, except for Off-VAR, show similar patterns and follow the 

observed speed fluctuation. However, On-VAR tends to produce overfitted 

results when the traffic state changes from free-flow to congestion in the morning 

peak hours. The same pattern of On-VAR is also present in Figure 2-7(b). The 

average performance measurement in space is shown in Figure 2-8. Both PCA-

MSSA and MSSA outperform the VAR models during the congested time period. 

With the emergence of congested traffic flow, all the error measures are 

increased. However, both MSSA algorithms quickly adapt to the changes of flow 
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(a) 

 
(b) 

Figure 2-7 Predicted speed profiles: (a) location index 108 and (b) location 
index 195. 

 

 

Figure 2-8 Prediction errors during an incident event.  
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states so that their error measures are decreased. Although the error of On-VAR 

also decreases as the model adapts to the congested state, the error level is high 

when the traffic state transition begins.  

Numerical accuracy of the prediction is obviously important in the model 

comparison. However, comparing different models based solely on the accuracy 

may be not fair, since other factors such as computation time, required data size, 

the level of expertise, etc., are important as well [43, 67]. This is true because the 

purpose of the proposed method focuses on the near-real-time traffic speed 

prediction for a large road network. Therefore, the computation time to make a 

one-step prediction with the four methods was compared. The computation time 

of PCA-MSSA was considerably shorter than those of MSSA and On-VAR 

model. PCA-MSSA took only 0.05 seconds to predict traffic speed 5 minutes 

ahead for the 213 different locations; the MSSA algorithm without PCA took 6.78 

seconds on average. Although Off-VAR also processed the data quickly, i.e., 

0.22 seconds on average, the 0.5-hour training time is not accounted for. In 

practice, however, the model training time should be considered because 

periodical updates of parameter values may be needed to retain or enhance the  

current performance. Combined with the comparison result of prediction 

accuracy in Scenario 2, the computation efficiency of PCA- MSSA shows that the 

proposed algorithm is more suitable than the others to predict traffic speed for a 

large-scale network in real time. Because of the data dimensionality reduction 

feature, the proposed method is scalable for a larger road network analysis. 

 

Multi-Step Speed Prediction 

The prediction error is accumulated as the number of prediction steps increases. 

In order to test the prediction performance of PCA-MSSA for the future in longer 

than five minutes, predictions were made for up to 30 minutes ahead and 

compared with Off-VAR. Table 2-3 summarizes the multi-step speed prediction 

results. Over the multiple prediction steps, the average error of PCA-MSSA  
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Table 2-3 Prediction performance for multi-step predictions. 

  MOEs 5 min 

ahead 

10 min 

ahead 

15 min 

ahead 

20 min 

ahead 

25 min 

ahead 

30 min 

ahead 

Prediction steps 1 2 3 4 5 6 

Scenario 

1  

(No 

incident) 

PCA-

MSSA 

MAE (mph) 2.31 2.57 2.75 2.89 3.01 3.11 

MAPE (%) 4.98 5.57 6.01 6.35 6.64 6.88 

Off-

VAR(7) 

MAE (mph) 1.96 2.22 2.41 2.55 2.67 2.78 

MAPE (%) 4.26 4.81 5.22 5.55 5.85 6.11 

Scenario 

2  

(Incident) 

PCA-

MSSA 

MAE (mph) 2.46 2.86 3.14 3.37 3.57 3.75 

MAPE (%) 6.56 7.86 8.85 9.66 10.38 11.04 

Off-

VAR(8) 

MAE (mph) 2.41 2.87 3.24 3.55 3.84 4.10 

MAPE (%) 7.26 9.13 10.76 12.24 13.58 14.81 
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showed a moderate increase from 4.98% to 6.88% in Scenario 1. In contrast, the 

more rapid increase of error from 6.56% to 11.04% was observed in Scenario 2. 

As a reference, the prediction performance measures of Off-VAR are provided 

together. As the comparison result for the single-step prediction, the errors of Off-

VAR are slightly lower than those of PCA-MSSA in multi-step prediction, while 

the opposite comparison results present in Scenario 2.  

It is difficult to directly compare the prediction performance of the 

proposed algorithm with the results reported in the literature due to different data 

sources, times, and locations with different study designs. Despite this reason, 

such comparison may help researchers gain a general sense of the current state 

in speed prediction studies. The error level of the proposed algorithm is slightly 

lower or comparable to that of NN-based and parametric time-series models in 

the literature [34, 37, 40, 44, 50].  

 

Algorithm Scalability Investigation 

To test the scalability of the PCA-MSSA algorithm for speed prediction, 

NPMRDS data were used in this study. The obtained data covers the entire 

westbound I-40 segment in Tennessee. The data dimension is  i.e., 

one day of 5-minute speeds from 298 road links. The majority of the speeds in 

the dataset represent the free-flow condition except for those of major urban 

areas during peak hours. Therefore, the computation time is the major interest in 

this comparison, although the error measures are also presented in Table 2-4. 

The comparison result of the computation time is very similar to that in the RTMS 

case, despite the NPMRDS data dimension being almost 40% larger than the 

RTMS dataset. PCA-MSSA took 0.36 seconds for one-step prediction, while 

MSSA took 7.24 seconds. The computation time of Off-VAR is smallest in the 

comparison. However, the model estimation time of 2.5 hours is not reflected in 

the result. 
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Table 2-4 Comparison of 5-minute prediction performance for NPMRDS. 

 PCA-MSSA MSSA On-VAR(k) Off-VAR(k) 

Model selection  

 

 

 

  

MAE (mph) 2.29 2.39 2.24 2.26 

MAPE (%) 4.32 4.53 4.16 4.54 

Average 

Computation time 

(sec) 

0.36 7.24 80.34 0.49 
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Conclusion 

 

Previous short-term traffic prediction studies have investigated a vast number of 

models and algorithms in the last two decades. Nevertheless, there is still room 

to progress prediction performance by employing data-driven multivariate models 

and corresponding large datasets for real-time traffic controls and operations. 

This paper proposed a short-term traffic speed prediction algorithm to cope 

efficiently with the complexity and immensity of the prediction process derived 

from the network size and amount of data. The proposed algorithm, named PCA-

MSSA, consists of two techniques: (a) principal component analysis (PCA) for 

data dimensionality reduction and (b) multichannel singular spectral analysis 

(MSSA) for multivariate time-series data prediction.  

The prediction performance of PCA-MSSA was compared to the 

parametric time-series model, vector autoregressive (VAR). For the incident 

scenario, PCA-MSSA outperformed VAR and it provided speed predictions in 

near-real-time. Although the pre-trained VAR model showed slightly lower 

prediction errors on average for the non-incident scenario, PCA-MSSA still 

predicted the speed with comparable accuracy levels. This is mainly because 

PCA-MSSA uses the compressed spatiotemporal traffic data as an input and it is 

a nonparametric data-adaptive method. In contrast, VAR is a more complex 

model that requires more data, and it estimates a tremendous number of 

parameters for a large-scale network analysis. This result shows that PCA-MSSA 

is suitable for real-time traffic speed prediction and scalable for a large network 

analysis. To identify the effect of PCA in the proposed algorithm, the results were 

compared to the case of MSSA without PCA. Interestingly, a trade-off between 

the accuracy and computation time was reported. Using PCA can reduce 

computation time significantly with a relatively small compromise in prediction 

accuracy. 



58 

 

Further research should be directed at the following challenges: (a) 

improving the prediction accuracy of the proposed algorithm during non-recurring 

events through cooperation with automatic incident detection algorithms and 

more advanced PCA methods; (b) adding a self-learning process after the 

predicted values are validated; (c) developing a dynamic optimization process to 

select the length of historical data and embedding window length of the algorithm 

over time; and (d) predicting travel time based on the predicted speed and 

conducting comparative evaluations. 
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CHAPTER III 
SPATIO-TEMPORAL TRAFFIC QUEUE DETECTION FOR 

HIGHWAYS 
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Abstract 

 

When traffic demand exceeds capacity because of demand fluctuations, crashes, 

work zones, and special events, a traffic queue is formed on a highway. Traffic 

queues cause potentially hazardous situations at the end of the queue where 

drivers unexpectedly face slowed or stopped traffic while approaching at high 

speed. Therefore, detecting and predicting a queue is vital for protecting it. This 

study presents a real-time spatio-temporal traffic queue detection algorithm that 

builds on traffic flow fundamentals combined with a statistical pattern recognition 

procedure. Using flow-density data, traffic flow phase is classified as either 

congested or uncongested flow in a probabilistic manner, based on Gaussian 

mixture models for each location in such a way that detects the traffic phase 

transitions. Next, empirical shock wave speeds of the detected queue between 

downstream and upstream locations are calculated in a time-space domain, 

which will predict the queue arrival time at the next upstream detecting location. 

The proposed detection algorithm was applied to detect traffic queues using 

traffic detector data from Interstate 40 in Knoxville, Tennessee. The detection 

results show that the algorithm detects queues successfully by accounting for 

varying queueing conditions and different queue types. 

 

Introduction 

 

Monitoring and predicting the evolution of traffic queues in a spatio-temporal 

domain are the most necessary tasks to prevent primary and secondary crashes 

on highways. A physical shock wave is generated at the end of a queue when a 

traffic flow changes from one condition to another, e.g., from uncongested flow to 

congested flow. Then the shockwave propagates either upstream or downstream 

at a different speed, depending on the differences in traffic conditions (i.e., 
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densities and flow rates) between the upstream and downstream of the end of a 

queue. In the case of upstream propagation, the upstream vehicles approaching 

at high speed may encounter the shockwave without enough response time, 

increasing the probability of a traffic crash. Therefore, if an advisory message is 

transmitted to the upstream vehicles based on the predicted information of queue 

propagation, the shockwave can be absorbed and weakened, thereby stabilizing 

traffic flow. 

The term “queue” has been defined in various ways in literature. Highway 

Capacity Manual 2010 [68] defines a queue as “a line of vehicles waiting to be 

served” in a system and a queued state as “a condition when a vehicle has 

slowed to less than 5 mph”. Stephanopoulos, Michalopoulos [69] defines queue 

length for an intersection as “the length of the roadway section behind the stop 

line where traffic conditions range from the capacity to jammed density” in a flow-

density diagram. In spite of the different and insufficient queue definitions for 

freeway facilities in the literature, a common condition is that a queue is formed 

when the system demand exceeds its capacity [33]. It is difficult to measure the 

traffic demand directly from traffic flow data when the flow is at or near capacity 

at a bottleneck. However, One can infer the presence of the excessive demand if 

high densities and low speeds are observed upstream of the bottleneck [33]. In 

traffic flow theory, a breakdown is the transition from uncongested to congested 

flow and observed as a speed drop occurring with queue formation [68]. 

Therefore, the spatio-temporal evolution of a queue can be identified by detecting 

the phase transitions based on the data patterns of the fundamental traffic 

variables at multiple locations in real time. 

This study proposes a short-term traffic queue detection and prediction 

algorithm that is adaptive to local traffic conditions for detecting phase transitions, 

i.e., transition from uncongested to congested flow and vice versa, and trace the 

propagation of congestion in real-time. In order to detect the transition, a 

Gaussian mixture model (GMM) based classification algorithm was developed to 
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fit the data distributions of the congested and uncongested flows of each traffic 

detector station on a highway. GMM is a probability density estimation method 

that uses a mixture of multivariate Gaussian distributions to fit a distribution of 

given data. The advantage of mixture models including GMM is that analysts can 

control the number of components, i.e., control the trade-off between the 

computational efficiency of parametric methods and model fitting flexibility of non-

parametric methods. For parameter estimation of GMM, the expectation 

maximization (EM) algorithm is used [70].  

The next section presents a literature review on traffic queue detection 

and describes the data used in this study. The following section explains the 

proposed algorithm and related methodologies. The last two sections present the 

result of a case study that applied the queue detection algorithm using the 

detector data; conclusions comprise the final section. 

 

Literature Review 

 

Previous studies on traffic queues have focused on estimating queue length for 

interrupted flow facilities such as signalized intersections. Since it is important to 

manage queue lengths for intersections, queue lengths are used to measure 

traffic signal performance and optimize signal timing plans. Many queue-related 

studies for uninterrupted facilities, meanwhile, have focused on estimating queue 

delay and queue length for a work zone. For the methodology aspect, the 

literature can be classified in two major categories: (a) cumulative traffic input-

output approach and (b) traffic shock-wave approach. 

Input-Output Approach 

Queue length is a function of traffic demand and capacity. The initial model, 

proposed by Webster [71], calculated the time of the queue dissipation and 

effective queue size by input-output analysis. After the start-up lost time from the 
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onset of a green signal, the queued vehicles are discharged at saturation flow, 

and after the onset of a red signal, another queue forms based on an assumed 

arrival rate. Since the effective queue size is defined as the number of vehicles in 

the queue waiting for service at an instant in jam density [72], a constant average 

density throughout cycles is assumed in the range between the jammed flow and 

capacity flow. However, it has been pointed out that density is time varying within 

a cycle and the assumption of constant average density can lead to 

miscalculation of the effective queue size [72]. Sharma, Bullock [73] evaluate two 

input-output models. One is a simple model in which only advance detector is 

used to track vehicle arrivals, and another model uses advance and stop bar 

detectors to utilize the headway information. The root mean squared error of both 

models was shown as less than 0.15 vehicle for average maximum queue length 

by evaluation with field data. These models cannot estimate queue lengths or 

produce inaccurate estimation results when queue rear exceeds beyond the 

detector because arriving vehicles cannot be detected [74]. 

Deterministic queueing analysis has been used to estimate queueing 

delay and queue lengths, in which vehicle arrival and service distributions are 

specified as deterministic distributions. Cassidy and Han [75] proposed vehicle 

delay and queue length estimation methods for two-lane highways. Deterministic 

queueing theory was applied to compute queue lengths. Jiang and Adeli [76] 

proposed a queue delay and queue length estimation algorithm for freeway work 

zones. The estimation is made based on the estimated work zone capacity. The 

queue length is estimated by a deterministic macroscopic queueing model. 

Shock Wave Approach 

Lighthill and Whitham [77] and Richards [78] explained traffic flow phenomena on 

the basis of shock wave theory, using a theoretical fundamental diagram called 

LWR theory. In their model, the flow rate is assumed as a function of the vehicle 

density [77]. Although the shock wave theory is derived from the conservation 
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law of vehicle counts, which accounts for traffic flows going into and out from a 

roadway segment, the queue length estimation models in this type use the shock 

wave speed directly. Geroliminis and Skabardonis [79] proposed an analytical 

models for predicting platoon arrival profiles and queue length along signalized 

arterials. They employed a Markov decision process to model traffic dispersion 

behaviors between successive signal intersections, and then shock wave speeds 

based on the LWR theory were used to estimate queue lengths. The difference 

of predicted queue length between the model and simulated results was less 

than four vehicles. Liu, Wu [74] proposed a real-time queue length estimation 

method for congested signalized intersections using event-based signal and 

vehicle detection data. They applied LWR shockwave theory to identify break 

points where traffic flow states change at a loop detector location. Then, the 

maximum queue length can be estimated at the intersecting point of a discharge 

and departure shockwave speed. 

However, there is some criticism of the LWR theory. Kerner [80] claimed 

that the LWR theory cannot explain some empirical traffic flow phenomena 

including a probabilistic speed breakdown occurring spontaneously at a 

bottleneck due to an internal local disturbance in traffic flow (i.e., transition from 

free flow to synchronized flow). 

Location Based Data Approach 

During the last decade, new attempts to estimate queue lengths in real-time are 

using location information of probe vehicles in a queue. Comert and Cetin [81] 

proposed a conditional probability model to estimate the expected queue length 

and its variance. Based on the assumption that the marginal probability 

distribution of queue length is known and the vehicle arrivals follow Poisson 

distribution, they found that the location information of the last probe vehicle in a 

queue is sufficient for estimating queue length regardless of the market 

penetration of probe vehicles. However, the finding is limited since it is based on 
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a priori knowledge of the marginal distribution and derived for undersaturated 

conditions. Ban, Hao [82] estimated the maximum and minimum queue lengths 

by detecting critical pattern changes of intersection travel times or delays based 

on the GPS log information.  

Although these studies can also be classified as the shockwave approach, 

using the location information of individual vehicles can be distinguished from 

earlier studies where fixed location sensor data were used. 

Implications 

Even though the previous studies have mostly focused on the estimation of 

queue lengths for a signalized intersection with a single link, these estimation 

approaches can be employed for uninterrupted traffic flows. Traffic queues occur 

at signalized intersections, and they also occur because of traffic incidents and 

natural bottlenecks on freeways. If there are fixed, successive locational traffic 

sensors such as loop detectors in a study area, the input-output approach can be 

applied. A growing queue can be detected over time by using multiple detectors 

at the upstream locations. The shock wave theory can also be employed in the 

same sense. By capturing shock wave speeds for successive detector stations, 

the locations of the queue ends can be estimated collectively. If individual vehicle 

trajectory data are available in real time for a highway where the detectors are 

deployed, the estimation result can be improved or validated. 

The expected challenges for each approach are the following: 

 Input-Output: Since multiple highway links—a link here is defined as the 

roadway segment between two detector stations—should be considered 

for detecting a queue, calculating accurate inflow and outflow traffic 

volumes in a subject road segment would be difficult due to on- off-ramp 

flows and limitations on spatial coverage and temporal resolution of 

detector data, e.g., 30 seconds. 
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 Shock Wave: This method uses the relationship of traffic flow q and 

density k in traffic flow fundamentals. In general, the q-k relationship is 

estimated linearly as a concave line so that shockwave speed is 

calculated by selecting two single points on the line. This cannot reflect 

the variance or probabilistic phenomena in the q-k relationship, 

especially for a congested flow. In addition, unlike the signalized 

intersection case where one of both traffic states for a shockwave speed 

is the jam density, traffic incident or bottleneck may not be connected to 

a complete stop of the flow or complete blockage of all lanes. The error 

in a shock wave speed estimate may produce significantly inaccurate 

queue length. 

 Location-Based Information: This type of data is usually unavailable, 

particularly for a real-time traffic application. 

 

Methodology 

Proposed queue detection algorithm 

Using traffic detector data collected from each detector station, traffic flow phase 

is identified as either a congested or uncongested flow over time, based on the 

station’s unique flow-density pattern in the previous days. Then, congestion is 

detected in the flow-density domain by using the phase identification results 

collectively for multiple stations along a highway. Finally, by connecting the onset 

of congestion at each station, shock wave speeds are calculated and the queue 

arrival time at the next upstream station is predicted (Figure 3-1).  

Overall, the proposed queue detection algorithm consists of these steps: 

 Traffic flow phase identification: For each station, traffic flow phase is initially 

identified as one of the following classes: ‘uncongested,’ ‘transitional,’ and 

‘congested’ flow based on speed (see Figure 3-2(a)). In this study, 45 mph 

and 15 mph are determined to obtain the minimum samples for each flow  
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Figure 3-1 Proposed queue detection algorithm. 
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(a) 

 
(b) 

Figure 3-2  Phase identification: (a) three phases in a flow-density plot and 
(b) an example of estimated data distributions using GMM. 
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as thresholds for the initial phase identification (i.e., 0-15 mph: congested 

flow, 15-45 mph: transitional flow, 45+ mph: uncongested flow). The 

distributions of congested flow and uncongested flow are estimated in a 

flow-density diagram using GMMs as shown in Figure 3-2(b). Then, each 

new input data point is classified by comparing the likelihood of both phase 

classes. 

 Traffic congestion detection: The phase information identified for each 

station in the previous step is used collectively to detect congestion 

occurrence at multiple locations and times (see Figure 3-3(b)).  

 Shock wave speed calculation and queue arrival time prediction: In order to 

calculate shock wave speeds, the data points on the boundary of 

congestion in the time-space domain should be identified. For this, an even 

number of phase changes within a two minute time window is filtered out 

(see Figure 3-3(c)). Then, using the remaining boundary points where a 

traffic flow phase transition occurs, shockwave speed is calculated in real-

time. Then, the arrival time of a queue at the next station is predicted based 

on the shockwave speed.  

 Queue arrival time validation: The predicted queue arrival time at the next 

upstream station is validated by using an error measurement. 

Gaussian mixture model 

Let  denote a random sample with the size of n, where  is a p-

dimensional random vector with probability density function (pdf) of a Gaussian 

distribution, . For a univariate random variable , the pdf is 

where, , , and . 

For the p-dimensional normal density function is 
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(a) 

 

(b) 

 

(c) 

 

Figure 3-3 An example of congestion detection (I-40 EB on August 4th, 
2016): (a) speed heat map, (b) congestion detection without filtering, and 
(c) congestion detection with filtering. 
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where,  is a covariance matrix that is positive definite, i.e., . 

The probability density function of data can be represented as a Gaussian 

mixture distribution, which is a linear combination of K Gaussian distributions (or 

components) with the set of parameters ,   for each as 

follows. 

where,  is the Gaussian distribution with the ith parameter set 

 and  is the mixture weight of ith component which is 

nonnegative and sum to one, that is 

 

and  

 

The log likelihood for  is 

It is known that there is no closed form of the maximum likelihood 

estimation (MLE) for  of the Gaussian mixture distribution. Therefore, the 

Expectation Maximization (EM) algorithm is frequently used to get the parameter 

estimates in GMM where the MLE is computed iteratively [70].  

The EM algorithm consists of two steps, E for expectation and M for 

maximization.  
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E-step: Let  denote the complete data vector which consists of 

the observed data  and its posterior probability membership variable of the K 

components , where each  is an N-length vector .  

The complete-data log likelihood for  is 

where 

Then, the conditional expectation of the log likelihood of the complete data  

given the parameter estimate on (t)th iteration can be written as 

M-step: The parameter set of the (t+1)th iteration is determined based on 

the estimated . The mixture weights would be given simply as 

 that maximizes  can be found from  and the new 

mean and covariance matrix are 

and 
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The E- and M-steps are repeated until either the difference 

 becomes smaller than a convergence value or the number of iteration 

reaches the preselected maximum value. The convergence value of 0.000001 

and the maximum iteration of 1000 were used in this study. 

The initial parameter values were selected by using the k-means clustering 

algorithm, where the mixture probability and covariance matrix across k clusters 

were assumed to be identical, then the centroid of each cluster is computed 

based on the Mahalanobis distance. 

Model selection using information complexity criterion: ICOMP 

Choosing the number of components K in the context of mixture model clustering 

analysis is one of the common and difficult problems in all clustering techniques 

[83]. Akaike’s information criterion (AIC) [66] and Bayesian information criterion 

(BIC) [84] have been frequently used in such model selection problems. AIC 

evaluates the lack of fit of a model with respect to a given data, penalizing it 

based on the number of parameters in the model as a measure of complexity. 

BIC accounts for the sample size, as well as the number of parameters. 

However, AIC and BIC are known to be inconsistent in the mixture context. AIC 

tends to overestimate the number of components, and BIC tends to 

underestimate it [85]. Bozdogan [83] proposed the informational complexity 

(ICOMP) criterion of an approximate inverse Fisher information matrix (IFIM) for 

selecting the number of components in the mixture model with consideration of 

not only the lack of fit but also the model complexity. The complexity in ICOMP is 

not the number of parameters in the model or the sample size, but the degree of 

interdependence among the components of the model [83]. A model with 

minimum ICOMP is the best model. ICOMP with IFIM is defined as 
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where 

and 

Traffic flow identification 

Once the GMMs of the congested and uncongested traffic phases are estimated 

for each station, new data points fed into the algorithm are classified into either 

phase by comparison of likelihoods. Based on the Equation (21), 

where,  is the new data vector of flow and density,  and 

 are the sets of parameters of the congested flow’s and uncongested 

flow’s mixture models, respectively. 

Shock wave speed calculation 

In traffic flow theory, a shock wave refers to boundary conditions in a time-space 

domain that represents a discontinuity in flow- density states [33]. Based on the 
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well-known traffic flow theory of flow=speed density, the shock wave speed 

between two states is defined as the change in flow divided by the change in 

density as follows. 

where, A and B denote different traffic flow-density states,  is shock wave 

speed when a state changes from A to B,  is flow, and  is density. 

However, applying Equation (31) is not suitable for tracing a queue in the 

time-space domain in real-time. Unlike the theoretical concave curve or triangular 

shape in a flow-density diagram, real traffic flow-density data plots often show a 

reversed lambda shape and very chaotic movements on the right-hand (queued) 

side (see Figure 3-4) [86, 87]. Therefore, shock wave speeds calculated from 

real data are too sensitive for the purpose of this study. In addition, the speeds 

from Equation (31) represents shock waves at a given station as depicted in 

Figure 3-5(a), not a link between stations. 

Therefore, in this study, shock wave speeds are calculated empirically 

between a pair of stations along a highway. Two different approaches were 

tested as shown in Figure 3-5(b) and Figure 3-5(c). The first approach is to use 

the arrival time differences between two neighboring stations. The second 

approach is to use the arrival time difference between the first downstream 

station where a queue starts to form and each upstream station that the queue 

reaches. The shock wave speeds from the first approach can have a greater 

variation, while the second reduces the variation while a queue is propagating 

upstream. These shock wave speeds are used to predict the queue arrival time 

at the next upstream station. 
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Figure 3-4 Flow-density relationship: (a) theoretical flow-density curve and 
shock wave speed and (b) real traffic data (station at 374.2 mile EB on 
August 4, 2016, 4-9 PM). 

 

 

Figure 3-5 Shock wave speed calculation: (a) at each station, (b) between 
two neighboring stations, and (c) between the first downstream station and 
each upstream station. 
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Case Study 

Data description 

The traffic detector data, named the Remote Traffic Microwave Sensor (RTMS), 

collected in Tennessee were used in this study. Specifically, the data of Interstate 

40 (I-40) in the Knoxville urban area were collected from July 11, 2016, through 

September 1, 2016. There are 87 detector stations on the 20.5 mile-long 

segment of I-40, ranging from mile marker 374.2 (west end) to 394.7 (east end), 

for both westbound (WB) and eastbound (EB) directions (see Figure 3-6). Due to 

the lack of detector stations on I-40 around the downtown area of Knoxville and 

the fact that no congestion is observed usually, 14 stations on I-40 EB close to 

the east end were excluded from this study. Therefore, the data of 73 stations on 

I-40 were used to implement and evaluate the proposed algorithm. 

 

 

Figure 3-6 RTMS stations in Knoxville TN. 
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The RTMS data contains 30-second aggregated traffic count, speed, and 

occupancy for each lane of each station. Since the purpose of this study is to 

propose a “real-time” queue detection algorithm, no further temporal aggregation 

was made despite the unnecessary noise in the 30-second data. The lane-by-

lane data were aggregated for each station. 

In this study, seven days in the period between July 11, 2016 and 

September 1, 2016 were selected to test the proposed algorithm in which distinct 

queues were observed (see Figure 3-7). For each test day, all the historical data 

of its previous days in August 2016 were used to estimate GMMs. Due to 

insufficient samples for the test day of August 4, the additional data from July 11 

– July 31 were used as well. 

Traffic flow phase identification and congestion detection 

Congestion patterns appear differently for each location due to varying capacity 

and demand in the time-space domain. Implementing the phase identification 

process independently for each location is, therefore, important for adapting to 

the varying traffic conditions so that the proposed algorithm can identify the 

phase transitions and collectively detect congestion along highways, based on 

the queueing condition, i.e., capacity < demand. During the identification process, 

the number of components of each mixture model was selected with a range of 

1-6 based on ICOMP; their average number was 3.7. As mentioned in the 

methodology section, AIC selected more components on average, which is 4.1. 

Figure 3-8 and Figure 3-9 shows the congestion detection results for the 

seven days before and after filtering. The speed heat maps behind the detection 

layers were generated by using the RTMS data with the adaptive smoothing 

method [65, 88]. In comparison with the speed heat map for each test day, the 

proposed algorithm detects the most of the low-speed traffic conditions. 

Since the proposed algorithm does not directly use a fixed speed value as 

a threshold to detect congested flow, each congestion case shows different  
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Figure 3-7 RTMS speed visualizations for the selected test days. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3-8 Phase identification and congestion detection results with speed 
heat map: (a) August 4, 2016, (b) August 8, 2016, (c) August 12, 2016, and 
(d) August 23, 2016. 
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(a) 

(b) 

(c) 

Figure 3-9 Phase identification and congestion detection results with speed 
heat map: (a) August 30, 2016, and (b) September 1, 2016 (I-40 EB), and (c) 
September 1, 2016 (I-40 WB). 
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detection rates over speeds. Figure 3-10 shows the congestion detection rates 

for the seven test days. Please note that the initial speed threshold of 15 mph 

was applied to estimate the probability distribution of the congested flow at each 

station. There are not enough samples of near-to-stop traffic for most of the 

stations in the RTMS data if the threshold of 5 mph was applied along with the 

definition of a queued state in HCM 2010 [68]. Thus, the relaxed condition of 15 

mph was used in this study. The proposed algorithm detects 100% of 0-5mph 

conditions and 99.9% of 0-15mph conditions in the seven-day test data. The 

dashed lines in Figure 3-10 represent the average detection rates of all test days 

as a reference. The different characteristics of congestion patterns of each day 

can be observed by comparing a given day’s detection rates to the average 

rates. For example, the congestion of August 30 is more severe than that of 

August 8 because the congestion detection rates in the mid-speed range, 15-

40mph, on August 30 are lower than those on August 8.  

 

 
Figure 3-10 Congestion detection rate over speeds for each test day. 
 



83 

 

Shock wave speed calculation and queue prediction 

The proposed algorithm aims to identify traffic flow phases by detecting the 

conditions of whether demand exceeds capacity. These conditions are threefold: 

(a) varying capacity over time with fixed demand, (b) varying demand over time 

with fixed capacity, and (c) mixed conditions of both (a) and (b). Typically, the 

first condition is the case of a nonrecurring incident such as a crash, where a 

backward recovery shock wave is observed (Figure 3-11(a)), while the second is 

peak-hour traffic conditions in which a forward recovery shock wave is formed 

(Figure 3-11(b)) [33].  

In this study, the speeds of all the backward forming shock waves that 

extend across at least four upstream stations were tracked and calculated by 

using two empirical approaches, as explained in the previous section (Figure 3-

5). A total 190 speeds were calculated from the 16 shock waves. Table 3-1 

shows the comparison of the shock wave speeds from both approaches. For 

most cases, the shock wave speeds of the second approach were slower than 

those of the first approach because the second one tracks the “average” travel 

speed of the upstream front of a growing queue. In addition, the average shock 

wave speed of 11.6 mph from the second approach appears to be closer to the 

range of 15-20 kilometer per hour (kph) (equivalent to 9.3-12.4 mph) observed by 

other researchers [87, 89]. 

By assuming that the shock wave detected at the current station and time 

continues to travel to the next upstream station at the same speed, its arrival time 

at the next station was predicted. The prediction errors are measured using a 

mean absolute error as follows: 

 

where,  is the detected arrival time of a queue  and  is the predicted arrival 

time of the queue .  
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Figure 3-11 Shock wave examples based on congestion detection results: 
(a) varying capacity, (b) varying demand, and (c) mixed condition. 
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The prediction errors are shown in Table 3-1. On average, the MAE of the 

first approach is 162 seconds while that of the second approach is 149 seconds. 

In a comparison of the congestion types, the backward forming-backward 

recovery type has the smallest error, 133 seconds for both approaches. This 

implies that the shock wave speeds of a queue are relatively constant over time 

and location. For the other types, the second approach outperforms the first one. 

This is mainly because the shock wave speeds of a given queue fluctuate more 

over time and location compared to the first type. The backward forming-forward 

recovery type is often observed during peak hours due to varying demand 

conditions. Although the capacity at each station remains the same over time, the 

empirical shock wave speed fluctuates due to the capacity difference over 

locations. For such cases, the second approach can produce better predictions. 

 

Conclusion 

 

This paper proposes a real-time queue detection algorithm by using traffic flow 

fundamentals combined with a statistical pattern recognition procedure. First, the 

traffic phase identification procedure is applied to detect congested flows at each 

detector station where demand exceeds its capacity so that a queue is formed. 

GMMs of the traffic flows are estimated using historical flow density data to 

capture location-specific flow-density patterns. Then, new data are classified in a 

probabilistic manner into either a congested or uncongested flow phase, based 

on the estimated GMMs. Next, the congestion in a time-space domain is 

detected by collectively using the onsets and ends of the congested flow phase 

at each station. Finally, empirical shock wave speeds between two stations are 

calculated and the queue arrival time at the next upstream station is predicted. 

This algorithm detected most of the low-speed conditions in the test 

datasets successfully, although it aims to detect the traffic conditions where  
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Table 3-1 Empirical shock wave speeds and queue arrival time prediction 
errors. 

Category  Average Shock Wave 
Speed (mph) 

 MAE of Prediction Result 
(sec) 

Approach 
1 

Approach 
2  Approach 

1 
Approach 
2 

By days Aug. 4 -9.7 -10.0  125 105 

 Aug. 8 -12.0 -10.1  89 108 

 Aug. 12 -14.0 -11.2  135 117 

 Aug. 23 -21.4 -13.6  196 186 

 Aug. 30 -14.1 -11.4  76 101 

 Sep. 1 (EB) -13.0 -11.6  222 188 

 Sep. 1 (WB) -19.0 -19.7  322 311 

By types 
Backward forming 
– backward 
recovery 

-12.5 -11.2  133 133 

 Backward forming 
– forward 
recovery 

-19.1 -12.8  169 159 

 Mixed -12.2 -11.3  182 156 

Total Average -13.7 -11.6  162 149 
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demand exceeds capacity rather than identify low-speed conditions below a 

certain threshold. The different detection rate distributions with respect to speed 

range between the seven-day test datasets are the evidence that this algorithm is 

adaptive to varying queueing conditions and queue types over time and space. 

Two empirical approaches for calculating the shock wave speed between two 

stations were tested based on whether the downstream station of a queue is 

fixed. For a moving queue, typically caused by incidents and having the feature 

that its forming and recovery shock waves are backward, both approaches show 

very similar prediction performance. For a stationary queue, typically observed 

with a backward forming and forward recovery shock waves during peak hours, 

using shock wave speeds from the first downstream station predicts the queue 

arrival time at the next station better than using speeds between two neighboring 

stations.  

Further research is needed to advance the sophistication of the prediction 

procedure in the proposed algorithm by accounting for additional variables, such 

as the flow or densify differentials between stations along a highway. It is more 

desirable to improve the prediction performance based upon traffic operational 

goals and strategies of traffic operations authorities. It is also useful to combine 

the proposed queue detection algorithm with an automatic incident detection 

algorithm so that the detected queue can be identified as either recurring or 

nonrecurring. 
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CHAPTER IV 
GRAY AREAS IN ISOLATED INTERSECTION CONTROL-TYPE 

SELECTION: A COMPLEMENTARY DECISION-SUPPORT TOOL 
  



89 

 

A version of this chapter was originally published by Bumjoon Bae, Brandon C. 

Whetsel and Lee D. Han: 

Bumjoon Bae, Brandon C. Whetsel, and Lee D. Han. “Gray Areas in Isolated 

Intersection Control Type Selection: A Complementary Decision-Support Tool.” 

Journal of Transportation Engineering, Part A: Systems 143(11) (2017): 

04017055.  

 

Abstract 

 

The intersection control-type for future facilities can be determined by 

comparison of the common measure of effectiveness, average control delay. 

However, rigid comparisons of such measures tend to mislead the decision-

making process in practice, since there must be latent factors in quantification. 

To this end, this paper proposes the performance comparison framework of 

different transportation facility alternatives using a common quantitative measure. 

By considering the uncertainties in a quantification process, the proposed 

framework provides gray areas, intuitively visualized information, that decision 

makers can use to assist their engineering judgement. The average control delay 

of two-way stop control, all-way stop control, signal control types, and 

roundabouts were compared with contour lines of delay differences. It is found 

that the delay of a roundabout increases rapidly as the traffic demand increases. 

Hence a signal control type has the minimum delay level in that case, despite the 

roundabout outperforms for most of the low-demand conditions. When the signal 

timing plan was optimized, this feature becomes remarkable. With consideration 

of the margin of error in the delay, a gray area on the minimum delay surface 

between the signal control and roundabout types enlarges in the low-demand 

area. The gray areas can be utilized by practitioners to decide the best 
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intersection control type with consideration of construction and maintenance 

costs over delay reduction benefit. 

 

Introduction 

 

Control delay is not only used to characterize the performance of each 

intersection control type but is also employed as a criterion for comparing the 

different types to each other. Besides the traffic signal warrants described in the 

Manual for Uniform Traffic Control Devices (MUTCD) [90], comparing the delay 

directly between different intersection control types is necessary. However, 

decision making based solely on quantitative metrics tends to be misguided 

toward quantitative fallacy. To address this issue in intersection control type 

selection, considerations must be taken for the factors which are not included in 

the control delay calculation process including: varying traffic demand, errors in 

model parameters and input data, user discernible delay margin, traffic growth 

and maintenance cost for the future, and so on. 

Previous studies of two-way stop control (TWSC), all-way stop control 

(AWSC), signal control, and roundabouts have provided comparisons of 

efficiency and safety issues both qualitatively and quantitatively [91] [92]. Han, Li 

[91] employed the Highway Capacity Manual 2000 (HCM 2000) methodologies in 

order to compare the delay levels under TWSC, AWSC, and signal control types 

with varying demand and left-turn percentages. They proposed a minimum-delay 

surface with delineating curves, accounting for the control delay only, that 

distinguished the mutually exclusive minimum delay zones for the control types. 

This chapter proposes the comparison framework of the average control 

delay under TWSC, AWSC, signal control, and roundabouts using the Highway 

Capacity Manual 2010 (HCM 2010) procedures. While accounting for the latent 

factors, a range of delineating curves is identified to distinguish each minimum 
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delay zone so that the “gray areas”, the overlapping areas defined by the range 

where the difference in the delay from each pair of the control types is marginal, 

can provide more flexibility to the related decision-making process.  

The remainder of this paper is organized as follows. The next section 

provides background on potential errors in control delay estimation. Then, the 

intersection delay models of HCM 2010 [68] for TWSC, AWSC, signal control, 

and roundabouts are briefly reviewed with their features in the third section. The 

readers who are familiar with the Highway Capacity Manual (HCM) delay models 

may want to skip this section. The fourth section describes the design of case 

scenarios. The delay comparison results and the gray area between the control 

types are described and discussed in the fifth section. Finally, conclusions are 

drawn. 

 

Background on Errors in Control Delay Estimation and Gray 
Areas 

 

The results of the control delay calculation can be affected by uncertainty in 

model structure or required input data. Due to this uncertainty, relying on a rigid 

value of the minimum delay may lead to an inaccurate decision. For this section, 

the limitations of the HCM delay model and its significant factors affecting the 

resultant average control delay are reviewed from other studies. 

The current control delay model for signalized intersections, in use since 

HCM 2000 [93]), is composed of the uniform, incremental, and initial queue 

delays. This model originated from Fambro and Rouphail [94]. They proposed a 

generalized delay model to account for actuated signal control parameters, 

oversaturation, variable demand, and metering and filtering effects from 

upstream traffic signals. For undersaturated conditions, the average delay mainly 

comes from the uniform delay which depends on a progression adjustment factor 
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(PF) by arrival type for a movement group. Benekohal and El-Zohairy [95] 

claimed that the HCM uniform delay model for coordinated signalized 

intersections is inaccurate due to the PF when either 1) a dense platoon arriving 

at the start of the green or red interval, or 2) a moderately dense or dispersed 

platoon arriving during the green interval. These will influence the average delay 

significantly. 

Unlike the uniform delay, the non-uniform delay including the incremental 

and initial queue delays are determined by random arrivals and queues which 

contribute more under oversaturated conditions. Sazi Murat [96] argued the 

uncertainties of the variables in the HCM delay model especially for the non-

uniform arrival or oversaturated condition despite the many efforts from other 

studies to alleviate randomness in the average delay. The author proposed the 

Neuro Fuzzy Delay Estimation model and Artificial Neural Networks Delay 

Estimation model. In a similar vein, Tian, Urbanik [97] showed that the highest 

variation in delay occurred when traffic demand approaches capacity and a 

range of speed variations has a high impact on the delay variation based on a 

simulation analysis. 

The base saturation flow rate is another important factor to explain the 

control delay. Khatib and Kyte [98] argued that change in traffic volume or 

saturation headway has significant effects on delay variations. Taking into 

consideration the fact that the delay model is basically a function of demand and 

capacity, their finding is not surprising. Tarko and Tracz [99] claimed that the 

existing saturation flow prediction equation has a high standard error of 8-10% 

based on previous studies [100]. They also emphasized three sources of the 

errors in vehicle delay: temporal variance of a saturation flow; omitted capacity 

factors; and an inadequate functional relationship between model variables and 

saturation flow rates. 

In general, there is a tradeoff between bias and variance in a 

quantification process where the closest measurement to its true value is 
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desired. The bias and variance can be substituted with accuracy and precision of 

the process, respectively. Increasing model precision can reduce its accuracy if 

there is a certain amount of uncertainty in the input values [101]. Han, Li [91] 

proposed rigid delineating curves composed of traffic volumes on major and 

minor streets to identify the best intersection control type which has the minimum 

control delay. Those results may be precise but not accurate since traffic demand 

fluctuates and other traffic conditions are varying spatiotemporally so that the 

delay from the models may have errors. More accurate results can be obtained 

by loosening the precision, which is applying a range of delineating curves, 

instead of rigid lines. 

In this study, the range of the delineating curves, i.e., gray area is 

identified to address the error in control delay, attributed to all the influential 

factors above for TWSC, AWSC, signal control, and roundabout types under 

given traffic conditions. The way of comparison using gray areas is helpful for 

practitioners to make a more accurate decision. However, there have not been 

enough studies in a literature to identify the amount of errors in the resultant 

control delays. 8-10% error in the base saturation flow rate based on Tarko and 

Tracz [99] results in variability of the control delay. For example, the resultant 

control delay of signal control type varies ranging from -2.4 seconds (-9%) to 4.4 

seconds (16%) when 10% change of the saturation flow rate under the given 

conditions in this paper. Thus, the gray area is assumed as a 5-second 

difference in the control delay between the best and second-best control types in 

this study. Note that it is recommended for practitioners to set their own gray 

area ranges depending on the purpose and type of the decision makings.   
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HCM Intersection Delay Models 

 

According to HCM 2010 [68], control delay is the resultant delay caused when a 

traffic movement reduces speed or stops due to a traffic control device. 

Therefore, it represents the additional travel time over the uncontrolled condition 

[68], [93]. This definition is consistent in signalized and unsignalized intersections 

as well as roundabouts [91], such that this measure can be used for comparison 

of the performance and level of service (LOS) between the three control types. 

The delay models for traffic signal and stop sign control types in HCM 2010 [68] 

are identical, for isolated intersections, with those in HCM 2000 [93]. The delay 

model for roundabouts had been newly added in the 2010 edition. 

Signalized Intersections 

The average control delay  for signalized intersections is composed of three sub 

components, expressed by Equation (33). 

Where,  is uniform delay occurring when uniform arrivals are assumed,  is 

incremental delay including delay due to random arrivals and cycle failures 

during the analysis time period, and  is initial queue delay experiencing all 

vehicles in the analysis period due to an initial queue presenting at the start of 

the analysis period. 

Since an initial queue was assumed not to exist for this study, the average 

control delay, d, can be expressed by Equation (34). 

where,  is the cycle length (s),  equals effective green time (s),  is the 

volume-to-capacity ratio or degree of saturation,  is the analysis period duration 
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(h), is the incremental delay factor,  equals upstream filtering adjustment 

factor, and  is the lane group capacity (veh/h). 

Two-Way Stop Control (TWSC) 

The procedure to measure average control delay for TWSC, in HCM 2010, is 

based on field measurements in the U.S. with a gap acceptance model that was 

developed in Germany [68]. Since only minor street approaches are controlled by 

stop signs in TWSC intersections, the control delay is not defined for the major 

street.  According to HCM 2010 [68], the average control delay for any minor 

movement of TWSC intersections is expressed by Equation (35). As in the case 

of the signal control type, the average control delay is the function of the capacity 

and the degree of saturation. Both factors can be affected significantly by the 

conflicting flow rate for each movement on the minor street due to the fact that 

this procedure relies on the gap acceptance model. Therefore, as the traffic 

volume on the major street approaches capacity, unrealistically large values of 

delay can be observed.  

The constant term, 5 s/veh explains the time to slow down from free-flow 

speed, stop, then accelerate to free-flow speed for a vehicle on the minor street. 

where,  is the capacity of movement  (veh/h),  equals the flow rate for 

movement  (veh/h), and other variables are the same in the previous equations. 

All-Way Stop Control (AWSC) 

The average control delay for AWSC in HCM 2010 [68] is calculated by an 

iterative procedure with three key time-based terms: the saturation headway, the 

departure headway, and the service time [68]. The headways rely on the degree 
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of conflict between consecutively departing vehicles on the subject approach and 

the vehicles on other approaches. The number of vehicles conflicted by the 

subject vehicle and the number of lanes on the intersection approaches are the 

main factors of the degree of conflict. Because capacity for AWSC is equal to the 

maximum throughput on an approach, under the given traffic flow rates on the 

other approaches, it can be concluded that the traffic demand and base headway 

assumptions given in the procedure are important components for the control 

delay. The average control delay for AWSC in HCM 2010 [68] is expressed by 

Equation (36). 

where,  equals the service time (s), which is average time spend by a vehicle in 

first position waiting to depart,  is the departure headway (s). 

Roundabout 

The capacity of a roundabout approach heavily relies on the conflicting flow rate, 

which represents the circulating flow faced by the subject approach vehicles. The 

functional form of the average control delay model for a roundabout in HCM 2010 

[68], expressed by Equation (37), is identical with that for TWSC except for the 5-

second constant term. The additional delay assumption is loosened for a 

roundabout accounting for the YIELD control on the subject approach in 

undersaturated conditions. 
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where,  is the capacity of the subject lane (veh/h),  equals the volume-to-

capacity of the subject lane. 

From the aforementioned average control delay models for signalized, 

stop controlled intersections, and roundabouts, it can be concluded that the 

major factors affecting the level of control delay are traffic volume, i.e., demand 

and capacity. Therefore, this study accounts for both factors in a sensitivity 

analysis framework. 

The capacity of each control type is however based on assumptions in 

which base saturation flow rates (or base saturation headways) are different 

between each type. For example, as a default value, the base saturation flow 

rates (pc/h/ln) are 1,900 for each movement (Signal Control), 1,700 for 

movements on the major street (TWSC), 923 for the degree-of-conflict case 1  

(ASWC), and 1,130 (Roundabouts) [68]. Therefore, the difference in values of 

the control delay of every pair among the four control types is explored directly in 

this study, assuming it is mainly caused by the varying capacity. For the demand 

side, the different major and minor street traffic volumes as well as different 

percentages of left-turn traffic volumes were considered in the comparison of the 

control delay. More details for the scenario design of this study are described in 

the following section. 

 

Design of Case Scenarios 

 

In the context of the objective of this study, 4,305 cases for each intersection 

control type plus signal timing optimization scenarios, totaling 21,525 cases, are 

analyzed in terms of the major and minor-street volumes as well as the 

percentage of left-turn traffic volumes using HCM 2010 [68]. The geometric 

design, traffic, and signal parameters are applied for the simplest and generic 

manner. This is consistent with the previous study, Han, Li [91], so that the 
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results can be compared to each other. The same analysis time duration of 15 

minutes is used for all cases. 

Intersection Configuration 

A simple isolated 4-legged intersection where each approach has a single lane is 

used in this study. Each lane on the approaches is assumed as a shared left 

turn, right turn, and through lane. All related parameters are accounted for as 

default values from HCM. 

Traffic Demand 

Traffic demand for the major and minor streets range from 0 to 2,000 veh/h in 50 

veh/h increments. Each increment is analyzed using 5 different levels of left 

turns: 0%, 5%, 10%, 15%, and 20% of total demand on each approach. The 

cases where the minor street demand exceeds the major street demand are 

excluded in the analysis. Therefore, a total of 4,305 traffic demand cases are 

applied for each control type. No bike or pedestrian demand is considered in this 

study. The cases where a volume on the minor street exceeds that on the major 

street are excluded in order to keep the hierarchy for both streets. 

Traffic Control Parameters 

All the traffic control parameters (e.g., base critical gap, saturation headway, etc.) 

included in TWSC and AWSC are applied as the default values from HCM. The 

cycle length is 60 seconds and the phase splits are assigned as 50/50. The 

yellow change and red clearance time is set as 4 seconds. For the signal 

optimization scenarios, the cycle length is computed by Equation (38) in HCM 

2010 [68]. 

with 
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and 

 

 

where  is the cycle lost time (s), ,  is the critical sum (veh/h),  equals 

the reference sum flow rate (veh/h), ,  is the peak 

hour factor,   is the adjustment factor,  and  are the minimum and 

maximum cycle length. 

After the cycle length is determined in each scenario, the splits are 

optimized to minimize the average delay of the intersection. 

 

Analysis Results and Comparisons 

 

Results of the average control delay were obtained from the 4,305 cases of each 

control type. Figure 4-1 demonstrates the contours of average control delay for 

each control type at 20% left-turn volumes. One can identify which type has the 

minimum delay under a given demand level from the contours. It is obvious that 

the delay levels of a roundabout are lower than the other types, particularly for 

lower volumes on both major and minor streets. The spacing between the 

contours of each control type and the direction of contours show how fast the 

control delay increases as traffic volumes on either the major street or minor 

street increase. For example, the 10-50 second delay contours of TWSC are 

densely plotted and move along the vertical axis. This indicates that the control 

delay of TWSC increases rapidly as the minor street volume increases. In 

contrast, the signal control delay shows a relatively slow increase as the major 

street volume increases. The delay patterns of the roundabout are similar with 

that of the signal control. However, the roundabout is more sensitive to the minor 

street volume than signal control. 
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Figure 4-1 Contours of control delay for signal control, AWSC, TWSC, and 
roundabout with 20% left turns. 
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A 3-D surface plot can show how the delay of each control type changes 

depending on either the major or minor street volume and make the delay 

comparison much clearer. Figure 4-2 shows the control delay surfaces with 20% 

left-turn volumes for the intersection control types. Because the vertical axis 

representing average control delay is flipped over, the surface on top represents 

the control type having the minimum control delay with given traffic conditions. As 

mentioned above, a roundabout performs best for most of the demand area. The 

surface of signal control emerges above that of a roundabout as the volume on 

the major and minor streets increase. TWSC performs best when the minor 

street volume is very low. However, its performance heavily relies on the delays 

on the minor street. Thus, the average control delay of TWSC rapidly increases 

as the minor street volume increases. Although AWSC does not show up for any 

demand levels in Figure 4-2, it is good to know where the delay surface of AWSC 

is located and how it looks under the other surfaces in order to understand its 

gray areas. As illustrated in Figure 4-3, in the comparison of TWSC, AWSC, and 

signal control without a roundabout, AWSC performs best when traffic volumes 

on the major and minor streets are somewhat balanced, and the total volume is 

less than 900 veh/h. 

Figure 4-4 shows the minimum delay surfaces with gray areas 

represented by contour lines indicating the 5-second difference in the delay 

between the best and second-best control types. The black solid lines are the 

delineating curves where the delays of both control types are equal. In order to 

understand how the gray areas enlarge or shrink at each LOS, the LOS regions 

are also depicted for each control type. 

For the demand area over 800 veh/h on the major street and over 500 

veh/h on the minor street, signal control type is the best in terms of the average 

control delay showing LOS B through E for the 20% left-turn scenario. A 

roundabout shows the best performance for the lower volume area. However, the 

minimum traffic volumes on both single-lane major and minor  
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Figure 4-2 Delay surfaces for 4 different control types, with 20% left turns. 

 

 

Figure 4-3 Delay surfaces for 3 different control types, with 20% left turns. 
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Figure 4-4 Comparison of delay by control types and gray zones with 20% 
left turns. 
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streets of the traffic signal warrant 1 in MUTCD [90] are 500 veh/h and 150 

veh/h, respectively. The large gap of the traffic volume thresholds between the 

warrant 1 and the result in Figure 4-4 implies that huge room for engineering 

judgement exists to select either signal control or a roundabout. If the gray area 

between two control types was taken into account, better judgement can be 

made based on the additional information of how different the delays are under a 

given traffic condition. When an observed traffic condition falls onto the gray 

area, a practitioner may want to choose the second best control type in terms of 

delay. For example, under 800 veh/h on the major street and 300 veh/h on the 

minor street, the best performing control type can be signal control, not a 

roundabout. In contrast, a roundabout may still outperform signal control under 

the condition of 1,000 veh/h and 700 veh/h on the major and minor street, 

respectively. In the same way, TWSC can be the optimal control type for 400 

veh/h and 200 veh/h on the major and minor street respectively instead of a 

roundabout. Although the AWSC area did not show up on the figure, 4- and 5-

second delay difference contour lines against a roundabout appeared when the 

total traffic volume is less than around 1,000 veh/h.  

Another noticeable feature is that the size of the gray areas on both sides 

of the solid line is asymmetric. For example, in a comparison between a 

roundabout and signal control, the size of the gray area on the roundabout is 

much larger than that of the signal control. Similarly, the gray area between a 

roundabout and TWSC spreads out more on the roundabout surface. This 

implies that even if a roundabout outperforms the others for a certain traffic 

volume range, its efficiency is marginal especially for LOS A through LOS C 

conditions. 

Figure 4-5 displays the delay comparison results with no left-turn, 5%, 

10%, and 15% of left-turn volume scenarios. As the percentage of left-turn 

volume increases, surfaces moves to the left as a whole. In addition, the delay of 

all control types increases so that the LOS range extends from A-C to A-E (A-F in  
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Figure 4-5 Comparison of delay by control types and gray zones with 0%, 
5%, 10%, 15% left turns. 
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Figure 4-4). When the left-turn volume increases, the signal control area moves 

to the left slowly and the TWSC area shrinks down slightly. The corresponding 

gray area of each control type also moves along the delay surface. 

For the signal control type, the signal timing plan was optimized 

depending on traffic volumes to minimize the average delay. Figure 4-6 and 

Figure 4-7 illustrate the delay comparison with 0-20% of left-turn volume 

including the optimized signal control type. In comparison with the non-

optimization scenarios above, the delay of signal control type was substantially 

reduced so that its surface emerged for the range of over 950 veh/h on the major 

street indicating LOS A and B in the 20% left-turn scenario. In addition, optimized 

signal control outperforms TWSC as well, the TWSC surface does not appear 

anymore. However, the gray area on the signal surface is extended up to around 

1,200 veh/h on the major street indicating the delay difference with a roundabout 

is still marginal. Similarly, most of the demand area less than the major street 

volume of 950 veh/h, where a roundabout mostly has the minimum control delay, 

is covered by gray areas. In conclusion, most of the demand area of 

approximately 1,200 veh/h or less is in the gray areas of all four control types. As 

the percentage of left-turn volume increases, the delineating curve and gray 

areas shift to the left. That is, the performance of a roundabout diminishes 

gradually because the control delay of a roundabout is significantly affected by 

conflicts between the circulating traffic and approaching traffic. 

 

Conclusion 

 

This study proposed the performance comparison framework of different 

transportation facility alternatives using a common quantitative measure. By 

considering uncertainties in a quantification process, the proposed framework 

provides the gray areas in such complementary comparisons so that it assists in 
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Figure 4-6 Comparison of delay by control types with signal optimization 
and gray zones with 20% left turn. 

 

 

Figure 4-7 Comparison of delay by control types with signal optimization 
and gray zones with 0%, 5%, 10%, 15% left turns. 
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making a decision for transportation facility type selection. 

For an isolated intersection control type selection, the HCM 2010 

procedures to measure average control delay were employed and the 

performances of TWSC, AWSC, signal control, and roundabouts under given 

traffic conditions were compared.  

Conservatively it can be concluded that a roundabout outperforms the 

others for most of the cases when the minor street two-way traffic volume is less 

than 400 veh/h and the left-turn volume percentage on each approach is less 

than 20%. However, the control delay of a roundabout increases more rapidly 

beyond these demand ranges such that signalized control emerges on top in the 

minimum control delay surface plot. 

Both stop-control types have a higher control delay level for most cases, 

although the differences in the minimum delay for a roundabout are marginal 

such that the performances of TWSC and AWSC are not significantly worse for 

the relatively lower demand conditions. TWSC shows the best performance with 

a high major street volume and very low minor street volume. Caution is required 

to interpret this feature. It is not only indicating the minimum overall intersection 

delay but also implies severe delay on the minor street because the measure 

used for these comparisons is an “average” control delay which is weighted by 

the traffic volume on each approach. 

The control delay derived from the HCM 2010 approaches relies heavily 

on traffic volume and corresponding capacity levels. That is, the resultant delay 

can be different due to potential errors in input volumes and/or model parameter 

values. To this end, the study identified a gray area defined by the delay-

difference contour lines between two control types for the purpose of a sensitivity 

analysis. As expected the gray area is larger for the lower demand conditions, 

which implies that it can provide practitioners more room for so-called 

“engineering judgement”. 



109 

 

Selecting and installing a roundabout entails a trade-off. Since its 

geometric design characteristics are considerably different than a conventional 

intersection design, once installed, it would be cost prohibitive to convert it to 

another control type. Therefore, it is recommended to assign more priority to 

signal or stop control in cases where a rapid growth in traffic demand is expected 

in the near future and the total delay-reduction benefit is expected to be lower 

than the potential cost in the future.  

Signal optimization requires the use of actuated signal operations that 

respond to fluctuations in traffic demand. Such operating systems come with high 

installation and maintenance costs for a small intersection with light traffic 

demand. Practitioners should carefully consider the cost-effectiveness in utilizing 

signal optimization. 

For the purpose of forecasting a likely intersection control type for future 

facilities, this study focused on a simple isolated intersection with mostly 

undersaturated traffic demand and presumed “default” conditions provided by 

HCM 2010 [68]. Therefore it has the following limitations: 

 Intersection configuration: Only a single-shared-lane-approach intersection 

was analyzed in this study. For the signal type, a permitted left-turn signal 

plan was used. Estimating capacity and control delay of a shared-lane 

and/or permitted left-turn case requires additional complicated procedures 

in HCM 2010 [68], hence the delay comparison results may be different for 

different intersection configurations. 

 Bike and pedestrian demand: No consideration was assigned for the bike 

and pedestrian demands. The pedestrian volume can particularly affect the 

control delay of left-turn traffic movements. 

 Traffic demand balance: The traffic volume on one and opposing 

approaches was assigned as 50/50 percentage for simplicity. For TWSC, 

AWSC, and roundabouts the delay on a subject approach is greatly affected 

by the traffic volume of the conflicting traffic movements from other 
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approaches. Therefore, the resultant control delay levels can be different 

for such unbalanced traffic demand conditions. 
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CONCLUSION 
 

This dissertation compiled a series of studies on short-term traffic flow dynamics 

in a spatio-temporal domain and on uncertainty in a decision-making process to 

support real-time traffic operations. These studies were conducted to propose 

multiple applications to impute missing traffic data with a secondary data source, 

predict traffic speed for a large road network, detect traffic queues in real-time, 

and support an engineering judgement in evaluating the performance of traffic 

facilities. 

First, three kriging-based spatio-temporal missing data imputation 

approaches were proposed with and without using a secondary data source and 

the performance was evaluated under different patterns of missing data. A simple 

cokriging method improved the accuracy of imputation when the missing pattern 

was not random. In contrast, using only primary data with ordinary kriging 

outperforms the cokriging methods when the missing pattern is completely 

random. 

 Second, a nonparametric data-adaptive traffic speed prediction algorithm 

was proposed. The algorithm effectively reduces the dimensionality of traffic 

speed data in a spatio-temporal domain and predicts the future speed accurately. 

The proposed algorithm outperformed the benchmark models in terms of 

prediction accuracy for abnormal traffic conditions with much shorter computation 

time.  

 Third, a real-time queue detection algorithm was developed based upon 

traffic flow fundamentals combined with a statistical pattern recognition method. 

The proposed algorithm accounts for varying capacity-demand conditions in 

spatio-temporal dimension and collectively detects a queue along a highway. 

Further study is recommended to advance the sophistication of the queue 

prediction function in the algorithm. 
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 Finally, the concept of gray areas was proposed for making an 

engineering judgement in transportation planning, management, or operations. A 

case study on intersection control type selection was performed to identify and 

visualize the gray areas. The proposed concept and the result of the case study 

can give additional intuitive and visualized information of uncertainties in a 

quantification process for comparing the performance of multiple alternatives.  

Altogether, this dissertation provides a real-time traffic analysis framework 

that consists of multiple algorithms and tools for traffic operations of highway 

facilities. In addition to improving these algorithms, additional studies on the 

development of an automatic incident detection algorithm and an online traffic 

simulation tool will give greater sophistication to the analysis framework.  
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Figure A-1 MCAR patterns and imputed speed. 

 

 

Figure A-2 MAR patterns and imputed speed. 
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Figure A-3 MNAR patterns and imputed speed. 

  



128 

 

Table A-1 Summary of imputation errors. 

Measurement Missing 
Pattern 

Missing 
Rate 

OK OCK SCK 

MAE MCAR 10% 1.981 2.475 3.071 
(mile/hour)  20% 1.939 2.320 3.019 
  30% 1.933 2.453 3.179 
  40% 2.033 2.650 3.216 
 MAR 10% 4.915 5.082 5.118 
  20% 5.502 5.477 5.750 
  30% 5.476 5.409 5.495 
  40% 5.528 5.663 5.475 
 MNAR 10% 11.393 10.819 6.507 
  20% 11.256 11.354 5.754 
  30% 9.667 9.370 4.916 
  40% 9.163 8.867 4.658 
MAPE MCAR 10% 4.949 5.860 7.472 
(%)  20% 4.724 5.335 7.171 
  30% 4.592 5.591 7.647 
  40% 4.647 5.865 7.565 
 MAR 10% 8.628 8.747 9.017 
  20% 10.620 10.381 11.316 
  30% 12.338 11.870 12.318 
  40% 13.151 13.139 13.206 
 MNAR 10% 20.636 19.488 12.449 
  20% 20.539 20.902 11.595 
  30% 17.711 17.140 10.105 
  40% 16.648 16.066 9.296 
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