
Handling Network Partitions and Mergers in Structured Overlay Networks ∗

Tallat M. Shafaat† Ali Ghodsi‡ Seif Haridi†

†Royal Institute of Technology (KTH), ‡Swedish Institute of Computer Science (SICS)
{tallat,haridi}(at)kth.se ali(at)sics.se

Abstract

Structured overlay networks form a major class of peer-
to-peer systems, which are touted for their abilities to
scale, tolerate failures, and self-manage. Any long-lived
Internet-scale distributed system is destined to face net-
work partitions. Although the problem of network parti-
tions and mergers is highly related to fault-tolerance and
self-management in large-scale systems, it has hardly been
studied in the context of structured peer-to-peer systems.
These systems have mainly been studied under churn (fre-
quent joins/failures), which as a side effect solves the prob-
lem of network partitions, as it is similar to massive node
failures. Yet, the crucial aspect of network mergers has been
ignored. In fact, it has been claimed that ring-based struc-
tured overlay networks, which constitute the majority of the
structured overlays, are intrinsically ill-suited for merging
rings. In this paper, we present an algorithm for merging
multiple similar ring-based overlays when the underlying
network merges. We examine the solution in dynamic con-
ditions, showing how our solution is resilient to churn dur-
ing the merger, something widely believed to be difficult or
impossible. We evaluate the algorithm for various scenar-
ios and show that even when falsely detecting a merger, the
algorithm quickly terminates and does not clutter the net-
work with many messages. The algorithm is flexible as the
tradeoff between message complexity and time complexity
can be adjusted by a parameter.

1 Introduction

Structured Overlay Networks (SONs)—such as
Chord [29], Pastry [26], and SkipNet [13]—are touted for
their ability to provide scalability, fault-tolerance, and self-
management, making them well-suited for Internet-scale
distributed applications. Such Internet-scale systems will
always come across network partitions, especially if the

∗This research has been funded by the European Project SELFMAN,
VINNOVA 2005-02512 TRUST-DIS, and SICS Center for Networked
Systems (CNS).

system is long-lived. Although the problem of network
partitions and mergers is highly related to fault-tolerance
and self-management in large-scale systems, it has, with
few exceptions, been ignored in the context of structured
overlays. This is peculiar, as the importance of the problem
has long been known in other problem domains, such
as those of distributed databases [5] and distributed file
systems [30].

It is our firm belief that a crucial requirement for practi-
cal SONs is that they should be able to deal with network
partitions and mergers. As we show in Section 2, most
SONs cope with network partitions, but not with network
mergers. We believe that this is because a network parti-
tion, as seen from the perspective a single node, is identical
to massive node failures. Since SONs have been designed
to cope with churn, they can self-manage in the presence
of such partitions. However, most SONs cannot cope with
network mergers.

In fact, it has been claimed that ring-based structured
overlays, which constitute the absolute majority of the
SONs, are inherently a poor fit for dealing with network
mergers. Datta et al. [4] focus on the merging of multi-
ple SONs after a network partition ceases (network merger).
They argue that ring-based SONs “cannot function at all un-
til the whole merge process is complete”. Birman [2] argues
that ring-based SONs are inherently ill-suited for dealing
with network partitions.

The merging of SONs gives rise to problems on two dif-
ferent levels: routing level and data level. The routing level
is concerned with healing of the routing information after a
partition merger.

The data level is concerned with the consistency of the
data items stored in the SONs. The solutions to this prob-
lem might depend on the application and on the semantics
of the data operations, e.g. immutable key/value pairs or
monotonically increasing values. It is also known that it
is impossible to achieve strong (atomic) data consistency,
availability1, and partition tolerance in SONs [11, 3, 9].

1By availability we mean that a get/put operation should eventually
complete.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We focus on the problem of dealing with partition merg-
ers at the routing level. Given a solution to the problem
at the routing level, it is generally known how to achieve
weaker types of data consistency, such as eventual consis-
tency [30, 6].

In this paper, we present an algorithm for merging any
number of similar structured overlays. We will limit our-
selves to ring-based overlays, since they constitute the ma-
jority of the SONs. It is desirable that a solution to the
problem of merging rings takes minimum amount of time
to complete (time complexity). At the same time, it is desir-
able that the solution has a minimal bandwidth consumption
(message and bit complexity). These two goals are conflict-
ing, as shown by the following two extreme cases. On the
one hand, it is possible to construct an algorithm that com-
pletes in minimal time by having all the nodes repeatedly
spreading all their routing information to every other node
through an overlay broadcast [7, 10, 9]. On the other hand,
it is possible to construct an algorithm which tries to min-
imize the bandwidth consumption by passing a “merging”
token around each of the rings. Hence, it is desirable to find
an algorithm which strikes a balance between time, bit, and
message complexity.

The contribution of this paper is a ring merging algo-
rithm, which allows the system designer to adjust, through a
fanout parameter, the tradeoff between message complexity
and time complexity. Through experimental evaluation, we
show typical fanout values for which our algorithm com-
pletes quickly, while keeping the bandwidth consumption
at an acceptable level. We examine the solution in dynamic
conditions, showing how our solution is resilient to churn
during the merger, something widely believed to be diffi-
cult [2] or impossible [4]. We verify that the algorithm
works efficiently even if only a single node detects the parti-
tion merger. We show that even with large rings with thou-
sands of nodes, our solution is lean as it avoids positive-
feedback cycles and, hence, avoids congesting the network.

Outline Section 2 serves as a background by motivating
and defining our choice of ring-based SONs. Section 3 in-
troduces the simple ring unification algorithm, as well as
the gossip-based ring unification algorithm. Since the lat-
ter algorithm builds on the previous, we hope that this has
a didactic value. Thereafter, Section 4 evaluates different
aspects of the algorithms in various scenarios. Section 5
presents related work. Finally, Section 6 concludes.

2 Background

The rest of the paper focuses on ring-based structured
overlay networks. Next, we motivate this choice, and there-
after briefly define ring-based SONs. Finally, we show how
Chord deals with network partitions and failures.

Motivation for the Ring Geometry The reason for con-
fining ourselves to ring-based SONs is twofold. First, ring-
based SONs constitute a majority of the SONs, includ-
ing Chord [29], Pastry [26], SkipNet [13], DKS [9], Ko-
orde [16], Viceroy [23], Mercury [1], Symphony [24], Epi-
Chord [17], and Accordion [18]. Second, Gummadi et al.
[12] diligently compared the geometries of different SONs,
and showed that the ring geometry is the one most resilient
to failures, while it is just as good as the other geometries
when it comes to proximity.

Our results apply to all ring-based SONs. Nevertheless,
we assume a SON similar to Chord [29] to simplify the un-
derstanding of our algorithms.

A Model of a Ring-based SON A SON makes use of an
identifier space, which for our purposes is defined as a set of
integers {0, 1, · · · ,N − 1}, where N is some apriori fixed,
large, and globally known integer. This identifier space is
perceived as a ring that wraps around at N − 1.

Every node in the system, has a unique identifier from
the identifier space. Node identifiers are typically assumed
to be uniformly distributed on the identifier space. Each
node keeps a pointer, succ, to its successor on the ring. The
successor of a node with identifier p is the first node found
going in clockwise direction on the ring starting at p. Simi-
larly, every node also has a pointer, pred, to its predecessor
on the ring. The predecessor of a node with identifier q is
the first node met going in anti-clockwise direction on the
ring starting at q. A successor-list is also maintained at ev-
ery node r, which consists of r’s c immediate successors,
where c is typically set to log2(N).

Ring-based SONs also maintain additional routing point-
ers on top of the ring to enhance routing. To keep things
concrete, assume that these are placed as in Chord. Hence,
each node p keeps a pointer to the successor of the identifier
p + 2i (modN) for 0 < i < log2(N). Our results can eas-
ily be adapted to other schemes for placing these additional
pointers.

Dealing with Partitions and Failures in Chord Chord
handles joins and leaves using a protocol called periodic
stabilization. Leaves are handled by having each node pe-
riodically check whether pred is alive, and setting pred :=
nil if it is found dead. Moreover, each node periodically
checks to see if succ is alive. If it is found to be dead, it is
replaced by the closest alive successor in the successor-list.

Joins are also handled periodically. A joining node
makes a lookup to find its successor s on the ring, and sets
succ := s. Each node periodically asks for its successor’s
pred pointer, and updates succ if it finds a closer succes-
sor. Thereafter, the node notifies its current succ about its
own existence, such that the succ node can update its pred

2

pointer if it finds that the notifying node is a closer prede-
cessor than pred. Hence, any joining node is eventually
properly incorporated into the ring.

As we mentioned previously, a single node cannot dis-
tinguish massive simultaneous node failures from a network
partition. As periodic stabilization can handle massive fail-
ures [20], it also recovers from network partitions, making
each component of the partition eventually form its own
ring. Our simulation results confirm this, though they are
omitted due to space constraints. The problem that remains
unsolved, which is the focus of the rest of the paper, is how
several independent rings efficiently can be merged.

3 Ring Merging

For two or more rings to be merged, at least one node
needs to have knowledge about at least one node in another
ring. This is facilitated by the use of passive lists. Whenever
a node detects that another node has failed, it puts the failed
node, with its routing information, in its passive list. Every
node periodically pings nodes in its passive list to detect
if a failed node is again alive. When this occurs, it starts
a ring merging algorithm. Hence, a network partition will
result in many nodes being placed in passive lists. When
the underlying network merges, this will be detected and
rectified through the execution of a ring merging algorithm.

A ring merging algorithm can also be invoked in other
ways than described above. For example, it could occur
that two SONs are created independently of each other, but
later their administrators decide to merge them due to over-
lapping interests. It could also be that a network partition
has lasted so long, that all nodes in the rings have been re-
placed, making the contents of the passive lists useless. In
cases such as these, a system administrator can manually
insert an alive node from another ring into the passive list
of any of the nodes. The ring merger algorithm will take
care of the rest.

The detection of an alive node in a passive list does not
necessarily indicate the merger of a partition. It might be the
case that a single node is incorrectly detected as failed due
to a premature timeout of a failure detector. It might also
be the case that a node with the same address and identifier
as a failed node joins the ring. The ring merging algorithm
should be able to cope with the first case, by trying to en-
sure that such false-positives will terminate the algorithm
quickly. The latter case can be dealt with by associating
with every node a globally unique random nonce, which is
generated each time a node joins the network. Hence, a new
node can always be differentiated from an old node with the
same address.

3.1 Simple Ring Unification

In this section, we present the simple ring unification al-
gorithm (Algorithm 1). As we later show, the algorithm
will merge the rings in O(N) time for a network size of
N . Though we believe that the problem of dealing with
network mergers is crucial, we think that such events hap-
pen more rarely. Hence, it might be justifiable in certain
application scenarios that a slow paced algorithm runs in
the background, consuming little resources, while ensuring
that any potential problems with partitions will eventually
be rectified. Later, we show how the algorithm can be im-
proved to make it complete the merger in substantially less
time.

Algorithm 1 Simple Ring Unification Algorithm
1: every γ time units and detqueue 6= ∅ at p
2: q := detqueue.dequeue()
3: sendto p : MLOOKUP(q)
4: sendto q : MLOOKUP(p)
5: end event

6: receipt of MLOOKUP(id) from m at n
7: if id 6= n and id 6= succ then
8: if id ∈ (n, succ) then
9: sendto id : TRYMERGE(n, succ)

10: else if id ∈ (pred, n) then
11: sendto id : TRYMERGE(pred, n)
12: else
13: sendto closestprecedingnode(id) : MLOOKUP(id)
14: end if
15: end if
16: end event

17: receipt of TRYMERGE(cpred, csucc) from m at n
18: sendto n : MLOOKUP(csucc)
19: if csucc ∈ (n, succ) then
20: succ := csucc
21: end if
22: sendto n : MLOOKUP(cpred)
23: if cpred ∈ (pred, n) then
24: pred := cpred
25: end if
26: end event

Algorithm 1 makes use of a queue called detqueue,
which will contain any alive nodes found in the passive
list. The queue is periodically checked by every node p,
and if it is non-empty, the first node q in the list is picked
to start a ring merger. Ideally, p and q will be on two dif-
ferent rings. But even so, the distance between p and q on
the identifier space might be very large, as the passive list
can contain any previously failed node. Hence, the event
MLOOKUP(id) is used to get closer to id through a lookup.
Once MLOOKUP(id) gets near its destination id, it triggers

3

p

q

1: mlookup(q)

2: mlookup(p)

progress

clockwise progress
anti−clockwise

anti−clockwise
progress

clockwise
progress

3a: csucc

3b: cpred

4b: cpred
4a: csucc

4: trymerge

3: trymerge

Figure 1: Filled circles belong to SON1 and empty circles be-
long to SON2. The algorithm starts when p detects q, p makes
an MLOOKUP to q and asks q to make an MLOOKUP to p.

the event TRYMERGE(cpred, csucc), which tries to do the
actual merging by updating succ and pred pointers.

The event MLOOKUP(id) is similar to a Chord lookup,
which tries to do a greedy search towards the destination id.
One difference is that it terminates the lookup if it reaches
the destination and locally finds that it cannot merge the
rings. More precisely, this happens if MLOOKUP(id) is ex-
ecuted at id itself, or at a node whose successor is id. If an
MLOOKUP(id) executed at n finds that id is between n and
n’s successor, it terminates the MLOOKUP and starts merg-
ing the rings by calling TRYMERGE. Another difference
between MLOOKUP and an ordinary Chord lookup is that
an MLOOKUP(id) executed at n also terminates and starts
merging the rings if it finds that id is between n’s predeces-
sor and n. Thus, the merge will proceed in both clockwise
and anti-clockwise direction.

The event TRYMERGE takes a candidate predecessor,
cpred, and a candidate successor csucc, and attempts to
update the current node’s pred and succ pointers. It also
makes two recursive calls to MLOOKUP, one towards cpred,
and one towards csucc. This recursive call attempts to con-
tinue the merging in both directions. Figure 1 shows the
working of the algorithm.

In summary, MLOOKUP closes in on the target area
where a potential merger can happen, and TRYMERGE at-
tempts to do local merging and advancing the merge process
in both directions by triggering new MLOOKUPs.

3.2 Gossip-based Ring Unification

The simple ring unification presented in the previous sec-
tion has two disadvantages. First, it is slow, as it takes O(N)
time to complete the ring unification. Second, it cannot re-
cover from certain pathological scenarios. For example, as-
sume two distinct rings in which every node points to its
successor and predecessor in its own ring. Assume fur-
thermore that the additional pointers of every node point to
nodes in the other ring. In such a case, an mlookup will im-
mediately leave the initiating node’s ring, and hence termi-
nate. We do not see how such a pathological scenario could
occur due to a partition, but the gossip-based ring unifica-
tion algorithm (Algorithm 2) rectifies both disadvantages of
the simple ring unification algorithm. Also, the simple ring
unification is less robust to churn, as we discuss in the eval-
uation section.

Algorithm 2 Gossip-based Ring Unification Algorithm
1: every γ time units and detqueue 6= ∅ at p
2: 〈q, f〉 := detqueue.dequeue()
3: sendto p : MLOOKUP(q, f)
4: sendto q : MLOOKUP(p, f)
5: end event

6: receipt of MLOOKUP(id, f) from m at n
7: if id 6= n and id 6= succ then
8: if f > 1 then
9: f := f − 1

10: r := randomnodeinRT()
11: at r : detqueue.enqueue(〈id, f〉)
12: end if
13: if id ∈ (n, succ) then
14: sendto id : TRYMERGE(n, succ)
15: else if id ∈ (pred, n) then
16: sendto id : TRYMERGE(pred, n)
17: else
18: sendto closestprecedingnode(id) : MLOOKUP(id, f)
19: end if
20: end if
21: end event

22: receipt of TRYMERGE(cpred, csucc) from m at n
23: sendto n : MLOOKUP(csucc, F)
24: if csucc ∈ (n, succ) then
25: succ := csucc
26: end if
27: sendto n : MLOOKUP(cpred, F)
28: if cpred ∈ (pred, n) then
29: pred := cpred
30: end if
31: end event

Algorithm 2 is, as its name suggests, partly gossip-based.
The algorithm is essentially the same as the simple ring
unification algorithm, but it starts multiple such mergers at

4

random places on the rings. The basic idea is to augment
MLOOKUP(id), such that the current node randomly picks
a node r in its current routing table and starts a ring merger
between id and r. This change alone would, however, con-
sume too much resources.

Two mechanisms are used to avoid the algorithm to con-
sume too many messages, and therefore give rise to pos-
itive feedback cycles which congest the network. First,
instead of immediately triggering an MLOOKUP at a ran-
dom node, the event is placed in the corresponding node’s
detqueue, which only is checked periodically. Second, a
constant number of random MLOOKUPs are created. This is
regulated by a fanout parameter called F . Thus, the fanout
is decreased each time a random node is picked, and the
random process is only started if the fanout is larger than
1. The detqueue, therefore, holds tuples, which contain a
node identifier and the current fanout parameter. Similarly,
MLOOKUP takes the current fanout as a parameter.

4 Evaluation

In this section, we evaluate the two algorithms from var-
ious aspects and in different scenarios. There are two mea-
sures of interest: message complexity, and time complexity.
We differentiate between the completion and termination of
the algorithm. By completion we mean the time when the
rings have merged. By termination we mean the time when
the algorithm terminates sending any more messages. If
not said otherwise, message complexity is until termination,
while time complexity is until completion.

The evaluations are done in a stochastic discrete event
simulator [28] in which we implemented Chord. The sim-
ulator uses an exponential distribution for the inter-arrival
time between events (joins and failures). To make the sim-
ulations scale, the simulator is not packet-level. The time to
send a message is an exponentially distributed random vari-
able. The values in the graphs indicate averages of 18 runs
with different random seeds.

We first evaluate the message and time complexity of
the algorithms in the typical scenario where after merger,
many nodes simultaneously detect alive nodes in their pas-
sive lists. A worst case scenario can be when only a sin-
gle node detects the existence of another ring. Thereafter,
we evaluate the performance of the algorithms while node
joins and failures are taking place during the ring merging
process. Finally, we evaluate message complexity of the al-
gorithms when a node falsely believes that it has detected
another ring.

Each simulation scenario had the following structure.
Initially nodes join and fail. After a certain number of nodes
are part of the system, we insert a partition event, on which
the simulator divides the set of nodes into as many com-
ponents as requested by the partition event. A partition

event is implemented using lottery scheduling [32] to de-
fine the size of each partition. The simulator then drops
all messages sent from nodes in one partition to nodes in
another partition, thus simulating a network partition in the
underlying network and therefore triggering the failure han-
dling algorithms (see Section 2 and 3). Furthermore, Node
join and fail events are triggered in each partitioned com-
ponent. Thereafter, a network merger event simply again
allows messages to reach other network components, trig-
gering the detection of alive nodes in the passive lists, and
hence starting the ring unification algorithms. For the simu-
lations, time to send a message is exponentially distributed
with mean 5 for periodic stabilization, and is 1 time unit for
ring unification algorithms.

We simulated the simple ring unification algorithm and
the gossip-based ring unification algorithm for partitions
creating two components, and for fanout values from 1 to
7. For our simulation graphs, a fanout of 1 represents the
simple ring unification algorithm.

 10

 100

 1000

 10000

 1 2 3 4 5 6 7

T
im

e
un

its
 (

lo
g)

Fanout

2000 nodes
4000 nodes
6000 nodes

single node detecting merger - 6000 nodes
8000 nodes

10000 nodes

Figure 2: Evaluation of Time Complexity for a typical scenario
with multiple nodes detecting the merger for various network
sizes and fanouts.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7

M
es

sa
ge

s
(lo

g)

Fanout

2000 nodes
4000 nodes
6000 nodes

single node detecting merger - 6000 nodes
8000 nodes

10000 nodes

Figure 3: Evaluation of Message Complexity for a typical sce-
nario with multiple nodes detecting the merger for various net-
work sizes and fanouts.

Figure 2 and 3 show the time and message complexity
for a typical scenario where after a merger, multiple nodes

5

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 18 20 22 24 26 28 30 32 34

M
es

sa
ge

s
(lo

g)

Time units

2000 nodes
4000 nodes
6000 nodes
8000 nodes

10000 nodes

Figure 4: Comparing Time and Message complexity where
multiple nodes detect the merger for various network sizes and
fanouts.

detect the merger and thus start the ring-unification algo-
rithm. The number of nodes detecting the merger depend
on the scenario, in our simulations, it was 25-35% of the
total nodes. The evaluation shows that while the time com-
plexity is less for multiple nodes detecting compared to a
single node detecting the merger, the message complexity
is more when multiple nodes detect the merger.

As can be seen in Figures 2 and 3, the simple ring unifi-
cation algorithm (F = 1) consumes minimum messages but
takes maximum time. For higher values of F , the time com-
plexity decreases while the message complexity increases.
Increasing the fanout after a threshold value (around 3−4 in
this case) will not considerably decrease the time complex-
ity, but will just generate many messages. Figure 4 shows
a tradeoff between time complexity and message complex-
ity. Choosing to have less time for completion of mergers
will create more messages, and vice versa. As can be seen
from Figure 3, the algorithm generates a lot of messages
before termination, though the completion property might
have been satisfied earlier. We would like to further explore
optimizations to reduce the number of messages sent.

For the rest of the evaluations, we use a worst case sce-
nario where only a single node detects the merger.

Next, we evaluate rings unification under churn, i.e.
nodes join and fail during the merger. Since we are us-
ing a scenario where only one node detects the merger,
with a very low probability, the algorithm may fail to
complete and the merged overlay may not converge un-
der churn, especially for simple ring unification and low
fanouts. The reason being intuitive: for simple unifica-
tion, the two MLOOKUPs generated by the node detecting
the merger while traveling through the network may fail as
the node forwarding the MLOOKUP may fail under churn.
With higher values of F and in typical scenarios where mul-
tiple nodes detect the merger, the algorithm becomes more
robust to churn as it creates multiple MLOOKUPs. The re-
sults presented in Figure 6 and 5 are only when the rings

successfully converge. For simulation, after a merge event,
we generate events of joins and fails until the unification
algorithm terminates. With high churn, we mean that the
inter-arrival time between events of joins and fails is less,
thus representing highly dynamic conditions. Choosing a
high inter-arrival time between events will create less joins
and fails and thus churn will be less. For the simulations
presented here, we choose inter-arrival time between events
of joins and failures to be 30 units for high churn and 45
units for low churn, and an equal probability for a event to
be a join or a fail. Figure 6 and 5 show how different val-
ues of F affect the convergence of the rings under different
levels of churn, mainly showing the algorithm works un-
der churn without effecting message and time complexity
much.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 7

M
es

sa
ge

s
(lo

g)

Fanout

3000 nodes - no churn
3000 nodes - high churn
3000 nodes - low churn
6000 nodes - no churn

6000 nodes - high churn
6000 nodes - low churn

Figure 5: Evaluation of Time Complexity under churn

 10

 100

 1000

 10000

 1 2 3 4 5 6 7

T
im

e
un

its
 (

lo
g)

Fanout

3000 nodes - no churn
3000 nodes - high churn
3000 nodes - low churn
6000 nodes - no churn

6000 nodes - high churn
6000 nodes - low churn

Figure 6: Evaluation of Message Complexity under churn

Finally, we evaluate the scenario where a node may
falsely detect a merger. Figure 7 shows the message com-
plexity of the algorithm in case of a false detection. As can
be seen, for lower fanout values, the message complexity
is less. Even for higher fanouts, the number of messages
generated are acceptable, thus showing that the algorithm
is lean. We believe this to be important as most SONs do
not have perfect failure detectors, and hence can give rise to
inaccurate suspicions.

6

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5 6 7

M
es

sa
ge

s

Fanout

2000 nodes
4000 nodes
6000 nodes
8000 nodes

10000 nodes

Figure 7: Evaluation of Message Complexity in case a node
falsely detects a merger for various network sizes and fanouts.

Our simulations show that a fanout value of 4 is good for
a system with several thousand nodes, even with respect to
churn and false-positives.

5 Related Work

Much work has been done to study the effects of churn
on a structured overlay network [22], showing how over-
lays can cope with massive node joins and failures, thus
showing how overlays are resilient to partitions. Datta et
al. [4] have presented the challenges of merging two over-
lays, claiming that ring-based networks cannot operate un-
til the merger operation completes. In contrast, we show
how unification can work under churn while the merger op-
eration is not complete. Birman [2] argued that ring-based
SONs are inherently ill-suited for dealing with network par-
titions, while we show how ring-based SONs can be modi-
fied to deal with partitions.

The problem of constructing a SON from a random
graph is, in some respects, similar to merging multiple
SONs after a network merger, as the nodes may get ran-
domly connected after a partition heals. Shaker et al. [27]
have presented a ring-based algorithm for nodes in arbitrary
state to converge into a directed ring topology. Their ap-
proach is different from ours, in that they provide a non-
terminating algorithm which should be used to replace all
join, leave, and failure handling of an existing SON. Re-
placing the topology maintenance algorithms of a SON
may not always be feasible, as SONs may have intri-
cate join and leave procedures to guarantee lookup consis-
tency [21, 19, 9]. In contrast, our algorithm is a terminating
algorithm that works as a plug-in for an already existing
SON.

Montresor et al. [25] show how Chord [29] can be cre-
ated by a gossip-based protocol [14]. However, their al-
gorithm depends on an underlying membership service like
Cyclon [31], Scamp [8] or Newscast [15]. Thus the un-
derlying membership service has to first cope with net-

work mergers (a problem worth studying in its own right),
whereafter T-Chord can form a Chord network. We believe
one needs to investigate further how these protocols can be
combined, and their epochs be synchronized, such that the
topology provided by T-Chord is fed back to the SON when
it has converged. Though the general performance of T-
Chord has been evaluated, it is not known how it performs
in the presence of network mergers when combined with
various underlying membership services.

The problem of network partitions and mergers has
been studied in other distributed systems like in distributed
databases [5] and distributed file systems [30]. These stud-
ies focus on problems created by the partition and merger
on the data level, while we focus on the routing level.

6 Conclusion

We have argued that the problem of partitions and merg-
ers in structured peer-to-peer systems, when the underlying
network partitions and recovers, is of crucial importance.
We have presented a simple and a gossip-based algorithm
for merging similar ring-based structured overlay networks
after the underlying network merges. Our algorithm is quite
fast compared to the basic linear solution presented by Datta
et al. [4]. We have shown how the algorithm can be tuned
to achieve a tradeoff between the number of messages con-
sumed and the time before the overlay converges. We have
evaluated our solution in realistic dynamic conditions, and
showed that with high fanout values, the algorithm can con-
verge quickly under churn. We have also shown that our so-
lution generates few messages even if a node falsely starts
the algorithm in an already converged SON.

We tried many variations of the algorithms before reach-
ing those that are reported in this paper. Initially, we had an
algorithm that was not gossip-based, i.e. was not periodic
and did not have any randomization. Albeit the algorithm
was quite fast, it heavily over-consumed messages, mak-
ing it infeasible for a large scale network. For that reason,
we added the fanout parameter, and made it run periodi-
cally. Without randomization, we could construct patholog-
ical scenarios, in which that algorithm would not be able to
merge the rings.

References

[1] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
Scalable Multi-Attribute Range Queries. In Proceedings of the ACM
SIGCOMM 2004 Symposium on Communication, Architecture, and
Protocols, pages 353–366, Portland, OR, USA, March 2004. ACM
Press.

[2] Ken Birman. Gossip Algorithms and Emergent Shape. Invited talk at
the Workshop on Gossip-based Computer Networking at the Lorentz
Center, Leiden, Netherlands, December 2006.

[3] E. Brewer. Towards Robust Distributed Systems, invited talk at the
19th Annual ACM Symposium on Principles of Distributed Comput-
ing (PODC’00), 2000.

7

[4] A. Datta and K. Aberer. The Challenges of Merging Two Sim-
ilar Structured Overlays: A Tale of Two Networks. In Proceed-
ings of the First International Workshop on Self-Organizing Systems
(IWSOS’06), volume 4124 of Lecture Notes in Computer Science
(LNCS), pages 7–22. Springer-Verlag, 2006.

[5] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a
partitioned network: a survey. ACM Computing Surveys, 17(3):341–
370, 1985.

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms
for Replicated Database Maintenance. In Proceedings of the 7th
Annual ACM Symposium on Principles of Distributed Computing
(PODC’87), pages 1–12, New York, NY, USA, 1987. ACM Press.

[7] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient Broad-
cast in Structured P2P Netwoks. In Proceedings of the 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS’03), volume
2735 of Lecture Notes in Computer Science (LNCS), pages 304–314,
Berkeley, CA, USA, 2003. Springer-Verlag.

[8] A. J. Ganesh, A.-M. Kermarrec, and L Massoulié. SCAMP: Peer-to-
Peer Lightweight Membership Service for Large-Scale Group Com-
munication. In Proceedings of the 3rd International Workshop on
Networked Group Communication (NGC’01), volume 2233 of Lec-
ture Notes in Computer Science (LNCS), pages 44–55, London, UK,
2001. Springer-Verlag.

[9] A. Ghodsi. Distributed k-ary System: Algorithms for Distributed
Hash Tables. PhD dissertation, KTH—Royal Institute of Technol-
ogy, Stockholm, Sweden, December 2006.

[10] A. Ghodsi, L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. Self-
Correcting Broadcast in Distributed Hash Tables. In Proceedings of
the 15th International Conference, Parallel and Distributed Comput-
ing and Systems, Marina del Rey, CA, USA, November 2003.

[11] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. ACM Spe-
cial Interest Group on Algorithms and Computation Theory News,
33(2):51–59, 2002.

[12] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica. The impact of DHT routing geometry on resilience
and proximity. In Proceedings of the ACM SIGCOMM 2003 Sym-
posium on Communication, Architecture, and Protocols, pages 381–
394, New York, NY, USA, 2003. ACM Press.

[13] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
Skipnet: A scalable overlay network with practical locality proper-
ties. In Proceedings of the 4th USENIX Symposium on Internet Tech-
nologies and Systems (USITS’03), Seattle, WA, USA, March 2003.
USENIX.

[14] M. Jelasity and Ö. Babaoglu. T-man: Gossip-based overlay topology
management. In Proceedings of 3rd Workshop on Engineering Self-
Organising Systems (EOSA’05), volume 3910 of Lecture Notes in
Computer Science (LNCS), pages 1–15. Springer-Verlag, 2005.

[15] M. Jelasity, W. Kowalczyk, and M. van Steen. Newscast Computing.
Technical Report IR–CS–006, Vrije Universiteit, November 2003.

[16] M. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-optimal
Distributed Hash Table. In Proceedings of the 2nd Interational Work-
shop on Peer-to-Peer Systems (IPTPS’03), volume 2735 of Lecture
Notes in Computer Science (LNCS), pages 98–107, Berkeley, CA,
USA, 2003. Springer-Verlag.

[17] B. Leong, B. Liskov, and E. Demaine. EpiChord: Parallelizing the
Chord Lookup Algorithm with Reactive Routing State Management.
In 12th International Conference on Networks (ICON’04), Singa-
pore, November 2004. IEEE Computer Society.

[18] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-
efficient management of DHT routing tables. In Proceedings of the
2nd USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’05), Boston, MA, USA, May 2005. USENIX.

[19] X. Li, J. Misra, and C. G. Plaxton. Brief Announcement: Concurrent
Maintenance of Rings. In Proceedings of the 23rd Annual ACM Sym-
posium on Principles of Distributed Computing (PODC’04), page
376, New York, NY, USA, 2004. ACM Press.

[20] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Observations
on the Dynamic Evolution of Peer-to-Peer Networks. In Proceed-
ings of the First International Workshop on Peer-to-Peer Systems
(IPTPS’02), volume 2429 of Lecture Notes in Computer Science
(LNCS). Springer-Verlag, 2002.

[21] N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic Data Access
in Distributed Hash Tables. In Proceedings of the First Intera-
tional Workshop on Peer-to-Peer Systems (IPTPS’02), Lecture Notes
in Computer Science (LNCS), pages 295–305, London, UK, 2002.
Springer-Verlag.

[22] R. Mahajan, M. Castro, and A. Rowstron. Controlling the Cost of
Reliability in Peer-to-Peer Overlays. In Proceedings of the 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS’03), volume
2735 of Lecture Notes in Computer Science (LNCS), pages 21–32,
Berkeley, CA, USA, 2003. Springer-Verlag.

[23] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and
dynamic emulation of the butterfly. In Proceedings of the 21st
Annual ACM Symposium on Principles of Distributed Computing
(PODC’02), New York, NY, USA, 2002. ACM Press.

[24] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed
Hashing in a Small World. In Proceedings of the 4th USENIX Sym-
posium on Internet Technologies and Systems (USITS’03), Seattle,
WA, USA, March 2003. USENIX.

[25] A. Montresor, M. Jelasity, and Ö. Babaoglu. Chord on Demand.
In Proceedings of the 5th International Conference on Peer-To-Peer
Computing (P2P’05). IEEE Computer Society, August 2005.

[26] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems. In Proceed-
ings of the 2nd ACM/IFIP International Conference on Middleware
(MIDDLEWARE’01), volume 2218 of Lecture Notes in Computer
Science (LNCS), pages 329–350, Heidelberg, Germany, November
2001. Springer-Verlag.

[27] A. Shaker and D. S. Reeves. Self-Stabilizing Structured Ring Topol-
ogy P2P Systems. In Proceedings of the 5th International Con-
ference on Peer-To-Peer Computing (P2P’05), pages 39–46. IEEE
Computer Society, August 2005.

[28] SicsSim, 2007. http://dks.sics.se/p2p07partition/.

[29] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Transactions
on Networking (TON), 11(1):17–32, 2003.

[30] D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer,
and C. Hauser. Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP’95), pages 172–
183. ACM Press, December 1995.

[31] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays. Journal of
Network and Systems Management, 13(2), 2005.

[32] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In Proceedings of the
First Symposium on Operating Systems Design and Implementation
(OSDI’94), pages 1–11. USENIX, November 1994.

8

