20,077 research outputs found

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe

    Storytelling Security: User-Intention Based Traffic Sanitization

    Get PDF
    Malicious software (malware) with decentralized communication infrastructure, such as peer-to-peer botnets, is difficult to detect. In this paper, we describe a traffic-sanitization method for identifying malware-triggered outbound connections from a personal computer. Our solution correlates user activities with the content of outbound traffic. Our key observation is that user-initiated outbound traffic typically has corresponding human inputs, i.e., keystroke or mouse clicks. Our analysis on the causal relations between user inputs and packet payload enables the efficient enforcement of the inter-packet dependency at the application level. We formalize our approach within the framework of protocol-state machine. We define new application-level traffic-sanitization policies that enforce the inter-packet dependencies. The dependency is derived from the transitions among protocol states that involve both user actions and network events. We refer to our methodology as storytelling security. We demonstrate a concrete realization of our methodology in the context of peer-to-peer file-sharing application, describe its use in blocking traffic of P2P bots on a host. We implement and evaluate our prototype in Windows operating system in both online and offline deployment settings. Our experimental evaluation along with case studies of real-world P2P applications demonstrates the feasibility of verifying the inter-packet dependencies. Our deep packet inspection incurs overhead on the outbound network flow. Our solution can also be used as an offline collect-and-analyze tool

    Isomorphism Checking for Symmetry Reduction

    Get PDF
    In this paper, we show how isomorphism checking can be used as an effective technique for symmetry reduction. Reduced state spaces are equivalent to the original ones under a strong notion of bisimilarity which preserves the multiplicity of outgoing transitions, and therefore also preserves stochastic temporal logics. We have implemented this in a setting where states are arbitrary graphs. Since no efficiently computable canonical representation is known for arbitrary graphs modulo isomorphism, we define an isomorphism-predicting hash function on the basis of an existing partition refinement algorithm. As an example, we report a factorial state space reduction on a model of an ad-hoc network connectivity protocol

    Handling Network Partitions and Mergers in Structured Overlay Networks

    Get PDF
    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. These systems have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this paper, we present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter

    Enabling technologies for decentralized interpersonal communication

    Get PDF
    In the recent years the Internet users have witnessed the emergence of Peer-to-Peer (P2P) technologies and applications. One class of P2P applications is comprised of applications that are targeted for interpersonal communication. The communication applications that utilize P2P technologies are referred to as decentralized interpersonal communication applications. Such applications are decentralized in a sense that they do not require assistance from centralized servers for setting up multimedia sessions between users. The invention of Distributed Hash Table (DHT) algorithms has been an important, but not an inclusive enabler for decentralized interpersonal communication. Even though the DHTs provide a basic foundation for decentralization, there are still a number of challenges without viable technological solutions. The main contribution of this thesis is to propose technological solutions to a subset of the existing challenges. In addition, this thesis also presents the preliminary work for the technological solutions. There are two parts in the preliminary work. In the first part, a set of DHT algorithms are evaluated from the viewpoint of decentralized interpersonal communication, and the second part gives a coherent presentation of the challenges that a decentralized interpersonal communication application is going to encounter in mobile networks. The technological solution proposals contain two architectures and two algorithms. The first architecture enables an interconnection between a decentralized and a centralized communication network, and the second architecture enables the decentralization of a set of legacy applications. The first algorithm is a load balancing algorithm that enables good scalability, and the second algorithm is a search algorithm that enables arbitrary searches. The algorithms can be used, for example, in DHT-based networks. Even though this thesis has focused on the decentralized interpersonal communication, some of the proposed technological solutions also have general applicability outside the scope of decentralized interpersonal communication

    Ontology engineering and routing in distributed knowledge management applications

    Get PDF

    Enabling technologies for decentralized interpersonal communication

    Get PDF
    In the recent years the Internet users have witnessed the emergence of Peer-to-Peer (P2P) technologies and applications. One class of P2P applications is comprised of applications that are targeted for interpersonal communication. The communication applications that utilize P2P technologies are referred to as decentralized interpersonal communication applications. Such applications are decentralized in a sense that they do not require assistance from centralized servers for setting up multimedia sessions between users. The invention of Distributed Hash Table (DHT) algorithms has been an important, but not an inclusive enabler for decentralized interpersonal communication. Even though the DHTs provide a basic foundation for decentralization, there are still a number of challenges without viable technological solutions. The main contribution of this thesis is to propose technological solutions to a subset of the existing challenges. In addition, this thesis also presents the preliminary work for the technological solutions. There are two parts in the preliminary work. In the first part, a set of DHT algorithms are evaluated from the viewpoint of decentralized interpersonal communication, and the second part gives a coherent presentation of the challenges that a decentralized interpersonal communication application is going to encounter in mobile networks. The technological solution proposals contain two architectures and two algorithms. The first architecture enables an interconnection between a decentralized and a centralized communication network, and the second architecture enables the decentralization of a set of legacy applications. The first algorithm is a load balancing algorithm that enables good scalability, and the second algorithm is a search algorithm that enables arbitrary searches. The algorithms can be used, for example, in DHT-based networks. Even though this thesis has focused on the decentralized interpersonal communication, some of the proposed technological solutions also have general applicability outside the scope of decentralized interpersonal communication
    • 

    corecore