
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)
von der Fakultät für Wirtschaftswissenschaften
der Universität Fridericiana zu Karlsruhe
genehmigte Dissertation.

Ontology Engineering and Routing in
Distributed Knowledge Management

Applications

von

Dipl.-Wi.-Ing. Christoph Tempich

Tag der mündlichen Prüfung: 01.08.2006
Referent: Prof. Dr. Rudi Studer

1. Korreferent: Prof. Dr. Hagen Lindstädt
2. Korreferent: Prof. Dr. Steffen Staab

To my family.

Abstract

The dynamics of contemporary business conditions has caused a decentralization of the
traditional enterprize organization and a shift towards transferring responsibilities from
individuals organized in centralized hierarchical structures to autonomous teams. In par-
ticular innovative and value creating knowledge workers involved in research and devel-
opment, marketing and management activities are affected by this change.

This thesis explores the implications this organizational trend has on knowledge man-
agement systems and proposes solutions to some of the arising challenges. It introduces
a decentralized knowledge management system allowing knowledge workers to share
knowledge in a peer-to-peer fashion. Within this system ontologies provide the conceptual
backbone to represent and share the knowledge located at individual sites. We investi-
gate such decentralized ontology-based knowledge management systems from an orga-
nizational and a technical perspective. In particular the work addresses the building and
maintenance of ontologies and the ontology-based routing of queries in this distributed
context.

DILIGENT proposes an ontology engineering methodology to support the building and
evolution of ontologies in decentralized settings. A major concern in such an environment
is the construction of consensually shared ontologies to enable knowledge exchange. With
this respect the methodology aids ontology users in handling such a shared ontology, while
preserving their autonomy by allowing for local variations. It includes an argumentation
framework which structures ontology engineering discussions, ensuring the coherence and
traceability of the process and facilitating later reuse by explicitly encoding assumptions
underlying certain modeling decisions. The DILIGENT methodology is supported by tools
and is empirically validated within three case studies.

REMINDIN’ is an ontology-based routing algorithm demonstrating the value of shared
ontologies for knowledge retrieval in peer-to-peer knowledge management systems. We
examine available network topologies with respect to the requirements of a distributed
knowledge management scenario, concluding that pure unstructured peer-to-peer networks
meet these requirements. REMINDIN’ is a routing algorithm for such network topologies.
It exploits social metaphors in conjunction with semantic information in order to select and
forward queries to remote peers. We tested the algorithm through simulations resembling
real-world ontology-based peer-to-peer systems. This evaluation showed that REMIND-
IN’ performs better in comparison to related approaches.

The thesis demonstrates that ontology-based distributed knowledge management is fea-
sible from an organizational as well as technical point of view. The requirements of the

i

Abstract

presented use cases are similar to the requirements of the Semantic Web indicating that the
proposed solutions may also be of value in this broader context.

ii

Acknowledgements

This thesis is the result of my work as a research assistant at the Institute AIFB at the Uni-
versity of Karlsruhe, Germany. In this time I had the chance to collaborate with many peo-
ple who contributed to the completion of this thesis with their feedback and their research.
Further I would like to acknowledge that this research would not have been possible with-
out the commitment of the European Union through the projects SWAP and SEKT.

First of all, I would like to express my gratitude to my advisor, Prof. Dr. Rudi Studer,
who has given me the freedom to conduct research in an innovative area and guided me
towards the completion of my goals. I also thank Prof. Dr. Steffen Staab who mediated
my first contacts with the Semantic Web and inspired major parts of this work with his
valuable comments and ideas.

Moreover, I am grateful to all my colleges from the University of Karlsruhe for the
excellent working atmosphere and the enjoyable teamwork. In particular I thankfully
mention Marc Ehrig, Peter Haase and Dr. York Sure for the prolific collaboration within
research projects and for the many unforgettable moments in various places of the world.

I am also much obliged to H. Sofia Pinto and Alexander Löser for the fruitful discussions
and to Elena Simperl for the invaluable comments on the elaboration and the wording of
this thesis.

Finally my thanks go to my family and friends who made this work possible through
their understanding and support.

July 2006, Karlsruhe

Christoph Tempich

iii

Contents

Abstract i

Acknowledgements iii

Contents v
List of Figures . ix
List of Tables . xi
List of Algorithms . xiii

Acronyms xv

I. Foundations 1

1. Introduction & Overview 3
1.1. Motivation . 3
1.2. Goals and Contributions of This Thesis 5
1.3. Reader Guide . 8

2. Review of Related Areas 11
2.1. Knowledge Management . 11

2.1.1. Distributed Knowledge Management 15
2.1.2. Distributed Knowledge Management Systems 16

2.2. Ontologies . 17
2.2.1. Ontology Use in Information Systems 20
2.2.2. Ontology Engineering Methodologies 21

2.3. Argumentation . 24
2.3.1. Toulmin Model . 25
2.3.2. Issue Based Information Systems 25
2.3.3. Rhetorical Structure Theory . 25

2.4. Peer-to-Peer Systems . 27
2.4.1. Challenges for Peer-to-Peer Data Sharing Applications 28
2.4.2. Routing in Peer-to-Peer Systems 29

v

Contents

3. SWAP: A Semantic Peer-to-Peer System 33
3.1. Use Case Description . 33

3.1.1. The IBIT Use Case . 33
3.1.2. The Bibster Use Case . 34

3.2. Requirements for a Semantic Peer-to-Peer System 34
3.2.1. Infrastructure Level . 35
3.2.2. Application Level . 35
3.2.3. Community Level . 36

3.3. A Generic Semantic Peer-to-Peer System Architecture 37
3.4. SWAP Application Metadata . 40

3.4.1. SWAP Metadata Model . 40
3.4.2. The SWAP Knowledge Model 41

3.5. Summary . 42

II. The DILIGENT Methodology 43

4. DILIGENT Ontology Engineering 45
4.1. Feasibility Study . 45

4.1.1. Ontology Engineering Use Case 45
4.1.2. Requirements for Ontology Engineering Methodologies 46

4.2. The DILIGENT Process . 48
4.2.1. Key Roles . 48
4.2.2. Process Stages . 49

4.3. DILIGENT Detailed Process Description 51
4.3.1. Central Build . 52
4.3.2. Local Adaptation . 56
4.3.3. Central Analysis . 62
4.3.4. Central Revision . 67
4.3.5. Local Update . 70

4.4. The DILIGENT Argumentation Framework 73
4.4.1. Arguments in the DILIGENT Process 74
4.4.2. The Argumentation Process . 74
4.4.3. Building an Argumentation Ontology 77
4.4.4. Argument Selection for the Argumentation Ontology 85

4.5. DILIGENT Tool Support . 88
4.5.1. Requirements Derived from the Process Stages 89
4.5.2. DILIGENT OntoEdit Plugin . 93
4.5.3. DILIGENT Argumentation Tools 104

4.6. Summary and Outlook . 106

vi

Contents

5. Evaluation of the DILIGENT Methodology 109
5.1. Evaluating a Methodology . 109

5.1.1. Goal Free . 111
5.1.2. Professional Review . 112
5.1.3. Case Study . 112

5.2. Goal Free Evaluation . 114
5.3. Professional Review . 114

5.3.1. DILIGENT Process Evaluation 114
5.3.2. Argumentation Framework Evaluation 116

5.4. Case Studies . 117
5.4.1. The IBIT Case Study . 118
5.4.2. The AIFB Case Study . 131
5.4.3. The Legal Case Study . 139

5.5. Summary and Outlook . 150

III. The REMINDIN’ Routing Algorithm 151

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’ 153
6.1. Feasibility Study . 153

6.1.1. Semantic Routing Use Cases . 153
6.1.2. Requirements for Semantic Routing Algorithms 155
6.1.3. Selection of a Routing Approach 156

6.2. Foundations of the REMINDIN’ Routing Algorithm 157
6.2.1. Routing Based on Social Metaphors 158
6.2.2. Routing with Semantic Overlay Layers 159

6.3. The REMINDIN’ Semantic Overlay Layers 160
6.3.1. Content Provider Layer . 161
6.3.2. Recommender Layer . 164
6.3.3. Ranking Content Provider and Recommender Shortcuts 165
6.3.4. Bootstrapping Layer . 166
6.3.5. Default Network Layer . 167

6.4. Deploying Semantic Overlay Layers for Peer Selection 167
6.4.1. Peer Selection Process . 167
6.4.2. Peer Selection Algorithms . 168

6.5. Summary . 177

7. Evaluation of REMINDIN’ 179
7.1. Evaluation Criteria for Routing Algorithms 179
7.2. Evaluation Setting . 181

7.2.1. Evaluation Data Sets . 181
7.2.2. Content Distribution . 183
7.2.3. Queries and Query Distribution 186

vii

Contents

7.2.4. Configuration of the Simulation 188
7.3. Evaluation Hypothesis . 190
7.4. Evaluation Results . 192
7.5. Summary and Outlook . 207

IV. Related Work & Conclusions 209

8. Related Work 211
8.1. Related Work on Distributed Knowledge Management Systems 211
8.2. Related Work To DILIGENT . 212

8.2.1. Related Ontology Engineering Methodologies 212
8.2.2. Related Argumentation Frameworks 216

8.3. Related Work on Routing in Peer-to-Peer Networks 217
8.3.1. Routing Algorithms for Centralized Peer-to-Peer Networks 218
8.3.2. Routing Algorithms for Super-Peer-Based Peer-to-Peer Networks 218
8.3.3. Related Routing Algorithms for Decentralized Peer-to-Peer Net-

works . 219
8.4. Summary . 224

9. Conclusions 225
9.1. Summary . 225
9.2. Outlook . 227

V. Appendix 229

A. Evaluating the SWAP Metadata Model 231
A.1. Evaluation Methodology . 231
A.2. Evaluation Results . 231

Bibliography 235

Index 255

viii

List of Figures

2.1. Knowledge Management Core Processes 13
2.2. Core Ontology Engineering Activities 22
2.3. Categorization of Routing Approaches 32

3.1. Abstract Architecture of a SWAP Node 37
3.2. SWAP Metadata Model . 40

4.1. Distributed Ontology Engineering: Overview 50
4.2. DILIGENT Process . 51
4.3. Central Build . 53
4.4. Local Adaptation . 58
4.5. Central Analysis . 64
4.6. Central Revision . 68
4.7. Local Update . 71
4.8. DILIGENT Argumentation Ontology 82
4.9. XAROP Application . 96
4.10. Personalized Views on Local Ontologies 97
4.11. Semi-automatic Ontology Creation . 99
4.12. Access to Remote Ontologies . 100
4.13. Local Customization of the Local Ontology 101
4.14. Ontology Alignment Support . 102
4.15. DILIGENT OntoEdit Plug-in . 103
4.16. Wiki-based Argumentation . 105

5.1. Evolution of the Shared Ontology . 122
5.2. User Extensions to the Shared Ontology 124
5.3. Ontology of Judicial Professional Knowledge 148
5.4. Wiki-based Argumentation in the Legal Case Study 149

6.1. Resource Specific Shortcut Creation . 163

7.1. Bibster Data Set: Class Distribution on Peers 184
7.2. Bibster Data Set: Instance Distribution on Peers 184
7.3. DMOZ Data Set: Class Distribution on Peers 185
7.4. DMOZ Data Set: Instance Distribution on Peers 185
7.5. Synthetic Data Set: Class Distribution on Peers 186

ix

List of Figures

7.6. Synthetic Data Set: Instance Distribution on Peers 187
7.7. Volatile Network: Number of Peers Online 189
7.8. Static Network: Comparison of Query Routing Algorithms: Recall 193
7.9. Static Network: Comparison of Query Routing Algorithms: Messages per

Query . 194
7.10. Volatile Network: Comparison of Query Routing Algorithms: Recall . . . 195
7.11. Volatile Network: Comparison of Query Routing Algorithms: Messages

per Query . 196
7.12. Volatile Network: Comparison of Query Routing Algorithms: Message Gain196
7.13. Volatile Network: Comparison of Query Routing Algorithms: Time to

First Response . 197
7.14. Comparison of Query Routing Algorithms – Conjunctive Queries – Bib-

ster Data Set: Recall . 198
7.15. Comparison of Query Routing Algorithms – Conjunctive Queries – Bib-

ster Data Set: Messages per Query . 198
7.16. Comparison of Query Routing Algorithms – Conjunctive Queries – Syn-

thetic Data Set: Recall . 199
7.17. Comparison of Query Routing Algorithms – Conjunctive Queries – Syn-

thetic Data Set: Messages per Query . 199
7.18. Performance Contribution of each Overlay Layer 201
7.19. Influence of the Shortcut Index Size . 202
7.20. Influence of Similarity Parameter Settings: Recall 203
7.21. Influence of Similarity Parameter Settings: Messages 203
7.22. Influence of Similarity Parameter Settings: Message Gain 204
7.23. Influence of Similarity Parameter Settings – Query Relaxation Approach:

Message Gain . 204
7.24. Influence of Indexing Parameter Settings: Message Gain 205
7.25. Influence of Indexing Parameter Settings: Average Path Length 206
7.26. Influence of Indexing Parameter Settings: Clustering Coefficient 206

A.1. First Time Storage Annotation Times 232
A.2. First Time Storage Annotation Times Increasing the Number of Peers . . 233
A.3. Time to Retrieve a Swabbi-object . 233
A.4. Time to Retrieve All Peers . 234

x

List of Tables

2.1. Requirements for Distributed Knowledge Management Systems 16
2.2. IBIS Terminology . 26

4.1. Types of Conflict . 77
4.2. List of Argumentation Inconsistencies 78
4.3. DILIGENT Argumentation Ontology . 84
4.4. List of Tool Requirements for DILIGENT 94

5.1. DILIGENT and Related Ontology Engineering Methodologies 115
5.2. DILIGENT in the Case Studies . 117
5.3. Argument Selection . 137

6.1. Selection of a Routing Approach for Distributed Knowledge Management 156
6.2. Example: Shared Ontology . 161
6.3. Example: Content Distribution . 162
6.4. Example: Content Provider Shortcut Index 164
6.5. Example: Recommender Shortcut Index 165
6.6. Example: Content and Recommender Shortcut Index 166
6.7. Example: Shortcut Index Update . 172
6.8. Query Relaxation Order . 174

7.1. DMOZ Open Directory Data Set . 182
7.2. Simulation Parameter Setting . 191

xi

List of Algorithms

1. REMINDIN’ Peer Selection . 169
2. Resource Dependent Peer Selection . 170
3. Bootstrapping Peer Selection . 171
4. Random Peer Selection . 171
5. Query Relaxation Based Peer Selection 175
6. Query Relaxation Algorithm . 175
7. Similarity Based Peer Selection . 176

xiii

Acronyms

AI Artificial Intelligence

DHT distributed hash table

DILIGENT DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies

DKM distributed knowledge management

DL description logic

FAQ frequently asked questions

FIFO First In, First Out

IBIS Issue Based Information Systems

IBL Interest based locality

IT Information Technology

KM knowledge management

LNR Local Node Repository

LRU least-recently-used

OEE ontology engineering environment

OE ontology engineering

OJPK Ontology of Judicial Professional Knowledge

OM organizational memories

OPLK Ontology of Professional Legal Knowledge

ORSD ontology requirements specification document

OTK On-To-Knowledge

P2P peer-to-peer

PLK professional legal knowledge

xv

Acronyms

RDFS RDF Schema

RDF Resource Description Framework

REMINDIN’ Routing Enabled by Memorizing INformation about Distributed
INformation

RST rhetorical structure theory

TTL time to live

W3C World Wide Web consortium

WWW World Wide Web

xvi

Part I.

Foundations
Research is an activity

that contributes to the understanding
of a phenomenon.

— Kuhn (1996),
Lekatos (1978)

1. Introduction & Overview

Overview

In this part we provide the foundations of the presented thesis.
We start with an introduction and an overview of the contribu-
tions. The following Chapter 2 reviews related areas introduc-
ing “distributed knowledge management” as the application field
of our work and “ontologies” to formalize knowledge. We use
“argumentation” theory to facilitate the development of shared
ontologies in distributed systems. We present “peer-to-peer sys-
tems” to connect nodes in a distributed knowledge management
scenario. This part ends with Chapter 3 presenting an implemen-
tation of a peer-to-peer-based distributed knowledge management
system.

This chapter starts with an introduction and motivation in Sec-
tion 1.1. Next, the contributions of this work are summarized in
Section 1.2. The chapter ends with a reader guide that sketches
the overall structure of the work in Section 1.3.

1.1. Motivation

Peter F. Drucker predicted in 1988 that the pervasive adoption of information technologies
in every day business correlated with changes in demographics and economics, will induce
a major reorganization of companies (Drucker, 1988). In order to cope with the dynamics
of contemporary business conditions enterprises need to partially replace their traditional
centralistic hierarchical organizational structures with more decentralized forms based on
accountable autonomous teams. To date these predictions have become reality for organi-
zational units responsible for innovation and value creation in research and development,
marketing or management (Davenport, 2005). These departments primarily consist of so-
called “knowledge workers”, persons who

[. . .] have high degrees of expertise, education, or experience, and the pri-
mary purpose of their jobs involves the creation, distribution, or application
of knowledge.

(Davenport & Prusak, 1998)

3

1. Introduction & Overview

Consequently, their work mainly results in intellectual property and intangible assets.

As most of the tasks located within these novel organizational units are completed in col-
laboration individual efficiency and productivity scores are considerably dependant upon
factors such as the corporate culture and the general work environment.

For the completion of their tasks, knowledge workers are required to

“. . . take decisions all the time, guided by the knowledge base they have access
to, the corporate culture they have embraced, and the colleagues with whom
they are constantly communicating.”

(The Economist, 2006a)

The technological background of these processes is provided by so-called “knowledge
management systems”. They offer their users an inventory of facilities targeted at the
creation, organization, storage, retrieval, and reuse of knowledge (Probst et al., 1998;
Alavi & Leidner, 2001)—applications for groupware, workflow management, document
and content management, information sharing, search and retrieval—assisting them dur-
ing product development, process improvement, project management and human resource
management (Tsui, 2003).

The decentralization trend reported at organizational level is however not accompanied
by similar advances as regarding technological support; the architecture of current knowl-
edge management systems, which are being used by decentralized autonomous teams, has
a centralistic hierarchical control layout. Likewise in the case of organizational structures
this is not adequate when it comes to the exchange of individual knowledge, ideas and
experiences (Maier & Hädrich, 2004). Accounting for this fact Bonifacio et al. (2002)
propose a paradigm shift towards distributed knowledge management, in which individual
knowledge resides decentralized at the knowledge worker while the system organizes the
knowledge exchange. Distributed knowledge management systems are less costly than
their centralized counterparts, as they require less infrastructure investment and do not
cause large set-up costs (Maier & Hädrich, 2004). They also reduce the barriers of en-
try for knowledge sharing as being part of individual workspaces, but these systems are
associated with several technological challenges:

Knowledge sharing As knowledge creation is inherently subjective, it is likely that in
a distributed scenario various ways of structuring knowledge will emerge. In order
to share knowledge across the network it requires a uniform representation.

Knowledge location Before knowledge can be exchanged it is located within the net-
work of knowledge workers.

Security and trust Shared knowledge can be sensitive and should not be accessible to
everybody. Without central control of the published knowledge it is not clear to
which extent available knowledge can be trusted.

4

1.2. Goals and Contributions of This Thesis

This work focuses on distributed knowledge management systems and their integration
in organizational structures. In particular we address aspects related to the creation and
location of knowledge as part of these systems. A promising approach to structure organi-
zational knowledge and enable knowledge access and exchange in distributed knowledge
management scenarios is introduced by Fensel et al. (2003). The core of this proposal
is the notion of “ontologies” understood as formal and shared understanding of a domain
of interest (cf. (Uschold & Grüninger, 1996)). Ontologies communicate a well-defined
meaning of the represented knowledge and therefore enable collaboration between knowl-
edge workers. The communicated meaning forms the basis for mediating between local
knowledge structures.

The realization of this scenario implies however new methodological and technological
means to adequately support ontology engineering processes in distributed environments.

Technologically in (Fensel et al., 2003) knowledge workers are interconnected via a
peer-to-peer infrastructure providing basic network services, such as message exchange
and authentication. However, current solutions to information location in peer-to-peer
systems are limited to the usage of keys and keywords for query processing and routing
(Oram, 2001; Androutsellis-Theotokis & Spinellis, 2004). Given a formal representation
of peer knowledge by means of ontologies these approaches can additionally take into
account the semantic similarities between peers to improve the query results at data level.

1.2. Goals and Contributions of This Thesis

The challenge to technically and organizationally support the collaboration between au-
tonomous and decentralized teams has been the starting point for a number of research
projects (cf. e.g., EDUTELLA1, EDAMOK2, SEWASIE3, SWAP) and workshops (cf. e.g.,
AMKM (van Elst et al., 2003; Abecker et al., 2004), P2PKM (Zaihrayeu & Bonifacio,
2004; Zaihrayeu & Robertson, 2005) and P2PIR (Nottelmann et al., 2005)). It has also
been a topic of interest at knowledge management conferences (cf. e.g., CIKM (Herzog
et al., 2005), PAKM (Karagiannis & Reimer, 2004) and IKNOW (Tochtermann & Mau-
rer, 2004)) and conferences related to the Semantic Web (cf. e.g., WWW (W3C, 2004),
ISWC (Gil et al., 2005) and ESWC (Bussler et al., 2005)).

The work presented in this thesis is the result of research performed within the EU
project SWAP4 and the EU integrated project SEKT5. The SWAP project focuses on the
combination of Semantic Web languages for knowledge representation with peer-to-peer
knowledge exchange for distributed knowledge management. The SEKT project focuses

1see http://edutella.jxta.org/
2see http://edamok.itc.it/
3see http://www.sewasie.org/
4EU IST-2001-34103 project SWAP, see http://swap.semanticweb.org/
5EU IST-2003-506826 integrated project SEKT, see http://www.sekt-project.com/

5

http://edutella.jxta.org/
http://edamok.itc.it/
http://www.sewasie.org/
http://swap.semanticweb.org/
http://www.sekt-project.com/

1. Introduction & Overview

on the integration of natural language processing techniques, machine learning techniques
and ontologies for knowledge management in general.

The thesis addresses the following research questions (RQs) arising in a distributed
knowledge management setting with ontology-based knowledge representation.

1. Which system architecture is required to support distributed knowledge
management?

a) Which knowledge can be shared with a distributed knowledge management
system?

b) Which metadata are required to represent knowledge in a distributed knowl-
edge management system?

c) How can knowledge workers exchange knowledge with a distributed knowl-
edge management system?

2. How can knowledge workers build and maintain consensual ontologies?

a) Which process supports the creation of consensual ontologies in a decentral-
ized, autonomous and rapidly changing environment?

b) How can knowledge workers reach agreement for a consensual ontology?

c) Can tools support such a process?

3. How can a knowledge worker locate knowledge in the distributed knowledge
management system?

a) Which requirements should an approach to find knowledge meet?

b) Can ontologies improve the search quality and search efficiency?

c) Which knowledge creation processes can be supported by ontology-based dis-
tributed knowledge management systems?

This thesis elaborates on these questions presenting an application, a methodology and
an algorithm.

As part of the SWAP project we developed the SWAP architecture and the SWAP sys-
tem as a reference implementation, cf. RQ 1 (Tempich et al., 2003). The SWAP systems
offers services for knowledge creation from knowledge workers local information and its
exchange with other nodes in a peer-to-peer network, cf. RQ 1a. In the SWAP system
knowledge is represented in terms of the Semantic Web language RDF(S). The SWAP
metadata model describes the local knowledge and forms the basis for knowledge loca-
tion within the network, cf. RQ 1b (Broekstra et al., 2003). XAROP extends the SWAP
system and is an application tailored for the special needs of knowledge sharing in virtual
organizations (Tempich et al., 2004c); Bibster extends the SWAP system allowing for the

6

1.2. Goals and Contributions of This Thesis

exchange of bibliographic metadata in a community of researchers, cf. RQ 1c (Haase et al.,
2004a).

XAROP offers several ways to adapt an initial ontology according to the knowledge
workers needs. The emerging heterogeneity in such a network increases very quickly
making an alignment between different conceptualizations very difficult. We propose the
DILIGENT methodology defining a process and activities associated with the adaptation
of local ontologies and the reintegration of different local adaptations into a shared model,
cf. RQ 2 (Tempich et al., 2006; Vrandecic et al., 2005). The shared ontology represents
the consensual knowledge in the team, while local ontologies represent individual knowl-
edge. The process consists of five stages which take into account the special needs of de-
centralized, autonomous teams working in a rapidly changing environment , cf. RQ 2a. In
contrast to previous work DILIGENT moves the knowledge worker in the center of consid-
eration. In order to achieve a censual ontology the knowledge workers discuss their change
proposals within an argumentation framework customized to structure ontology engineer-
ing discussions and to streamline the agreement process, cf. RQ 2b (Pinto et al., 2004b;
Tempich et al., 2005a).
We identify the requirements for tool support and show with prototypical implementations
the feasibility of the approach to ontology engineering, cf. RQ 2c.
The methodology has been successfully evaluated in three case studies demonstrat-
ing that it supports the development of consensual ontologies for distributed and au-
tonomous groups confronted with a rapidly changing environment (Pinto et al., 2004a;
Tempich et al., 2005c).

The shared ontology provides a basis for the efficient location of knowledge in a distrib-
uted knowledge management system, cf. RQ 3. Guided by the requirements of distributed
knowledge management we select the decentralized and unstructured approach to routing
queries in the peer-to-peer network, cf. RQ 3a. REMINDIN’ is a routing algorithm for
this kind of networks (Tempich et al., 2004b). We show that REMINDIN’ routes com-
plex queries efficiently in static and dynamic peer-to-peer networks, cf. RQ 3b (Löser
et al., 2005b; Tempich et al., 2005b). An indirect result of the routing process is the emer-
gence of peer clusters with similar interests. People with shared interests are introduced
to each other and they can share knowledge personally, cf. RQ 3c (Schmitz et al., 2004;
Löser et al., 2005a).

The routing algorithm has been evaluated with a simulation framework using three dif-
ferent data sets, one of them from observations of a real world application.

7

1. Introduction & Overview

1.3. Reader Guide

Overview

To help with the reading of this work, every chapter is preceded
with a brief introductory overview that is accompanied by a small
icon. Each overview explains how the chapter is structured and
how the work presented fits in the overall structure of the thesis.
References: If existent, we will give references to existing pub-
lications that form the basis for the chapter.

Part I provides the foundations for this thesis. In this chapter the contributions of this
thesis are motivated and introduced. Additionally we summarize related areas to the
presented research in order to suite the contribution into a broader context (cf. Chapter 2).
This thesis develops a methodology and an algorithm to facilitate knowledge sharing and
creation for distributed knowledge management scenarios. The underlying application
scenarios and their requirements are described in Chapter 3. This chapter also introduces
the SWAP system (SWAPSTER) enabling the connection between users willing to share
knowledge on a technical level.

Part II develops the DILIGENT methodology. First, a general process is elaborated
towards a well defined methodology for building a shared ontology which can be applied
in real world scenarios (cf. Chapter 4). The methodology identifies the major roles, process
stages and activities; for the process stages it identifies decision criteria to allow for a well
defined transition between the single stages and their activities. Applying the methodology
in decentralized environments structures the development and evolution of a shared ontol-
ogy for all participants. We pay special attention to communicative interactions of the
involved participants with respect to the arguments they exchange. Ontology engineering
discussions are structured according to the argumentation sub process. The argumentation
process suggests the restriction of allowed arguments in order to speed up the consensus
building process and to increase the level of agreement with the shared ontology. Some
activities defined in the methodology are supported by tools.

We elaborate on the evaluation of DILIGENT in Chapter 5. DILIGENT has been eval-
uated according to three complementary evaluation methodologies: the goal free evalu-
ation, the professional review and in case studies. The goal free evaluation compares
DILIGENT with established ontology engineering methodologies and results in the selec-
tion of application scenarios for which DILIGENT is particularly suited. The professional
review elaborates on the evolution of the DILIGENT methodology itself and points out the
strength and weaknesses of the methodology from an ontology engineering experts point
of view. The three case studies describe experiences with the application of the methodol-
ogy and show its usability for selected use cases.

Part III develops the REMINDIN’ query routing algorithm (cf. Chapter 6). The or-
ganizational and security requirements of distributed knowledge management applications

8

1.3. Reader Guide

are best met by completely decentralized and unstructured peer-to-peer networks. RE-
MINDIN’ builds on a number of social metaphors observed and deployed in human social
networks to obtain contacts to knowledgeable persons. The social metaphors are translated
into a number of semantic overlay layers for the peer-to-peer network which are then de-
ployed by REMINDIN’ to find information efficiently. In particular does REMINDIN’
build on semantic relationships defined in the ontology to enhance its search quality.

We evaluate REMINDIN’ in Chapter 7 according to established evaluation criteria in
simulation experiments. We use three different data sets and compare REMINDIN’s per-
formance to state of the art routing algorithms and show its superior performance. We
pay attention to knowledge management inspired evaluation criteria and demonstrate that
REMINDIN’ supports the creation of knowledge communities.

Part IV references Related Work on applications for distributed knowledge manage-
ment, ontology engineering methodologies, arguments in ontology engineering discus-
sions and routing algorithms (cf. Chapter 8). We summarize the main contributions and
give an outlook on future work in Chapter 9.

Part V contains additional material in an Appendix, e.g., a detailed description of the
SWAP metadata model.

9

1. Introduction & Overview

10

2. Review of Related Areas

Overview

In this chapter we review the areas which build the foundations
for our research. We start with a definition of knowledge man-
agement focusing on distributed knowledge management. On-
tologies are considered as a means to represent knowledge in a
formal, machine readable way, thus, they can provide the con-
ceptual backbone for a knowledge management systems. Ontol-
ogy engineering offers guidelines to develop and maintain on-
tologies. Ontology engineers reach agreement in an ontology de-
velopment process exchanging arguments. We summarize ap-
proaches to analyze general discussion processes w.r.t. exchanged
arguments.
The peer-to-peer paradigm offers one way to implement distrib-
uted knowledge management applications; we examine existing
systems with an emphasis on semantic peer-to-peer systems.
Different query routing algorithms have been proposed to ef-
ficiently route queries in peer-to-peer applications.

2.1. Knowledge Management

The productivity of knowledge and knowledge workers will not be the only
competitive factor in the world economy. It is, however, likely to become the
decisive factor, at least for most industries in the developed countries.

(Drucker, 1997)

In recent years the importance of knowledge has been recognized as an essential fac-
tor spurring innovation and growth of companies and the economy as a whole (Leonard,
1995). While most people agree on knowledge relevance it is difficult to define it precisely.
For our work we follow the definition given below, as it emphasizes the significance for
“organizations” and its location.

Knowledge is a fluid mix of framed experience, values, contextual informa-
tion, expert insight and grounded intuition that provides an environment and
framework for evaluating and incorporating new experiences and informa-
tion. It originates and is applied in the minds of knowers. In organizations,

11

2. Review of Related Areas

it often becomes embedded not only in documents or repositories but also in
organizational routines, processes, practices and norms.

(Davenport & Prusak, 1998)

Knowledge is specifically different from information and data. They are located on a
continuum with increasing semantics cf. (Probst et al., 1998, p. 36). For this thesis we
assume that “knowledge is information combined with experience, context, interpretation,
and reflection” (Davenport et al., 1998), while information is data with a meaning.

The knowledge written down in documents is referred to external or explicit knowledge,
while knowledge contained in processes and routines, viz. in persons heads is referred to
as implicit or tacit knowledge (cf. Polanyi (1966) for a philosophical distinction between
the two). Nonaka & Takeuchi (1995) studied the interactions between the two forms of
knowledge and introduced a spiral model describing the four possible transitions:

Socialization The process that transfers tacit knowledge from one person to another
person by observation is called socialization. Tacit knowledge from the “teacher” is
the source for tacit knowledge of the “learner”.

Internalization Internalization refers to the knowledge transfer process from external
knowledge, such as documents, to tacit knowledge held by the individual.

Combination Combination refers to the process of creating new external knowledge
from external knowledge. This is the process were information technology can add
the most value, because externalized knowledge can be disseminated electronically.

Externalization In the externalization process tacit knowledge is transformed into ex-
plicit knowledge.

The management of knowledge in organizations is referred to as knowledge
management and is defined as the administration of cultural, organizational, human and
technical aspects related to the creation, maintenance and transfer of knowledge in its var-
ious forms (cf. (Albrecht, 1993; Schneider, 1996)).

Probst et al. (1998) has identified the knowledge management core processes as depicted
in Figure 2.1.

Knowledge Identification The goal of the knowledge identification process is to char-
acterize and specify the knowledge relevant for the organization.

Knowledge Acquirement The relevant knowledge is gathered in the knowledge ac-
quirement process.

Knowledge Development The objective of the knowledge development process is to
enhance, combine the acquired knowledge and create new knowledge.

12

2.1. Knowledge Management

Knowledge Distribution The existing knowledge is made available and distributed to
the members of the organization in the knowledge distribution phase.

Knowledge Use The existing knowledge is used to facilitate the core processes of the
organization.

Knowledge Preservation Knowledge preservation deals with the long term storage of
the created knowledge.

According to Probst et al. (1998) the six core processes interfere with each other and
cannot be management independently. They depend on the strategic goals of the orga-
nization which influence the knowledge goals, and they are subject to evaluation in the
knowledge audit process. Moreover, all of the core processes are influenced by cultural,
organizational, human and technical considerations.

From a cultural perspective an organization should create an environment where knowl-
edge sharing has a positive connotation. When organizations first introduced knowledge
management the main challenge was to convince its members that they gain from knowl-
edge sharing (Probst et al., 1998). Asking for knowledge was seen as evidence for incom-
petency and providing knowledge meant to give away an asset without receiving compen-
sation. Without a culture of knowledge sharing no knowledge transfer can be initiated.

Organizational aspects of the knowledge management process relate to the definition of
responsibilities and positions within the overall management structure. The organization
taking knowledge management seriously provides the knowledge manager with the author-
ity and the means to enforce the necessary organizational activities. It further ensures that
knowledge management related activities are not an additional task without compensation,
but an integral part of the daily work of an employee.

Knowledge
Identification

Knowledge
Audit

Knowledge
Use

Knowledge
Distribution

Knowledge
Development

Knowledge
Acquirement

Knowledge
Preservation

Knowledge
Goals

Feedback

Knowledge management
core processes

Figure 2.1.: Knowledge Management Core Processes

13

2. Review of Related Areas

People should be in the center of any knowledge management effort as they are the
knowledge providers. The organization should provide incentives to share knowledge and
expertise should be appreciated. Furthermore, it is important to note that creation of knowl-
edge requires imagination and creativity. Knowledge is a subjective matter and thus often
related to the experience of an individual and open to interpretation. This should be con-
sidered implementing technical knowledge management support systems.

Knowledge management from a technical perspective – the standpoint of this thesis –
is concerned with the provision of support technology for each core process. Information
technology in the form of, e.g., organizational memories, collaborative work environments
or data mining, is used for knowledge management (Tsui, 2003). Organization memories
provide access to unstructured, semi-structured and structured information available in the
organization; collaborative work environments facilitate, e.g., the instant communication
between the members of the organization, and data mining techniques are used to unveil
knowledge hidden in huge amount of data. In the following we will focus on organizational
memories supporting knowledge distribution and preservation.

Although the knowledge management processes do not advocate any architecture for or-
ganizational memories, we predominantly find centralized ones. Knowledge is published
and stored according to a centrally defined structure in a centrally organized repository
(D. ÓLeary, 1998; Davenport et al., 1998). Knowledge providers add metadata to the
published knowledge according to the predefined structure in order to facilitate knowl-
edge retrieval. The process of knowledge provision is well defined. The knowledge can
be accessed though an enterprise knowledge portal. The main advantages of enterprise
knowledge portals are: (i) available knowledge can be accessed at a predefined service
level, (ii) the quality of the published knowledge can be supervised in predefined publish-
ing processes, (iii) knowledge is published according a common structure and (iv) access
control mechanisms can be enforced.

Nevertheless, there are also some disadvantages with this solution for knowledge shar-
ing (Maier & Hädrich, 2004). It incurs additional effort for publishing and maintenance
on the knowledge provider side without any direct benefit. Organizations report, that the
provided knowledge is not updated regularly, that not all required metadata is filled-in,
and that not all knowledge is published. It is further observed that the centrally defined
structure does not always suit the knowledge provider, or he may misinterpret it leading
to wrong classifications w.r.t. the global structure . Another issue is cost as discussed in
(Schmücker & Müller, 2003). The creation and maintenance of a centralized knowledge
management system is related to a large investment effort in terms of time and money.
Time is invested in the creation of a global structure and the knowledge provision processes
and money in the system infrastructure. Furthermore, Bonifacio et al. (2002) argue that
centralized knowledge management systems take on a traditional managerial control para-
digm, which stands against the subjectivity and sociality as essential features of knowledge
creation and sharing.

14

2.1. Knowledge Management

In particular the infrastructure investment and the setup costs make centralized knowl-
edge management solutions unattractive for, e.g., virtual organizations, small companies
or projects. None of the members of a virtual organization would take the responsibility
to maintain the central solution as it may leave the consortium before the overall project is
finished. Small companies can often not effort a centralized solution, and projects may not
have a sufficiently long duration that the initial effort can be outweighed. For these sce-
narios Bonifacio et al. (2002) propose an alternative solution, viz. distributed knowledge
management.

2.1.1. Distributed Knowledge Management

Bonifacio et al. (2002) begin their analysis of the knowledge creation process at an episte-
mological level and compare the assumptions of centralized knowledge management solu-
tions with the nature of knowledge. They conclude that centralized solutions require that
knowledge can be created according to predefined processes, its creation is controllable
and that it can be captured in an objective and predefined corporate language. Knowl-
edge, however, is inherently subjective and its related to the context and perspective of the
person creating it. This contradicts the assumptions underlying centralized solutions to
knowledge management.

Distributed knowledge management (DKM) as opposed to centralized knowledge
management leaves the knowledge at the places where it is created. Each person manages
the knowledge autonomously and organizes it heterogeneously. Distributed knowledge
management systems accept this and offer solutions to allow for coordination and interop-
erability between the different knowledge providers. The knowledge is thus created and
managed bottom-up instead of created bottom-up and managed top-down. In DKM sce-
narios shared structures emerge automatically when people collaborate and discuss their
own perspectives with their peers.

Schmücker & Müller (2003) report on experiences in the application of DKM systems.
They identify some of the main advantages of this approach to knowledge sharing in com-
parison to centralized solutions. DKM systems ensure instant access to up-to-date knowl-
edge, knowledge providers have no publishing effort, they can follow a self-determined or-
ganization of knowledge and people have direct access to other person knowledge through
direct communication. The last aspect is particularly important as DKM system support
indirectly the socialization knowledge transfer process in this way as people can commu-
nicate directly. Although possible in centralized solutions, it comes more natural in the
decentralized setting.
They also emphasize that DKM solution do not require additional costs for a central in-
frastructure, and that they observe less duplication in form of documents stored locally and
on central servers.

Nevertheless, they also point out a number of disadvantages of DKM systems. Finding
of information becomes more difficult as their is no shared structure to organize it. More-

15

2. Review of Related Areas

over, the same document can be found in different places, and it can be available in many
version. This implies that there is no guarantee for the quality of the found information.
It is inherent to peer-to-peer (P2P) systems that not all the information is always avail-
able, which may reduce the confidence in such a system. People are also worried about
uncontrolled access to their local knowledge.

From this general analysis and experiences we can derive general requirements on DKM
systems.

2.1.2. Distributed Knowledge Management Systems

Requirement Description

Infrastructure level

Access DKM systems should provide access to local knowledge.

Security Access should only be provided to trusted parties as knowledge may
be very sensitive.

Application level

Local perspective Local knowledge can be organized according to the local subjective
view.

Owner ship model In centralized systems it is possible to enforce a predefined publishing
process in order to guarantee quality standards and trace the owner-
ship of published content. In DKM systems the possibility to determine
the ownership of content is more difficult, but equally important to es-
tablish a certain level of trust in the found content.

Content-based
search

In contrast to file sharing networks in DKM networks searching for file
names is not sufficient. Search should be based on content.

Localization Relevant knowledge should be retrievable within large P2P networks.

Community level

Formation DKM systems should allow for community formation.

Community per-
spective

The creation of a community perspective on the shared knowledge
should be possible.

Interoperability The DKM system should bridge between different local perspectives.

Free riding In file sharing systems free riding is observed, i.e., the phenomenon
that people download many files, but do not share any. In the case
of knowledge this is more problematic as knowledge is a major asset
for the carrier of an individual and free riding may thus undermine the
knowledge sharing culture.

Table 2.1.: Requirements for Distributed Knowledge Management Systems

Without loosing generality we use in this thesis a P2P infrastructure to connect the
knowledge providers with each other. For P2P DKM systems Schoder & Fischbach (2003)
proposes a separation in three system levels: infrastructure, application and community
level. The first provides basic mechanisms for communication, security, resource identifi-
cation and peer identification. The second provides services to the users supporting their

16

2.2. Ontologies

process needs. The community level comprise the social activities which are enabled by
the P2P paradigm.

Requirements In order to compile requirements on DKM systems we rely on Bonifacio
et al. (2002) analysis from a sociocultural perspective and on Susarla et al. (2003) analysis
comparing existing P2P file sharing systems. We categorize the requirements according to
the three system levels in Table 2.1.

Implementations Current P2P applications for knowledge management offer the basic
functionality to access remote peers files, support collaboration and synchronization, allow
for messaging and offer email organization (cf. e.g., (Tsui, 2001; Wegner, 2002)). They im-
plement a security mechanism based on a central authentication server. In the market of
small and medium sized companies an owner ship model is not required, as most people
still know each other. Most systems offer keyword based search for document retrieval.
Bonifacio et al. (2004a) propose a DKM system called KEEx, which implements a context
model allowing each peer to create its own context and to organize its knowledge accord-
ingly (cf. Section 8.1). In their model localization is based on manual definition of different
peer groups which can be searched. Other implementations maintain a central server with
index information for all peers in the network. On the community level the KEEx system
allows for the manual creation of groups interested in a specific context. They provide a
mapping algorithm in order to align contexts of different peers. Free riding is not an issue
in the market of current DKM systems.

In this thesis we follow the approach to knowledge representation proposed in Fensel
et al. (2003). We use ontologies in order to structure and describe the knowledge available
on the peers. In Section 3 we present the SWAP system providing basic services on the
infrastructure level. In Part II we present an ontology engineering methodology which
structures the development process for local perspectives and community perspectives.
Part III pays attention to the localization of knowledge in large P2P systems.

2.2. Ontologies

The term ‘Ontology’ (Greek. onto = being, logos = to reason) was first use by Aristotle
to describe “the science of being qua being”. Categories of being explain and classify
everything what exists. The idea was to deduce from a few universals all existing matter
(Störig, 1992, p. 587). Philosophers as Nicolai Hartmann, however, postulate that the
world is neither totally recognizable nor totally unrecognizable, but it is only “representa-
tional recognizable” (Störig, 1992, p. 587).

In this thesis, though, we are more interested in the ‘ontology’ with a lowercase ‘o’
(computer science) than with the upper case ‘O’ (philosophy) (cf. (Guarino, 1998a)). In
computer science the following definitions for ontologies are most cited:

17

2. Review of Related Areas

An ontology is an explicit specification of a conceptualization. The term is
borrowed from philosophy, where an Ontology is a systematic account of Ex-
istence. For AI systems, what “exists” is that which can be represented.

(Gruber, 1993a)

This definition emphasizes the explicit specification, which make ontologies interest-
ing for machine processing. For this thesis we want to highlight also another aspect of
ontologies, i.e., they are shared specifications.

‘Ontology’ is the term used to refer to the shared understanding of some do-
main of interest. . .

(Uschold & Grüninger, 1996)

In the community the combined phrase cited hereafter is therefor very popular:

An ontology is a formal explicit specification of a shared conceptualization.

(Uschold & Grüninger, 2004)

In this sense an ontology is a conceptualization as it refers to an abstract model of how
people think of things in the world. An ontology conceptualizes usually only a specific
domain of interest. It is an explicit specification, because it provides names and definitions
for the concepts and relationships given in the abstract model. A definition says how a
term relates to other terms. Formal expresses that the ontology can be encoded in a rep-
resentation language which is machine readable and has formal semantics. As mentioned
above for this thesis the shared aspect is very important. An ontology is a conceptualiza-
tion which more than one individual has agreed on. The ontology can thus be used and
reused across different applications and communities (cf. (Uschold & Grüninger, 2004)).

Depending on the application and the purpose of an ontology one can classify an in-
formal catalog of terms as an ontology as well as a very formal list of general constraints
(cf. (McGuinness, 2003)). Although this spans a wide range for the application of ontolo-
gies, we can still identify some general elements an ontology consists of, i.e., the general
ontology entities. An ontologies usually consists of a list of terms describing the things of
interest in the domain. These things are the classes (also called concepts) of the ontology
and they are arranged in a taxonomy spanning a subclass-of hierarchy. Each class can be
defined more specifically using PROPERTIES (also called SLOTS or ROLES) and attributes.
It is also possible to put restrictions on the properties using role restrictions (also called
facets). More formal ontologies contain also axioms specifying the meaning of a concept
further. If an ontology is represented in a description logic (DL) classes, properties and
axioms are also referred to as the TBox of an ontology. Concrete instances (also called
individuals) of classes plus the TBox constitute a knowledge base. The instances of an DL
ontology are also referred to as its ABox.

18

2.2. Ontologies

Representation languages for ontologies A number of formalisms are available to
represent ontologies in a machine readable way. In the CYC project for example an on-
tology representation language was defined in order to model the world knowledge (Lenat
& Guha, 1990). The frame based ontology representation language F-Logic was proposed
by (Kifer et al., 1995).

This thesis builds on ontology representation languages which were defined in the Se-
mantic Web context (Berners-Lee et al., 2001). The Semantic Web is “[. . .] an extension
of the current Web in which information is given well defined meaning, better enabling
computers and people to work in cooperation”(W3C, 2001). One result of the Semantic
Web initiative is a stack of representation languages to formalize ontologies (Berners-Lee,
2000). OWL-DL, for example, follows the description logic paradigm to represent knowl-
edge (Dean et al., 2002). OWL is the latest recommendation of the World Wide Web
consortium (W3C) for an ontology language. In the SWAP system knowledge is repre-
sented following the semantics of RDF(S) (Lassila & Swick, 1999). Although it offers
less expressivity than OWL it is sufficient to demonstrate the benefits of ontologies for
DKM systems.

Differences to other modeling paradigms Ontologies are not the only mechanism to
conceptualize real world objects. The database community uses, e.g., entity relationship
(ER) models (Chen, 1976) in order to specify the database design. Devedžić (2002) and
Uschold & Grüninger (2004) extensively analyze the differences and similarities between,
e.g., ontology modeling and object oriented analysis and design, ontology modeling and
traditional software engineering and ontology modeling and component-based software
engineering. We exemplify the result of the analysis with a comparison to the ER model.
Depending on the complexity of the representation language used to formalize the on-
tology it is possible to formalize the semantics of an ER model with little losses as an
ontology and vice versa.1 But the differences start were the pure formalism ends. An on-
tology is used to describe a domain as complete as possible, to give its concepts a specific
meaning. The ontology is used for communication, therefore inherently a shared model
and more concrete specifications reduce the possibility of misinterpretations. In compari-
son a database design optimizes the performance for the desired application, paying little
attention to the completeness of the underlying model w.r.t. to the domain beyond the ap-
plication needs.
Without providing a full comparison of the different paradigms we conclude that the dif-
ference between ontologies and other conceptualization mechanisms lies predominately in
the purpose of its use. Ontologies are used for communication and meaning clarification
between different parties, while other paradigms usually focus on application design and
efficiency. This is also reflected in the use cases for ontologies.

1Note, that an ER model does not per se provide formal semantics, but most modeling primitives may be
aligned with ontology primitives in a straightforward manner.

19

2. Review of Related Areas

2.2.1. Ontology Use in Information Systems

Many different types of applications use ontologies to a various extent as a conceptual
backbone. Jasper & Uschold (1999) distinguish four different types of ontology based
systems:

Neutral Authoring An enterprise with many applications can use a common ontology
as the semantic core for all its data structures. The idea is to translate the ontology in
the target application formats and use it as a basis for further development. Although
the initial effort for the ontology development can be huge, the enterprise gains
advantages in the form of reusable knowledge, increased maintainability and long
term knowledge retention.

Common Access to Information Views are an established way to facilitate informa-
tion integration if the information is modeled according to different data schemas
(cf. (Ullman, 2000)). An ontology can represent the global view. Many standard-
ization efforts are underway to create uniform descriptions for, e.g., product data.
As ontologies allow for a detailed description of the semantics underlying different
data sources, they can be used to check their consistency (cf. (McGuinness, 2003)).
In some cases, however, simple use of an ontology as a controlled vocabulary is
already helpful.

Ontology-based Specification The specification of software is another application field
for ontologies. Requirements can be characterized and specified using ontologies.
Following the ideas of the Model Driven Architecture promoted by the OMG2, on-
tologies can assist the validation and verification of software (Uschold & Grüninger,
2004). Due to the formal specification of an ontology, changes in the model can be
directly propagated to the implementing software.

Ontology-based Search An ontology can provide an abstract description for various in-
formation repositories and thus assist search. McGuinness (2003) highlight that on-
tologies can support site organization and navigation, browsing and allow for struc-
tured, comparative, and customized search. Search gains from the exploitation of
the encoded generalization/specialization information and the sense disambiguation
provided by an ontology.

In the case of, e.g., product search ontologies offer configuration support and com-
pletion. In this cases complex features requests from customers are characterized in
the ontology to the level of detail necessary to select from the available products.

Search is also the application scenario for ontologies in knowledge management
systems (D. ÓLeary, 1998; Fensel, 2001; Abecker & van Elst, 2004). Ontologies
are well suited for knowledge management applications as they provide a shared

2http://www.omg.org/mda/

20

http://www.omg.org/mda/

2.2. Ontologies

conceptualization, fitting to Davenport & Prusak (1998) postulation that “people
can’t share knowledge if they don’t speak a common language.”

The use cases mentioned in this thesis take advantage of ontologies supporting search
and interoperability and exploit generalization/specialization information.

Although ontologies are beneficial for a number of scenarios there is one major obsta-
cle to their fast and wide spread adoption in information systems: It is complicated and
time consuming to build and maintain ontologies. The process to develop ontologies has
therefore attracted attention and a number of methodologies were proposed to organize the
ontology engineering process.

2.2.2. Ontology Engineering Methodologies

Ontology Engineering is formally defined as

“the set of activities that concern the ontology development process, the on-
tology life cycle, and the methodologies, tools and languages for building
ontologies.”

(Gómez-Pérez et al., 2003)

In this thesis we focus on the methodological aspects of ontology engineering.

2.2.2.1. Terminology

The first experiences in building ontologies have lead to the conception of different
methodologies to support this process. The first methodologies described particular
experiences building ontologies for specific applications (cf. (Grüninger & Fox, 1995;
Uschold & Grüninger, 1996)).3 However, none establishes a precise definition for the
terms methodology, method, technique, process, activity in order to describe the engineer-
ing effort (de Hoog, 1998). We will follow the terminology introduced by the IEEE for
software development methodologies as it is related to ontology engineering (cf. (Gómez-
Pérez et al., 2003)).

The IEEE defines a methodology as “a comprehensive, integrated series of techniques
or methods creating a general systems theory of how a class of thought-intensive work
ought be performed”(IEEE, 1990).

A method is a set of “orderly processes or procedures used in the engineering of a prod-
uct or performing a service”(IEEE, 1990). A technique is “a technical and managerial
procedure used to achieve a given objective”(IEEE, 1990).

3See Section 8.2.1, page 212, for a more detailed discussion of those works.

21

2. Review of Related Areas

A process is a “function that must be performed in the software life cycle. A process
is composed of activities” (IEEE, 1996). An activity is “a constituent task of a process”
(IEEE, 1996). A task “is a well defined work assignment for one or more project members.
Related tasks are usually grouped to form activities”(IEEE, 1996).

The distinction between activity and task is not strikt: Depending, e.g., on the size of
the engineering setting a task which may be performed in one step for a small ontology
may be an activity in other cases.

2.2.2.2. Ontology Engineering Activities and Roles

The activities defined in established ontology engineering methodologies can be grouped
according to three categories: Ontology management activities, ontology development
oriented activities and ontology support activities (Gómez-Pérez et al., 2003). Figure 2.2
visualizes the interdependencies of the main activities.

Ontology Management
Scheduling, controlling, quality assurance
Ontology Management
Scheduling, controlling, quality assurance

Domain analysis
motivating scenarios, competency questions, existing solutions

Conceptualization
conceptualization of the model, integration and extension of
existing solutions

Implementation
implementation of the formal model in a representation language

Maintenance
adaptation of the ontology according to new requirements

O
ntology reuse

E
valuation

D
ocum

entation

Use
ontology based search, integration, negotiation

Feasibility study
Problems, opportunities, potential solutions, economic feasibility

K
now

ledge acquisition

Figure 2.2.: Core Ontology Engineering Activities

Ontology management activities Ontology management contains the activities related
to the organization of the ontology development process. Scheduling, controlling and qual-
ity assurance are management activities. The identification of required tasks with their

22

2.2. Ontologies

respective durations and their arrangement on a time schedule is part of the scheduling
activity. The schedule is monitored as part of the controlling activities. The quality assur-
ance activities guarantee that the resulting products of the development activities, such as
the ontology, software and documentation achieve the desired quality level.

Ontology development oriented activities The ontology development oriented activ-
ities group the activities concerned with the development of the ontology. They are sep-
arated into pre-development, development and post-development activities. In the pre-
development phase the environmental study and the feasibility study examine if an ontol-
ogy based application or the use of an ontology in a given context is the right way to solve
the problem at hand. Specification, conceptualization, formalization and implementation
are classical ontology development activities. The maintenance and use of the ontology are
post-development activities. We describe these activities in more detail in Section 4.3.1.

Ontology support activities A collection of ontology support activities assist in build-
ing the ontology and are performed in parallel to the development activities. Gómez-Pérez
et al. (2003) lists knowledge acquisition, evaluation, reuse, integration, merging, docu-
mentation, alignment and configuration management as ontology support activities. We
add argument provision to this list of support activities. The objective of the knowledge
acquisition activity is the elicitation of the relevant domain knowledge from experts or
other sources. The (semi-)automatic acquisition of knowledge from electronic sources is
referred to as ontology learning (Maedche & Staab, 2001). In the evaluation process the
results of the development activities are reviewed w.r.t. their quality. Integration and merg-
ing specify the processes to build ontologies reusing existing ones. The documentation
process organizes the description of the results of the development activities. Alignment
is the process of providing mappings between different ontologies, which formalize over-
lapping domains. The configuration management activity maintains the different versions
of an ontology and its documentation. Finally, argument provision captures the arguments
in favor and against design decisions.

The activities defined in an ontology engineering methodology are carried out by actors
taking different roles in the process.

Roles Classical ontology engineering methodologies introduce three different roles:
Knowledge engineer, ontology engineer and domain expert. The knowledge engineer and
ontology engineer elicit the domain knowledge from the domain expert. The domain expert
knows for the domain of interest the relevant concepts and the interdependencies between
them; he can point to further sources of knowledge, e.g., in the literature. The knowledge
engineer extracts from the domain expert the conceptual model w.r.t. to the domain. The
ontology engineer generates from the conceptual model a machine readable ontology. It
is often observed the same person taking the role of the knowledge engineer and ontology
engineer.

23

2. Review of Related Areas

Additionally to these classical roles it is the role of the user to utilize the ontology for his
needs.

The importance of the ontology engineering activities within a specific methodology de-
pends on, e.g., the use case for the ontology-based application, the complexity of the built
ontology, the available information sources and the experience of the ontology engineers.

Staab et al. (2001), Staab et al. (2003) propose an ontology engineering methodology
for the ontology development for centralized knowledge management systems. In this case
the knowledge management meta-process (ontology engineering process) is orthogonal to
the knowledge management processes. The knowledge management meta-process struc-
tures the development of an ontology for the knowledge management application, while
the knowledge management process structures the knowledge creation and use processes.
As detailed in Section 8.2 the process consists of the five phases “Feasibility Study”,
“Kickoff”, “Refinement”, “Evaluation” and “Application & Evolution”. The “Kickoff”
phase for example combines scheduling, specification, knowledge acquisition and integra-
tion activities. It involves the three classical ontology engineering roles.

In this thesis we develop an ontology engineering methodology for the creation and
maintenance of ontologies in DKM applications.

2.3. Argumentation

Engineering an ontology is a social process. The participants in an ontology engineering
effort have slightly different views on the world thus harmonization requires the discussion
of modeling decisions. During the discussion, participants exchange arguments which may
support or object to certain ontology engineering decisions. Experience from Software
Engineering shows that tracking exchanged arguments can help users at a later stage to
better understand the assumptions underlying the design decisions (Conklin & Begeman,
1988; Selvin et al., 2001; Ramesh & Dhar, 1992). Furthermore, as the constructed ontology
becomes larger, ontology engineers might argue in a contradictory way without knowing
so.

This thesis analyzes the arguments exchanged in ontology engineering discussions in
order to better understand the communicative behavior of the participants building an on-
tology. There are a number of argumentation theories ranging from informal explanations
of argumentation threads to very formal specifications, which can be applied to perform
this analysis. In the following we introduce the oldest model of natural argumentation,
viz. the Toulmin model, in order to motivate the idea. For the analysis of ontology engi-
neering discussions we have selected the rhetorical structure theory as it provides a very
detailed analysis framework. Additionally we introduce the IBIS model – a very general
and established method – which will serve as a basis for our argumentation framework.

24

2.3. Argumentation

2.3.1. Toulmin Model

The Toulmin model is one of the first models, that try to explain how real people argue.
It has three main components: Data, Claim and Warrant. Data refers to the facts, data
and information, which are the reason for claim (Toulmin, 1958; Toulmin et al., 1984).
It is important that all participants in the discussion agree on the data, as the data form
the ground of any serious discussion. Data is used in order to give evidence to the claim
made. Claim refers to the position on an issue or the conclusion being advocated. A
claim is a statement one persons asks another one to accept. The warrant serves as the
logical connection between the data and the claim, thus it represents the reasoning process
used to arrive at the claim. The warrant establishes the relevance of the data for the claim.
Other components are the backing, which provides material support for the warrant, the
reservation relates to the exceptions to the claim and the qualifiers strengthens the claim
in relation to other claims.

The Toulmin model is general, but does not lend itself easily to a formalization. For this
reason the IBIS was defined.

2.3.2. Issue Based Information Systems

The Issue Based Information Systems (IBIS) model was introduced by Horst Rittel and
colleagues during the early 1970’s (Kunz & Rittel, 1970). IBIS was developed to provide
a simple yet formal structure for the discussion and exploration of “wicked” problems.
A problem is wicked, as opposed to “tame”, if the traditional “scientific” approach to
problem solving cannot be applied to it. Scientific problems are tackled by gathering data,
analyzing the data, formulating a solution and implementing the solution. With a wicked
problem the understanding of the problem is evolving as one works on a solution for it.
One sure sign of a wicked problem is that there is no clear agreement about what the “real
problem” is. Wicked problems cannot be solved in the traditional sense, because one runs
out of resources (time, money, energy, people, etc.) before perfect solutions for them can
be implemented. Ontology engineering can be described as a wicket problem.
Table 2.2 surveys the terminology used in the IBIS model.

The IBIS model is a very general and established theory to model argumentation
processes and therefore the standard to describe arguments. It is, however, due to its
generality difficult to apply to domain specific argumentation processes and should be ex-
tended with domain specific argument types (Potts & Bruns, 1988). The rhetorical struc-
ture theory is an argumentation model offering more fine-grained analysis methods, but it
does not explain the argumentation process as IBIS does.

2.3.3. Rhetorical Structure Theory

The aim of rhetorical structure theory (RST) is to offer an explanation of the coherence of
texts (Mann & Thompson, 1988; Mann, 2005). It is assumed that for every part of a co-

25

2. Review of Related Areas

Term Description

Question / Issue States a question, raises an issue

Idea Proposes a possible resolution for the question

Argument States an opinion or judgement that either supports or
objects to one or more ideas

response to Indicates a response to a question

supports Supports an argument

objects to Objects to an argument

Specializes Defines a question with more detail

Challenges Challenges an argument, an idea or a question

Justification Justifies an argument, an idea or a question

Expands-on Adds new information to an idea

Decision nodes Indicate that a decision was reached on a certain issue

Table 2.2.: IBIS Terminology

herent text there is some function. RST focuses on showing an evident role for every part
of a text. The RST analysis divides a text into its building blocks. According to the RST
the smallest unit of text is called a span. Spans are connected through relations building a
structure. The most frequent structure contains two spans of text which are virtually adja-
cent. These are usually related such that: the span making the claim is the nucleus (N) and
the span with the evidence is the satellite (S). Thirty relations between 2 spans of text have
already been identified and loosely defined. A very complete list of relations can be found
on Mann’s Web site (cf. (Mann, 2005)). For instance RST defines presentational relations,
such as background that increases the ability of the reader to comprehend an element in
N, and evidence, where the reader comprehension of S increases his belief of N. RST de-
fines also subject-matter relations, such as elaboration, where S presents additional detail
about what is presented in N, for instance set::member; abstraction::instance; whole::part,
object::attribute. There are also other relations that do not carry a definite selection of one
nucleus, such as contrast, where the reader recognizes the comparability and differences
in situations described in two N. Some of the relations are indicated in form of signalling
words. The conjunction “when” for example indicates a Circumstance; “but” indicates
an Antithesis. All relations can occur without any signalling words although for each re-
lation one can be found. Therefore, the manual analysis of a text is very time consuming.
Sometimes one may not find some structural role for every element of the text. A text may
have more than one analysis, either because the observer finds ambiguity or finds that a
combination of analysis best represents the author’s intent. The analysis gives an account
of textual coherence that is independent of the lexical and grammatical forms of the text.

The most important relations found in RST are: Elaboration, Evaluation, Justification,
Contrast, Alternative, Example, Counter Example, Background knowledge, Motivation,
Summary, Solutionhood, Restatement, Purpose, Condition, Preparation, Circumstance,
Result, Enablement and List.

26

2.4. Peer-to-Peer Systems

In the examples provided within the case study section we will highlight the different
elements of RST in the following way.

span nucleus . . . relation indicator . . .span satellite Relation
e.g.:
I suggest knowledge management (KM) as super concept of DKM because
every DKM is a kind of KM Elaboration, Justification

Marcu (1997) presents an algorithm, which is able to automatically extract the rela-
tions from natural language text. The algorithm uses signaling words, but cannot extract
relations with the same accuracy as humans.

2.4. Peer-to-Peer Systems

“The term ‘peer-to-peer’ (P2P) refers to a class of systems and applications
that employ distributed resources to perform a function in a decentralized
manner.”

(Milojicic et al., 2002)

There exist a number of definitions for peer-to-peer (P2P) systems (cf. e.g., (Schollmeier,
2001; Fox, 2001; Oram, 2001)). The distinction is made between “Pure” P2P systems,
“hybrid” P2P systems and “Client/Server” systems. A pure P2P system refers to network
architectures in which no node in the network has a special function. This implies that any
of the nodes may fail without major consequences for the entire system. In a hybrid P2P
system some nodes take special responsibility for the organization of the network, while
in the classical client-server model the server is responsible for the network organization.
This categorization can be extended to logical layers above the underlying network layer.
A logical pure P2P network may depend on a different architecture on deeper network
layers4, e.g., IP routing follows a hybrid architecture.

The kind of shared resources is a distinctive feature orthogonal to the network architec-
ture, i.e., the P2P model enables (i) communication and collaboration, (ii) data sharing and
(iii) distributed computing. Popular examples for communication and collaboration are
Skype (Skype Limited, 2006, communication), Groove (Groove Networks, 2001, collabo-
ration), Kazaa (Sharman Networks, 2006, file sharing) and Seti@Home (Anderson et al.,
2002, distributed computing). In the following we concentrate on challenges related to data
sharing applications which are in line with the ones for knowledge sharing applications.

4Deeper network layer refers to the categorization provided in the ISO/OSI model (Zimmermann, 1980).

27

2. Review of Related Areas

2.4.1. Challenges for Peer-to-Peer Data Sharing Applications

Daswani et al. (2003) have identified a number of challenges for P2P systems. They di-
vided them into two problem fields: search and security. A search solution proposes the
topology of the network, the data placement strategy, and the message routing algorithm.
The topology defines the arrangement of the nodes within the network and their intercon-
nections. The data placement strategy defines were the data is located in the network and
on which nodes. The message routing algorithm defines the strategy to find the desired
node or information given the topology and data placement.

The definition of the three interdependent dimensions depends on the requirements of
the underlying application. The requirements can be categorized as follows:

Expressiveness The the query language should be able to describe the desired data
with sufficient detail. A routing mechanism supporting key lookup cannot support
structured queries for relational data for example.

Comprehensiveness The comprehensiveness of the search result determines the num-
ber of returned results. Some solutions support the retrieval of only one answer to
the query while others are tailored for the retrieval of all answers.

Autonomy A search solution defines the topology, the data placement and the message
routing procedure. All three influence the autonomy of the peer, as the topology
may predefine the neighborhood of a peer or the data placement strategy requires a
specific distribution of index information across the network.

The concrete requirements affect the performance of the search solution w.r.t. the fol-
lowing measures:

Efficiency Efficiency refers to the absolute resources consumed required to run the
search solutions. Efficiency can be measured in terms of consumed bandwidth,
processing power or storage consumption.

Quality of service The provided quality of service can be measured in terms of the
number of results found or the response time. Quality of service measures are user
inspired, while efficiency criteria are technically inspired.

Robustness Robustness determines the search solutions behavior when peers leave and
join the network. A robust search solution maintains its efficiency and quality of
service in the event of failing nodes.

The authors conjecture that their exist trade-offs between the different requirements. A
routing solution which requires less autonomy may offer a higher quality of service and
more expressivity may come at the price of less efficiency.

The second problem field in P2P systems is related to security. Here, the following four
dimensions are relevant:

28

2.4. Peer-to-Peer Systems

Availability Attacks on the P2P network infrastructure can influence the availability of
content in the P2P network. A search solutions can guarantee different service levels
w.r.t. the availability of content in such events.

Information authenticity Information authenticity requires that the answer sent as a re-
sponse to a query is the answer the querying peer receives. Related to this problem
is the question whether the answer is the correct answer to the query or not, i.e., if
we can trust the responder.

Anonymity Some application scenarios require the maintenance of requester and re-
sponder anonymity.

Access control Access control enables the users to specify who can access which con-
tent within the network.

In this thesis we scrutinize the problem of search in P2P systems and focus on the
problem of selecting the right peers to send a query to, thus the routing problem.

2.4.2. Routing in Peer-to-Peer Systems

“Routing is a means of selecting paths in a computer network along which
information should be sent.”

(Wikipedia, 2006a)

2.4.2.1. Terminology

Routing in P2P networks has attracted a lot of attention in recent years and different ter-
minologies have been devised. In order to compare our approach to routing to other ap-
proaches we adhere to the terminology established in Cooper & Garcia-Molina (2004).
They generalize the organization of different P2P systems, which use overlays to route
queries. Overlay based routing in contrast to network based routing uses content related
information to find peers. The overlay network is a logical layer on top of a physical
computer network (typically IP). A semantic overlay layer uses semantic information to
organize the network topology (Crespo & Garcia-Molina, 2002b). The neighborhood of
a peer on the network layer is determined by the physical location of the peer while the
neighborhood of a peer in the overlay is determined by the overlay topology. Each peer in
an overlay network maintains an index of the content it shares, e.g., an inverted keyword
list if the searchable content are documents, or an ontology if the content is formalized as
in our case. A search can be performed w.r.t. the information contained in the index. The
index or parts of it is distributed in the P2P network according to the overlay topology,
thus peers send queries to remote peers based on the index information they have obtained
or received. The number of indexes a peer stores and the size of each index is restricted

29

2. Review of Related Areas

by the index size. Peer A receiving index information from peer B, thus, establishes an
indexing link with peer B. Peer A can create the indexing link actively by sending the
indexing information to peer B, or peer B can create the indexing link passively by listen-
ing to queries or answers from peer A. Peer B not necessarily has any link with peer A.
There can be either forwarding or non-forwarding indexing links. In case of forwarding
indexing links peer A will forward the index or updates to it to its overlay neighbors, while
in non-forwarding indexing links are not forwarded.
Peer B establishes a search link with peer A in order to send or forward a search message
to peer A. The search link can be forwarding or non-forwarding depending if the search
message should be forwarded to the neighborhood of peer A or not.
The number of times a message is forwarded, viz. the number of hops it travels, can be
restricted by the message time to live (TTL). As a message is forwarded in the network it
can be sent to peers which had already received it albeit on a different query path. To avoid
those cycles query messages carry unique identifiers. The search request and its respec-
tive search message is also called query message. Accordingly the answer to the search
request is transmitted in an answer message. The sequence of peers which are visited by
one query message are referred to as query path.
Peers join and leave the network, if they do so very often this results in a high churn rate.

2.4.2.2. Categorization of Routing Approaches

In Section 2.4.2.1 we outline that the overlay layer determines the way indexes are distrib-
uted on the P2P network and the followed search strategies. Androutsellis-Theotokis &
Spinellis (2004) introduces two dimensions in order to describe different overlay architec-
tures: centralization and structure.

Centralization The index describing the content of the local peers can be sent to differ-
ent remote peers in order to facilitate routing. This depends on the degree of centralization.
In purely5 decentralized architectures none of the participating peers takes a special role
within the network, thus any peer can store index information. This has the advantage that
no single point of failure is introduced to the system. In partially centralized architectures
some well defined super nodes take special responsibility and store index information.
The emerging super nodes are not necessarily a point of failure as techniques exist to re-
place super nodes dynamically. In Client/Server architectures also referred to as hybrid
decentralized architectures a central peer takes all the responsibility to store indexing in-
formation and facilitate the search for relevant peers. This comes at the price of a single
point of failure.

Structure The structure of the overlay network can either be build up nondeterministi-
cally or based on rules. In the first, unstructured case, the index information is either not

5In the next paragraphs words sans serif refer to Figure 2.3.

30

2.4. Peer-to-Peer Systems

distributed or it is distributed without aiming at a global structure. The overlay structure is
not influenced by the position of the content. In this cases brute force methods or heuristic
based methods, such as flooding and informed flooding are necessary to find the requested
information.
Flooding refers to routing approaches in which a message is broadcasted to all or a subset
of peers which are known from the default network. A peer builds up no indexing links
to any peer in the network. This approach is very message intensive and results in low
quality results. The naive flooding approach can be improved if peers store some infor-
mation about remote peers, without building a deterministic topology. Peers can either
distribute their indexing information actively or collect it passively form remote peers. If
they distribute the indexing information actively, they send it to the remote peers they are
connected to on the network layer. Receiving peers may then decide to forward this in-
dexing information to remote peers they are connected to on the network layer or not to
forward it. The distribution of active indexing links results in a message overhead, each
time a peer joins the network. In the passive case remote peers build up indexing informa-
tion about remote peers from answers to queries. A peer establishes passive forwarding
indexing links if a query response is returned to the requester on the same message path
as the original query was forwarded. In the non-forwarding only the requester establishes
passive indexing links, because the response is directly returned. Routing based on passive
indexing links has the advantage that no overhead messages are produced if a peer joins
the network, but take longer than active approaches to make informed routing discission.

In the second, structured approach to routing, the location of index information is calcu-
lated in a deterministic way. Structured P2P networks have always a purely decentralized
architecture and they are designed in order to overcome the scalability problems of un-
structured networks.
In order to obtain the deterministic structure a key is calculated from each value in the
index. In most distributed hash table (DHT) approaches the keys are obtained using con-
sistent hashing functions. The keys are distributed according to a predefined topology,
such as a tree, a ring, a hypercup or a combination of trees and rings (hybrid). Retrieving
information is straightforward in structured P2P networks using greedy search strategies,
which forward request with each hop closer to the peer responsible for it; this is achieved
in O(log(n)) messages, n being the number of peers in the network. The responsible
peer responses with a link to the requested information. A disadvantage of structured P2P
networks originates from the fact that the index information is published each time a peer
enters the network, thus producing a certain message overhead. Furthermore it is difficult
to find appropriate peers for conjunctives queries as different peers can be responsible for
the different parts of the query.

In Figure 2.3 we compared the routing algorithms discussed in the related work section
(cf. Section 8.3, page 217) w.r.t. to their degree of centralization, structure and indexing
strategy.

31

2. Review of Related Areas

Peer-to-Peer network organization

Structured Unstructured

Tree Hypercube Ring Hybrid
Client/
Server

Super
Nodes

Pure

P-Grid CAN
pSearch

Chord Pastry Napster
GlOSS
CORI

Edutella
Kazaa
SON

Small-World

Passive
Indexing

Links

Active
Indexing

Links

Forwarding
Indexing

Links

Non-Forwarding
Indexing

Links

Bibster

Forwarding
Indexing

Links

Non-Forwarding
Indexing

Links

Anthill
Intelligent Search

Adaptive
Probabilistic Search

No
Indexing

Links

Gnutella
Infobeacons

Interest based locality
REMINDIN’

Fireworks model
PlanetP

Peer-to-Peer network organization

Structured Unstructured

Tree Hypercube Ring Hybrid
Client/
Server

Super
Nodes

Pure

P-Grid CAN
pSearch

Chord Pastry Napster
GlOSS
CORI

Edutella
Kazaa
SON

Small-World

Passive
Indexing

Links

Active
Indexing

Links

Forwarding
Indexing

Links

Non-Forwarding
Indexing

Links

Bibster

Forwarding
Indexing

Links

Non-Forwarding
Indexing

Links

Anthill
Intelligent Search

Adaptive
Probabilistic Search

No
Indexing

Links

Gnutella
Infobeacons

Interest based locality
REMINDIN’

Fireworks model
PlanetP

Figure 2.3.: Categorization of Routing Approaches

32

3. SWAP: A Semantic Peer-to-Peer System

Overview

In this chapter we present the SWAP system. The SWAP sys-
tem offers basic services to exchange knowledge in a peer-to-peer
fashion. We derive the generic requirements for this infrastruc-
ture from use cases carried out in the SWAP project. We propose
a modular system architecture which allows for the customization
of the generic platform to specific user needs. The components
extract knowledge from the user machine, visualize the knowl-
edge, and connect to other nodes. A metadata model enables
knowledge sharing across the network.

References: This chapter is based on the publications (Tempich
et al., 2003), (Broekstra et al., 2003) and (Tempich et al., 2004c).

3.1. Use Case Description

The trend that knowledge workers are collaborating in decentralized, autonomous teams
is reflected in the two use cases which lead to the requirements definition for the generic
SWAP system. The first use case describes a virtual organization in the tourism domain,
while the second describes a community of researchers exchanging bibliographic meta-
data. The use cases are representative for scenarios in which a number of organization-
s/people desire to share knowledge on particular but changing topics while maintaining
their autonomy.

3.1.1. The IBIT Use Case

The IBIT case study is based in the tourism sector of the Balearic Islands (Lladó et al.,
2002). The needs of the tourism industry there are best described by the term ‘coope-
tition’. On the one hand the different organizations compete for customers against each
other. On the other hand, they should cooperate in order to provide high quality for re-
gional touristic issues like infrastructure, facilities, clean environment, or safety — that
are critical for them to be able to compete against other tourism destinations. The differ-
ent organization thus form a virtual organization (cf. (Camarinha-Matos & Afsarmanesh,
2003)). Therefore, they collect and share information about indicators reflecting the im-
pact of growing population and tourist fluxes in the islands, their environment and their

33

3. SWAP: A Semantic Peer-to-Peer System

infrastructures. Moreover, these indicators can be used to make predictions and help plan-
ning. For instance, organizations that require Quality & Hospitality management use the
information to better plan, for example, their marketing campaigns. As another example,
a governmental agency, a Balearic government co-ordination center of telematics, pro-
vides the local industry with information about new technologies that can help the tourism
industry to better perform their tasks.

The employees prepare different reports on their computers. They deliver them to the
government and to interested parties on request. Some of the produced reports are public
while others have a restricted to specific audiences. The organizations produce periodical
reports, such as statistical ones, and reports on upcoming technological developments.
The data is collected via email, from Web sites and non electronic sources. Locally, the
source data is organized in emails, documents, tables, and different folder hierarchies for
files, bookmarks and emails. Although the gathering of information and its distribution to
interested parties is time consuming, none of the organizations has enough resources or
expertise to set-up and maintain a centralized knowledge base for publishing knowledge
of general interest. Security concerns also impede the introduction of such a system.

3.1.2. The Bibster Use Case

The SWAP bibliography case study explored the sharing of BibTEX information between
peers of researchers. BibTEX is a metadata standard to describe bibliographic information.
As researchers reference related work to their own research they collect this data. The
collection of bibliographic information is time consuming and it is sometimes difficult to
obtain all required information, e.g., the pages, for a particular reference. Although central
repositories1 exist they usually do not include bibliographic information across different
domains and cover only larger conferences and journals. Bibliographic information of
smaller events resides only at the individual researcher. Beyond the retrieval of biblio-
graphic information the comparison of different researcher data can on the one hand assist
to complete bibliographic data and on the other hand can reveal similar research interests.
The categorization of bibliographic data is feasible, since for many research areas shared
topic definitions exists, such as the ACM topic hierarchy for computer science2.

3.2. Requirements for a Semantic Peer-to-Peer System

The use cases presented in the previous section are DKM scenarios. In order to formulate
the specific requirements for a semantic P2P system supporting the use cases we categorize
them according to the structure presented in Section 2.1.2. For the requirements related to
search and security we use the more detailed categorization presented in Section 2.4.1.

1For example: DBLP, see http://www.informatik.uni-trier.de/~ley/db/ or The Collec-
tion of Computer Science Bibliographies, see http://liinwww.ira.uka.de/bibliography/

2see http://www.acm.org/class/1998/

34

http://www.informatik.uni-trier.de/~ley/db/
http://liinwww.ira.uka.de/bibliography/
http://www.acm.org/class/1998/

3.2. Requirements for a Semantic Peer-to-Peer System

3.2.1. Infrastructure Level

On the infrastructure level we define requirements related to access and security.

Access The SWAP system enables the exchange of knowledge represented in RDF(S).
Furthermore, the use cases require the exchange of, e.g., documents. Documents existing
in different versions should be distinguishable. The system transmits both kinds of data
across organizational boundaries, such as fire walls.

Security For our use cases we do not expect a denial of service attack or malicious
nodes. Users provide only usable and trustable knowledge. Furthermore, they do not
pretend to author files which they have not. Hence, for our case studies we need no file
authenticity validation service. Neither, do the users necessitate anonymity. In the Virtual
Organization case study access control is a requirement. Users want to grant access to
their files only to certain organizations, and on special request. Although we neglect some
general security requirements this does not undermine the value of the system, as security
services can be implemented on top of the generic infrastructure.

3.2.2. Application Level

The main objective of the SWAP system on the application level is to support the knowl-
edge management core processes identification, acquirement, distribution and use (cf. Fig-
ure 2.1).

Local perspective The knowledge workers can create their own view on the local and
remote knowledge. They create local views comparable to the structures found in their file
system. The local perspective changes over time in relation to the differences in knowledge
workers tasks, but they also construct shared perspectives for knowledge relevant for the
team. Mappings may be required, e.g., to overcome heterogeneous labeling of the same
objects. If the defined structures are very similar to each other, a process is needed to
identify commonalities and make them explicit.

Owner ship model An owner ship model is not seen as a major requirement for our case
studies.

Content-based search In both case studies it is required to search content related. The
knowledge is categorized according to different dimensions. In some cases only imprecise
search queries can be formulated. The visualization of the answers should point up the
similarities between different queries. Furthermore, the visualization should account for
the fact, that answers in a P2P network arrive at different times. Hence, the interface should

35

3. SWAP: A Semantic Peer-to-Peer System

help the user to distinguish between recent and old results, should update itself from time
to time and should visualize where results come from.

Localization In the case of localization the requirements are subdivided according the
categorization provided in Section 2.4.1. Search is performed on the content level, thus an
expressive query language is required. It is not sufficient to return only one answer, but a
subset of all possible answers to a query. As the search request may not completely cover
the information need, a larger answer set can contain the desired information. Peers are
autonomous and like to connect to any remote peer available in the network, as they may
know of somebody who knows the answer to their question.

The resources peers can allocate to the system are limited, as the retrieval of knowledge
is not their core task but supportive. Regarding quality of service, users expect quick an-
swers to their queries. The system should cope with peers joining and leaving the network.
Although in the IBIT case study we can assume that peers are most of the time online
during a working day.

3.2.3. Community Level

Formation In both case studies participants appreciate if they are introduced or pointed
to peers, which have similar knowledge as they have. Similarity can be determined on the
content level. Peers also connect to remote peers, if they know them.

Community perspective The creation of a community perspective on the shared knowl-
edge is of particular concern in the IBIT case study. The participants need a process guid-
ing them in the construction of shared knowledge models. In the Bibster case study, the
ACM hierarchy is predefined.

Interoperability In the Bibster case study interoperability is guaranteed, as all peers stick
to the BibTEX metadata format and use the ACM topic hierarchy. In the IBIT case study
existing shared knowledge structures can facilitate interoperability, but people also create
individual views on their knowledge. In order to exchange knowledge these peers should
create associations between the different knowledge representations.

Free riding In our use cases free riding is of no concern.

Summary

In comparison to general purpose data sharing P2P networks and traditional knowledge
management (KM) systems the DKM setting has the following requirements: A DKM

36

3.3. A Generic Semantic Peer-to-Peer System Architecture

Resource Sharing Component

Message

Informer

Advertiser

Discoverer

Controller

Query Rewriter

Peer Selector

Query

External Knowledge
Source Adapter

Resource
Retrieval

Local Node Repository (Adapter)

Communication Adapter

JXTA
Network

Knowledge Source Integrator

Extractor

Merger

Selector

Annotator

Knowledge Sources

SWABBI

User Interface

Query Formulator

Visualizer

Editor

Statements
Request

Resource

Answer

Resource Sharing Component

Message

Informer

Advertiser

Discoverer

Informer

Advertiser

Discoverer

Controller

Query Rewriter

Peer Selector

Controller

Query Rewriter

Peer Selector

Query

External Knowledge
Source Adapter

Resource
Retrieval

Local Node Repository (Adapter)

Communication Adapter

JXTA
Network

Communication Adapter

JXTA
Network

JXTA
Network

Knowledge Source Integrator

Extractor

Merger

Selector

Annotator

Knowledge Source Integrator

Extractor

Merger

Selector

Annotator

Knowledge Source Integrator

Extractor

Merger

Selector

Annotator

Knowledge Sources

SWABBISWABBISWABBI

User Interface

Query Formulator

Visualizer

Editor

User Interface

Query Formulator

Visualizer

Editor

User Interface

Query Formulator

Visualizer

Editor

Statements
Request

Resource

Request

Resource

Answer

Figure 3.1.: Abstract Architecture of a SWAP Node

system should support knowledge sharing opposed to data sharing and representation of
user knowledge on local machines opposed to the representation of centrally predefined
knowledge. The represented knowledge is sensitive and cannot be shared with everybody.
The knowledge model evolves quickly and differently at each peer. The peers are not
always available.

3.3. A Generic Semantic Peer-to-Peer System Architecture

In order to meet the requirements listed in the previous section we have devised the SWAP
system architecture depicted in Figure 3.1. We will now present the individual compo-
nents.

Local Node Repository The Local Node Repository (LNR) stores the knowledge of
a peer and the metadata required for mediation between views, peer selection and re-
source location. It provides query formulation and processing functionalities. Knowl-
edge is represented as RDF(S) statements in the LNR. The LNR is implemented building
on the Sesame RDF(S) repository and SeRQL query language (Broekstra et al., 2002;
Broekstra, 2003). The LNR provides an integrated view on the knowledge represented
in RDF(S) but also on the documents from which the knowledge was obtained. The
native Sesame engine is integrated with an document retrieval system in order to trade-
off Sesame’s performance w.r.t. queries for statements and the retrieval system perfor-

37

3. SWAP: A Semantic Peer-to-Peer System

mance for keyword word based search (Plechawski, 2004b). It thus meets the requirement
Content-based search and is the basis to meet the requirement Access in combination with
the Knowledge Source Integrator, the Communication Adapter and the Resource Sharing
Component.

The SWAP knowledge model ontology and the SWAP metadata ontology are part of
each LNR. The SWAP knowledge model presented in Section 3.4.2 conceptualizes meta-
data about the knowledge sources being shared in the network. The SWAP metadata model
described in Section 3.4.1 represents information to perform system related tasks.

In order to meet the Security requirements the SWAP system uses a public-key in-
frastructure (PKI) with certificate authorities (Plechawski, 2004a). One SWAP node acts
as a root certificate authority for the SWAP system, all other peers will configure this node
as trusted root certificate authority. In small networks, this certificate authority will issue
certificates directly for users, whereas in large networks, it is possible to build a hierarchy
of certificate authorities. The certificate creation is done offline, on the configuration level.
Certificates themselves are not transmitted within the standard SWAP user interface.

Knowledge Source Integrator The Knowledge Source Integrator consists of the four
sub components Extractor, Selector, Annotator and Merger. It is responsible for the ex-
traction and integration of internal and external knowledge sources into the LNR. This task
comprises (1) means to access local knowledge sources and extract an RDF(S) represen-
tation of the stored knowledge, (2) the selection of the RDF statements to be integrated
into the LNR, (3) the annotation of the statements with metadata, and (4) merging the
statements into the ontology of the user.

The Extractor offers a common interface to access different kinds of data on the local
machine. It follows the mediator design principle (Wiederhold, 1992). For each infor-
mation source, such as a file system, an extractor is implemented, which can extract the
information modeled in the SWAP knowledge model (cf. Section 3.4.2). The Extractor
produces and RDF(S) representation of the extracted information. The Selector choose
from the extracted statements the relevant ones. In our implementation we have always
integrated all the extracted information. The Annotator adds metadata information to the
selected information according to SWAP metadata model. The Merger integrates the an-
notated statements into the existing LNR. Different strategies are available to support the
merging process. Ehrig (2006) describes them extensively and shows how they meet the
Interoperability requirement.

Knowledge Sources Peers have local sources of knowledge such as the local file sys-
tem, email directories or bookmark lists. These are the basis to create the knowledge of a
peer as well as its basic vocabulary. The peer may also share the knowledge sources.

Informer The Informer consist of two subcomponents: the Advertiser and the Discov-
erer. It publishes and searchers for expertise descriptions in the P2P network and thus

38

3.3. A Generic Semantic Peer-to-Peer System Architecture

builds active indexing links with remote peers (cf. Section 2.4.2.2). The Informer extracts
from the LNR a model of the peer expertise. The Advertiser transmit this model to remote
peers whereas the Discoverer requests the model. In both cases the receiving peer decides
to store or to disregard the expertise model. The expertise models of remote peers assist in
the peer selection process. A more detailed description of the advertisement and discovery
service can be found in (Haase et al., 2004b). The routing approach proposed in this thesis
does not require the Informer to localize knowledge. The Informer in combination with the
Peer Selector meets the Localization requirement.

Controller The Controller contains the Peer Selector. It is the system coordinating com-
ponent which controls the message flow within the system and administrates the query
distribution and answering process. The Peer Selector picks from known remote peers
appropriate ones, considering the peer local knowledge and the query. Part III proposes
algorithms implemented in the Peer Selector component to select remote peers. The Peer
Selector meets the requirement Formation, as the proposed algorithms clusters peers with
similar interests, and a manual Peer Selector allows for selecting arbitrary peers to query.

Resource Sharing Component The Resource Sharing Component delivers resources
to a requester which are not part of the LNR.

User Interface The User Interface has the subcomponents Visualizer, Query Formulator
and Editor. The Visualizer presents the answers to the user queries. The XAROP user
interface presents the answers to queries in a cluster map (cf. Figure 4.9). It presents the
results of more than one query at a time, and points out overlapping results. It updates itself
when new answers arrive from remote peers and highlights them (cf. requirement content-
based search). The Bibster user interface presents the answers to queries in table format.
The Query Formulator is similarly represented in both prototypes. It allows to query for in-
stances by selecting classes from a class hierarchy. Properties and keywords can be used to
specify the query further. The Editor supports the creation, maintenance and management
of the local knowledge. It assists the creation of a local perspective on the user knowledge
as well as the creation of a community perspective. The process structuring the perspective
creation is described in more detail in Part II whereas Section 4.5.2 emphasizes on the
Editor component.

Communication Adapter The Communication Adapter is responsible for the network
communication between peers. It serves as a transport layer for other parts of the system,
for sending and forwarding queries. It hides and encapsulates all low-level communication
details from the rest of the system. The JXTA protocol provides communication services
to surpass fire-walls and to find remote peers on the network layer (Gong, 2001).

39

3. SWAP: A Semantic Peer-to-Peer System

swap:Peer

peerID : rdfs:Literal
peerLabel : rdfs:Literal
bootstrappingCapability

: rdfs:Literal

peerID : rdfs:Literal
peerLabel : rdfs:Literal
bootstrappingCapability

: rdfs:Literal

swap:Swabbi

label : rdfs:Literal
location : rdfs:Literal
additionDate : rdfs:Literal
queryHits : rdfs:Literal

label : rdfs:Literal
location : rdfs:Literal
additionDate : rdfs:Literal
queryHits : rdfs:Literal

rdfs:Resource

peerID : rdfs:Literal
peerLabel : rdfs:Literal
bootstrappingCapability

: rdfs:Literal

peerID : rdfs:Literal
peerLabel : rdfs:Literal
bootstrappingCapability

: rdfs:Literal

swap:hasPeer

swap:uriswap:hasSwabbi

Figure 3.2.: SWAP Metadata Model

3.4. SWAP Application Metadata

In order to meet the requirements Access and Localization the LNR integrates two pre-
defined metadata models. The SWAP metadata model specifies information required to
localize data within the network, while the SWAP knowledge model describes the infor-
mation found on the local peer. All metadata is integrated into the LNR.

3.4.1. SWAP Metadata Model

The LNR integrates knowledge from different knowledge sources locally and remotely. In
order to trace the origins of knowledge objects the Annotator adds metadata according to
the SWAP metadata model to it. This applies to the physical location on the local machine
in the same way as to the physical location at a remote peer. The Access requirement
motivates the metadata related to the location of specific knowledge objects. Metadata
related to the quality of the knowledge objects arises from the Localization requirement.

The metadata is represented in RDF(S)3. Figure 3.2 visualizes the defined classes.

The model consists of two RDFS classes, namely the “Swabbi”-class and the “Peer”-
class. The following properties specify the two classes:

Swabbi-object Every object in the LNR is annotated with a “Swabbi”-object containing
the following meta-information:

3see http://swap.semanticweb.org/2003/01/swap-peer

40

http://swap.semanticweb.org/2003/01/swap-peer

3.4. SWAP Application Metadata

hasPeer This property is used to track which peer this “Swabbi”-object is associated
with.

uri Each object, i.e., instance, class or property was originally created on a specific
peer. To store the knowledge origin and to disambiguate object addresses across the
network its URI is explicitly stored.

location Whereas the URI identifies metadata resources within the ontology of the
LNR, the location-attribute is an identifier to access the physical resource, e.g., a
document at file://c:/Projects/myfile.txt. The peer storing the in-
formation physically interprets this expression. The location information is also
required for updating the LNR.

label The label attribute stores the name of an object at its origin. The label-attribute
is expressed in natural language. A resource can have different names on different
peers. This information is useful for mapping purposes.

queryHits The queryHits attribute is used in the Peer Selector to rank peers. The
maintenance of the associated values is described in Section 6.3.

additionDate This attribute stores the addition date of the associated object. The Peer
Selector indexing policy is influenced by the addition date of an object.

Peer-object The Peer-object is an RDFS representation of a node in the network. Each
Swabbi-object is related to a Peer-object by the hasPeer relation. The following properties
specify the Peer-object:

peerID Each peer has a unique ID. For our purposes this will be the JXTA UID, as
we use JXTA as our underlying communication infrastructure. The ID provided by
JXTA is a random number with a high probability being indeed unique.

peerLabel This peer attribute stores the peer label, which is a human readable and
understandable description of the peer in natural language.

bootstrappingCapability The bootstrapping capability is indicator for the number of
connections a peer maintains. The Peer Selector incorporates the bootstrapping
capability in the peer selection decision.

3.4.2. The SWAP Knowledge Model

The SWAP knowledge model represents the information commonly found on a user ma-
chine. It is represented in RDF(S)4. It contains classes for, e.g., Folder, File, Bookmark and
Email. Folders are arranged in a hierarchy and specializations of the concept exist for, e.g.,

4see http://swap.semanticweb.org/2003/01/swap-common/

41

file://c:/Projects/myfile.txt
http://swap.semanticweb.org/2003/01/swap-common/

3. SWAP: A Semantic Peer-to-Peer System

FileFolder and BookmarkFolder. The knowledge model specifies for each class a number
of properties. The properties author, size, checksum and inFolder for instances specify
the class File. Without presenting all classes defined in the knowledge model we conclude
that it facilitates the retrieval of information found on each peer. The information extracted
according to the knowledge model is the basis for the creation of knowledge from local
information.

3.5. Summary

This chapter introduces two use cases for distributed knowledge management. In the first
use case virtual organizations exchanges knowledge across organizational boundaries in
order to provide better services to their customers. In the second use case researchers ex-
change bibliographic entries easing the burden to collect complete references and to detect
colleges with similar interests. To meet the requirements of the use cases from a techni-
cal point of view the SWAP system has been developed. The SWAP system is a generic
peer-to-peer platform offering services to extract, store and maintain knowledge stored on
the local node. It also enables the exchange of knowledge between nodes in the network,
thereby integrating ontologies from various sources. This provides a basic infrastructure
for distributed ontology engineering and mapping of ontologies. The REMINDIN’ routing
algorithm extensively uses the shared ontology to efficiently route queries in the network.
In comparison to related system it uniquely offers to query arbitrary structured data stored
in RDF(S) and unstructured data such as text at the same time. The SWAP system has
been customized for the two use cases in the XAROP (virtual organizations) and Bibster
(researchers) application. This demonstrates one of the main benefits in using a standard-
ized data model: the system may be customized for different application scenarios in a
straightforward manner. Moreover, the XAROP application includes a completely distrib-
uted security model as required in DKM settings.

The SWAP system was also used to implement the distributed ontology management
infrastructure Oyster (Hartmann et al., 2005). It is currently enhanced in order to support
distributed reasoning with OWL ontologies.

42

Part II.

The DILIGENT Methodology
“Strategy without tactics is the slowest route to victory.

Tactics without strategy is the noise before defeat.”
— Sun Tzu

4. DILIGENT Ontology Engineering

Overview

DILIGENT is a methodology to build, evolve and reconcile on-
tologies in a DKM settings. It defines a process model, guiding
the methodology users towards a shared ontology in a structured
way, characterizing roles, specifying the required knowledge of
the users. The methodology is supported by tools, assisting the
users in particular application scenarios. The methodology has
been successfully evaluated in case studies.

In this chapter the general process overview and role characteri-
zation is followed by a detailed discussion of the process stages
and their activities. As arguments play a predominant role in
the methodology, ontology engineering is analyzed from an argu-
mentation point of view and a semi-formal model for argumen-
tation support is presented. The description of tools supporting
the methodology user in different application scenarios finalizes
the chapter. The evaluation of the methodology in three different
case studies is presented in the next chapter.

References: This chapter is based on the publications (Pinto
et al., 2004a), (Pinto et al., 2004b), (Pinto et al., 2005), (Vran-
decic et al., 2005) (Tempich et al., 2005a), (Tempich et al., 2006),
and (Sure et al., 2004).

4.1. Feasibility Study

This Section elaborates on the IBIT use case introduced in Section 3.1.1 w.r.t. its require-
ments on ontology engineering methodologies. Existing ontology engineering methodolo-
gies cover these requirements only partially. The DILIGENT methodology presented in
the next Section addresses the open issues.

4.1.1. Ontology Engineering Use Case

We focus on the IBIT use case here, because the Bibster case study did not foresee chang-
ing the common model.

45

4. DILIGENT Ontology Engineering

The organizations in the IBIT use case have the shared interest to exchange knowledge
about topics which are of common interest, e.g., visitor numbers, or are orthogonal to
their core competencies, e.g., hotel booking systems. The exchanged knowledge is mod-
eled with an ontology, because they require the explicit semantics of a formal knowledge
model. In contrast to the centralized KM setting the domain experts build the ontology
themselves, because no specialist ontology engineer is in charge of maintaining the lo-
cal ontologies. A major advantage of DKM is its responsiveness to changing needs; the
complete delegation of the ontology maintenance task to a centralized authority would
challenge this advantage. The ontology reflects the changing needs in that it is changed by
each user differently. Nonetheless, some of the changes made by one user are similar to
other user changes.
Another important aspect of the IBIT use case is the fact that new employees enter partic-
ipating organizations and others leave them. There is thus the potential of reusing existing
ontologies in order to ease the knowledge transfer between employees.

4.1.2. Requirements for Ontology Engineering Methodologies

We categorize the requirements for our ontology engineering (OE) methodology into gen-
eral requirements for a methodology, requirements for OE methodologies and require-
ments for OE methodologies in our scenario.

A methodology comprises the description and definition of methods, techniques,
processes and activities which are designed to achieve a certain goal (cf. Section 2.2.2).
Besides the process itself a methodology includes also role definitions for the actors ac-
complishing the activities as well as the input and output documents and results of the ac-
tivities. Early requirements analysis for OE methodologies concluded, that such a method-
ology should include activity descriptions for Purpose identification, Ontology building,
Ontology Evaluation and Documentation (Uschold & King, 1995). An extended list in-
cludes all ontology management, ontology development oriented and ontology support
activities (cf. Section 2.2.2.2, (Corcho et al., 2003)). A methodology provides these ac-
tivity descriptions suitable for a particular class of use cases. Therefore, we focus on the
requirements arising from our use case and compare them with the assumptions underlying
existing methodologies.

Decentralization Classical development of ontologies is mostly centralized like the
targeted knowledge-based system where ontologies are used. Existing methodolo-
gies, have a centralized approach towards engineering knowledge structures requir-
ing knowledge engineers, domain experts and others to perform various tasks, such
as requirement analysis and interviews. While the user group of such an ontology
may be large, the development itself is performed by a comparatively small group
of domain experts who represent the user community and ontology engineers who
help structuring.

46

4.1. Feasibility Study

In contrast, in our scenario the users build the ontology in a decentral and au-
tonomous manner. Moving the user in the role of the ontology engineer implies
a number of requirements elaborated on hereafter. This applies also to autonomy.
In a decentralized setting the communication of ontology design decisions to other
users is of particular concern. Although an ontology explicitly specifies the meaning
of its concepts, not all assumptions underlying a particular formalization are repre-
sentable (Skuce, 1995). Since, the users do not meet each other in order to explain
the assumptions they require methods to facilitate their provision.

Non Expert Builders Existing methodologies support KE by using check lists that
guide the engineering process. The check lists have been shaped by the needs
of knowledge engineers to comprehensively cope with nearly arbitrarily complex
processes. In contrast, in the cases we consider, the participation of a knowledge
engineer is often restricted to a, possibly complex, core ontology. Beyond the core,
these cases involve extensive participation and, comparatively simple, concept for-
mation by domain experts and/or users. Since, ontology engineering is not the pri-
mary task of this group, they require fine-grained guidance and tools integrated into
their work environment in order to efficiently build and change their ontology and
explain the underlying design decisions.

Autonomy In contrast to the centralized scenario, the users can change their ontology
according to their needs, but they have also an interest in sharing knowledge with
other users in the network. They, thus, require methods and tools helping them in
bridging heterogeneous conceptualizations and agreeing on shared conceptualiza-
tions. For that the communication of ontological assumptions is important.

Iteration Existing OE methodologies focus on the construction of ontologies for an
up- and running systems with some moderate effort for maintenance. In contrast,
ontologies in our scenario permanently evolve in order to reflect the widely diverging
needs of their users. This requires that the methods and tools defined in order to meet
the before mentioned requirements should inherently consider iteration.

Summary

In DKM scenarios the users move in the center of attention. As they are non experts in
ontology building they need a fine-grained guidance in order to change their ontology ac-
cording to their needs. The exchange of knowledge, given the emerging heterogeneity, is
only feasible if either mappings can be defined or a process supports reconciliation. Rec-
onciliation requires discussions and the clarification of assumptions underlying different
conceptualizations. In decentralized settings, in which the user do not have regular ontol-
ogy engineering face-to-face meetings, an efficient clarification process requires that the
assumptions are made explicit. Additionally a methodology should account for the rapid
change user ontologies undergo.

47

4. DILIGENT Ontology Engineering

We account for these requirements in the DILIGENT methodology introduced in the
next Section. The methodology guides the users in a periodic process of changing, recon-
ciling and evolving their ontologies. A partially shared ontology emerges inspired by the
user changes. The methodology meets the general requirements for an OE methodology
meeting the special needs of the DKM scenario. An argumentation framework structures
the reconciliation process. It integrates an argumentation model which facilitates the ex-
ternalization of assumptions and makes the reconciliation process more efficient.

4.2. The DILIGENT Process

DILIGENT stands for DIstributed, Loosely-controlled and evolvInG Engineering of oN-
Tologies. It addresses the requirements for ontology engineering in DKM settings. For
that it distinguishes two ‘kinds’ of ontologies: the shared ontology and the local ontolo-
gies. The shared ontology is available to all users but they cannot change it directly. In
order to change the shared ontology the user obtains a copy of it and modifies it in his
work environment. The resulting ontology is referred to as the user local ontology. In the
perspective of a specific user, the local ontologies of other users are referred to as remote
local ontologies.

In this Section we sketch the overall process model and the general idea of DILIGENT.
In particular we motivate the process for building and maintaining the shared ontology
while the users utilize their own local ontologies. In the next Section we provide a detailed
description of the activities each process stage is comprised of.

4.2.1. Key Roles

In a DILIGENT scenario we differentiate among a number of complementarily skilled
experts who collaboratively build a shared ontology. In a virtual organization they often
belong to competing organizations and are geographically dispersed. DILIGENT supports
trained ontology engineers as well as typical users of information systems. The ontology
engineers perform the defined activities with more accuracy and awareness of the process
while the non-ontology engineering expert users will follow them implicitly guided by the
provided tools.

DILIGENT distinguishes between the users of the ontology and a board. The users
work with their local ontologies while the board assures that the shared ontology evolves
according to the user needs. The board should have a well-balanced and representative
participation of the different kinds of participants involved in the process: Domain experts,
ontology engineers and users. Users are involved in ontology development, through their
requests and re-occurring improvements and by evaluating it, mostly from a usability point
of view. Domain experts in the board are responsible for evaluating the ontology, mostly
from a technical and domain point of view. Ontology engineers analyze arguments and

48

4.2. The DILIGENT Process

balance them from a technical point of view. Another task for the board is to assure some
compatibility with previous versions.

In future we refer to the participant in the process as actors or ontology users indepen-
dently of their personal skills in ontology engineering if the local ontology is concerned.
We refer to the participants involved in building and updating the shared ontology as the
board.

4.2.2. Process Stages

An initial ontology is made available and users are free to use it and modify it locally for
their own purposes. There is a central board that maintains and assures the quality of the
shared core ontology. This central board is also responsible for deciding to update the core
ontology. However, updates are mostly based on changes re-occurring at and requests by
decentrally working users. Therefore, the board only loosely controls the process. Due
to the changes introduced by the users over time and the on-going integration of changes
by the board, the ontology evolves. At the next finer level of granularity DILIGENT com-
prises five main stages: (1) build, (2) local adaptation, (3) central analysis, (4) central
revision, (5) local update (cf. Figure 4.1).

4.2.2.1. Central Build

The process starts by having domain experts, users, knowledge engineers and ontol-
ogy engineers build an initial ontology. In contrast to existing ontology engineering
methodologies (cf. (Staab et al., 2001; Gangemi et al., 1998; Gómez-Pérez et al., 2003;
Pinto & Martins, 2001; Uschold & King, 1995)), we do not require the initial shared on-
tology to completely cover the domain of interest. The team involved in building the initial
ontology should be relatively small, in order to more easily find a small and consensual
first version of the shared ontology.

4.2.2.2. Local Adaptation

Once the core ontology is available, users work with it and, in particular, adapt it to their
local needs. They have their own business requirements and correspondingly evolve their
local ontologies (including the common core) (Noy & Klein, 2003; Stojanovic et al., 2002).
In their local environment, they are also free to change the reused core ontology. This has
no direct effect on the shared ontology or local ontologies of other users. Logging local
adaptations (either permanently or at control points), the control board collects change
requests to the shared ontology. Depending on the application and the use case, the board
may either collect the changes automatically from the users, the users send the formalized
changes to the board, or the users send informal requests to the board.

49

4. DILIGENT Ontology Engineering

Domain
Expert

Knowledge
Engineer

Ontology
Engineer

Ontology
User 1

Ontology
User n

Control Board
Editors

Control Board
Editors

O IO I

O 1

O n

1

5

3 4

2

Ontology
User

Figure 4.1.: Distributed Ontology Engineering: Overview

4.2.2.3. Central Analysis

In order to update the shared ontology in correspondence with new user requirements a
board analyzes the local ontologies and change requests and tries to identify similarities
in user ontologies. Since not all of the changes introduced or requested by the users will be
introduced to the shared core ontology,1 a crucial activity of the board is deciding which
changes are going to be introduced in the next version of the shared ontology. The input
from users provides the necessary arguments to underline change requests. A balanced
decision that takes into account the different needs of the users and meets their evolving
requirements2 has to be found. The analysis stage concentrates on the identification of
new requirements from a conceptual point of view. The changes are formalized in the next
stage.

4.2.2.4. Central Revision

The board regularly revises the shared ontology, so that local ontologies do not diverge too
far from the shared ontology. Revision can be regarded as a kind of ontology development
guided by a carefully balanced subset of evolving user driven requirements. Ontology
engineers are responsible for updating the ontology, based on the decisions of the board.

4.2.2.5. Local Update

Once a new version of the shared ontology is released, users may update their own local
ontologies. The users tradeoff the benefits of using a shared ontology with the additional

1The idea in this kind of development is not to merge all user ontologies.
2This is actually one of the trends in modern software engineering methodologies (see Rational Unified

Process).

50

4.3. DILIGENT Detailed Process Description

effort to update. Some of their change requests may be part of the new shared version of
the ontology. Updating may involve a reorganization of the local ontology. The individual
users benefits from the use of the shared ontology, because he gains interoperability with
other users. In some cases this comes at the cost of loosing the individual local organiza-
tion.

4.3. DILIGENT Detailed Process Description

In order to facilitate the ontology engineering process, DILIGENT provides detailed guid-
ance to its users. For each stage DILIGENT describes (i) major roles, (ii) input, (iii) deci-
sions, (iv) activities (v) and output information. The result is depicted in Figure 4.2. Roles
relate to the skills of the participants involved in a process stage. The input describes the
available information, which may be utilized in a specific process stage. The participants
perform the activities and process the input information. Based on the outcome they decide
on the follow up activities and produce the desired output.

DILIGENT defines the activities at the same abstraction level as other established
methodologies, which are specified for ontology engineers. The methodology, however,
shall assist non-ontology engineering experts. It therefore subdivides some activities and
introduces user tasks. The user tasks are related to the experiences in our use cases and
take into account the users specific work environment.

Local
Adaptation

3. Local analysis of shared
ontology

4. Ontology use
5. Local specification of new

requirements

6. Local customization of local
ontology
a. Local modification of

local ontology
b. Local integration of

reused ontologies to the
local ontology

7. Evaluation of new local
ontology

8. Argument provision

Central
Build

1. Ontology
development
oriented activities

2. Ontology support
activities

- Locally
changed

ontologies
- Arguments

Initial
shared

ontology

Shared
ontology fits? Sufficient?

Central
Analysis

9. Information collection from
users

10.Analysis of the obtained
information

11.Control of previously shared
ontology

12.Specification of new
requirements

13.Argument provision

List of
conceptual
changes

Most important
changes?

List of
conceptual
changes

Most important
changes?

14.Customization of
shared ontology
a. Modification of

shared ontology
b. Integration of

reused local
ontologies to the
shared ontology

15.Evaluation of new
shared ontology

16.Argument provision

17.Argumentation
aggregation

18.Distribution of new
shared ontology

Central
Revision

Documented
new shared

ontology

Consensual
formalization?

Local
Update

19.Control new shared
ontology

20.Local analysis of
changes in the new
shared ontology

21.Integration of new and
old version

Update?

Integrated
local

ontologies

Update?

Integrated
local

ontologies

Integrated
local

ontologies

Figure 4.2.: DILIGENT Process

51

4. DILIGENT Ontology Engineering

4.3.1. Central Build

As mentioned in Section 4.2, DILIGENT focuses on distributed ontology development and
the process of ontology evolution. We do not elaborate extensively on initial building, be-
cause it is supported by established methodologies. DILIGENT, however, reuses some of
the activity and structure definitions from established methodologies in later stages of the
process. Therefore, we summarize those activities hereafter (cf. e.g., (Gómez-Pérez et al.,
2003)). Additionally, DILIGENT introduces the Argument provision activity, because its
outcome is needed in later stages.

4.3.1.1. Roles

Classical ontology engineering methodologies introduce three different roles: knowledge
engineer, ontology engineer and domain expert (as described in Section 2.2.2.2). The
persons involved in the central build stage are the initial board members.

4.3.1.2. Input

If an ontology is used in an application, ontology building is integrated into the software
development process. For the development of knowledge management applications the
OTK methodology proposes a knowledge meta-process (Sure, 2003; Sure & Studer, 2002).
In this case ontology building is preceded by a feasibility study. Besides a number of doc-
uments judging the economical, technical and organizational feasibility of the application,
the study results in a detailed description of the organization for which the application is
build, a list of the tasks the organization performs and an evaluation of the impact the KM
application could have on the organization.

4.3.1.3. Output

The result of the central build stage is an ontology, which models the main concepts of the
domain. This stage is explicitly not considered as a complete OE cycle as its objective is
the realization of a first working draft of the shard ontology at the cost of completeness.

4.3.1.4. Decisions

The ontology engineer controls whether the built ontology meets the requirements identi-
fied in the beginning of the ontology engineering process. If it does, the board releases the
first version of the shared ontology otherwise the building process is restarted.

52

4.3. DILIGENT Detailed Process Description

4.3.1.5. Activities

In the following we summarize the activities described in existing ontology engineering
methodologies for building ontologies, because later stages of the process include some
of them. In particular we describe the ontology development activities Specification, Con-
ceptualization, Formalization, Implementation, Maintenance, and the ontology support
activities, viz. Evaluation, Reuse, Knowledge acquisition, Documentation and Argument
provision. Figure 4.3 illustrates the interdependencies in an activity diagram.

Input:
- Feasibility study

Ontology support activities

Evaluation

Argument provision

Documentation

Reuse

Knowledge acquisition

Ontology support activities

Evaluation

Argument provision

Documentation

Reuse

Knowledge acquisition

Ontology development oriented
activities

Specification

Conceptualization

Formalization

Implementation

Ontology development oriented
activities

Specification

Conceptualization

Formalization

Implementation

Output:
- Initial shared Ontology

Figure 4.3.: Central Build

Specification of the shared ontology The objective of the Specification stage is the
identification of the purpose and scope of the shared ontology. For instance, the OTK
methodology situates this activity in the kickoff phase. The result of this activity is an on-
tology requirements specification document (ORSD) (cf. (Sure, 2003)). The ORSD con-

53

4. DILIGENT Ontology Engineering

tains information about the goal, domain and scope, it specifies design guidelines and lists
knowledge sources, potential users, usage scenarios and supported applications. Compe-
tency questions are often collected in order to state a set of controllable requirements; use
case diagrams are another option (De Nicola et al., 2005). Supporting techniques for this
activity are, e.g., writing motivational scenarios or brainstorming (Uschold, 1996). Fur-
thermore the ontology engineers define modules covering sub-domains in order to break
down complexity.

Conceptualization of the shared ontology The specification defined in the previous
activity is the basis for the creation of a conceptual model. The conceptual model can
be defined according to different paradigms, such as the informal sketchy mind mapTM

model (Sure, 2003) or a semi-formal binary relations diagram together with a concept dic-
tionary (Fernández-López et al., 1999) or others. The conceptualization complies with a
predefined naming convention, elaborates the sub-concept relationships and identifies the
important relations. The resulting model needs not to cover the domain knowledge com-
pletely. The ontology should represent as much detail as necessary for its initial usability
and usefulness. However, the building costs for the initial ontology should not outweigh its
benefits. Unfortunately this decision depends on the experience of the ontology engineer
and domain expert, but attempts are underway to estimate the effort distribution between
initial build stage and later stages of the process based on effort estimation models (Paslaru
Bontas & Tempich, 2005).

Formalization and implementation of the shared ontology In this activity the con-
ceptual model is converted into a formal model and subsequently implemented in the target
representation language (cf. Section 2.2). As most building processes are supported by on-
tology engineering environments (OEEs) the tool implements the ontology based on the
formal model. Axioms are a common way to explicitly specify the meaning of a concept.

Knowledge acquisition Knowledge acquisition has the objective to elicit relevant do-
main knowledge from, e.g., domain experts, ontologies and literature. Knowledge ac-
quisition has a long history and a number of techniques like brainstorming, interviews,
questionnaire, text analysis, and inductive techniques have been proposed (Boose, 1989;
Gaines, 1989). Besides these techniques, methodological support for knowledge acqui-
sition has been investigated (Studer et al., 1998). As the acquisition of knowledge is
time consuming, research effort has been spend alleviating the knowledge acquisition bot-
tleneck by automatizing the knowledge acquisition process (cf. e.g., (Maedche & Staab,
2001)).

Reuse This activity describes the reuse of available ontologies and their integration into
the target ontology. The literature distinguishes two cases of ontology reuse processes:
merging and integration (Sowa, 2000; Pinto & Martins, 2004).

54

4.3. DILIGENT Detailed Process Description

Merging describes the process of building one ontology out of different source ontolo-
gies from the same domain. For that the ONIONS methodology defines a process model
(Gangemi et al., 1998). Integration describes the process of building one ontology out
of different source ontologies from different domains. For this case Pinto & Martins
(2001) propose a methodology. Both methodologies start with the retrieval, selection and
analysis of existing, reusable ontologies. The identification of the assumptions underly-
ing the reused ontologies is a major task. If the ontologies are merged the methodologies
suggest defining first an ontology at a higher level of abstraction than the source ontolo-
gies and than to reorganize the required concepts under that ontology. In the integration
case a number of integration operations are applied to the ontologies in order to obtain a
shared model. Pinto (2000) distinguishes basic integration operations such as create-class,
change-instance-name, change-axiom-definition or remove-subontology and non-basic in-
tegration operations such as extension, mapping, concatenation or restructuring. The latter
are composed of a set of basic integration operations and are defined on a higher level of
abstraction.

Argument provision The argument provision activity is part of the DILIGENT method-
ology. It is performed within the DILIGENT argumentation framework, which is described
in Section 4.4. The argumentation framework supports the ontology engineer exchanging
arguments about the development and evolution of ontologies. The argumentation frame-
work defines a process for exchanging arguments, identifies major roles in that process and
specifies a set of argument types which facilitate the agreement process.

Evaluation of shared ontology Several approaches to evaluate ontologies propose par-
tial solutions for the evaluation of ontologies, from a general-purpose or a usage-related
perspective. Approaches to evaluate ontologies in the first category introduce methods fo-
cusing on the ontologies schema, i.e., the quality of the conceptual model (Uschold et al.,
1998a; Gómez-Pérez, 2001; Guarino & Welty, 2002). Assessing the usability of an on-
tology in a target application context, the second category, is addressed for example in
OntoMetric which is a framework for selecting appropriate ontologies (Lozano-Tello &
Gómez-Pérez, 2004). Additionally to these categories, we find approaches to evaluate on-
tologies aiming at evaluating the a-posteriori usage of an ontology for a specific task, such
as semantic annotation of texts.

Documentation Documentation is a textual description of the ontology and its creation
process. Ideally documentation is performed in parallel to the aforementioned activities
in order to ensure an efficient process quality control and improve the reusability of the
ontology.

Evaluation and Documentation are ontology support activities which should be per-
formed in all stages of the process. As the methods are the same for all stages we do not
mention these activities in the following detailed descriptions.

55

4. DILIGENT Ontology Engineering

4.3.2. Local Adaptation

The initial ontology is released and distributed to the users and they start to adapt it locally
for their own purposes. Note, that each user has a copy of the shared ontology. Changes are
not introduced directly in the shared ontology, but in the local copy of the shared ontology,
i.e.the local ontology. We call local ontologies from other users remote local ontologies.
The users utilizing a new version of the shared ontology first get familiar with the shared
ontology. In the next step they interact with the ontology in parallel in a threefold manner,
depending on the concrete application setting. For example some users use the ontology
only for retrieving information either locally or from other participants. Others also ac-
tively instantiate the ontology with their own knowledge. Finally, the use and the analysis
of the shared ontology can result in the definition of new local requirements for the shared
ontology and the change of the local ontology.

4.3.2.1. Roles

The local adaptation stage requires only the user role. The users’ primary tasks are usually
not related to ontology engineering but to their daily work. Therefore, users may not have
an ontology engineering background or even experience. They may be experts for their
specific tasks, but are not required to be domain experts for the entire domain of the shared
ontology. In our case study they used the ontology to retrieve, e.g., documents related to
certain topics modeled in the ontology. They also search for more structured data, such as
the projects an employee is involved in.

4.3.2.2. Input

The locally available information and the shared ontology are inputs for this stage. This
information is used to populate the ontology and to change the local ontology. Local
information can be existing databases, ontologies or folder structures and documents. The
users may consult external information, such as the ontologies of other users, ontologies
found in ontology repositories, and the literature.

4.3.2.3. Output

The output of the local adaptation stage is a locally changed ontology which better re-
flects the user needs. Each change is supported by arguments explaining the assumptions
underlying the requested changes. The changes are not directly propagated to the shared
ontology, but first undergo a detailed analysis in the central analysis stage by the board.

56

4.3. DILIGENT Detailed Process Description

4.3.2.4. Decisions

The users decide upon the changes to their local version of the shared ontology. They
decide if new concepts are needed and how to introduce them, if concept should be deleted
or modified.3

4.3.2.5. Activities

In order to change the local ontologies the users follow different paths. Ontology users may
decide to reuse existing ontologies originating from other users involved in the process or
to conceptualize the desired changes themselves. As other users, in particular the board,
should be able to understand these changes, argument provision becomes crucial. Fig-
ure 4.4 visualizes the dependencies between the single activities.

To obtained the desired output the user performs different activities namely local analy-
sis of shared ontology, local specification of new requirements , ontology use4, local cus-
tomization of local ontology, local integration of reused ontologies to the local ontology,
local modification of the local ontology, argument provision, evaluation of new local on-
tology according to the sequence depicted in Figure 4.4. The activities are repeated until a
new shared ontology is available.

Local analysis of shared ontology In this activity the users get familiar with the shared
ontology. Although an ontology is an explicit specification of a domain, not all assump-
tions underlying the design are formalized. Therefore, it is necessary in a first step to
understand these assumptions. The users learn where the different concepts are located in
the ontology and how they are interrelated with other concepts. It is not required that the
user understands the entire ontology immediately. The analysis can be performed gradu-
ally. For our use case the methodology suggests two specific tasks.

3It should be stressed that when we talk about changing the ontology or introducing new concepts this applies
to concepts, relations and axioms.

4Not visualized in the activity diagram, as ontology use is independent of the process state.

57

4. DILIGENT Ontology Engineering

Local analysis of
shared ontology

Local specification of
new requirements

Evaluation of new local
ontology

Argument provision

Local customization of local ontology

Local integration of
reused ontologies to

the local ontology

Local modification of
local ontology

Local customization of local ontology

Local integration of
reused ontologies to

the local ontology

Local modification of
local ontology

Input:
- Shared ontology

Output:
-Adapted local ontology
-Arguments

Figure 4.4.: Local Adaptation

User task: Understand shared ontology

In order to understand the shared ontology the users first look at the dif-
ferent modules (implicitly) defined in the ontology. They can then look up
the definitions of the concepts and read the available documentation. The
arguments underlying the conceptualization may also be helpful.

As a guideline the users start to understand the concept hierarchy before look-
ing at the relations between the concepts. Defined axioms and inference rules
are likely to be regarded last, because their understandability assumes a satisfac-
tory comprehension level of the concepts, taxonomy and interconceptual relations.
The instances defined in the shared ontology may serve as good examples for the
meaning of the instantiated concepts.

58

4.3. DILIGENT Detailed Process Description

User task: Identify commonalities between own and shared
conceptualization

In order to find commonalities between the shared ontology and local conceptual-
izations, users look for concepts and relations in the shared ontology which have
the same names or synonyms of concepts in their local conceptualization. If they
reuse their folder hierarchy in order to extend the shared ontology they compare
the labels of folders with the labels of concepts and relations defined in the shared
ontology. They understand the differences between the conceptualization in the
shared ontology and their own.

Ontology use As described in Section 2.2.1 an ontology can be used as a controlled
vocabulary, for browsing support, for search support, for sense disambiguation, for con-
sistency checking, for interpretability support and many more (McGuinness, 2003). De-
pending on the restrictions imposed by privacy laws, ontology usage can be monitored.
Frequency of use of certain entities in the ontology can provide the necessary data to the
board to enhance the quality of the shared ontology.

User task: Organize local knowledge according to the conceptualization

Local information is one source of available knowledge. In the case studies
described in this thesis the local information consisted of documents, contacts,
emails, and Web bookmarks. Users populated the ontology organizing their lo-
cal knowledge according to the shared ontology. All participants contribute to
the collective knowledge available in the network. Users also integrate knowl-
edge they retrieve from third parties into their own knowledge base. Relations
between own and remote conceptualizations beyond the already shared ontology
may be detected during the integration of external knowledge. If the users formal-
ize knowledge which cannot be represented in the shared ontology this leads to
the specification of new local requirements.

Specification of new requirements The local usage of the shared ontology leads to
the specification of new requirements, if it does not completely represent the knowledge
required by the users.

The task(s) the ontology is involved in play(s) an important role in identifying the re-
quirements. The possibilities are wide-ranging. As already mentioned in the build stage
trained ontology engineers can use an ORSD to capture the requirements in this stage.
Other methods to identify requirements have also been mentioned in conjunction with
traditional ontology building efforts. Requirements can be derived from competency ques-
tions as it was suggested in (Grüninger & Fox, 1995). Existing ontologies may be the
driver for new requirements, too.

The user may submit the requirements to a representative, if he does not want to cus-
tomize the ontology on his own.

59

4. DILIGENT Ontology Engineering

User task: Identify missing conceptualizations

Mismatches between the concepts defined in the shared ontology and the local
conceptualizations are starting points to identify missing conceptualizations in the
shared ontology and specify local requirements. If available local conceptualiza-
tions are for example folder hierarchies folder names which cannot be mapped on
concepts defined in the shared ontology may indicate missing conceptualizations.

Local customization of local ontology In Section 4.3.1 we have introduced two ways
of building an ontology: from scratch or by reuse or a combination of both. In the local
adaptation stage the users also have these two possibilities to change the local ontology.
As visualized in Figure 4.4 the local customization activity has the two sub-activities Lo-
cal modification of local ontology and Local integration of reused ontologies to the local
ontology.

Local modification of local ontology The local modification of the shared ontology
is one option to adapt it to the local requirements. We distinguish two cases: (1) the
shared ontology covers more domain knowledge than the user requires, and (2) the shared
ontology covers less domain knowledge than the user requires. Without loosing generality
this separation covers also the intermediated cases, if some parts of the ontology are too
detailed while other are too coarse.

In the first case the user removes the conceptualizations from the shared ontology which
he does not need.5 This pruning activity has implications on later process stages, because
the board draws conclusions from the user activities. If the board considers the removal
of a concept from the shared ontology, it distinguishes between the removal of top level
concepts and leaf concepts deep in the hierarchy. High level concepts may be too general
to be of concrete use for a specific user, but facilitate interoperability, thus there removal
may be counter productive. In contrast to this case, very specific concepts may be too
specific for being part of the shared ontology. The removal of concepts from the shared
ontology requires the board to make well-balanced and well-founded decisions.

If user requirements are not met by the shared ontology he modifies the shared ontology
locally. Modifications range from small changes, e.g., adding a new concept or relation to
a complete restructuring of the local ontology. The local requirements can also entail that
the user integrates a new module into the shared ontology. New local conceptualizations
point the board to missing conceptualizations in the shared ontology.

As a result of this activity the local ontology fulfills the local requirements.

Local integration of reused ontologies to the local ontology The second possibility
to meet new local requirements of the users is to reuse external ontologies. This activity is

5For this case Swartout et al. (1996) propose an independent methodology, guiding the user in the ontology
pruning process.

60

4.3. DILIGENT Detailed Process Description

thus related to the activities defined in ontology building by reuse (cf. Section 4.3.1.5) .

Depending on the application the user may have direct access to other party ontologies.
User may reuse local adaptations to remote local ontologies. Reuse in this scenario is
facilitated, because users reuse extensions to a shared ontology. The integration of entire or
parts of remote local ontologies is preceded by an examination of the candidate ontologies.
The users decide which integration operations, such as change-concept-name, remove-
concept or add-relation are executed on the copies of the remote local ontologies before
their local inclusion.

Reusing existing ontologies is a feasible alternative for both technically versed ontology
engineers, who follow established reuse methodologies to fulfill this task, and less expe-
rienced ontology users. As the shared ontology offers a common structure the user can
focus the examination of remote ontologies on the parts which are relevant for him instead
of analyzing the entire remote ontology. Although remote ontologies may not exactly meet
user requirements they might prefer to reuse them, because it increases interoperability.

If the user has found reusable external ontologies he merges or integrates them with
his local ontology. Depending on the reuse level the remote ontologies may be subject of
more or less radical customization. The addition of generalizations or refinements may
be needed in order to integrate the reused ontologies. The effort locally invested to reuse
ontologies from external parties are compensated by the fact the board can more easily
detect those parts of the ontology which are likely to be shared.
Additionally to the reuse of remote ontologies users can also provide mappings to remote
ontologies. The users benefits from mappings, because they can access remote users data.
The board can recognize parts of the ontology which are again likely to be shared.
The result of this activity is a locally adapted shared ontology with adaptations based on
remote user ontologies.

DILIGENT defines two user tasks for this activity.

User task: Retrieve extensions to the shared ontology from other users

Users retrieve the changes to the shared ontology form other users. They look
for extensions to top-level concepts defined in the shared ontology. They include
all6sub concepts of shared top-level concepts defined in the remote local ontology,
if they choose to reuse it for their own purposes.

User task: Map equivalent conceptualizations

Users reuse locally available conceptualizations. They either reuse these concep-
tualization in order to extend the local ontology or they provide mappings between
the shared ontology and the local conceptualizations.7

6This is a simplification of the general reuse case, in order to reduce the conceptual burden on the users in
the SWAP use case.

61

4. DILIGENT Ontology Engineering

Argument provision The users externalize the reasons for their modeling decisions us-
ing arguments following the procedures proposed in the argumentation framework (cf. Sec-
tion 4.4).

Arguments can range from simple usage examples (e.g., some document could not be
classified using the ontology, some query could not be answered by the ontology to a
satisfactory extent) to twisted argumentations trading-off the pro’s and con’s of a decision.
The more expressive the argumentation is, the easier it will be for the board to understand
the reasons for the decisions and to integrate the submitted change request to the shared
ontology. The provision of arguments has the further advantage that users intending to
reuse the conceptualization – as aforementioned in the previous, reuse-oriented activities
– better understand the assumptions underlying the remote local ontologies.

Evaluation of new local ontology The evaluation activity is described in Section 4.3.1.
The user evaluates his local ontology w.r.t. his local requirements. He does not evaluate
the entire ontology, but only the parts relevant to him. The local ontology should evolve
with changing requirements.

Documentation As far as possible the user should document the changes introduced into
the shared ontology. Documentation includes metadata provision, such as the change time
and its author. Brief descriptions of the added conceptualizations facilitate the analysis
task of the board.

No user tasks are defined for the last three activities.

4.3.3. Central Analysis

The board meets at regular time intervals or if a certain threshold of change requests has
been reached. The meeting frequency depends on the ontological capabilities of the users
and the volatility of the domain. The user changes cannot be directly integrated to the
shared ontology, because changes from different users may be in conflict with each other.
If the shared ontology should respond to new requirements quickly the board meets fre-
quently. The total number of changes introduces by the users is an indicator for the urgency
of a board meeting. Frequent board meetings which gradually introduce changes reduce
the overall effort, because all users profit from the up-to-date version of the shared on-
tology and need not to rely on possibly contradictory conceptualizations found in remote
local ontologies. If the modeling capabilities of the users are high, more remote local
ontologies can be reused, hence up-to-date conceptualizations are available without being
immediately integrated into the shared ontology.

7 Section 4.5.2 presents a tool supporting the manual creation of mappings between ontology entities and
automatic support to find mapping candidates.

62

4.3. DILIGENT Detailed Process Description

In order to maintain an up-to-date version of the ontology for volatile domains, with fre-
quently emerging new requirements, the board should meet more often than in more stable
domains.

In each meeting the board gathers the user local ontologies. The board analyzes in-
coming requests and observations of changes. The central analysis stage is carried out
in conjunction with the subsequent central revision stage. The separation indicates the
differences between the identification of new requirements in the analysis stage and their
implementation in the revision stage. In the revision stage the user representatives are not
required.

4.3.3.1. Roles

In the central analysis stage we can distinguish three roles played by board members:
(i) The domain experts choose among the requested changes the ones which are relevant
for the shared ontology. (ii) Representatives of the users justify different requirements
from the usability perspective. At this stage, work is conducted at a conceptual level.
(iii) The ontology engineers analyze the proposed changes from a knowledge representa-
tion point of view foreseeing whether the requested changes could later be formalized and
implemented.8 Board membership should be open to all users of the ontology.

4.3.3.2. Decisions

The board decides which changes to introduce into the new shared ontology at the con-
ceptual level. It may found this decision on the usage patterns observed for the ontol-
ogy, such as the number of users who introduced a change in proportion to all users who
made changes, the number of queries including certain concepts or the number of concepts
adapted by the users from previous rounds. General organizational requirements which are
not observed on the local level may also lead to changes in the shared ontology.

4.3.3.3. Input

The board starts the central analysis with the previous version of the shared ontology and
takes as input the local ontologies and the user change requests. To be able to understand
the change requests, users should provide arguments for each request. The arguments
underlying the proposed changes constitute important input for the board to achieve a well
balanced decision about which changes to adopt.

8In the central revision stage.

63

4. DILIGENT Ontology Engineering

Analysis of the
obtained information

Information collection
from users

Specification of new
requirements

Control of previously
shared ontology

Argument provision

Input:
- Previous version of the
shared ontology

- Adapted local ontology
- Arguments

Output:
- New requirements for the
shared ontology

- Arguments

Figure 4.5.: Central Analysis

4.3.3.4. Output

The result of the central analysis stage is a list of the new requirements and relevant change
requests for the shared ontology. In this stage the board considers changes only on the con-
ceptual level. The clear separation of the identification of change requests on the concep-
tual level from their implementation is advantageous, because the local ontologies prob-
ably contain many different formal change requests which are conceptually similar. The
separation emphasizes the need to look for conceptual similarities first and then think about
their implementation.

4.3.3.5. Activities

The board meets regularly in order to include emerging requirements into the shared ontol-
ogy. To achieve the desired output the board takes different activities namely Information
collection from users, Analysis of obtained information, Control of shared ontology, Spec-
ification of new requirements and Argument provision as visualized in Figure 4.5.

We now detail each one of the proposed activities:

64

4.3. DILIGENT Detailed Process Description

Information collection from users The board collects the user local ontologies, the
argumentation, change requests provided by other means, usage information and finally
mapping information. They may also collect local conceptualization, such as folder struc-
tures, if the users are willing to share them with the board.

Control of shared ontology The goal of this activity is to examine the changes intro-
duced in the last cycle of the process. Specifically the board checks how many users have
integrated the proposed changes and used them. The board may detect if the users ac-
cept the common conceptualizations, if the previously applied analysis methods have been
appropriate and if the users understand and agree with the view of the board.

We have defined a number of controlling measures to support the board.

Adaptation rate The adaptation rate of an ontology entity calculates the proportion of
users utilizing it in comparison to all users of the system. It is an indicator for the
acceptance of an entity. NoLocalInclusions represents the number of local on-
tologies which include the ontology entity OntologyEntity. TotalNoUsers is the
total number of users utilizing the shared ontology. The adaptation rate is defined
according to Equation 4.1. If the users do not accept an entity of the core ontology
it should probably be changed. A popular entity introduced in a local ontology of a
user which has been reused by many others may be integrated into the shared ontol-
ogy. The possible conclusions from comparatively high or low AdaptationRates
depend on the application scenario and include the deletion, introduction, reorgani-
zation or renaming of the respective ontology entity.

AdaptationRateOntologyEntity :=
NoLocalInclusionsOntologyEntity

TotalNoUsers
(4.1)

Usage rate The usage rate refers to the different aspects of ontology use, e.g., the num-
ber of instances created for a class, the number of queries containing a specific entity,
the number of sub-concepts defined for a concept (Equation 4.2). NoUsages refers
to the number of users who have used an ontology entities at least once. The ratio
between the number of users of a particular ontology entity and the total number of
users (TotalNoUsers) is defined as the UsageRateOntologyEntity of an ontology
entity. The implications of a high usage rate are domain specific. It suggests that the
respective ontology entity is relevant. It may suggest that an ontology entity should
be further elaborated.

UsageRateOntologyEntity :=
NoUsagesOntologyEntity

TotalNoUsers
(4.2)

Change rate The change rate is defined as the average number of modification to the
shared ontology by the users. A high change rate indicates, that the users are not

65

4. DILIGENT Ontology Engineering

satisfied with the shared ontology as a whole and that they extensively reorganize it.
In contrast a low change rate suggests that the modeling decisions of the board did
capture the user requirements; in particular when the low changes rate is observed
in conjunction with a high average usage rate.

The activity Control of shared ontology is not part of the tested methodology, but has
been introduced as a result of the case studies. Previously the adaptation rate calculation
was part of the Analysis of obtained information activity. The control of shared ontology
activity separates the backward oriented analysis from the change oriented analysis. This
is the objective of the next activity.

Analysis of obtained information The analysis of the obtained information should
identify the parts of the shared ontology which should be modified. First the board identi-
fies the different areas in which changes took place. The board should analyze changes of
concepts, before changes of relations and these before changes of axioms.

The board may understand the change requests better if analyzed in the same order
as they have been applied instead of only looking at the final user ontology. With an
increasing number of participants this in-depth analysis may be unfeasible.

User task: Analyze the introduced changes

The board analysis the retrieved ontologies, the requests from the users and other
available information, e.g. folder structures. Indicators for changes relevant to
the users are (i) overlapping changes and (ii) their frequency. Furthermore, the
board analyzes (iii) the queries made to the ontology. This helps to find out which
parts of the ontology were frequently used. Since actors instantiate the ontology
locally, (iv) the number of instances for the different proposed changes may be
used to determine the relevance of certain adaptations.

Argument provision This activity is described with more detail in Section 4.4.

Specification of new requirements New requirements for the shared ontology can be
obtained by analyzing the change requests, the changes in the local ontologies and the
arguments provided by the users. The new requirements should be captured in an updated
version of the ORSD. In contrast to the specification of requirements in the initial build
stage, the board can derive requirements from the locally adapted ontologies.

66

4.3. DILIGENT Detailed Process Description

User task: Identify changes presumably relevant for a significant share of all
actors

Having analyzed the changes and having grouped them according to the different
parts of the ontology they belong to, the board identifies the most relevant ones.
Based on the provided arguments the board decides which changes should be
introduced. Depending on the quality of the arguments the board itself may argue
about different changes. For instance, the board may decide to introduce a new
concept that better abstracts several specific concepts introduced by users, and
connect it to the several specific ones. Therefore, the final decisions entail some
form of evaluation from a domain and a usage point of view. The outcome of
this action is a reduced and structured list of changes that is applied to the shared
ontology.

4.3.4. Central Revision

Central analysis and central revision are joint stages. While in the analysis stage the board
defines new requirements, they are formalized and implemented in the revision stage. In
the end of the revision stage the new shared ontology is distributed to the users.

4.3.4.1. Roles

The ontology engineer judges the changes from an ontological perspective. Some changes
may be relevant for the common ontology, but may not be adequately formalized by the
users. The domain experts should judge and decide whether new ontology entities should
be introduced into the common ontology.

4.3.4.2. Input

The input for the central revision stage is a list of new requirements which should be
included into the shared ontology and the arguments underlying the new requirements.

4.3.4.3. Decisions

The decisions taken in the central revision stage are formal ones. All intended requirements
decided during the analysis stage should be included into the common ontology. In the
revision stage the ontology engineer decides how the requirements can be met formally.
Evaluation of the decisions is performed by comparing the requirements with the final
formal decisions.

67

4. DILIGENT Ontology Engineering

4.3.4.4. Output

The outcome of the central revision stage is a new and documented version of the shared
ontology. The introduced changes are supported by arguments.

4.3.4.5. Activities

The board members perform the activities Customization of shared ontologies, Integra-
tion of reused local ontologies to the shared ontology, Modification of shared ontology,
Argument provision, Argumentation aggregation, Evaluation of new shared ontology, and
Distribution of new shared ontology in the sequence depicted in Figure 4.6.

Argumentation
aggregation

Evaluation of new
shared ontology

Distribution of new
shared ontology

Customization of shared ontology

Integration of reused
local ontologies to the

shared ontology

Modification of shared
ontology

Customization of shared ontology

Integration of reused
local ontologies to the

shared ontology

Modification of shared
ontology

Argument provision

Input:
- New requirements for the
shared ontology

- Arguments

Output:
- New shared ontology
- Arguments

Figure 4.6.: Central Revision

68

4.3. DILIGENT Detailed Process Description

Customization of shared ontology Changes to the shared ontology can be introduced
through modification or by reusing user formalizations.

For our use case we defined only one action.

User task: Formalization of the decided changes

In our use case the board should formalize the relevant changes identified in the
previous stage. The labels for concepts and relations proposed by the users should
be reused if adequate. The board introduces generalizations if required.

Integration of reused local ontologies to the shared ontology If user local ontolo-
gies can be reused in order to meet the new requirements, this activity is similar to the
reuse activity in the central build stage. The board integrates the customized local ontolo-
gies with the shared ontology. It may be necessary to include abstractions or refinements
into the shared ontology in order to integrate the reused local ontologies adequately. For
later activities it is helpful to trace the origins of reused ontology entities in that users up-
dating their local ontology with new shared ontology know whether their requests have
been addressed.

Modification of shared ontology If new requirements cannot be addressed by reusing
local ontologies the board modifies the shared ontology. This activity is similar to the
initial build stage. The board should take into account the general guidelines defined in
the ORSD when new concepts are added to the shared ontology or concepts are modified
or deleted.

Evaluation of new shared ontology The evaluation of the new shared ontology is car-
ried out in the same manner as in the initial build stage (cf. Section 4.3.1.5).

Argumentation aggregation The board exchanges arguments in the decision process.
The changes eventually included into the shared ontology are therefore supported by argu-
ments. One of the reasons for keeping track of the arguments is to enable users to better
understand why certain decisions have been made with respect to the ontology. In order to
make the arguments better understandable to the users the board aggregates them.

Distribution of new shared ontology The board distributes the updated shared ontol-
ogy to the users. Depending on the overall system architecture different methods, such as
publication on a Web site, distribution via an advertiser in a P2P system, or distribution
via email, may be applied.

69

4. DILIGENT Ontology Engineering

4.3.5. Local Update

As a result of the central revision stage the users have access to the new version of the
shared ontology. They decide which parts - if any - they use from the new shared on-
tology. Switching from the local ontology to an updated shared ontology implies effort
for understanding the new parts and partly reorganizing the local knowledge base. The
gains of updating are, first lower communication effort and, second up-to-date informa-
tion. The incentives for the user to update are higher the more of his change requests to the
shared ontology are included in the new shared one. Thus the user reviews how many of
his own proposals are included in the new version and how they have been implemented.
Eventually the user decides whether to integrate the new version with his local ontology.

4.3.5.1. Roles

The local update stage involves the users. They perform different activities to include
the new common ontology into their local system before they start a new cycle of local
adaptation.

4.3.5.2. Input

The new shared ontology and the arguments exchanged by the board are the input for this
stage. The new shared ontology contains a list of new concepts.

4.3.5.3. Decisions

The users decide which changes they introduce locally. This depends on the differences
between the own and the new shared ontology. The users do not need to update their
complete ontology.

4.3.5.4. Output

The output of the local update stage is an updated local ontology which may include
changes made to the shared ontology. It is not required that the users apply all changes
proposed by the board.

4.3.5.5. Activities

This stage can be divided into the three activities Control of new shared ontology, Local
analysis of changes in the new shared ontology and Integration of new and old version as
illustrated in Figure 4.7.

70

4.3. DILIGENT Detailed Process Description

Local analysis of
changes in the new

shared ontology

Control of new shared
ontology

Integration of new and
old version

Input:
- New shared ontology
- Arguments

Output:
- Integrated local ontology

Local analysis of
changes in the new

shared ontology

Control of new shared
ontology

Integration of new and
old version

Input:
- New shared ontology
- Arguments

Output:
- Integrated local ontology

Figure 4.7.: Local Update

Control of new shared ontology Likewise the board the users control the implemen-
tation of their own proposals. The users control whether the board has implemented their
requested changes in the new shared ontology. This allows the users to judge which of
his proposal are interesting for the community. Furthermore, they learn how the board
translates their proposals into conceptualizations in the shared ontology.

We have defined a number of measures to support the user controlling the new shared
ontology.

Overlap measure The overlap measure is calculated for each user according to
Equation 4.3 and is the ratio between the number of all user requests
(|TotalLocalRequestsUser|)9 and the number of actually integrated requests
(|IntegratedChangesUser|). The number of IntegratedChanges is the sum of
changes (cf. Equation 4.4) which have been directly integrated as proposed by the
user (DirectlyIntegratedChangesUser), which have been conceptually integrated
(ConceptuallyIntegratedChangesUser), and which have been integrated due to
informal user requests (IntegratedRequestsUser).

OverlapMeasureUser =
|IntegratedChangesUser|
|TotalLocalRequestsUser|

(4.3)

9We count each change to the shared ontology and each issue sent to the board as one request.

71

4. DILIGENT Ontology Engineering

|IntegratedChangesUser| = |DirectlyIntegratedChangesUser|+
|ConceptuallyIntegratedChangesUser|+
|IntegratedRequestsUser| (4.4)

Direct overlap measure The direct overlap measure is the ratio between the number of
user changes to the shared ontology and the ones integrated in the shared ontology
as proposed by the user (cf. Equation 4.5).

DirectOverlapMeasureUser =
|DirectlyIntegratedChangesUser|

|TotalLocalRequestsUser|
(4.5)

Conceptual overlap measure The conceptual overlap measure is the ratio between the
number of all user changes to the shared ontology and the ones conceptually inte-
grated in the shared ontology. If the shared ontology has been modified in order to
represent the change made by the user, but the modification is different from a for-
malization point of view, the change has been integrated conceptually. For example
the introduction of intermediate concepts in the shared ontology, changes the user
formalization but not the intended meaning (cf. Equation 4.6).

ConceptualOverlapMeasureUser =
|ConceptuallyIntegratedChangesUser|

|TotalLocalRequestsUser|
(4.6)

This activity was not validated in the case study, and it remains future work to define
more controlling measures. The requests of the user, however, motivated the introduction
of the activity into the general methodology.

Local analysis of changes in the new shared ontology The users locally change
to the new shared ontology only if their benefits outweigh the effort of updating. The
analysis of the introduced changes informs them whether the changes affect them or not.
The users should first analyze the parts of the ontology which are relevant to them. The
users should start the examination with the additional concepts and their documentation,
they should continue with the examination of additional properties and finally examine the
new axioms.

Integration of new and old version The result of the analysis is the decision whether
or not to integrate completely or partially the new shared ontology with the existing local
ontology. The new shared ontology may contain refinements of the existing model. In this
case the user should consider adaptin his instantiations with respect to the refinements.
The outcome of the controlling activity allows the user to judge the restructuring effort in
order to stay in line with the new shared ontology.

72

4.4. The DILIGENT Argumentation Framework

The new version can also model knowledge which was previously not covered by the
shared ontology. In this case the existing local knowledge can be the source for the popu-
lation of the ontology in the next stage.

For our use case we have defined three tasks in order to overcome some of the technical
challenges of our prototypical implementation.

User task: Tagging of the old local ontology

The users store the old version of the ontology before they include the new shared
version. They should preserve the date of the update and the version.

User task: Local inclusion of the updated version

The users include the new version of the shared ontology locally. They should
examine the new version and look for extensions.

User task: Alignment of old and new versions

The users align their local adaptations with the new concepts defined in the shared
ontology if required.

After the local update took place the iteration continues with the local adaptation stage.
In the next central analysis stage the board reviews which changes have been accepted by
the users.

4.4. The DILIGENT Argumentation Framework

In DILIGENT the externalization of the assumptions underlying the conceptualization of
the shared ontology and the changed local ontologies is of particular interest, because the
users are locally dispersed, so that the board can neither directly explain its assumptions
to the users nor can the users directly explain theirs to the board or other users. Users are
allowed to enter or leave the ontology development process at any moment, therefor some
users are not aware of the development history, while the history aware users might leave
the process. An evolution of the shared ontology, though, without considering historical
design decisions might have unpredictable consequences.

In DILIGENT the construction of the shared ontology is a community process, in which
the ontology builders exchange arguments in order to reach agreement for a conceptual-
ization. In order to address the above mentioned issues DILIGENT foresees to capture
the exchanged arguments in a semi-formal way. This has the following advantages for the
ontology engineering process:

73

4. DILIGENT Ontology Engineering

• The availability of arguments in favor and against certain design decisions allows
the ontology users to extend and change the shared ontology adequately, because
design decisions can be communicated to other users.

• Tracing the arguments for design decisions prevents from the repetition of discus-
sions related to the same issue.

• New users may enter the development process and can recapitulate the ontology
creation history and the decision process.

• A structured provision of arguments guides the design process.

• A semi-formal representation of the argumentation allows for the detection of in-
consistencies in the user argumentation.

• An ontology with externalized assumptions is more reusable.

The semi-formal provision of arguments is embedded in the DILIGENT argumenta-
tion framework consisting of a process description for the provision of arguments and an
argumentation model.

4.4.1. Arguments in the DILIGENT Process

A central issue in the DILIGENT process is keeping track of threads of exchanged argu-
ments. As described in Section 4.3 arguments play an essential part in all stages:

• The board exchanges arguments while building the initial shared ontology in order
to reach consensus towards “a shared specification of a conceptualization” (Gruber,
1995);

• When users make comments and suggestions to the control board, based on their
local adaptations, they are requested to provide the arguments supporting them;

• while the control board analyzes the changes introduced and requested by users, and
balances the different possibilities, arguments are exchanged and balanced to decide
how the shared ontology should be revised.

4.4.2. The Argumentation Process

The participants in the argumentation process take different roles in the ontology engineer-
ing discussion. They can profit from information generated in preceding activities as input
to the discussion in order to obtain the desired output.

74

4.4. The DILIGENT Argumentation Framework

4.4.2.1. Roles

A moderator should guide the argumentation process. The moderator ensures that the
participants provide relevant argument types, that they stay focused on the discussion, that
they adhere to the decision procedures, and that everybody is allowed to argue.

4.4.2.2. Input

Depending on the stage in which the argumentation process is initiated, the argumenta-
tion process takes as input the ontology requirements specification document (ORSD), the
shared ontology, the local ontologies and the arguments provided locally.

4.4.2.3. Output

The objective of an argumentation process for DILIGENT is, that the participants agree on
a shared conceptualization for their domain. Besides the shared ontology, the argumenta-
tion process results in list of arguments supporting the design decisions.

4.4.2.4. Activities

The argumentation process is divided into the following five activities Choose moderator,
Choose decision procedure, Specify issues, Provide arguments and ideas, and Decide on
issues and ideas which are performed sequentially. It is not necessary to specify all is-
sues before the provision of arguments, though. New issues can emerge, while for others
solutions have already been defined.

Choose moderator The participants in the ontology engineering discussion choose a
moderator. The basic rules for moderation also apply for ontology engineering discussions:
the moderator does not contribute to the discussion, but structures it; he does not take part
in decision, but organizes the decision process.
Any participants may take the role of the moderator and the moderator role may move
from one participant to the next. The moderator should, however, have the necessary
respect from all participants so that he can enforce the rules.

Choose decision procedure The participants agree on a decision procedure. First, they
agree on a voting mechanism to select among a number of choices (cf. e.g., (Arrow, 1963;
Wikipedia, 2006b)). DILIGENT proposes the following mechanisms:

Majority voting All participants have the same voting weight and one vote. An issue is
accepted if more than, e.g., half of the participants accept it.

75

4. DILIGENT Ontology Engineering

Preferential voting All participants have the same voting weight and have more than
one vote. They express their preferences with the number of votes they allocate to
the different solutions.

Dictator model One participant decides if an issue is accepted or not.

Second, they decide, when they want to vote on the available options. They can vote in
certain time intervals or if no new arguments have been brought forward for some time.
The selected voting mechanism depends on the application scenario and the user group.

Specify issues The issues define the conceptual requirements for the ontology. The
participants begin with the identification of relevant issues. For example, the requirements
defined in the ORSD and the competency questions may be used to identify initial issues.
During the discussion elaborations of the initial set of issues are introduced. In particular
should any participant be allowed to add new issues or elaborate on existing issues. The
decision, whether an issue is relevant is not discussed during the issue generation phase.
At later stages issues are grouped according to their priority for the application and treated
accordingly. In particular in online discussions not all issues can be discussed at the same
time. If there is no other option the First In, First Out (FIFO) principle can be applied to
determine the sequence of the issues. The issues should be grouped according to the sub-
domains they belong to. Issues which are specifications or elaborations of already existing
ones, should be classified as elaborations.

Provide arguments and ideas The participants discuss the issues, and bring forward
their arguments in favor or against an issue. The suggested kinds of arguments are spec-
ified in the Argumentation Ontology. The moderator asks the participants to reformulate
their arguments, in case they do not correspond to the allowed argument types. The par-
ticipants first agree whether an issue is relevant for the ontology under discussion, before
they start to model it formally. If a formalization depends on more than one issue, the
participants first agree on all related issues before their formalization. Arguments should
only be brought forward once instead of repeating an argument in other words. The partic-
ipants should, however, express their agreement or disagreement with arguments in order
to strengthen or weaken them.

In case of conflict the participants should first determine the type of conflict. The partic-
ipants should express the exact meaning of a concept and define its properties to determine
whether they talk about the same things with the same terminology. Awareness of the
conflict type facilitates the discussion and the conflict resolution. Shaw & Gaines (1989)
describes different types and Aschoff et al. (2004) adapts them to ontologies as displayed
in Table 4.1. The classification distinguishes concepts and terminology and people can talk
about the same or different concepts while using the same or different terminology. If two

76

4.4. The DILIGENT Argumentation Framework

persons talk about the same concept with the same terminology they agree and reach con-
sensus. In another case they use different terminology for different concepts and produce
a contrast.

Terminology

C
on

ce
pt

s

same different

sa
m

e Consensus Correspondence

Experts use terminology and
concepts in the same way

Experts use different terminol-
ogy for the same concepts

di
ff

er
en

t

Conflict Contrast

Experts use same terminology
for different concepts

Experts differ in terminology
and concepts

Table 4.1.: Types of Conflict (Shaw and Gaines, 1989)

Decide on issues and ideas The participants may agree or disagree on an issue or
postpone its discussion. Only ideas which are agreed are part of the shared ontology.

4.4.3. Building an Argumentation Ontology

As motivated above arguments in DILIGENT are captured in a semi-formal way. The
arguments are represented semi-formally, opposed to formally, because the arguments
themselves are not formalized. Users provide their arguments in natural language, but
categorize them depending on their intention. In that the argumentation is not completely
unstructured. The Argumentation Ontology models the main concepts relevant in an OE
discussion. In the following domain ontology refers to the ontology under discussion, thus
the ontology which is enhanced with arguments modeled according to the Argumentation
Ontology.

The following Sections concentrate on the development of the Argumentation Ontology
and describe its specification, conceptualization and formalization.

4.4.3.1. Specification of the Argumentation Ontology

We have derived the requirements for the DILIGENT Argumentation Ontology from lit-
erature research, the scenario setting, and design guidelines for ontologies (Gómez-Pérez
et al., 2003).

77

4. DILIGENT Ontology Engineering

1. Use established terminology Research in argumentation and its visualization is a
mature field (cf. e.g., (Conklin et al., 2001)). Acceptance of the ontology depends
on the use of an established terminology.

2. Focus on relevant arguments The available types of arguments should be restricted
such that the OE discussions are focused and efficient. This view is supported by
Buckingham Shum et al. (2003) who have developed an ontology for a different
domain, but for a similar purpose and found that usability benefits from a smaller
ontology.

3. Ontology focus Following the results of Potts & Bruns (1988) general purpose ar-
gumentation models, such as Issue Based Information Systems (IBIS), should be
extended with domain specific knowledge for their application in specific use cases.
Therefore, the developed Argumentation Ontology should be customized for ontol-
ogy design. In particular the detection of contradictory information in the domain
ontology is important. Contradictory information leads to inconsistencies in the
formal model of the domain ontology. Table 4.2 enumerates three types of inconsis-
tencies, which may be detected by representing arguments in a semi-formal way.

Inconsistency Description

Idea inconsistency In response to different issues a user proposes changes to the
ontology. The formalization of the proposed changes renders
the ontology inconsistent.

Argumentation inconsistency Arguer argues first in favor and then against an issue.

Position inconsistency If a user agrees with contradictory issues, he introduces a po-
sition inconsistency.

Table 4.2.: List of Argumentation Inconsistencies

4. Adaptivity The Argumentation Ontology should allow for capturing the structure of
argumentation. Hence, the design should take into account that, e.g., humans discuss
on a free text basis while ontology learning algorithms use formal, structured and
detailed reasons for different proposals.

5. Support argumentation process The Argumentation Ontology should support the
full argumentation cycle. This includes issue raising, conflict mediation, bargaining,
clarification and agreement. Participants also aggregate lines of reasoning in order
to make their argumentation more concise. Participants should be aware of which
issues are currently under discussion, postponed, agreed and discarded.

6. Conceptual as well as formalization level People might agree on the need for a
certain conceptual model but not on its implementation. The model should support
argumentation on both conceptual and formal level.

7. Minimal ontological commitment Minimal ontological commitment ensures the
extensibility of an ontology for future uses (Gruber, 1993b). An ontology should

78

4.4. The DILIGENT Argumentation Framework

model only one domain at a time and the ontology engineers should avoid the in-
tegration of two many different issues. If an ontology integrates knowledge from
different domains, this is achieved by modularizing the single domains. That means
for the Argumentation Ontology that it should focus on the argumentation related
ontology entities.

8. Minimal encoding bias The Argumentation Ontology should be independent of the
formalism used to model the final ontology. Each formalism allows different sets of
modeling decisions and all can be subject to discussion.

9. Process awareness The Argumentation Ontology is embedded into the DILIGENT
process presented in Section 4.2. Essential properties of this process are its col-
laborative aspects, its distributiveness and the asynchronous way participants can
provide arguments.

10. Argumentation formalization If participants decide to bring forward their argu-
ments in a formal way these formalized arguments should be representable in the
Argumentation Ontology. This will enhance the ability to detect inconsistencies in
the lines of reasoning.

4.4.3.2. Conceptualizing the Argumentation Ontology

For each of the requirements we provide the necessary background information which
eventually enables the conceptualization of the Argumentation Ontology.

Use established terminology Requirement 1 states that the terminology used in our on-
tology corresponds to the established ones. Although the Toulmin model (Toulmin et al.,
1984) of argumentation was the first one presented in the literature, today Issue-Based
Information System (IBIS) is the model of choice to represent argumentation processes
(cf. Section 2.3). The Argumentation Ontology integrates the concepts Issue, Idea, Argu-
ment, Challenge and Justification from the IBIS model. In the Argumentation Ontology an
issue represents a conceptual requirement for the ontology under discussion. Instead, an
idea represents an implementation proposal to meet a certain requirement. An argument
expresses an opinion about an issue or idea. Challenges and justifications are arguments
against or in favor of an issue or an idea.

Focus on relevant arguments As described in Section 4.4.4 we have analyzed ontol-
ogy engineering discussions in order to fulfill requirement 2. We identified the argument
types Elaboration, Example, Justification and Evaluation, Counter Example and Alterna-
tive as the ones focussing the participants the most.

79

4. DILIGENT Ontology Engineering

Ontology focus Ontology building starts with the specification of requirements. Re-
quirements are then conceptualized and finally formalized in the target representation lan-
guage. The Argumentation Ontology allows to discuss the design of the ontology on these
three levels separately. This enables the participants to agree on the relevant issues inde-
pendently of their conceptualization or formalization and vice versa. This reflects also the
user roles in the DILIGENT process. Domain experts raise issues while ontology engi-
neers propose ideas to solve the issues.

In order to detect inconsistencies in the user argumentation the Argumentation Ontology
is implemented in OWL DL.

Adaptivity According to requirement 4 the Argumentation Ontology contains a general
argumentation concept in order to capture the line of reasoning of a particular actor in
the process. Depending on the granularity of the actor arguments he can choose among
different sub-classes of the argumentation concept. Each sub-class can offer exactly the
level of detail the actor wishes to provide at a certain time.

Support entire argumentation In order to organize and focus the participants in the
discussion we elaborate on the concept decision. We introduce specializations of that
concept to represent the decisions to accept, to reject, to postpone or to discuss an issue,
an idea or an ontology entity (cf. Req. 5). The participants can decide on each level
independently. However, an issue is only finally resolved if the participants either agree
upon its conceptualization and formalization or reject it. If the partakers in the discussion
realize that an issue cannot be resolved adequately they will postpone it, to ensure the
progress of the building effort.

The stakeholder can agree or disagree with the arguments of other users. The agree-
ment of many with an argument increases the weight of that argument and will lead to a
corresponding judgement w.r.t to the issue, idea or ontology entity.

Conceptual as well as formalization level As stated above the design of the ontol-
ogy starts with the requirements specification and ends with its formalization. For each
requirement there can be a number of equally acceptable proposals for their conceptual-
ization, while a conceptual model may be implemented in different ways. A separation of
the three levels allows to discuss and agree at each level separately.

Minimal ontological commitment The Argumentation Ontology models primarily con-
cepts which are relevant for the ontology engineering discussion. Other metadata oriented
information should be included reusing other ontologies built for that particular purpose.
For instance the Argumentation Ontology does not fine-granularly model the actor or on-
tologyEntity concept.

80

4.4. The DILIGENT Argumentation Framework

Minimal encoding bias The Argumentation Ontology does not include a formal repre-
sentation of ontological constructs which are specific for a certain representation language.

Process awareness DILIGENT supports the user involvement in the ontology evolu-
tion, because they may change the ontology locally. It is not guaranteed that only one
consistent ontology exists in the application, but local ontologies may be mutually incon-
sistent. In order to distinguish between ontologies from different user the change requests
are associated with the providing actor. An issue is also associated with a status to separate
the agreed model from the one under discussion. Additionally users may introduce new
issues as elaborations of existing issues to state explicitly that they intent to extend the
existing model instead of building a new one.

Argumentation formalization The the provision of arguments in a completely formal
way is not specifically supported.

4.4.3.3. Formalizing the Argumentation Ontology

The DILIGENT Argumentation Ontology is visualized in Figure 4.8. The main concepts in
our ontology are issues, ideas and arguments, which are represented as classes. These are
in line with the terminology proposed by the IBIS methodology (Req. 1). Issues introduce
new topics in the discussion from a conceptual point of view. They are used to discuss
what should be in the conceptual model of the ontology without taking into account how
these items should actually be formalized and implemented in the ontology (Req. 8). Ideas
refer to how these concepts should be formally represented in the ontology, for instance
as a class, an instance, a relation or an axiom. They relate to concrete ontology change
operations.10 Ideas are related to issues in the sense that they respond to Issues. Ideas refer
to how issues should actually be implemented in the ontology. In this way discussions can
take place in both the conceptual level and the formalization level (Req. 6). Arguments
are arguments on either one particular idea or one particular issue. Typically, our domain
experts will start by proposing new issues to be introduced in the ontology. Arguments
will be exchanged over them. Then, they discuss how these issues should be formalized
through concrete ideas. Domain experts can also provide elaborations. These are issues,
which elaborate on an existing issue.

10For example (Stojanovic et al., 2002) presents a formal model for ontology change operations.

81

4. DILIGENT Ontology Engineering

ar
g

u
o

n
to

:
O

n
to

lo
g

yE
n

ti
ty

la
be

l
: rd

fs
:L

ite
ra

l
on

to
C

ha
ng

e
:

rd
fs

:L
ite

ra
l

ar
g

u
o

n
to

:
O

n
to

lo
g

yE
n

ti
ty

la
be

l
: rd

fs
:L

ite
ra

l
on

to
C

ha
ng

e
:

rd
fs

:L
ite

ra
l

la
be

l
: rd

fs
:L

ite
ra

l
on

to
C

ha
ng

e
:

rd
fs

:L
ite

ra
l

ar
g

u
o

n
to

:I
d

ea

ar
gu

on
to

:h
as

A
rg

um
en

ta
tio

n

ar
g

u
o

n
to

:
D

ec
is

io
n

ha
sS

ta
tu

s
:

rd
fs

:L
ite

ra
l

ha
sS

ta
tu

s
:

rd
fs

:L
ite

ra
l

ar
g

u
o

n
to

:
P

o
si

ti
o

n
ar

g
u

o
n

to
:

P
o

si
ti

o
n

ar
g

u
o

n
to

:
A

g
re

em
en

t
ar

g
u

o
n

to
:

A
g

re
em

en
t

ar
g

u
o

n
to

:
D

is
ag

re
em

en
t

ar
g

u
o

n
to

:
A

rg
u

m
en

t
ar

g
u

o
n

to
:

A
rg

u
m

en
t

ar
g

u
o

n
to

:
E

va
lu

at
io

n

ar
g

u
o

n
to

:
Ju

st
if

ic
at

io
n

ar
g

u
o

n
to

:
Ju

st
if

ic
at

io
n ar

g
u

o
n

to
:

E
xa

m
p

le

ar
g

u
o

n
to

:
C

h
al

le
n

g
e

ar
g

u
o

n
to

:
A

lt
er

n
at

iv
e

ar
g

u
o

n
to

:
C

o
u

n
te

rE
xa

m
p

le

ar
g

u
o

n
to

:A
ct

o
r

na
m

e
: rd

fs
:L

ite
ra

l
na

m
e

: rd
fs

:L
ite

ra
l

ar
g

u
o

n
to

:H
u

m
an

-
A

rg
u

m
en

ta
ti

o
n

pr
ov

id
es

T
ex

t:
rd

fs
:L

ite
ra

l

ar
g

u
o

n
to

:H
u

m
an

-
A

rg
u

m
en

ta
ti

o
n

pr
ov

id
es

T
ex

t:
rd

fs
:L

ite
ra

l
pr

ov
id

es
T

ex
t:

rd
fs

:L
ite

ra
l

ar
g

u
o

n
to

:M
ac

h
in

e-
A

rg
u

m
en

ta
ti

o
n

tf/
id

f
: rd

fs
:L

ite
ra

l

ar
g

u
o

n
to

:M
ac

h
in

e-
A

rg
u

m
en

ta
ti

o
n

tf/
id

f
: rd

fs
:L

ite
ra

l
tf/

id
f

: rd
fs

:L
ite

ra
l

ar
g

u
o

n
to

:
A

rg
u

m
en

ta
ti

o
n

ar
g

u
o

n
to

:
A

rg
u

m
en

ta
ti

o
n

ar
gu

on
to

:
su

m
m

ar
iz

es
A

rg
um

en
ta

tio
n

ar
gu

on
to

:g
iv

en
B

y

ar
gu

on
to

:e
la

bo
ra

te
sO

nI
ss

ue

ar
gu

on
to

:g
iv

en
B

y

ar
gu

on
to

:
re

sp
on

se
sT

oI
ss

ue

ar
gu

on
to

:
fo

rm
al

iz
es

Id
ea

ar
gu

on
to

:a
rg

um
en

ts
O

n

ar
gu

on
to

:p
os

iti
on

O
n

ar
gu

on
to

:p
os

iti
on

O
n

ar
gu

on
to

:p
os

iti
on

O
n

ar
gu

on
to

:w
ith

V
ot

es

ar
gu

on
to

:o
nI

ss
ue

1.
.*

1.
.*

ar
gu

on
to

:g
iv

en
B

y

ar
g

u
o

n
to

:
E

la
b

o
ra

ti
o

n

ar
g

u
o

n
to

:I
ss

u
e

ra
is

ed
Is

su
e

:
rd

fs
:L

ite
ra

l
ra

is
ed

Is
su

e
:

rd
fs

:L
ite

ra
l

Figure 4.8.: DILIGENT Argumentation Ontology

82

4.4. The DILIGENT Argumentation Framework

Concepts Relations
→Domains

Description Req.

Actor hasName Actors are participants in the process and can
be humans as well as machines

4, 7

Argument argumentsOn
→{Issue; Idea;
OntologyEntity}

Arguments can be provided on Issues, Ideas
and OntologyEntities.

1, 5

givenBy→Actor Arguments can be issued by different actors

hasArgumentation
→Argumentation

Arguments follow a line of reasoning

Challenge 1, 2

Alternative An alternative offers a different way to resolve
an issue

1, 2, 3

Counter-
example

A counter example provides evidence that s.th.
cannot be modeled in the proposed way

1, 2, 3

Justification 1, 2

Evaluation An evaluation justifies a modeling proposal by
means of accepted evaluation criteria

1, 2, 3

Example An example is a concrete instantiation for a
modeling proposal

1, 2, 3

Argumentation summarizes-
Argumentation
→Argumentation

An argumentation can either stand alone or
summarize a line of reasoning

5

HumanArgu-
mentation

providesText
→Literal

An argumentation can play different roles, such
as an alternative or an example. Therefore, the
argumentation is separated from the argument.

4

MachineArgu-
mentation

depending on
used Algorithm

An algorithm based on TF/IDF and frequency
could have these two properties.

4

Issue givenBy→Actor The issue is raised by a participant in the
process

1, 5, 6

raisedIssue A high-level description of the requirement
solvable by the issue

Elaboration elaboratesOn-
Issue→Issue

A more detailed description of the issue 1, 2, 9

Idea
givenBy→Actor An idea is proposed by an actor 1, 5, 6

responseToIssue
→Issue

An idea resolves a certain issue on the concep-
tual level

OntologyEntity formalizesIdea
→Idea

Depending on the formalism, appropriate ontol-
ogy entities formalize the corresponding idea

3, 6, 7,
8

83

4. DILIGENT Ontology Engineering

Concepts Relations
→Domains

Description Req.

Position position-on
→{Issue; Idea;
OntologyEntity;
Argument}

Participants can express their agreement or
disagreement with Issues, Ideas, OntoloyEnti-
ties and Arguments

1, 5

Agreement Sub-concept of Position to express agreement 1

Disagreement Sub-concept of Position to express disagree-
ment

1

Decision withVotes
→Position

A decision in favor or against an Issue, an Idea
or an OntologyEntity. User positions support
the decision with votes.

1, 5

hasStatus
→Literal

A decision expresses either an Acceptance, a
Rejection, that the discussion was Postponed
or that it is UnderDiscussion

9

onIssue→Issue This relation points to the respective Issues.

Table 4.3.: DILIGENT Argumentation Ontology

The concepts an ontology represents should be consensual, this requires some consensus
building discussions. In DILIGENT processes, concepts are only added to the ontology
if they can be agreed upon, that is after some arguments have been exchanged, positions
by different actors have been issued on them and some decisions have been made. Ar-
guments for (pro) an idea or issue are called justifications. Arguments against (con) an
idea or issue are called challenges. In what regards arguments in favor DILIGENT pro-
poses examples and evaluation&justification as particularly useful argument types. Two
classes in challenges are also particularly used in OE discussions: counter examples and
alternative&contrast (Req. 3).

Those involved in discussions can state positions. They clarify the position on one
issue, one idea, or an argument under discussion. Either they declare their agreement or
disagreement. Once enough arguments have been provided and positions have been stated
on them decisions can be made. In general, positions lead to decisions. Decisions are
taken on issues. A decision has a status that can vary from under-discussion, postponed,
discarded and agreed (Req 5). A decision records not only the issue on which it was taken,
but also both the positions issued when final with-votes (several positions) were cast and
the line of reasoning (a sequence of arguments) underlying the decision on that issue. A
decision can also state the idea on-idea underlying its issue. This allows to focus on the
relevant arguments (Req 2).

Arguments are given by actors (Req 9). Humans or Machines can take the role of an ac-
tor. Different actors provide different argumentations (Req. 4). In what regards Argumen-
tation, humans (ArgumentationHuman) tend to argue by providing strings of text stating
(provides text) their reasons while machines tend to use other kinds of argumentation, e.g.,
measures like Frequency and TFIDF (Maedche & Staab, 2001). For each algorithm, new

84

4.4. The DILIGENT Argumentation Framework

subclasses of ArgumentationMachine need to be introduced to model the different kinds
of measures.

4.4.4. Argument Selection for the Argumentation Ontology

Although IBIS is a general model for argumentation it was conceived and further devel-
oped mainly in the context of requirements engineering and software design. Ontology
design differs from software design, because an ontology is a shared conceptualization of a
domain requiring agreement among its users; reusability and evolution of the ontology are
more important in ontology design than software design; an ontology often represents con-
tent and domain knowledge whereas software encodes application knowledge (Devedžić,
2002).

The differences are even more obvious w.r.t. the DILIGENT process. The process
supports the users to change the shared model and requires that they support the changes
with arguments. In contrast software is changed by its users only in rare cases. Meanwhile
in DILIGENT the users change the shared model locally so different versions of the same
model coexist within the application. In order to enable collaboration even under these
conditions, the users should explain their changes, thereby convincing other users and the
board, that they need them and that they are useful.

Due to these differences, an extension to the IBIS model is necessary to better support
ontology design discussions. In particular we focus on the exchanged argument types.
In the following we describe the methodology and present the results of our experiments
to identify the argument types which focus the discussion. The Argumentation Ontology
extends the generic IBIS model with the argumentation types identified in these experi-
ments, i.e., the concepts Justification and Challenge. The experiment itself is described in
Section 5.4.2.

4.4.4.1. Methodology

This section describes the methodology which was followed in order to investigate whether
some argumentation structures dominate the progress in the OE task and should therefore
be accounted for explicitly.

Three experiments build the basis for the argument selection. Section 5.4.2 elaborates
on them with more detail, while this section emphasizes the results of the experiments.
The first experiment consisted of an analysis of a well documented historic example of
ontology construction. The second experiment supervised a small group of domain experts
building an ontology without any guidance. The last experiment asked a small group of
domain experts to use mainly specific arguments in the ontology engineering discussion.
The arguments exchanged in each of the discussions were classified according to types
of arguments proposed in the rhetorical structure theory (cf. Section 2.3.3). The dialogs
were further evaluated counting the number of agreed issues, judging the clarity of the

85

4. DILIGENT Ontology Engineering

discussion and questioning the satisfaction of the participants. Evaluation measures are the
number of agreed issues, the clarity of the discussion and user satisfaction. The restriction
of arguments indeed increased all three measures.

4.4.4.2. Results from our Experiments

Our experiments provide strong indication that a restriction of possible arguments can
enhance the ontology engineering effort in a distributed environment. Referring to the
rhetorical structure theory (RST) terminology the arguments elaboration, evaluation &
justification, alternatives, example and counter example focus the discussion and convince
the participants.

Elaboration An elaboration presents additional detail about the matter of discourse.
Possible elaborations are the introduction of members of a set, instantiations of an
abstraction, parts of a whole, stages of a process, attributes of an object or special-
izations of a general issue.

Evaluation & Justification An evaluation provides a measurable advantage for a par-
ticular matter of discourse in comparison to another. A justification gives evidence,
that something or someone has the authority to make a statement.

Alternative An alternative is a comparable solution for the matter of discourse.

Example An example11 for a particular matter of discourse increases the belief in the
particular issue or idea.

Counter Example A counter example provides counter evidence for a particular matter
of discourse and decreases the belief in a particular issue or idea.

4.4.4.3. Example

The following discussion transcript is a part of an experiment performed at our institute
(cf. Section 5.4.2). The participants have been asked to build an ontology modeling the
research interests of our group. The participants have provided their arguments in free text
without using the Argumentation Ontology. The annotation shown in the example has been
added afterwards.

The actor suggests to introduce “DKM” and “P2P” in the ontology (Issues), and pro-
poses to model them as “topics” (Ideas).

. . .
cs : We have done quite a bit of research in distributed knowledge manage-
ment (DKM) lately. So I suggest DKM as a topic plus a subtopic “peer to
peer” (P2P)

11In RST also called evidence.

86

4.4. The DILIGENT Argumentation Framework

Formalization
Individual(issue1 type(Issue) value(raisedIssue “I suggest DKM”))
Individual(issue1 type(Issue) value(givenBy actorCS))
Individual(justi1 type(Justification) value(hasArgumentation argumenta-
tion1))
Individual(justi1 type(Justification) value(argumentsOn issue1))
Individual(argumentation1 type(HumanArgumentation) value(providesText
“We have . . . lately”))
Individual(idea1 type(Idea) value(responsesToIssue issue1))
Individual(idea1 type(Idea) value(ontoChange “add(DKM:Topic)”))
Individual(elaboration2 type(Elaboration) value(raisedIssue “P2P subtopic
DKM”))
Individual(idea2 type(Idea) value(responsesToIssue elaboration2))
Individual(idea2 type(Idea) value(ontoChange “add(DKM supertopic
P2P)”))

The second actor agrees implicitly with the suggestion to introduce “DKM” in the on-
tology. In contrast to the first one he proposes to model it as a “concept”.

. . .
ah : I suggest knowledge management (KM) as super concept of DKM be-
cause every DKM is a kind of KM

Formalization
. . .
Individual(idea3 type(Idea) value(ontoChange “add(KM:Concept)”))
. . .

A third actor agrees also implicitly, that “P2P” and “DKM” are important for the do-
main, but challenges that they should be modeled in the proposed way.

. . .
jt : Well I am now wondering whether P2P is DKM, because File exchange
is not always KM is it?

Formalization
Individual(counter1 type(CounterExample) value(hasArgumentation argu-
mentation3))
Individual(counter1 type(CounterExample) value(argumentsOn elabora-
tion2))
Individual(argumentation2 type(HumanArgumentation) value(providesText
“File exchange . . . KM”))

The fourth actor presents a new issue which may resolve the conflict.

87

4. DILIGENT Ontology Engineering

. . .
ph : I suggest Distributed Comp. (DC) with P2P and Grid as subtopics; DKM
as subtopic of DC and KM

Formalization
. . .
Individual(issue2 type(Issue) value(raisedIssue “I suggest DC”))
Individual(elaboration3 type(Elaboration) value(.))
. . .

The actor “do” agrees with the suggestion and provides additional reasons for the
design. Implicitly he also agrees that “KM” should be part of the ontology.

. . .
do : PRO ph : because his approach separates KM and distributiveness

Formalization
Individual(position1 type(Agree) value(positionOn elaboration3))
. . .

The first actor agrees with the new solution to introduce DKM as subclass of KM and
DC and discards his original proposal to introduce P2P as subtopic of DKM.

. . .
cs : I’d like to agree to ph and do suggestion.
. . .

This example demonstrates that an OE discussion can be modeled with the DILIGENT
Argumentation Ontology.

4.5. DILIGENT Tool Support

The efficient application of a process model depends on the tools supporting its stages.
The following section examines each stage in order to derive requirements for such tools.
The case study experiences and literature analysis are the main drivers of this analysis,
thus in other application scenarios new requirements may emerge. Based on the process
specific requirements a plug-in for the OntoEdit ontology engineering environment (OEE)
has been implemented. The argumentation related requirements are realized using standard
wiki and online chat tools.

88

4.5. DILIGENT Tool Support

4.5.1. Requirements Derived from the Process Stages

Grouped by the process stages we describe for each activity the process specific require-
ments. In case an activity duplicates the requirements of another activity we reference the
ones mentioned earlier. Section 4.5.2 maps the derived requirements on the tools, therefore
we enumerate the requirements and highlight their names like (requirement (0)).

4.5.1.1. Central Build

Available methodologies propose different ways to specify the domain (Domain analy-
sis (1)), e.g., domain expert interviews, literature studies or workshops. Depending on
the elicitation procedure results of these activities are, e.g., transcripts, lists of documents,
lists of competency questions or mind maps. A tool should be able to integrate all infor-
mation which lead to the requirement specification for the ontology. Additionally the tool
should support requirements specification according to the ontology requirements speci-
fication document (ORSD) and should store information, such as the domain description,
the defined sub-domains, the ontologies to be reused, the competency questions and other
relevant meta information (cf. Section 4.3.1.5).

After the specification of the requirements the board builds the shared ontology. A tool
should support adding and removing of concepts, ontology management tasks, e.g., ver-
sioning, storing and evolution and ontology visualization tasks (Ontology editing (2)).
The integration of reused ontologies should be supported by, e.g., import features for dif-
ferent ontology representation languages, merging, matching and pruning functionalities.

The board should evaluate the shared ontology according to predefined metrics
(Ontology evaluation (3)), such as ensuring the validity of the ontology w.r.t. the cho-
sen representation language. Integrated feedback mechanisms can help to capture user
satisfaction with the ontology. The tool should support ontology evaluation.

Argument provision is an activity so far not defined in other methodologies. Therefore,
we elaborate on the requirements for tool support with more detail. Based on our experi-
ments and a review of requirements on tools supporting arbitrary argumentation (Conklin
& Begeman, 1988) we identified the following requirements. These requirements are later
on referred to as (Argument provision (4)).

1. (Communication (4.1)) In the DILIGENT scenario participants of the ontology en-
gineering discussion are locally distributed and they may discuss online. This means
that all participants should be able to obtain up-to-date information about the ex-
changed arguments, the agreed issues, the issues currently under discussion and the
participants. The engineering process may also be organized asynchronously. In this
case the discussants provide their arguments independently of each other. The tool
should highlight new information and inform participants if someone opposes to or
agrees with their suggestions.

89

4. DILIGENT Ontology Engineering

2. (Issue / Idea stack (4.2)) The issues and ideas should be grouped according to their
priority. Not all issues/ideas can be discussed at the same time. The tool should vi-
sualize which issues have already been agreed upon, which are under discussion and
which have been postponed. The status of an issue/idea should be easily changeable.

3. (Classifiable arguments (4.3)) As we have predefined the types of arguments the
tool should support the user in selecting them. This can be achieved by templates,
which suggest a way of formulating a specific argument. Another option is the
automatic classification of the argument types, if the arguments are provided as free
text.

4. (Voting mechanism (4.4)) If an issue cannot be agreed upon unanimously, the par-
ticipants may vote for their favorite solution. The tool should support different deci-
sion mechanisms, such as majority voting. The participants should be given a time
frame to vote.

5. (Integration into OEE (4.5)) The integration of the argumentation with an ontol-
ogy editor is important, because the discussants should not change their working
environment for discussing the ontology while building it. Although argument cap-
turing has immediate and long term benefits, it requires additional effort from the
users. Usability aspects are therefore of particular interest. It has the further advan-
tage, that reasoning capabilities and different visualization techniques are already
available.

6. (Concurrent ontology visualization (4.6)) During the discussion the ontology
evolves in different ways. While some parts are already agreed by all participants
others are still under discussion and thus different models of the same ontology exit.
To enable the participants to evaluate and compare the different proposals, the tool
should be able to visualize the concurrent versions of the ontology. This includes
selection mechanisms, which allow the participants, to select parts of the ontology
proposed by one actor, or to exclude parts of the ontology proposed by another actor.
Furthermore the agreed parts should be selectable and it should be possible to export
these parts in a formal language.

7. (Moderator (4.7)) In online discussion the tool should allow the moderator to de-
cide who talks, how long and which issue is under discussion. Furthermore, the tool
should provide the moderator with some predefined questions to focus the partici-
pants or restrict their contributions.

As elaborated in other methodologies a tool supporting (Documentation (5)) should
facilitate the description of the ontology on the general level as well as on the concept
level. The tool should ensure the accessability of the documentation. As documentation
is particular important for ontology reuse scenarios, it should come in different languages
and include links to the argumentation underlying the modeling decisions.

90

4.5. DILIGENT Tool Support

4.5.1.2. Local Adaptation

In order to select the requirements motivated by the activities in the local adaptation stage
we distinguish two main types of users. The less frequent type is the user with ontology
engineering competence who analyzes his personal needs, conceptualizes and formalizes
them. He uses established ontological guidelines in order to maintain soundness and va-
lidity of the local ontology (Guarino & Welty, 2002). Besides, he annotates his knowledge
according to his locally extended ontology.

The more common type of user is not aware of the exact implications of a formal on-
tology. The shared ontology is regarded as a predefined categorization schema, such as
the categorization he defines in his daily work (e.g., his folder structures). Annotations of
documents are primarily provided in the form of assignments to a specific category.

The analysis of the shared ontology can be facilitated by an appropriate visualization
(Visualization (6)). A detailed requirements analysis for ontology visualization is beyond
the scope of this thesis. In DILIGENT it is important that the user has access to the
arguments supporting certain parts of the ontology. As the shared ontology grows in size,
highlighting concepts most relevant to the user context may be useful.
However, interaction patterns with the ontology depend on the use case for the ontology
(Ontology use (7)). Important aspects are a domain specific query interface and answer
visualization.

Some users organize their local information according to the ontology, thus they need
to access it (Access to local information (8)). The general solution to link a source with
an repository is the introduction of mediators (Wiederhold, 1992; Abecker & van Elst,
2004), which extract information from the sources and transform it in the target represen-
tation language. In order to support later stages in our process we require that provenance
information is stored. Another aspect regards the annotation of the local information ac-
cording to the ontology (Annotation (9)). As the manual instantiation of an ontology
requires sparse human resources an automated support is desirable. A prominent infor-
mation source in the context of the Semantic Web are Web sites. For this particular case
(Handschuh, 2005) has identified the requirements for annotating Web sites.

Local information is not only a source for ontology population but can also indicate that
the ontology itself should be changed. The emerging requirements are captured following
the argumentation model (Argument provision (4)). For example in our case studies the
users organized their information in classification structures according to their individual
views. Requirements for the shared ontology arise mainly from a mismatch between the
locally available classification and the shared ontology. The new requirements are met by
locally editing the shared ontology or by consulting and integrating ontologies from other
users (Ontology editing (2)). Automatic generation of an ontology based on locally avail-
able information can facilitate the former strategy (Ontology learning (10)). A prerequi-
site to follow the latter strategy is the availability and accessibility of remote ontologies
(Access to remote ontologies (11)). Although in our case studies all participants repre-
sented their ontologies in the same representation language translation support is required

91

4. DILIGENT Ontology Engineering

in other cases. The assessment , including documentation analysis, argument analysis,
concept analysis, of the retrieved ontologies (Visualization (6)) is followed by their local
integration, including entity selection, entity mapping, entity alignment (Ontology inte-
gration (12)), and provenance storing (Provenance (13)). The evaluation of the adapted
ontology is performed according to the predefined measures (Ontology evaluation (3))
and documented to facilitate future usage (Documentation (5)).

4.5.1.3. Central Analysis

The analysis of the user requests is preceded by the collection of information (Access to re-
mote ontologies (11)). The board may trigger the information collection more frequently
then they have joint meetings, as they may gather only if a certain number of changes
was introduced. Favorably the local ontologies can be obtained directly from the users.
Informal requests of the users should be collected centrally, e.g., a board member is re-
sponsible to collect the information. If parts of the local update stage should be performed
semi-automatically it is essential that provenance information is delivered with the local
ontologies and the arguments.

In order to analyze the obtained information the board needs to visualize
(Visualization (6)) and group it according to different measures (Clustering (14)).
Experience from our case studies suggest that the analysis can start with a simple alpha-
betical sorting of the introduced ontology entities. However, different groupings according
to similar topics or similar aspects of the ontology are desirable. Progress information and
responsibilities should be assigned to the change requests, if their number is very large.

Another important aspect is calculation of the defined metrics (Measurement calcula-
tion (15)), which depends on the availability of provenance and usage information. The
metrics defined w.r.t the utilization and adaptation of the shared ontology support the board
judging their previous revision. The metrics defined w.r.t the requested changes allow the
board to identify the parts of the shared ontology which need a revision. Based on the
change requests and the local changes to the shared ontology the board is able to specify
new requirements.

4.5.1.4. Central Revision

The conceptualizations following from requirements identified in the previous stage are
implemented in the central revision stage. This requires basic editing functionality
(Ontology editing (2)). The ontology changes are resolved taking into account that the
consistency of the underlying ontology and all dependent artifacts are preserved (Sto-
janovic et al., 2002).

The integration of the new shared ontology with the user local ontologies should be pos-
sible (Provenance (13)). The changes to the shared ontology based on direct integration
of user proposals should reference the original request. This is also required for changes

92

4.5. DILIGENT Tool Support

which are motivated by user changes or user arguments. In this case the provenance infor-
mation should include all arguments and changes which lead to the specific decision.

The final changed shared ontology is made available to the users (Publishing (16)).
Either it is published centrally requiring the users to obtain it on their own or it is sent to
to them directly.

4.5.1.5. Local Update

The users of the shared ontology have already obtained the shared ontology and de-
cide in the local update stage if they update to the new version or not. In order to an-
alyze the new version of the shared ontology they need different visualization options
(Visualization (6)). In particular the parts of the ontology which have changed in com-
parison to the users actual version should be highlighted. The changes based on the user
requests are of particular interest to him. The user requests can be integrated into the shared
ontology, either directly, conceptually or based on arguments. The evaluation of the control
measurements (cf. 4.3.3 and 4.3.5) can help the user making his decision (Measurement
calculation (15)). The identification of the directly integrated ontology entities is straight-
forward and the directOverlapMeasure can be calculated. In order to calculate the con-
ceptualOverlapMeasure, the local changes which are not directly integrated should be
identified and possibly (automatically) mapped onto changes introduced in the new shared
ontology. The changes introduced based on user arguments can be recognized if they are
represented in the argumentation ontology.

The user finally decides which changes to the shared ontology should be propagated to
the local ontology (Ontology integration (12)). For this activity it is important, that the
consistency of the local model is kept. The instantiation according to the new local model
should not result in a loss of information in comparison to the previous local model. The
user should be enabled to use the shared model instead of his own adaptations, if those
adaptations have been integrated in the shared model. Furthermore, the board may have
included a change based on user arguments, but has drawn different conclusions. Here
the user should decide whether he prefers the shared interpretation or his own. If the user
realizes, however, that his decision to update has been a mistake a possibility to restore the
old status is required.

Table 4.4 summarizes the tool requirements and lists the tools addressing them. The
next Sections elaborate on the tools.

4.5.2. DILIGENT OntoEdit Plugin

In the previous section we focused on the technical requirements resulting from the DILI-
GENT process. The general requirements are realized in the SWAP system and are tailored
around the specific needs of our case study partners (cf. Section 3.1)12. For this purposes
12In other application scenarios tool support is influenced by the specific needs of the use cases.

93

4. DILIGENT Ontology Engineering

the SWAP system integrates an OEE implementing the necessary functionality following
the approach proposed by (Sure, 2003): methodological support functions are added to
an existing OEE building on the available standard functionalities and adding methodol-
ogy specific methods with plug-ins. The OntoEdit OEE plug-in framework is used in this
case (Sure et al., 2003). The selection of the specific tool was arbitrary as many estab-
lished OEEs offer plug-in functionality (cf. e.g., (Maedche et al., 2003; Noy et al., 2001;
Kalyanpur et al., 2005)). A detailed description of the plug-in infrastructure can be found
in Handschuh (2005). We, however, integrated functionalities into the OEE only as far as
they were essential to the ontology engineering process, for some, such as access to local
information sources, independent tools are used. The following section enumerates the
functionalities of the OntoEdit plug-in and related tools and aligns them with the require-
ments.

Requirement No. Tool Section

Domain analysis 1 OntoEdit 4.5.2.1

Ontology editing 2 OntoEdit 4.5.2.1

Ontology evaluation 3 OntoEdit 4.5.2.1

Argument provision 4 wiki, chat 4.5.3

Communication 4.1 wiki, chat 4.5.3.1

Issue / Idea stack 4.2 wiki, chat 4.5.3.2

Classifiable arguments 4.3 wiki 4.5.3.3

Voting mechanism 4.4 wiki, chat 4.5.3.4

Integration into OEE 4.5 manual 4.5.3.5

Concurrent ontology vi-
sualization

4.6 manual 4.5.3.6

Moderator 4.7 manual 4.5.3.7

Documentation 5 OntoEdit 4.5.2.1

Visualization 6 OntoEdit 4.5.2.2

Ontology use 7 SWAP system (User Interface) 3.3

Access to local information 8 OntoScrape (Extractor) 3.3 & 4.5.2.3

Annotation 9 SWAP system (OntoScrape) 4.5.2.4

Ontology learning 10 Prototyp 4.5.2.5

Access to remote ontologies 11 SWAP system (LNR, Commu-
nication Adapter)

3.3 & 4.5.2.6

Ontology integration 12 OntoEdit 4.5.2.7

Provenance 13 SWAP metadata model 3.4.1 & 4.5.2.8

Clustering 14 OntoEdit plug-in 4.5.2.9

Measurement calculation 15 OntoEdit plug-in 4.5.2.10

Publishing 16 email, website 4.5.2.11

Table 4.4.: List of Tool Requirements for DILIGENT

94

4.5. DILIGENT Tool Support

Running example In order to illustrate the different functionalities implemented in the
XAROP application to support the DILIGENT process, we introduce an example. In Fig-
ure 4.9 the two peers, Goethe and Schiller are visualized (cf. Frame A)13. Both peers
share folders: Goethe contributes information stored in folder “share1” (cf. Frame B)
and Schiller contributes information stored in folder “share2” (cf. Frame C). Schiller has
extended the shared ontology reusing his local folder structure: The concept Document
in the shared ontology is now superclass to the 100. Projektorga and its subclasses, re-
spectively subfolders (cf. Frame D). We observe in Schiller’s clustermap pane that the
folder “140. Finanzen” contains no files (schiller: 140. Finanzen (0))
(cf. Frame E), while 24 files are assigned to the concept 140. Finanzen (schiller:
140. Finanzen (24)) (cf. Frame F). The files related to the subclasses of 140. Fi-
nanzen, e.g., Long Cost statement 200209, are also related to the class 140. Finanzen,
because of the inheritance implied by the rdfs:subClassOf relationship. Goethe con-
sulted Schiller and adapted the shared concept Document by reusing Schiller’s extensions
(cf. Frame G). Goethe retrieved the files related to the concept 140. Finanzen from Schiller
(cf. Frame H), since we observe that he himself does not share any information related to
that concept ((goethe: 140. Finanzen (0))) (cf. Frame I).

4.5.2.1. Domain Analysis, Ontology Editing, Ontology Evaluation and
Documentation

OntoEdit is an ontology engineering environment providing basic ontology management
services, such as ontology editing, ontology documentation, ontology visualization, and
storage (Sure et al., 2002; Sure et al., 2003). The open plug-in framework enables the
integration of a number of extensions, e.g., plug-ins are available for domain analysis,
ontology translation, and competency question capturing and ontology evaluation (Sure,
2003). In particular OntoEdit offers advanced support for collaboration and integration
of the inferencing capabilities. A re-implementation of OntoEdit based on the Eclipse14

framework has recently been made available under the new name OntoStudio15.

4.5.2.2. Visualization

OntoEdit integrates a number of visualization paradigms. It can, however, visualize only
complete ontologies and has no view selection mechanism. As in our scenario the number
of newly created entities within the P2P network can be large, the views can be generated
using queries. Queries can be defined manually, or predefined ones — visualizing certain
branches of the ontology — can be selected (Figure 4.10). SeRQL offers the mechanisms
to realize this option.

13The letters refer to the labeled frames in Figure 4.9. Frames with the same label visualize related contents
under different visualization paradigms

14http://www.eclipse.org/
15http://www.ontoprise.de/

95

http://www.eclipse.org/
http://www.ontoprise.de/

4. DILIGENT Ontology Engineering

AA
AA

B
F

E

F

D

C

C

F

E

G

I

H

H

H

Figure 4.9.: XAROP Application

96

4.5. DILIGENT Tool Support

Figure 4.10.: Personalized Views on Local Ontologies

In order to separate extensions made by different users and to distinguish their relative
activity we change the background color of the entities depending on their source. Since
each peer uses its own name space to create URIs, extensions to the core made by different
peers can be distinguished. The tool highlights the concepts, relations and instances of
different peers by changing their background color. The saturation and brightness of the
color indicates the number of concepts coming from a particular peer.16 White is preserved
for name spaces which the users can choose not to highlight (e.g., the local, swap-peer and
swap-common name space are excluded from highlighting by default).

4.5.2.3. Access to Local Information

The OntoScrape tool is an implementation of the Extractor component introduced in Sec-
tion 3.3; it can extract information from the user local file and email system. OntoScrape
extracts file system information, such as the folder hierarchy, bookmarks, and emails and
builds up an RDF(S) representation in which the folder names are used to create instances
of class Folder. As an implementation of the Editor component the DILIGENT OntoEdit
plug-in provides access to the LNR.

4.5.2.4. Annotation

In our case studies documents play a predominant role for the population of the ontology.
OntoScrape generates automatically instances of concept Source, e.g., Folder and File. In

16Brighter and less saturated means less concepts than darker and more saturated.

97

4. DILIGENT Ontology Engineering

order to relate files with concepts of the ontology a drag and drop option is implemented
in the XAROP interface. If folders are reused to extend the shared ontology the respective
files are related to the created concept.

Outlook Automatic text classification techniques, nowadays very effective, can detect
relations between files and concepts in the ontology. The XAROP application includes
an interface for classifiers to suggest document classifications. Classifier training can
take place remotely for the core ontology according to established procedures (Sebastiani,
2002). The classifier has to produce a set of RDFS statements, stating which files should
be classified where in the concept hierarchy.

Annotations going beyond classifications require more detailed analysis of the docu-
ments at hand. Well known techniques from ontology annotation can be integrated (Hand-
schuh, 2005).

4.5.2.5. Ontology Learning

The manual integration of locally available information with the shared ontology was suf-
ficient in our case study. Nevertheless, as the amount of shared information and the size of
the shared ontology grow, the process requires automated support. Research in Ontology
learning focuses on methods and tools to automatically create ontologies from available
information in particular texts (Maedche & Staab, 2001). Creation of ontologies from
classification structures, such as folders, however, has not received much attention. In-
spired by a general ontology learning process (Maedche & Staab, 2001), for the particular
case Lamparter et al. (2004) develops a process model and a prototypical implementa-
tion. Although the detailed description of the developed algorithms is out of the scope of
this thesis, the example in Figure 4.11 demonstrates the idea and shows the feasibility of
the approach to extract ontologies from local structures. The algorithms take as input the
folder hierarchy from the local user, start with the extractions of words from folder labels
and try to identify candidates for concepts. All words which are discarded from the list of
concept candidates become members of the instance candidate list. The identification of
taxonomic relationships between the candidate concepts precedes the introduction of other
relationships. Finally, the algorithm tries to align the instances with the extracted concepts.

The algorithms incorporate knowledge from electronic lexical reference systems, such
as WordNet17, and available ontologies, such as the shared ontology, to classify labels as
concepts, instances or relations. The algorithms utilize co-occurring labels, the sub-folder
hierarchy and named-entity recognition as further information. The performance of the al-
gorithms was evaluated comparing their output with hand-build ontologies. Depending on
the quality of the input folder structures measured in terms of usage of complete words for
folder labels, the depth of the hierarchy, and the communality with the shared ontology the

17http://wordnet.princeton.edu/

98

http://wordnet.princeton.edu/

4.5. DILIGENT Tool Support

algorithms achieve acceptable results in terms of recall and precision recognizing between
70% and 80% of the human gold standard.

In Figure 4.11 the algorithms identify in the first step the folder labels Conferences,
Papers and Presentations and EU-Projects as candidate concepts from a comparison with
WordNet and a shared ontology. According to the available ontologies the algorithms adds
concepts for Project, Deliverable to the list of concept candidates and classifies EU-Project,
Paper, Presentation and Conference as concepts. The algorithms recognize ‘Cyprus’,
‘SEKT’, ‘ODBASE’, ‘OntoMapping.pdf’ and ‘2004’ as named-entities. The instance to
class assignment is based on the relation ships found in the folder taxonomy.

Figure 4.11.: Semi-automatic Ontology Creation

4.5.2.6. Access to Remote Ontologies

A user can retrieve ontologies from other participants in order to reuse their conceptual-
izations locally. Alternatively, he may use the query result only for inspiration and create
own extensions and modifications. We have realized this in the XAROP application, and
we have introduced a new option to OntoEdit. We submit a predefined SERQL query,
exchanging a placeholder with the selected concept, to the selected peers and search for
concepts and properties related to the selected concept. In our example Goethe consults
Schiller for his extensions of the concept Document as visualized in Frame G1 in Fig-
ure 4.12 and Frame G2 in Figure 4.15.

4.5.2.7. Ontology Integration

Manual integration of local structures In our case study users reused their local folder
structures to adapt the shared ontology. Our plug-in added a new option, allowing the se-
lection of a set of instances of Folder in order to create concepts or relations using the
selected folder names. The folder hierarchy given by the inFolder relation can be used to

99

4. DILIGENT Ontology Engineering

G1

Figure 4.12.: Access to Remote Ontologies

construct a subclass-of hierarchy. Besides the simplification of the ontology construction,
an advantage of this technique is the implied traceability; the origins of a concept created
in this way can be traced back to the original folder (cf. Frame N2 in Figure 4.15). Addi-
tionally all information stored in the original folder is still accessible through the concept.
Although this created some conflicts w.r.t. the ontological interpretation of the information
concerned, it proved very useful from a user perspective18.

Not all users wanted to use OntoEdit to change the shared ontology. Therefore, we
have added a simplified version of the afore mentioned option to the search interface. The
user can drag folders in the folder view and drop them in the concept view to create new
concepts as visualized in Figure 4.13. In our example Goethe has extended the shared
concept Document reusing the subfolders of folder “400. Technik” (cf. Frame J).

Alignment SWAPSTER integrates a component for semi-automatic alignment. Align-
ment detection is based on similarities between concepts and relations(cf. e.g., (Noy &
Musen, 2002)). The user may either select a set of classes and ask for proposed alignment
for these classes, or he can look for alignments for the entire class hierarchy. The reader
may note that even the best available alignment methods are not accurate and hence the
alignment process requires user involvement. For a detailed description of this tool, the
reader is referred to (Ehrig, 2006), as it is beyond the scope of this work.

18It is very difficult to determine the exact relationship between, e.g., a file containing information about a call
for papers for a specific conference stored in a folder conferences and the respective concept conferences.

100

4.5. DILIGENT Tool Support

Continuing our example, Goethe does now also share his own folder “100. Projectorga”
and related subfolders. Mapping detection is time consuming, because the naive approach
requires a quadratic number of comparisons in the number entities to compare. Although
the algorithm presented in Ehrig (2006) is more efficient than the naive approach a com-
plete run comparing large ontologies may still overstretch the users patients. Therefore,
the algorithm provides continues updates, and the user can analyze the proposals immedi-
ately. One step in this update procedure is visualized in figures 4.14(a) and 4.14(b). In the
second figure more mappings have been detected. The tools input is Goethe’s local infor-
mation. As Goethe’s ontology is in a different namespace than Schiller’s the algorithm is
able to separate the two and to suggest possible alignments. The alignment algorithm is
accessible as part of the OntoEdit plug-in as visualized in Figure 4.15 Frame K2.

Outlook The integration of ontologies from different sources can lead to inconsistencies
on the conceptual, the formal or both levels. Depending on the semantics of the formaliza-
tion language, there are technical solutions to resolve formal inconsistencies cf. (Maedche
et al., 2003). The integration of the new shared ontology with the local ontology, however,
remains a challenging technical problem yet to be solved.

J

J

Figure 4.13.: Local Customization of the Local Ontology

101

4. DILIGENT Ontology Engineering

(a) First Result (b) Final Result

Figure 4.14.: Ontology Alignment Support

4.5.2.8. Provenance

As elaborated in the requirements analysis we need provenance information in two stages
of the DILIGENT process. In order to detect user changes in the analysis stage the board
needs knowledge about their origins. In order to update to a new version of the shared
ontology in the local update stage the user needs the reasons for the introduced changes.
In the current version of the XAROP application we support the first use case. For that
case the SWAP metadata model provides the infrastructure to store provenance informa-
tion (cf. Section 3.4, page 40). All ontology entities transmitted through the XAROP
application can be traced to their origins.

In the example two Swabbi-objects are available for the concept Document, because
Goethe requested all sub-concepts of that class from Schiller (cf. Figure 4.15). The new
option ShowSwabbi allows to access all meta information stored in the Swabbi-object
created for a selected ontology entity (cf. Frame M2 in Figure 4.15).

4.5.2.9. Clustering

Clustering refers to the method of grouping objects with similar properties close together
while separating objects with different properties. The main challenge is the identification
of the properties which are relevant for a given task. As the total number of ontology
entities was tractable without sophisticated clustering methods it was sufficient to use the
labels, the occurrence and the peer activity as properties to group the ontology entities.
This allowed the user to recognize concepts with the same label coming from different
remote local ontologies and to identify concepts which were reused by a large number of
peers. In Figure 4.15 Frame L2 highlights the different sorting possibilities.

102

4.5. DILIGENT Tool Support

4.5.2.10. Measurement Calculation

The evaluation measures defined as criteria in the controlling activities can be calculated
from the information stored in the SWAP data model. For our case studies it was sufficient
to calculate the adaptation rate, which indicates how many user have included the concept
into their local ontology. It is defined according to Equation 4.1. The adaptation rate is
visualized as a tool tip in OntoEdit (cf. Figure 4.15 Frame O2).

4.5.2.11. Publishing

In the case studies the shared ontology was published on a Web site and the users had to
retrieve it themselves in order to update to the new version. The initial shared ontology is

K2

L2

M2

G2

N2

O2

Figure 4.15.: DILIGENT OntoEdit Plug-in

103

4. DILIGENT Ontology Engineering

integrated into the main distribution of the application.

Outlook The advertisement component can transmit a list of changes to the users in fu-
ture versions of the XAROP application. Maedche et al. (2003) describes an infrastructure
to enable consistent change propagation in a distributed environment.

4.5.3. DILIGENT Argumentation Tools

The DILIGENT plug-in, integrated into the XAROP application, supported the DILI-
GENT stages in the IBIT case studies as described in Section 5.4.1. The case study em-
phasized the advantages of an argumentation model to provide more structured guidance
to ontology engineering discussions. The argumentation model itself, however, could not
be applied in that case study. The developed tools were conceived with the requirements of
the AIFB case study (cf. Section 5.4.2) and the legal case study (cf. Section 5.4.3) in mind.
In order to demonstrate the feasibility of the approach to ontology engineering, we adapted
existing technology and used it for evaluation purposes. In the following we discuss the
two tools, w.r.t. the requirements listed in Section 4.5.1.

Argument Provision

AIFB In the AIFB case study we used two chat clients, allowing online communication
between the participants, and a Web site, visualizing the shared ontology. Discus-
sions about all issues is performed in the same chat client.

Legal In the legal case study we use a wiki19. For each ontology entity a new wiki page
is created, and the argumentation is captured there.
In Figure 4.16 we see a screenshot of the wiki, running on the SEKT portal, showing
the concept Hecho20 with its description, argumentation and attributes, as well as a
graph made with the KAON OIModeller showing the concept and its attributes.

4.5.3.1. Communication

AIFB Instant communication is possible with the chat clients. All participants meet in
one virtual chat room. The discussion progress can be stored in a log file.

Legal Wiki pages are accessible via standard Web browsers. In our case, any user
can edit a wiki page. The communication is not instantious, since only one user
can edit a wiki page at a time. Different users, however, can edit other wiki pages
simultaneously.

19A wiki is a Web application that allows users to add content, as on an Internet forum, but also allows anyone
to edit the content. (Wikipedia, 2005)

20Translation: Act

104

4.5. DILIGENT Tool Support

4.5.3.2. Issue/Idea stack

AIFB Issues are raised in one chat client, while the discussion and idea proposal takes
place in the other chat client. The moderator keeps track of the raised issues, orders
them and ensures that only one is discussed at a time.

Legal One wiki page is reserved to raise issues. Each idea is discussed on a distinct
wiki page.

4.5.3.3. Classifiable arguments

AIFB The chat clients allow arbitrary communication, thus users may provide all kinds
of arguments. The classification is done manual after the discussion. The moderator
asks the participants to reformulate statements, if they do not match the predefined
argument types. The moderator enforces the use of one chat client for discussions
and one for hand rising and voting.

Legal As a chat client the wiki allows arbitrary communication. The classification is
done manually during the discussion. The wiki provides specific tags to state the

Figure 4.16.: Wiki-based Argumentation

105

4. DILIGENT Ontology Engineering

type of argument provided.

4.5.3.4. Voting mechanism

AIFB One chat client is reserved for voting and issue raising. The moderator counts
manually the votes. Decisions are based on a majority vote for an idea.

Legal Votes are tracked on the wiki pages, and tagged as such. The moderator counts
the votes manually for the ideas and decides based on the majority principle.

4.5.3.5. Integration into Ontology Editor

The tools are not directly integrated with an ontology editor. Users who want to visualize
and show the created ontology to remote users, need to manully integrate the changes and
publish an image of the new ontology.

4.5.3.6. Concurrent ontology visualization

AIFB The moderator models the shared ontology in an standard ontology editor. Dif-
ferent versions of the ontology are modeled separately. Screenshots of the ontology
versions are published as a screen-shot on a Web page.

Legal As in the previous case, the ontology is modeled in standard ontology editors;
images of the current agreed version are published in the wiki.

4.5.3.7. Moderator

In both cases no special support for the moderator is available.

Outlook Based on our past experiences we have developed a screen design and interac-
tion patterns for a plug-in meeting all requirements for argument provision. The plug-in is
designed for the OntoStudio OEE, and will be implemented in the SEKT project (Vrande-
cic et al., 2006).

4.6. Summary and Outlook

This chapter develops the ontology engineering methodology DILIGENT for distributed
knowledge management scenarios. In comparison to ontology development for central-
ized knowledge management applications the distributed setting requires support for au-
tonomously acting users. They are distributed across many places and may not have on-

106

4.6. Summary and Outlook

tology engineering background. The ontology they build is evolving in order to meet new
needs.

DILIGENT addresses the new requirements in a twofold manner. First, it proposes a
process model in which a shared ontology is distributed to the users and locally changed
and a board continuously updates the shared ontology based on these changes. Second,
an argumentation framework facilitates the externalization of assumptions underlying an
ontology. The framework proposes a process for argument provision and a semi-formal
model to provide a restricted set of argument types.
Some of the DILIGENT activities may be supported by tools. This chapter elaborates
on these requirements and presents prototypical implementations of tools supporting the
process.

The requirements of the distributed knowledge management scenario are very similar
to the ones found for ontology engineering in the Semantic Web (Pinto & Martins, 2002).
In the vision of the Semantic Web today’s Web sites will be semantically enhanced with
ontologies in order to exchange information. The Web site owners are autonomous, lo-
cally dispersed and predominantly non-expert ontology builders. As in the current Web,
offered information will change quickly and the underlying ontologies should be updated
regularly. DILIGENT addresses these requirements and should thus be applicable in this
broader setting, too.

The need for explicitly stating the assumptions underlying the design of an artifact is
not unique for ontology engineering but has been recognized in the field of requirements
and software engineering for a long time. The IBIS methodology has been designed for
that purpose. Arguments have proved their value to augment the reasoning in the design
process, to facilitate software reuse and to help non-participants to understand the design
decisions (cf. e.g., (Gotel & Finkelstein, 1994; Buckingham Shum & Hammond, 1994)).
Argument capturing may, however, hinder an effective design process due to its overhead.
It remains an open research question whether the findings presented in this thesis are of
use for those communities.

The application of the DILIGENT methodology in three different case studies is the
subject of the next chapter.

107

4. DILIGENT Ontology Engineering

108

5. Evaluation of the DILIGENT
Methodology

Is not all honourable work also useful and good?1

— Plato, Protagoras, 358b

Overview

The evaluation of the DILIGENT methodology is twofold: first
it is compared with other methodologies and second it was ap-
plied in three different case studies. The evaluation demonstrates
that DILIGENT extends existing ontology engineering method-
ologies so that ontologies for distributed knowledge management
applications can be build and that DILIGENT can be applied in
such scenarios.

In the first case study the process model was applied and the ac-
tivities were validated. The second case study focuses on the se-
lection of relevant arguments for ontology engineering processes.
In the third case study the formal argumentation model is used.
Finally lessons learned are discussed and future directions for the
methodology are proposed.

References: This chapter is based on the publications (Tempich
et al., 2004a), (Pinto et al., 2004a), (Pinto et al., 2004b), (Pinto
et al., 2005), (Vrandecic et al., 2005), (Tempich et al., 2006),
(Sure et al., 2004) and (Casanovas et al., 2005; Tempich et al.,
2005c).

5.1. Evaluating a Methodology

“Evaluation is a process to compare different approaches to solve a certain
problem.”

(House, 1980)

An evaluation is always targeted at a specific audience. In particular when it comes to the
evaluation of processes, two types of audiences can be distinguished: the economists and

1Kai to kalon ergon agathon te kai ophelimon.

109

5. Evaluation of the DILIGENT Methodology

managers are interested in numbers and facts; the practitioners are interested in experiences
in the application of the process. For that reason different approaches to evaluate processes
have been defined. The remainder of this section presents three complementary evaluation
approaches targeted at economist as well as at practitioners.

From an epistemological point of view there are objectivist and subjectivist approaches
to evaluation. The former concentrate on observable facts, quantitative techniques, strict
procedures and reproducible results. Examples of these approaches to evaluation are the
“Systems analysis” and the “Goal free” model. The approaches following a subjectivist
epistemology observe subjective impressions of the persons involved in the process. In-
formal interviews, personal judgement and experiences in the case study are the means to
collect multiple perspectives on the evaluated procedures. Examples of these approaches
to evaluation are the “Professional review” and “Case study” model. In any case for the
evaluation to be of value the audience should trust the procedures of the evaluator. The
evaluation should thus be “true, credible, and right” (House, 1980, p. 250).

The way the evaluator claims credibility differs depending on the approach to evalua-
tion. The evaluator should be unbiased, interested in the findings but not favor any of the
evaluated solutions for the problem. In case of the objectivists approach to evaluation the
audience should agree with the facts, while in the subjectivist case the audience should
agree with the experiences made in the case studies.

An evaluation should always start with the definition of a testable hypothesis. Observing
the process under evaluation is the primary method of data collection. Therefore, a key
criterion for an evaluation to be credible is the possibility to replicate it. All evaluation
procedures should thus be externalized and explicit.

For example the evaluation of a process by means of a “Case study” should report on
the important experiences in it, the credentials of the participants, e.g., of the professional
reviewers or the participants in the case study and communicate important insights, which
are not standardized upfront. However, insights may vary considerably between two case
studies since people change.

It is not possible to select “the” best evaluation method, since they all have different
objectives, focus on varying aspects and draw diverse conclusions. Each approach to
evaluation has strengths and weaknesses; following only one evaluation approach may
thus be misleading. DILIGENT is therefore evaluated according to more than one model,
namely the “Goal free”, “Professional review” and finally the “Case study” model, because
the disadvantages of one model are covered by the advantages of the other models. It is
thereby evaluated according to the same evaluation measures as other ontology engineer-
ing methodologies, such as the OTK methodology or METHONTOLOGY. (i) Goal free
evaluation aims at the users and consumers and analyzes a process logically to allow for
informed Consumer choice. We identify strengths and weaknesses of the methodology,
thus we compare DILIGENT to other methodologies enabling potential users to decide
which methodology to use given certain user requirements. (ii) Case study evaluation in-
corporates the clients and practitioners to understand the diversity of the process. The case

110

5.1. Evaluating a Methodology

study exemplifies the potential experiences following DILIGENT. (iii) In the Professional
review evaluation experts in the domain of interest examine the model. The designer of the
methodology can adjust the model according to the evaluation results.

In the following sections we describe the three models, explaining the assumptions un-
derlying each model and the process of evaluation, defining the inputs and outputs and
illustrate the advantages and disadvantages of the evaluation approaches.

5.1.1. Goal Free

Description The “Goal free” approach to evaluation takes its name from its purpose.
The evaluation is performed for no particular reason, but to compare different procedures
according to a common set of criteria. It is then up to the reader of the evaluation to assign
personal preferences to the single criteria and select the process which fits the reader best.

Process The goal free evaluation starts with the selection of relevant evaluation criteria.
The evaluator should take into account all aspects which a later reader of the evaluation
may find interesting. The evaluation criteria should be clearly defined, they should not be
overlapping, and general enough to cover all evaluated methods. Furthermore the criteria
should be relevant for the intended application of the procedures. For each evaluation
criterion the evaluator assigns a value to the evaluated procedures.

Input The basis for a goal free evaluation is an objective set of evaluation criteria for the
procedures under evaluation.

Output The goal free evaluation provides the reader with an objective analysis of a set
of criteria for a number of procedures.

Advantages The evaluation method is objective, as all models adhere to the same eval-
uation criteria. The evaluation can be used for different purposes, as the criteria are not
weighted. The identification of evaluation criteria, provides the reader of the evaluation
with a quick overview of the relevant issues for the particular procedures.

Disadvantages The identification of evaluation criteria is crucial for this evaluation
model. The evaluation criteria should be selected in a way, that particular advantages
of the evaluated models are comparable. If the evaluator is not completely familiar with
the evaluated models, wrong judgement for a criteria may be the result.

111

5. Evaluation of the DILIGENT Methodology

5.1.2. Professional Review

Description The professional review model relies on the experiences of knowledgeable
people in the area of interest for evaluation purposes. A number of professionals review a
process w.r.t. its plausibility, quality and other criteria. A main feature of the professional
review is that the professionals themselves define the relevant evaluation criteria depending
on the requirements of the domain. They base their judgement and recommendations
on their own experiences and their own knowledge. They can use predefined evaluation
criteria to structure the assessment.

Process The professionals carefully examine the process description. If evaluation cri-
teria are available, they judge the evaluated process according to those criteria. They make
recommendations for changes in the process if necessary.

Input Established evaluation criteria in the domain may be an input to this model.

Output This evaluation model produces expert opinions regarding the plausibility and
understandability of the evaluated process.

Advantages The professional review model reduces bias, since all aspects of a process
are evaluated. Hidden consequences of the evaluated process may be detected, as the
experienced evaluator inquires into the process details. The professional review model is
typically applied after the first creation of the model in order to eliminate obvious errors
and to get a different perspective on the evaluated process.

Disadvantages The outcome of this evaluation depends on the capabilities and opin-
ion of the evaluators. The evaluation depends on the availability of experts and can not
regularly be repeated.

5.1.3. Case Study

Description The main objective of the case study model to evaluation is to understand
the process under evaluation. The target audience follows the process and the evaluator
tries to capture as many information as possible from the execution of the process.

Process Before the evaluation the target audience gets familiar with the process to eval-
uate. The target audience accomplishes their tasks according to the new process model,
or – if the process is an addition to the participants regular tasks – adds new tasks to their
daily work. A case study can have a predefined duration. The evaluators start the case

112

5.1. Evaluating a Methodology

study analysis with a predefined research question (cf. (Yin & Campbell, 2003)). They
should consult additional information sources and perform a literature review in order to
formulate a precise research question. They determine the data gathering and analysis
techniques for the case study; interviews, surveys and observation are valid data gathering
techniques, which all require a specific process so that the validity of the observations is
ensured. In the course of the case study the evaluator collects the data from the different
participants in the process. Many participants should provide data, in order to get varying
views on the process. The analysis of the data should expose the important issues and rel-
evant findings. In the aftermath of the case study the evaluator describes the result, taking
into account the organizational setting, the participants situation, the participants reports
and his own observations; the reader needs enough background information to understand
the case study and follow the results.

Input The new process is introduced to the participants. The group of participants should
be large enough to draw meaningful conclusions.

Output A case study produces experience reports for a process model and best practices
descriptions. The reports enhance understanding rather than offer explanations.

Advantages The main advantages of the case study model is its emphasis on practitioner
experiences. It exemplifies for future users which experiences they potentially make, if
they follow the evaluated process. Since it incorporates many different views and interests
the diversity of the process can be understood. The amount and richness of available
information cannot be obtained with other approaches. The view on the process is thus
very broad.

Disadvantages The value of the case study description depends on the capabilities of
the evaluators. As the evaluator is confronted with many influencing variables it is difficult
to extract the meaningful ones. The evaluator or participant should recognize the important
issues. This depends on the evaluator asking the right questions, or the participant making
the right observations. In case of contradicting interests the evaluator should balance the
different viewpoints. This can be best resolved in just portraying the experiences without
judging them.
It is difficult to compare different case studies as they depend on the organizational setting,
the involved participants and the evaluators experience.

113

5. Evaluation of the DILIGENT Methodology

5.2. Goal Free Evaluation

Table 5.1 compares DILIGENT to other well known methodologies.2 The OTK methodol-
ogy (Sure, 2003) and METHONTOLOGY (Gómez-Pérez et al., 2003) have been selected
because they are the most complete methodologies to guide ontology development in cen-
tralized settings; while HCOME (Kotis & Vouros, 2005) aims at the same scenario as
DILIGENT. We have adapted the categorization of (Gómez-Pérez et al., 2003) separating
Ontology management activities, Ontology development oriented activities and Ontology
support activities. To the original classification we have added the aspects of Evolution,
different Knowledge acquisition modes and stages during Documentation.

The comparison reveals that DILIGENT is well suited for ontology engineering tasks
where distributiveness and change/evolution are of major concern. Further it is the first
methodology which formalizes the argumentation taking place in an ontology engineering
discussion. Hence, DILIGENT should be used in cases were tracing the engineering deci-
sions is important. This allows future users to understand the different reasons which lead
to the conceptualization. These aspects are very important in the context of the Semantic
Web.

DILIGENT is less adequate for use cases were consistency of the ontology is vital. Fur-
ther, methodological support for merging and alignment of ontologies is still not elaborated
although they are support activities. DILIGENT does not elaborate on support for ontol-
ogy management and pre-development activities, since these are already well supported
by other mature methodologies.

5.3. Professional Review

In order to arrive at the methodology as it was presented in Section 4.3 we have proceeded
in several development steps. The main drivers of the development were the results of the
case studies as presented in the next section and the feedback from external reviewers. This
section presents the development of the DILIGENT methodology as influenced by external
reviews, while it distinguishes between the evolution of the process and the development
of the argumentation framework.

5.3.1. DILIGENT Process Evaluation

The DILIGENT process model was evaluated at varying development stages by eight ex-
perts as part of the conference reviewing process and three ontology engineering experts in

2See Section 8.2.1, page 212 for a more detailed description.
3The abbreviations used in this table refer to the level of detail of the respective activity description: NP: Not

proposed; Proposed: Described on the conceptual level; Described: Activity is described, but no single
tasks; Descr. in detail: Detailed description of the activities and related tasks with extended examples.

114

5.3. Professional Review

Feature METHON-
TOLOGY

On-To-
Knowledge

(OTK)

HCOME DILIGENT

Ontology
management
activities

Scheduling Proposed3 Described NP from OTK

Control Proposed Described NP from OTK

Quality assurance NP Described NP from OTK

Ontology
development
oriented
activities

Pre
development
processes

Environment
study

NP Proposed NP from OTK

Feasibility study NP Described NP from OTK

Development
processes

Specification Descr. in
detail

Descr. in
detail

Proposed Described

Conceptualization Descr. in
detail

Proposed Proposed Descr. in
detail

Formalization Described Described Proposed Descr. in
detail

Implementation Descr. in
detail

Described Proposed Described

Post
development
processes

Maintenance Proposed Proposed Described Descr. in
detail

Use NP Proposed Described Described

Evolution NP NP Proposed Descr. in
detail

Ontology
support
activities

Knowledge acquisition Descr. in
detail

Described NP Proposed

Distributed know. acquisition NP NP Proposed Described

Onto. Learning integration NP NP NP Described

Partial autonomy NP NP NP Described

Evaluation Descr. in
detail

Proposed NP Proposed

Integration Proposed Proposed NP Proposed

Configuration management Described Described NP from OTK

Documentation Descr. in
detail

Proposed Described Proposed

Results Descr. in
detail

Proposed Described Proposed

Argumentation / Decision
process

NP NP Proposed Descr. in
detail

Merging and Alignment NP NP Proposed NP

Table 5.1.: DILIGENT and Related Ontology Engineering Methodologies

115

5. Evaluation of the DILIGENT Methodology

affiliated institutes. The evaluation criteria were originality, impact and technical quality.
Originality judges the novelty and new aspects of the proposed model. Impact refers to the
influence the model will have on the community. Technical quality refers to the methods
applied to validate the hypotheses.

The first version of the DILIGENT process comprised a description of the five main
stages and presented initial tool support, but did not provide a detailed description of the
stages. At this point the IBIT case study lasted for 6 weeks. The reviewers appreciated the
process model and the application scenario while they pointed us in the directions which
we then further elaborated. They asked for an elaboration on the negotiation process to
reach consensus when conflicting changes were submitted to the board. The reviewers
criticized the generality of the process description and the brevity of the case study. They
questioned the ability of non-expert users to change the ontology.

The second version of the DILIGENT process comprised a detailed description of the
process model on the task level. The IBIT case study lasted for 3 months. The review-
ers underlined the value of DILIGENT for ontology development in the Semantic Web
context, since it addresses decentralized ontology development and ontology evolution.
The reviewers recommended the development of sophisticated tools and the specification
of decision metrics for each process stage. As the description of the tasks did not show
the parallelism of their execution order, the reviewers had the impression that the process
model was very strikt and only applicable to particular application settings. Moreover,
they suggested that different parts of the ontology depending on their importance for the
community may have varying life cycles. The scalability of the process model was of fur-
ther concern, since it was not clear how much it would cost to update the local ontology
and to incorporate user changes to the shared ontology if the number of users grows.

We responded to the reviewers concerns in a third and final version of the methodology.
In this version of the methodology we define general activities, while the tasks further
refine those activities for a particular application scenario. We introduce activity diagrams
clarifying the execution order of the different activities. We added controlling activities
and specific metrics to facilitate the decision procedure.

Open issues The supervised application of the DILIGENT methodology in a larger case
study is still an open issue. The controlling activities with the respective decision metrics
have not been completely evaluated yet. Another case study with more users would also
require further development of the presented tools. Another open issue relates to the costs
of the process. Future research should determine the tradeoffs between the agreement costs
for the shared ontology and mapping costs for different ontologies.

5.3.2. Argumentation Framework Evaluation

The DILIGENT argumentation framework was evaluated by six experts as part of the
conference reviewing process, an expert on argumentation structures and two ontology

116

5.4. Case Studies

engineering experts in affiliated institutes. The evaluation criteria were the same as above.

We started the development of the argumentation framework with the hypothesis that a
restricted set of argument types could facilitate ontology engineering discussions in DILI-
GENT processes. The initial framework defined the argumentation process and proposed
a selection of argument types based on a literature review. The reviewers recognized the
importance for ontology engineering. They suggested the application of the argumentation
framework for ontology integration.

We subsequently extended the argumentation framework with the argumentation ontol-
ogy. The reviewers emphasized the validity of the argumentation framework extension.
They highlighted the significance of tool support.

Open issues Although we have not developed specialized tool support for the argu-
mentation framework, the framework has already proven its applicability as described
in the case study section. The integration of the framework in an ontology engineering
environment is ongoing work (cf. (Vrandecic et al., 2006)).

5.4. Case Studies

In this section we describe the application of the DILIGENT methodology in case studies.
Each case study focused on particular aspects of the methodology as summarized in Ta-
ble 5.2. In the IBIT case study we examined the process model, its stages, activities and
tasks. The AIFB case study focuses on the argumentation framework and the selection of
efficient argument types. The argumentation framework is also the main focus of the legal
case study.

For each of the case studies we describe the organizational background and the objec-
tives for the application of DILIGENT. We go into detail with the data collection process
and its results. From each case study we have collected a number of lessons learned. We
gathered the data from our case studies interviewing its participants and by own observa-
tions.

DILIGENT contribution

Case study
Decentra-

lization
Partial

Autonomy Iteration
Non

experts
Argumen-

tation

IBIT case study Yes Yes Yes Yes No

AIFB case
study

No No Yes No Yes

Legal case
study

No No No Yes Yes

Table 5.2.: DILIGENT in the Case Studies

117

5. Evaluation of the DILIGENT Methodology

5.4.1. The IBIT Case Study

The IBIT case study was part of the SWAP project. Besides the evaluation of the DILI-
GENT process the case study served as a testbed for the XAROP application.

5.4.1.1. Data Collection Process

The IBIT case study lasted for three month, in which the users followed the DILIGENT
process. Each stage of the cycle was performed twice. Data was collected in the beginning,
in week six, after the first cycle, and at the end of the case study, after the second cycle.
We interviewed the two organizers of the case study and several users of the system in
order to collect information about the Local adaptation and Local update stage. It was
evaluated whether the system and the process met their requirements and expectations.
The evaluation examined in detail the task execution, its order and if the users performed
tasks which are not defined in the process model.

The criteria to evaluate the ontology related to the acceptance of the ontology and the
coverage of required knowledge. The usability and the usage of the tools was another
aspect of the evaluation. The evaluators participated in the Central Analysis and Revision
stage.

5.4.1.2. Objectives for the Case Study

In the IBIT case study we deployed the XAROP system to enable information sharing be-
tween the participants and had two objectives. One the one hand we wanted to evaluate
XAROP from a technical point of view. On the other hand we aimed at an evaluation of
DILIGENT. Regarding the methodology we had the hypothesis, that (i) DILIGENT sup-
ports the collaborative development of a shared ontology in a decentralized setting, (ii) the
ontology needs to evolve, (iii) non-ontology engineering experts adapt their ontologies
and participate in the ontology engineering process, and (iv) the organizational structure
DILIGENT suggests fits the organizational setting found in the IBIT case study.

5.4.1.3. Organizational Background

The IBIT case study takes place in the tourism sector of the Balearic Islands. A num-
ber of organizations participating in the case study want to collaborate on some regional
issues. Therefore, they collect and share information about indicators reflecting the im-
pact of growing population and tourist fluxes in the islands, their environment and their
infrastructures. Moreover, these indicators can be used to make predictions and help plan-
ning. For instance, organizations that require Quality & Hospitality management use the
information to better plan, for example, their marketing campaigns. As another example,

118

5.4. Case Studies

a governmental agency, a Balearic government co-ordination center of telematics, pro-
vides the local industry with information about new technologies that can help the tourism
industry to better perform their tasks.

Due to the different working areas and objectives of the collaborating organizations,
it proved impossible to set up a centralized knowledge management system or even a
completely centralized ontology. The case study partners asked explicitly for a system
without a central server, where knowledge sharing is integrated into the normal work, but
where very different kinds of information could be easily shared with others.

5.4.1.4. Case Study Description

We now describe the initial building stage, and the two rounds following the DILIGENT
process.

a) Central Building

Roles Two domain experts with the help of two knowledge/ontology engineers built the
first version of the shared ontology. In this case, domain experts were also knowledge
providers and users.

Input The ontology engineering process was embedded in the application design devel-
opment. According to the use cases the application should connect the employees of the
seven organizations and provide access to databases. The use cases described the func-
tions and roles of the users in their organizations, their work environment and technical
infrastructure. The use cases elaborated on the interactions between the organizations and
the exchanged knowledge. The relevant knowledge was grouped into the areas “sustain-
able development indicators”, “new technologies” and “quality&hospitality management”.
For the area of sustainable development indicators detailed guidelines were available.

Activities The ontology engineering (OE) process started by identifying the main con-
cepts of the ontology through the analysis of competency questions and their answers(1)4.
The most frequent queries and answers exchanged by users were analyzed(2). The main
objective of the ontology was to categorize documents. The concepts identified were
divided into three main modules: “Sustainable Development Indicators (SDI)”, “New
Technologies (NT)” and “Quality&Hospitality Management (QHM)”. From the competency
questions the board quickly derived a first ontology with 20 concepts and 7 relations for
the “SDI” ontology. For “NT” the board identified 15 concepts and 8 relations and for
“QHM” 8 concepts and 5 relations. Between the modules 8 cross module relations were

4The numbering here and in the following, corresponds to the number of the activity in Figure 4.2.

119

5. Evaluation of the DILIGENT Methodology

introduced. A part of the result of the initial building stage is visualized in Figure 5.1(a),
page 122.

The first round of our OE process started with the distribution of the three modules of
the common ontology to all users. In both rounds, users - during the local adaptation stage
- and the board - in the central revision stage - could perform ontology change operations.
They could introduce concepts/relations/instances, delete concepts/relations/instances, or
combine these operations arbitrarily, thus extend or restructure the ontology. Most fre-
quently the concept hierarchy was changed.

Tool support The conceptual model of the first ontology was designed on paper. We
used OntoEdit to formalize and implement the shared ontology. At this point the standard
functionality of OntoEdit was sufficient to build the first version of the shared ontology.

I.) First Round

The first month of the case study, corresponded to the first round of the DILIGENT process.
One organization with seven peers participated. The local adaptation stage lasted for one
month, while the central analysis and revision stage took two days.

Ib.) Local Adaptation

Roles In the first round of our process one user with OE experience and six users without
OE background participated.

Input The first version of the shared ontology was distributed with the system. The users
had access to their local information, viz. folders, documents, emails and bookmarks, and
used OntoScrape to create RDF(S) representations from it.

Activities

Local analysis of the shared ontology (3) The users initially regarded the shared ontol-
ogy mainly as a classification hierarchy for documents. Consequently they com-
pared their existing folder structures with the shared ontology to understand the
shared ontology and identify commonalities between their own and the shared con-
ceptualization.

Local specification of new requirements (5) Identification of missing conceptualiza-
tions was thus based on mismatches between the shared ontology and their local
folder structures.

120

5.4. Case Studies

Local modification of local ontology (6a) Users changed their conceptualization and
introduced new concepts. Rather than manually changing their local ontologies they
preferred to reuse their folder structures.

Local integration of reused ontologies to the local ontology (6b) The users imported
their local folder structures and reused them to extend the shared ontology. As the
documents stored in a folder are automatically aligned with the corresponding con-
cepts, the integration entailed the population of the ontology.

Ontology use (4) With the alignment of folders and concepts the users organized their
knowledge according to that conceptualization.

Argument provision (8) The board received several requests to modify the shared on-
tology by email. As the argumentation framework was still under development at
this time, they did not adhere to any structure for their requests.

Tool support The users worked with the XAROP application. The users imported docu-
ment and folder representations with OntoScrape. In the first round the users had to change
the local ontology with the OntoEdit plug-in. They aligned folders and concepts and cre-
ated new concepts manually. Remote local ontologies were accessible using the OntoEdit
plug-in. While the functionality of XAROP was quickly understood, the adaptation of the
ontology with an ontology engineering environment (OEE) proved to be very difficult for
some users. Therefore, we decided to include some basic adaptation functions into the
XAROP user interface.

Decisions The users modeled concepts in the shared ontology representing the topics of
their core working area. They continued to modify their local ontology until it covered all
relevant topics of their domain. They shared only information which they thought being
interesting for the group. In the interviews they commented, that they would share more
files at a later stage, when they would feel more confident with the system.

Output The first round of the process resulted in 7 adapted ontologies.

Ic.) Central Analysis

Roles The board consisted of two ontology engineers and two domain experts/users.

Input The local adaptations from seven users were collected. Additionally the board had
access to the folder structures of those users.

121

5. Evaluation of the DILIGENT Methodology

(a) First Version of the Shared Ontology (b) Second Version of the Shared Ontology

(c) Third Version of the Shared Ontology

Figure 5.1.: IBIT Case Study: Evolution of the Shared Ontology (QHM)

Activities

Information collection from users (9): In our case we gathered the locally updated on-
tologies and corresponding arguments. In the first round the board (i) directly ac-
cessed the formal local changes on the different peers and (ii) some change requests
on the conceptual level. At this stage the board also used (iii) the folder structures
as indication for the requirements on the ontology, and it used (iv) the number of
documents related to the concepts of the ontology as an indicator for its usage. In
average a user shared 14 folders. Additionally, the board received new background
knowledge which led to many additions in the “NT” module. The “SDI” module was

122

5.4. Case Studies

changed based on the formal changes collected electronically. Although the number
of changes varied between the different modules the kind of changes was the same.
Therefore, we subsequently focus on the changes introduced to the “QHM” module
which are partly visualized in Figure 5.1.

Analysis of the obtained information (10): The board analyzed the changes introduced
by the users at a conceptual level. They can be categorized as follows:

Elaboration The elaboration of the ontology was the most often observed ac-
tion. The board could identify elaborations in three different ways. (i) The
users correctly requested either formally or informally to add sub concepts to
existing concepts to specialize them. (ii) The users incorrectly added new top
level concepts, which were specializations of existing concepts. (iii) Finally
they incorrectly refined the wrong concepts. In this way users elaborated the
“NT” module with 15 concepts, the “SDI” module with 3 concepts and the
“QHM” module also with 3 concepts.

Extension The board regarded a change as an extension whenever users re-
quested new concepts on the top level. Again, users could not distinguish
whether a required concept was an elaboration or an extension. Users extended
the “NT” module with 2 concepts and the “QHM” module also with 2 concepts.
The “SDI” module was not extended.

Renaming In some cases the users liked the way the board had conceptualized
the domain, but did not agree with the names of the concepts. This happened
twice in all modules.

Usage Usage behavior of single concepts in the common ontology was analyzed.
This included (i) the number of queries posed to the system containing a spe-
cific concept, (ii) the number of documents related to that concept and (iii) the
elaboration of a concept. Most of the users did not delete any concepts or asked
to remove concepts. Nevertheless, the board concluded that a concept which
was never used should be removed.

Specification of new requirements (12) The board identified the changes presumably
relevant for a significant share of all participants. Indeed they decided to intro-
duce all change requests into the common ontology since all were supported by at
least two users either through usage or extension/elaborations. Moreover, the do-
main expert could provide reasonable arguments for the introduction of all changes.
Thus, the division of the ontology into 3 modules already generated a consensual
group of users.

Tool support The board collected the remote local ontologies with the OntoEdit plug-in
and they also received some local ontologies by email. They used the clustering mecha-
nisms to structure the analysis of the local ontologies. The board was satisfied with the
functions offered by the plug-in.

123

5. Evaluation of the DILIGENT Methodology

Decisions All changes were motivated by user requests and changes.

Output: The analysis of the local adaptations resulted in 27 changes for the “NT” mod-
ule, 10 changes for the “QHM” module, and 5 for the “SDI” module.

(a) User Extension to the First Version of the
Shared Ontology

(b) User extension to the Second Version of the
Shared Ontology

Figure 5.2.: User Extensions to the Shared Ontology

Id.) Central Revision

Roles Two ontology engineers and one domain expert participated in the central revision
stage.

Input In the analysis stage the board collected on total 41 changes to all modules. For
example, 8 change requests related to the “QHM” module. These changes were formalized
in this stage in order to update the shared ontology.

Activities

Customization of shared ontology (14) The new requirements and conceptual change
requests identified in the analysis stage were translated into the following modeling
decisions.

Concept elaboration For the “QHM” module over 50% of the changes were elab-
oration. In this case all elaborations were also new concepts. For example two
users extended the concept Quality with the concept Environmental Quality.
The requirement of a more detailed conceptualization was the main reason
provided by the users for concept elaboration.

Concept removal Concept removal is less often observed. Only one concept was
removed, because it was not used by any of the participants.

124

5.4. Case Studies

Concept renaming Some concepts were renamed, because synonyms were more
common than the originally chosen term. The old name was kept for docu-
mentation purposes.

Concept creation In the “QHM” module the board introduced 2 new top level
concepts, namely Learning and Tourism Legislation.

Relation creation In addition to the new and changed concepts the ontology en-
gineers created 3 new relations.

Concepts matched A third of the extracted folder names was directly aligned
with the core ontology. A further tenth of them was used to extend existing
concepts.

Folder names indicate relations In the core ontology a relation inYear between
the concept Indicator and Temporal was defined. This kind of relation is often
encoded in one folder name. The folder name “SustInd2002” matches the con-
cepts Sustainable Indicator and Year5. It also points to a modelling problem,
since Sustainable Indicator is a concept while “2002” is an instance of concept
Year.

Missing top level concepts The concept project was introduced by more than
half of the participants, but was not part of the initial shared ontology.

Refinement of concepts The top level concept Indicator was extended by more
than half of the participants, while other concepts were not extended.

Concepts were not used Some of the originally defined concepts were never
used. A concept had been used, if a user created instances of it, aligned docu-
ments with it, included it in a query or created sub-concepts.

Folder names represent instances The users who defined the concept project
used some of their folder names to create instances of that concept,
e.g., “Sustainable indicators project”.

Different labels The originally introduced concept Natural spaces was often
aligned with a newly created concept Natural environments and never used
itself.

Ontology did not fit One user did create his own hierarchy and could use only
one of the predefined concepts. Indeed his working area was forgotten in the
first ontology building workshop.

Evaluation of new shared ontology (15) The board compared the requirements with
the new version of the shared ontology and ensured that all requirements were met.
Furthermore, the board checked the naming conventions.

Documentation (16) The board recorded the number of users contributing local
changes and the names of the board. In our case all decisions were unanimously

5Year is sub class of class Temporal

125

5. Evaluation of the DILIGENT Methodology

taken, however in case of conflict the decision would have been achieved by major-
ity voting. The board decided to collect the local adaptations after 2 months.

Distribution of new shared ontology (18) The new shared ontology was sent to the par-
ticipants by email. The board assisted users solving technical updating problems.

Tool support Standard functionality of OntoEdit was sufficient in the central revision
stage.

Decisions It was decided to model the requested changes in a way that ontological and
user requirements were met.

Output After modeling the conceptual changes, the second version of the common on-
tology contained 54 concepts and 13 relations (Figure 5.1(b)).

Ie.) Local Update

Roles The new shared ontology was distributed to the seven users of XAROP.

Input The users received the ontology serialized as an RDF(S) file.

Activites

Control of new shared ontology (19) This activity was not executed explicitly, but part
of the next activity. The separation is a result of the case study.

Local analysis of changes in the new shared ontology (20) The users compared the
new version of the shared ontology with their local ontologies. All users decided
to update. They requested indicators to facilitate the analysis activity.

Integration of new and old version (21) The users tagged their old ontology by coping
the local node repository file to a new location. The updated version of the shared
ontology was locally included by overwriting the old version. This is a simplistic
approach, but acceptable as the system was a prototype. As the updated version of
the shared ontology was more detailed and covered more domain knowledge, the
users could align more of their folders with common concepts.

Tool support The users aligned folders and the new shared ontology with the OntoEdit
plug-in.

126

5.4. Case Studies

Decisions All users decided to use the new shared ontology as it covered more domain
knowledge and they found their requests integrated to it.

Output As a result of this stage the new shared ontology was commonly used and the
user folders were aligned with the new shared ontology.

II.) Second Round

In the second round the case study was extended to 4 organizations with 21 peers. The
users participating in the first round had more experience. The local adaptation stage lasted
for two month. The central analysis and revision stage took place at a two day face-to-face
meeting.

IIb.) Local Adaptation

Roles In the second round of our process all seven users participating in the first round
were still active. For the second round the case study was extended resulting in 14 more
users from three additional organizations. None of the new users had OE experience.

Input The experienced users started with the result of the local update stage, while the
new users received only the new shared ontology. All users shared the local information
which they thought relevant for the groups.

Activities As in the first round participants changed and used the common ontology
according to their needs. Due to the larger number of participants more modifications
were introduced. In particular the module “QHM” evolved (cf. Figure 5.2(b)). Regarding
the activities defined for this stage, the users repeated the tasks already described for the
first round. As more information was available in the overall system, they told us that they
had used it more extensively.

Tool support Besides the tools applied in the first round, we added to the XAROP inter-
face the possibility to change the ontology without using OntoEdit. The users could also
retrieve remote local ontologies directly within that interface. The users appreciated this
possibility very much as they had not to use another tool. The possibility to automated the
alignment process also introduced in the second round was not used.

Decisions The new users behaved similar to the users in the first stage and did not share
many folders, as they wanted to gain confidence in the system first. The experienced users,
however, published more information, and adapted the local ontologies accordingly.

127

5. Evaluation of the DILIGENT Methodology

Output The second local adaptation stage resulted in 14 adapted ontologies. The rest
of the users did not make changes. Although some did not change the shared ontology
directly, they submitted change requests to their supervisor, thus they delegated the task of
modelling their domain. The supervisor then communicated the requests to the board.

IIc.) Central Analysis

Roles In the second round the board consisted of one domain expert and two ontology
engineers. Additionally two users were invited to answer questions to clarify the changes
they introduced.

Input The 21 local ontologies of the users were the input to the second round. Some of
the users did not change the common ontology at all, though all of them populated it. In
a very hierarchical and well defined organization one single ontology could be adopted by
all peers.

Decisions The board had to perform reverse engineering on the formal local ontologies
from users in order to get conceptual models from them.

Activities

Information collection from users (9) As in the first round the updated ontologies were
retrieved electronically. Some of the modification requests were collected interview-
ing the participants.

Analysis of the obtained information (10) Similar to the first round the modifications
did not follow good ontology building practices. With respect to the conceptual
modeling decisions the board observed that this time the users modified the ontology
on a deeper level than in the first round. Renaming was a bigger issue in this round
due to political changes, which required the adoption of new naming conventions.
Moreover, generalization took place in two cases. Users introduced concepts which
were more abstract than existing ones. The board moved one concept “Indicator” to
another module of the ontology, since there the users elaborated it extensively.

In Figure 5.2(b) we observe that a user has extended the local version of the com-
mon ontology with a concept for Circulars. With the help of the domain expert,
and taking also into account other local updates, the knowledge engineers inferred
on the conceptual level that the module lacked concepts for Business Administra-
tion. Hence, the board not only introduced new concepts but also a generalization
to existing ones 5.1(c). To exemplify an argumentation thread in favor or against
a modelling decision we have selected the local extension Circulars performed by
one user. Legislation was introduced as a subclass of Circulars. The argumentation

128

5.4. Case Studies

for a different modelling was straightforward, because the board found a Counter
Example in form of a document dealing with Legislation, which was not a Circular.
The most convincing arguments were selected and emphasized for documentation
purposes.

Specification of new requirements As in the first round the board included all change
requests from users. Again, as in the first round, only few of the concepts in the
common ontology were never used.

Tool support Tool support did not change in comparison with the first round.

Output The board identified 3 changes in the “NT” module, 28 modifications for the
“QHM” module and 15 for the “SDI” module.

IId.) Central Revision

Roles Two ontology engineers and one domain expert participated in the second central
revision stage.

Input The 46 change requests on the three modules were the input for the second central
revision stage.

Decisions All conceptual requests could be modeled.

Activities

Customization of shared ontology (14) The extensions to Quality were identical to all
users. In this case there was an implicit agreement on how to model this part of the
domain.

In the case of “Business Administration” only after discussions with the domain
expert could the board understand the intended meaning of the extension. Hence,
taking that as a starting point the board looked for the most adequate modelling,
trying to find a balance between abstraction and user needs. The board did not want
to introduce too abstract concepts, but in the case of “Legislation” there was a need
for a more abstract concept than just “Tourism Legislation”

Renaming was performed following the most often used names for concepts. In
other cases the discussion with the domain expert revealed that a political change
was the reason for it, hence the renaming was performed although not all participants
had yet adhered to the new names.

129

5. Evaluation of the DILIGENT Methodology

Documentation As in the first round, the board documented and explained the intended
meaning of the newly introduced concepts. The documentation was mainly done by
the domain expert. He paid explicit attention to the fact that not all users were
familiar with all concepts of the ontology. Regarding renaming, the old names of
the concepts were kept in the documentation.

Tool support Tool support did not change in comparison with the first round.

Output The third version of the common ontology contained 95 concepts and 15 rela-
tions (Figure 5.1(c)).

IIe.) Local Update

Roles The updated shared ontology was sent to the 21 participants in four organizations.

Input The stage took as input the new version of the shared ontology.

Activities The case study ended after the distribution of the new shared ontology. We
collected feedback from the user w.r.t. to their impression of the new version. They em-
phasized that the new version represented their requirements at that time. The users com-
mented that they appreciated being involved in the development process, although they
recognized that they were not experienced in ontology engineering. They did not object to
the modeling decisions of the board and understood the reasons for the differences between
their change requests and the final modeling.

5.4.1.5. Lessons Learned

The case study helped us to better understand the use of ontologies in a decentralized
environment. The set-up phase for DILIGENT was fast and the users quickly deployed the
XAROP system. The users did utilize the ontology mainly as a classification hierarchy for
their documents. Hence, they created few instances of the defined concepts.

Regarding our objectives, we conclude that DILIGENT indeed supports the collabora-
tive development of a shared ontology. DILIGENT guided different people from different
organizations in the process of collaboratively update and agree on a shared ontology.
Furthermore, we could observe that the ontology needed to evolve, for example due to
political change. The involvement of the users was also beneficial. Although our users
were not trained in knowledge engineering or ontology engineering they could adapt the
local ontologies. In this way they could profit from their own proposals (local adapta-
tions) immediately. The result was much closer to the user’s own requirements and other

130

5.4. Case Studies

users profited from it. From an ontology engineering perspective the user changes rarely
followed good modeling practises. The intentions, however, were always recognized and
could be translated straightforwardly into requirements and eventually be implemented.

Another finding was that DILIGENT can be adapted both to hierarchical and to more
loose organizations. In hierarchical organizations not all actors change the ontology. Some
want to delegate the responsibility to update the ontology to their hierarchical superior
according to the organizational needs. In more loose organizations each actor will have
his own local adaptation to best serve his own needs. DILIGENT processes cover both
traditional OE processes and more Semantic Web-oriented OE processes.
We found that folder structures can serve as a good input for an ontology engineer to derive
requirements for a domain ontology. Regarding the documentation of the shared ontology
it was helpful to list the participants in the original building process, so that it is clear who
was involved in the initial design decisions. For later stages of the process it was helpful
to record the user names participating in the ontology evolution process.

In the course of the case study we realized that the agreement process became more
complex with a growing size of the shared ontology and the increased number of partic-
ipants. The emails to request modifications of the shared ontology were also difficult to
analyze as more requests were sent to the board.

In spite of the technical challenges, user feedback was very positive since (i) the de-
veloped tool was integrated into their daily work environment and (ii) provided beneficial
support to perform their tasks.

5.4.2. The AIFB Case Study

The experiences in the IBIT case study and the requirements of our scenario lead to the de-
finition of the argumentation framework and the hypothesis that a structured argumentation
process can facilitate ontology engineering discussions. On the one hand the argumenta-
tion framework defines a process to provide arguments, on the other hand it proposes to
use a restricted set of arguments to focus the discussion.

The AIFB case study was set up in order to validate the hypothesis that a structured
argumentation process with a predefinition of preferred argument types focuses the argu-
mentation process and makes it more efficient. The case study setup was preceded by a
literature review. The evolution of the taxonomy of life is a well documented historic ex-
ample for the creation of a concept hierarchy from which we could derive an initial set of
preferable argument types.

5.4.2.1. Review of Taxonomy Building in the Biology Domain

The biology domain is well suited for a retrospective survey on ontology development
processes. Although biologists do not call the taxonomy of living things an ontology, it
still has many features which are relevant for ontologies, too. Since the taxonomy of living

131

5. Evaluation of the DILIGENT Methodology

things is essential for those studying, classifying and understanding life it is also very well
documented. The available documentation is used to study the line of reasoning applied to
introduce changes to the taxonomy of life. This review uses RST to classify the argument
types used in the line of reasoning. Subsequently the AIFB case study reveals, whether
the argument types used in the biology domain correspond to the ones preferably used in
ontology engineering discussions. The analysis may thus strengthen the findings.

The taxonomy of organisms has been evolving since 1735 for over 200 years. Lin-
eaus setup the taxonomy in order to classify living things according to their features. The
classification of organisms is a major activity in the biology domain. Biologists use the
classification to communicate between each other and to recognize similarities between
living forms in different parts of the world. There is now the tendency to arrange organ-
isms in the “Tree of Life” according to their evolution. Organisms which departed later in
earth history should be closer in the tree than organisms which departed earlier. The possi-
bilities of the molecularly sciences offer an ever more exact determination of the ancestors
of a particular organism. Thus the Tree of Life has changed many times and will continue
to do so, due to the discovery of new organisms and new analysis methods, such as DNA
analysis.

The next paragraphs examine the development of that taxonomy and pay attention to the
general development process and the agreement process.

Data Collection Process A number of journals exist where researchers submit propos-
als for changes to the taxonomy. We examined discussions on the National Center for
Biotechnology Information (NCBI) Web site http://www.ncbi.nlm.nih.gov/.

Organizational background The evolution process of the Tree of Life since 1735 is
comparable to the 5-stage DILIGENT process with many iterations. It was initially pro-
posed/built by Linnaeus based on phenetics (observable features). Each branch of the tree
can have at most 26 levels, depending on how rich a taxa is, in terms of number of or-
ganisms sharing a given classifying feature. Since the initial proposal, the taxonomy has
changed a lot. Let us take the “highest” level: kingdom. Initially two taxa were identified:
animals and plants. When microorganisms were discovered the moving ones were classi-
fied in the animals kingdom and the colored (non moving) ones in the plants kingdom. A
few of them were classified in both kingdoms. Users were locally adapting the taxonomy
for their own purposes. To more easily identify organisms in both classes, Haeckel (1894)
proposed a new kingdom to more easily identify them, the Protista kingdom. This still
exists today and is regarded as a “junk-basket” category.

Naming is an important issue. Lineaus binomial system (genus and species) is still
in use, because it can univocally identify a given organism in the taxonomy.6 Given the

6Names are reused in different kingdoms.

132

http://www.ncbi.nlm.nih.gov/

5.4. Case Studies

difficulty and similarity of some names, the ever evolving new knowledge about ever grow-
ing number of organisms, and the difficulty of making available up-to-date knowledge to
all stakeholders about so many organisms, several problems in designing and managing
this complex and live/dynamic taxonomy arose (The Economist, 2006b). For some time,
names of plants and animals have been controlled by different boards, that have to some
extent, recorded the problems and solutions found for each kingdom.

After being divided for two centuries and being controlled by two different boards, there
were some communication problems between the two communities. Given the availability
of online information about organisms and the need to exchange information about new
results, the need to develop a common language and a BioCode arouse. This effort is now
beginning.

The evolution of the taxonomy is driven by a specialized set of users, taxonomists, and
the revision is loosely controlled by appropriate boards, that make new versions available
for all users.

In this case the central board is the scientific community, the peers, who analyse the
different proposals to explain new knowledge and accommodate new organisms, and once
in a while revise the common understanding of the domain.

The major force for reorganization of the taxonomy over time has been the identifica-
tion of important classifying features and gathering all organisms sharing a given value
for that feature into that class. For instance, the classical version by Whittaker (1969)
recognizes 5 kingdoms: Monera, Protista, Plantae, Animalia and Fungi. Regarding all
eukaryotic organisms, Plantae, Animalia, Fungi and Protista, the first three, classify multi-
cellular organisms according to nourishment, autotrophic, heterotrophic and saprotrophic,
respectively. Fungi were promoted from one subclass (taxa) in the Plantae kingdom to a
kingdom of its own.

Currently, given the advances in molecular biology, the tendency is to use a cladistic
approach, in which the taxonomy is organized according to the evolutionary relationships
between life forms based on derived similarity. In a cladogram, each split is ideally binary
(two-way), and all the organisms contained in any one clade share a unique ancestor for
that clade. This entails a major reorganization of the Tree of Life. The reason is that the
design decisions are radically different from the previous approach.

Arguments We have analyzed the publications, where scientists propose changes to the
taxonomy of life. We have looked in detail at the structure of their publications and the
way the support their change requests. They use arguments in favor or against certain
taxonomic arrangements in order to make their points. We have then studied the arguments
from a RST perspective.

When analyzing the arguments exchanged by taxonomists to change the names and
organization of the taxonomy one can perceive its vast array and complexity. The following

133

5. Evaluation of the DILIGENT Methodology

example illustrates this complexity7.

. . . Acinetosporaceae, including the genera Acinetospora, Feldmannia,

. . . Elaboration
This group forms a well-supported clade in molecular trees based on rbcL

data. Evidence
So far, trees from nuclear ribosomal data do not reveal them as a well-
supported group Antithesis
but are not contradictory to their recognition. Concession
. . .

The analysis of the argumentation revealed that biologists, although using all kinds of
arguments, use some kinds more frequently than others. They use arguments, such as
examples/evidence, counter examples, elaboration, alternatives and comparisons to convey
a certain decision.

Lessons Learned The examination of the Tree of Life building process is comparable
to the DILIGENT process model. Researchers contributing to the Tree of Life evolution
propose changes in designated journals. The growing number of discovered organisms
makes the comparison between described species and new species increasingly difficult.
RST proved to be a useful method to analyze the arguments exchanged in the journal. The
examination of several change requests suggests that a few argument types play a major
role.

The next sections present the AIFB case study which were setup to analyze the argument
types exchanged in ontology engineering discussions. The review of the taxonomy of or-
ganisms evolution strengthens the hypothesis, that some argument types are more relevant
in modeling discussions than others and that RST is an adequate technique to analyze such
discussions.

5.4.2.2. Organizational Background of the AIFB Case Study

Based on the RST analysis of arguments that are exchanged and used to support changes
in the taxonomy of organisms, we formulated as hypothesis that an appropriate argumen-
tation framework can facilitate the ontology engineering process. We pursued experiments
in a computer science department, viz. at the institute AIFB8. Arguments in collaborative,
distributed settings take place in a social environment. Therefore, organizational issues are
non negligible and were also taken into account.

7Example taken from http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
index.cgi?chapter=CHANGETOCLASS

8see http://www.aifb.uni-karlsruhe.de/

134

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=CHANGETOCLASS
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=CHANGETOCLASS
http://www.aifb.uni-karlsruhe.de/

5.4. Case Studies

We performed two experiments: in the first, participants were not constrained in any
way; in the second, participants were asked to (1) use a subset of arguments, those that
that had been found more effective in the first round, (2) and were given stricter rules,
and a better environment to conduct their discussions. The task in both sessions was to
build an ontology, which (1) represents the knowledge available in the research group, (2)
can be used for internal knowledge management, (3) and makes the research area com-
prehensible for outsiders. Both experiments lasted each for one hour and a half. From
the eleven participants - all from the computer science department, thus domain experts
- three were unexperienced in ontology engineering. Seven of them were very active in
both discussions. Concepts were only added after argumentation and some consensus was
achieved.

5.4.2.3. Objectives for the AIFB Case Study

For the AIFB case study we had three objectives. Our first objective was to confirm that
RST is an adequate method to analyze ontology engineering discussions from an argumen-
tation point of view. Our second objective was to identify the efficient argument types in
such a discussion. Finally we wanted to define a process model for ontology engineering
discussions.

5.4.2.4. Data Collection Process

First experiment The participants met in a virtual chat room. Each one using an individ-
ual client and all of them could see the current ontology. All arguments were exchanged via
the chat room, no other forms of communication were allowed. A moderator was respon-
sible to remind people to stay on the subject and to include the modeling decisions into the
formal ontology which was visualized on a Web page. At this stage very few procedural
and methodological restrictions were a-priori imposed. The subjects were instructed of the
high level goal of the experiment, of the procedure and of their goals.

Second experiment In the second experiment participants were asked to extend the on-
tology built in the first round. In this phase the formalism to represent the ontology was
fixed. The most general concepts were also initially proposed, to avoid philosophical dis-
cussions. The initial ontology defined the modelling primitives for topics and the different
roles people are involved in. For the second round the arguments elaboration, examples,
counter examples, alternatives, evaluation/justification where allowed.

The participants in the second case study joined two virtual chat rooms. One was used
for providing topics for discussion, hand raising and voting. The other one served to
exchange arguments. When the participants - the same as in the first experiment - wanted
to discuss a certain topic, e.g., the introduction of a new concept, they had to introduce
it in the first chat room. The topics to discuss were published on a Web site, and were

135

5. Evaluation of the DILIGENT Methodology

processed sequentially. Each topic could then be discussed with the allowed argument
types. Participants could provide arguments only after hand raising and waiting for their
turn. The participants decided autonomously when a topic was sufficiently discussed,
called for a vote and thus decided how to model a certain aspect of the domain. The
evolving ontology was again published on a Web site. The moderator had the same tasks
as in the first experiment, but was more restrictive. Whenever needed, the moderator called
for an example of an argument to enforce the participants to express their wishes clearly.

5.4.2.5. Case Study Description

First Experiment

The goal of the first experiment was to identify the dominant arguments used to push
forward ontology development.

Example 9 An excerpt from the real dialogues taking place:

. . .
sa : i dont care whether someone plays baseball or not when I am modelling
research domain. Evaluation
cs : sa just an example... Circumstance
ct : maybe it is the purpose of the Web site, that people get also informed

about hobbies Purpose
cs : so we have person Restatement
jt : what I find a bit more interesting is the conference problem Moti-
vation
. . .

In the beginning participants brought forward different kinds of arguments, like back-
ground knowledge, examples, elaboration and so on. This led to different argumentation
threads where participants were discussing different topics at the same time. At some
points there were 4 threads at the same time, most of the time there was more than one,
including procedural and noise. Therefore, the discussion was very tangled and at some
points rather difficult to follow. Topics which were discussed included: the appropriate
formalism to model the ontology, detailed elaboration of leaf concepts, which top level
concepts to begin with, philosophical modeling decisions (roles vs. multi inheritance),
which are the main modules, topic lists etc. From time to time participants called for a
vote. However a decision was seldom reached. The moderator interacted only rarely in
the discussion, because timely moderating multiple threads is very difficult: by the time
an intervention was issued two or three other interventions from participants had already

9We have changed the transcripts a bit, for the sake of readability.

136

5.4. Case Studies

been issued. As a result, a core ontology with two concepts, Role and Topic, was agreed
upon although more concepts were discussed.

We analyzed the discussion with the help of RST. Table 5.3 lists the frequency of the
different arguments exchanged during the experiment. We could identify the arguments
which had most influence on the creation of the ontology, viz. elaboration, evaluation/jus-
tification, examples, counter examples, alternatives.

With respect to the experimental setup we identified the following problems: (1) Partic-
ipants started too many discussion threads and lost the overview, (2) the discussion pro-
ceeded too fast, hence not everybody could follow the argumentation, (3) the moderator
was too reluctant to intervene, (4) there was no explicit possibility to vote or make deci-
sions. Even in this setting where participants shared a very similar background knowledge,
the creation of a shared conceptualization without any guidance is almost impossible, at
least very time consuming. We concluded, that a more controlled approach to discuss
ontology design decisions is needed, which structures the process and the moderation.

Arguments First Round Second round

Elaboration 24 36

Eval. & Just. 14 33

Contrast & Alternative 12 17

Example 12 9

Counter Example 10 8

Background knowledge 9 3

Motivation 5

Summary 5 3

Solutionhood 4 8

Restatement 3 6

Purpose 3

Condition 2

Preparation 1

Circumstance 1

Result 1

Enablement 1

List 1 1

Concepts agreed on 2 10

Relations agreed on 3 0

Table 5.3.: Argument Selection

Second Experiment

The goals of the second experiment were (i) to underline that with an appropriate argumen-
tation framework the ontology creation proceeds faster and more effectively and (ii) the

137

5. Evaluation of the DILIGENT Methodology

resulting ontology represents a shared view.

Example An example from the arguments window:

. . .
cs : We have done quite a bit of research in distributed knowledge manage-
ment (DKM) lately. So I suggest DKM as a topic plus a subtopic “peer to
peer” (P2P) Elaboration
ah : I suggest knowledge management (KM) as super concept of DKM

because every DKM is a kind of KM Elaboration, Justification
jt : Well I am now wondering whether P2P is DKM, because File

exchange is not always KM is it? Counterexample
ph : I suggest Distributed Comp. (DC) with P2P and Grid as subtopics;
DKM as subtopic of DC and KM Elaboration
do : PRO ph : because his approach separates KM and
distributiveness Justification, Evaluation
cs : I’d like to agree to ph and do suggestion. . . .
ad : km is a kind of kp Elaboration
h : can you elaborate?
schm4704 : I think we can subsume kdd and km under kp, because both
are disjoint, and still both related to knowledge processing (as far as I see it).
Justification, Comparison
pc : knowledge management is about managing knowledge, structuring,
organizing etc. to organize it you need to process it so for sure KP is more
special that KM Elaboration, Justification, Comparison
ad : I did not understand your argument! Why should kp be more special
than km. If I manage something then it is also a kind of process Counter
Example
pc : KP is a part of KM so we should model it as a subpart or something
Justification
. . .

As expected the discussion was more focused, due to the stricter procedural rules.
Agreement was reached quicker. A total of ten new concepts were agreed on. With the
stack of topics which were to be discussed (not all due to time constraints), the focus of
the group was kept. Some relations were proposed, but they were not agreed upon.

From a methodological point of view, one can classify the ontology engineering ap-
proach followed as middle-out. The restricted set of arguments is easy to classify and
thus the ontology engineer was able to build the ontology in a straightforward way. It is
possible to explain new attendees why a certain concept was introduced and modeled in
such a way. It is even possible to state the argumentation line used to justify it. The par-
ticipants truly shared the conceptualization and did understand it. In particular in conflict

138

5.4. Case Studies

situations when opinions diverged the restriction of arguments was helpful. In this way
participants could either prove their view, or were convinced.

5.4.2.6. Lessons Learned

The comparison of the two experiments shows, that the DILIGENT argumentation process
guides ontology engineering discussions and makes the agreement process more efficient.
The predefinition of argument types structures the discussion and makes it easier to follow.
In some cases it was difficult support an argument with an evaluation due to the lack of
appropriate evaluation measures for ontologies. In this case an agreement on evaluation
criteria may be helpful.

The experiments also show that the analysis of ontology engineering discussions with
rhetorical structure theory is possible. The analysis is difficult, though, if the discussion
is tangled. The analysis revealed, that some argument types are better suited to focus the
discussion and reach agreement than others. Restricting the allowed argument types in
ontology engineering discussions streamlines the agreement process and makes it easier
to follow. In a tool templates may be used to facilitate the provision of the restricted set
of argument types. The most focusing arguments types were identified as elaboration,
evaluation & justification, alternatives, example and counter example.

5.4.3. The Legal Case Study

The legal case study is part of the SEKT project, an integrated project funded by the
European Union.10 The main objective of the SEKT project is to integrate research in the
fields of ontology management, human language technology and machine learning in order
to facilitate knowledge management. The results of the project are applied in three case
studies. The legal case study is concerned with application of knowledge management in
the legal sector. The research results of the project shall be exploited by the companies
participating in the project.

5.4.3.1. Objectives for the Case Study

As part of the SEKT project, the legal case study serves as a test bed for the technologies
and methods developed within the SEKT project. From a methodological point of view
we wanted to examine if the argumentation framework supports non-ontology engineers in
building an ontology. In particular our objectives were: (1) to test the wiki tool to provide
arguments and (2) the applicability of the restricted set of arguments.

10http://www.sekt-project.com

139

http://www.sekt-project.com

5. Evaluation of the DILIGENT Methodology

5.4.3.2. Data Collection Process

The data in the legal case study was collected using interview techniques. We interviewed
the case study participants four times in 5 to 6 month intervals. We interviewed the same
4 to 8 people each time. Two of them organize the ontology building process and push the
development, while the others participate irregularly. The interviews were complemented
with tutorials in ontology engineering in general and the use of the argumentation frame-
work taking into account the specific problems of the participants.
The first interview was held in the beginning of the project. At that time the domain
experts had done ethnographic field work and collected competency questions, literal tran-
scriptions of interviews, and completed questionnaires from the prospective users. The
focus of the interviews was on the organizational setting of the case studies. In particular
we wanted to learn more about the domain for the ontology, the kind of application to be
developed, the usage scenarios, the potential users and the available information sources.
At the second interview the case study participants had started ontology building but could
not agree on an ontology covering all requirements. Our main concern at that point was
to determine the participants level of experience w.r.t. ontology engineering and their
main problems with ontology building. In particular we asked them about their experience
with ontology engineering methodologies, their knowledge of ontology representation lan-
guages and tools, and the process they followed to build the ontology.
At the time of the third interview a first version of the ontology had been build using the ar-
gumentation framework. Hence, we concentrated our questions on their experiences with
the argumentation framework. We obtained detailed descriptions of the organization of
the ontology building meetings, their frequency, the use of arguments, the wiki tool, the
agreement process and the way of dealing with issues and ideas.
We interviewed the participants the forth time when the first domestic violence module of
the ontology was finished and it had been tested in the target application. We identified the
benefits of the argumentation framework and its problems for the legal case study. At that
time ten month lay between the initial use of the argumentation framework and the last
refinements of the ontology thus we asked them if they profited from the documentation
of the argumentation.

5.4.3.3. Organizational Background

The goal of the legal case study is to provide support to professional judges. In the Span-
ish system one particular problem young judges face is when they are on duty and are
confronted with situations in which they are not sure what to do (e.g., in a voluntary con-
fession, which process of questioning should be applied?). In such cases, they usually
phone their former training tutor (experienced judges) for resolving the issue, but this is a
slow procedure. In this case study, it is planned to develop an intelligent system to speed
up the process and to relieve experienced judges from this effort by providing initial sup-
port to young judges. The Iuriservice prototype II will provide the judges with access to

140

5.4. Case Studies

frequently asked questions (FAQ) through a natural language interface. The system (iFAQ)
should answer to the question posed by the judge with a list of question-answer pairs that
offer solutions to the problem and a set of related and relevant case rulings. Thus, the
software will be capable of clearing up doubts concerning judicial practice and caseload
resolution by providing justified and uniform answers to the questions raised by newly
recruited judges. Ontologies are being used to provide a more accurate search than a basic
keyword search could offer. The accuracy and the validity of the knowledge repository is
crucial. Only in the case that the requested knowledge is not in the system and cannot be
reformulated from already stored knowledge, an experienced judge will be contacted. The
result of this “expensive” consultation will be fed back into the system automatically.

Two national surveys have been conducted as a primary source of data regarding both
the context of use and the contents of the questions to which the system shall respond.
These surveys offer interesting and important data to elaborate the user profile. There are
three aspects of the professional profile of judges most relevant to the legal case study. The
first one involves the frequency with which new judges talk about the cases they are dealing
with. Only 4.71% of the judges interviewed stated that they never exchange information
concerning their cases with others, usually peers. Secondly, judges offer an interesting
answer to the question of “which would you like to find if judges were given a Web ser-
vice system?”. The majority of them proposed a site where doubts regarding professional
cases could be discussed. Finally, the surveys allowed us to identify questions related to
three main areas which presented some difficulties to new judges: (i) the organization and
management of judicial staff (clerks working in judicial units); (ii) the interpretation and
implementation of new procedural statutes; (iii) the “on-duty” period.

The first version of the iFAQ system will cover questions from the “on-duty” period and
will focus on issues regarding domestic violence. During the surveys nearly 800 questions
from the “on-duty” period were collected form young judges. 200 of these questions are
related to domestic violence. In the case study an ontology for this domain was developed,
which is referred to as Ontology of Judicial Professional Knowledge (OJPK).

At the beginning of the case study the participants had no experience with ontology
building or OEEs. However, they had studied existing ontologies for the legal domain
and were aware of ontology engineering methodologies (Benjamins et al., 2005a). They
concluded, that available legal ontologies are representation ontologies that support legal
reasoning while the ontology required for iFAQ should model practical legal knowledge.
In order to build the ontology for practical legal knowledge they selected METHONTOL-
OGY as the ontology engineering methodology to follow.

5.4.3.4. Case Study Description

The case study description is divided into two parts. In the first part we describe the
experiences of the participants building an ontology without applying the argumentation
framework while in the second part the participants adhered to it.

141

5. Evaluation of the DILIGENT Methodology

Starting Ontology Building

The domain experts had collected about 800 competency questions in ethnographic field
work. In a first attempt to build the ontology for practical legal knowledge they wanted to
extract all relevant terms from the competency questions in order to build a concept list.
The concepts should have been a starting point for hierarchy building and the introduction
of relations. They envisioned to integrate the built ontology with an existing legal core
ontology aligning core legal concepts with concepts representing practical legal knowl-
edge. In the following we report the experiences from this case study phase separating the
specification activity from the conceptualization activity.

Roles In the first meetings four to eight persons participated in the ontology building
process. All of them are trained in the juridical field, one is professor for legal philoso-
phy. They all made their first experiences with ontology building during this case study,
although they had studied methodologies to build ontologies for legal reasoning (Visser
et al., 1997).

Input From the ethnographic study 800 competency questions had been collected. Fur-
thermore a number of existing ontologies for organizing and structuring legal knowledge
as well as for reasoning and problem solving had been analyzed (cf. (Valente, 2005)) w.r.t.
the requirements for the Iuriservice II and in order to get a general idea of existing ontolo-
gies. No existing ontology provides a model for professional legal knowledge as it would
be required for Iuriservice II.

Specification The specification of requirements for the OJPK started with the examina-
tion of existing legal ontologies.

As concrete law differs from country to country the first legal ontologies tried to con-
ceptualize the general legal theory lying behind the different interpretations (Breuker &
Winkels, 2003). In order to build an ontology for a specific application, an intermedi-
ate ontology or legal-core ontology links an upper-top ontology with the domain-specific
ontologies.

With the intermediate level one decides the nature of law, takes into account the rep-
resentation language for the legal knowledge and represents the legal structure. Existing
legal ontologies, however, were built to support legal reasoning rather than legal processes.

The kind of legal knowledge relevant to support legal processes is not encoded directly
in the law but it has to do with personal behavior, practical rules, corporate beliefs, effect
reckoning and perspective on similar cases, which remain implicit and tacit within the
relation among judges, prosecutors, attorneys and lawyers. This is a different kind of legal
knowledge than the one modeled in Legal-Core ontologies and it is called professional
legal knowledge (PLK) (Benjamins et al., 2005b).

142

5.4. Case Studies

Therefore, the OJPK requires not only to represent the legal, normative language of
written documents (decisions, judgments, rulings, partitions, etc.), but also those chunks
of professional knowledge from the daily practice at courts. One of the main features
of PLK is that it is context sensitive, anchored in courses of action or practical ways of
behaving. In this sense, it implies: (i) the ability to discriminate among related but different
situations (e.g., when is it really needed or required to issue an injunction of protection to
prevent a woman being injured or murdered by her husband?); (ii) the practical attitude
or disposition to rule, judge or make a decision; (iii) the ability to relate new and past
experiences of cases (e.g., the need to ground each new ruling on past jurisprudential
decisions (legitimacy process)); (iv) the ability to share and discuss these experiences with
the peer group.

An ontology of professional legal knowledge would meet this requirements for all legal
professionals (judges, lawyers, law enforcement authorities, etc.). In our particular case we
have before us a particular subset of professional legal knowledge belonging specifically
to the judicial field. Therefore, we will term the conceptual specification of knowledge
contained in our empirical data OJPK.

In conclusion the participants required a system that contains knowledge to answer ques-
tions about judicial professional knowledge and to link the answers with judgements, rul-
ings, laws, etc. It was decided to separate the two areas and model them in two different
ontologies, which should later be linked through mappings. The ontology modeling writ-
ten documents has not been build yet, thus we refer in the following only to the OJPK
module.

Conceptualization The conceptualization of the OJPK module started with the extrac-
tion of terms from the 200 competency questions related to the ‘on-duty’ period and do-
mestic violence in particular. More than 200 concepts could be extracted. The compilation
of that list was followed by several meeting each lasting for a few hours. In these meet-
ing, which took place twice a month, the participants tried to build concept hierarchies
and relate the concepts from the list. A middle-out strategy was followed generalizing
and refining the selected concepts if necessary. The participants started discussions in or-
der to agree on a shared conceptual model. After a good start the conceptualization did
not proceed since the discussions took very long and were tangled, due to the following
problems.

• The generalization of the identified concepts resulted in the introduction of concepts
typically found in Legal-core ontologies. It was tried to build a coherent model
for legal reasoning as well as for professional legal knowledge. This resulted in
numerous discussions. Legal ontologies for legal reasoning make use of rules to
derive a judgement from facts. In contrast the OJPK ontology models how the facts
can be obtained if procedures can not be followed as foreseen in the textbooks. For
instance, in one case there was no police to secure the scene of the crime so the
judge had to do it, but did not know how.

143

5. Evaluation of the DILIGENT Methodology

• Although the participants reached agreement on some issues the same issues reoc-
curred at follow-up meetings. As they did not capture the results of the discussions
in an appropriate way, the lines-of reasoning could not be recovered, and they re-
sumed the discussion.

• The agreement process was time-consuming, as each legal concept has a long his-
tory, and the participants tended to consider all aspects of it before achieving consen-
sus. The discussion took place independent of its relevance for modeling decisions.

The case study partners were not satisfied with their progress and asked for support.
In response to their request, they were introduced to the argumentation framework. The
experiences applying the argumentation framework are reported in the next section.

Ontology Building within the Argumentation Framework

The second attempt to build the OJPK was organized according to the process proposed
in our argumentation framework. Roles and Input did not change, except that the persons
involved in the previous process had gained some experience. Ontology building meetings
took place twice a month and lasted for one day each.

Activities The activity Choose moderator was not followed as suggested as none of the
participants explicitly took the role of the moderator, because they all wanted to contribute
to the discussion all the time. In the last interview, however, they acknowledged that
they should have selected one, as it could have further improved the organization of the
meetings.

Although it was tried to reach agreement for all conceptualizations the professor had the
final saying in case of conflicting proposals (cf. Choose decision procedure).

The competency questions related to the ‘on-duty’ period were specified as issues. The
issues related to specific problems in the ‘on-duty’ period where then grouped together. For
example the issues related to domestic violence were separated from the ones related to car
accidents. In order to provide arguments and ideas the legal experts team selected from
the competency questions the nouns (usually concepts) and adjectives (usually properties).
Once the terms had been identified, the team discussed the need to represent them within
the ontology and their place within the taxonomy. As they followed the middle-out strat-
egy, new issues were introduced to include generalizations or refinements of the identified
terms if necessary. Finally, the relevant relations between those terms were also identi-
fied. As an example of the use of the middle-out strategy in the legal case study ontology
and in relation to the competency questions analyzed above, modelers considered that the
concepts auto [interlocutory decision], recurso [appeal], demanda [private/civil lawsuit]
and querella [public/criminal lawsuit] needed to be represented in the ontology. More-
over, a concept documento [document] had to be created as all those terms auto, recurso,

144

5.4. Case Studies

demanda and querella describe different kinds of documents. The result was the construc-
tion of a more general concept from the specific terms found in the competency questions.
However, the team also agreed that demanda, auto, recurso and querella were not only
instances of documento but also constituted a specific class of documents used only within
the judicial process. For that reason, documento_processal [procedural document] had to
be created as a subconcept of documento. At the same time, there are different types of
appeals and court orders stated in the questions, that have to be considered instances of
recurso and auto. In this case, the terms where specified, not generalized.

The legal experts captured the exchanged arguments for the defined concepts. Docu-
mento was introduced because of these competency questions:

• ¿Cuál es el tratamiento de las denuncias manifiestamente inverosímiles o relativas
a hechos que evidentemente carecen de tipicidad?11

• ¿Y si se trata de una querella que reúne todos los demás presupuestos procesales
pero los hechos objeto de la misma carecen de relevancia penal o manifiestamente
falsos?12

• ¿Ante quién debe interponerse el recurso de reforma contra la prisión, delante del
juez de guardia o del juez que dictó el correspondiente auto de prisión? 13

They provided justification for the concept

“En las preguntas encontramos distintos tipos de documentos que deberían ser
modelizados dado que son específicos del ámbito judicial.”14

and an example

“Denuncia, demanda, recurso y auto son documentos que deberían ser repre-
sentados.”15

Furthermore they elaborated on the concept and introduced as refinement docu-
mento_procesal

11The Spanish sentences were translated by one of the legal experts. Translation: What treatment get the
obviously implausible reports or fact reports which clearly do not belong to the criminal domain?

12Translation: What happens when a lawsuit that fulfills all the procedural requirements but the facts of it
have no criminal relevance or are obviously false?

13Translation: To whom the appeal of reform against imprisonment has to be filed, to the on-duty judge or
to the judge who dictated the imprisonment court order?

14Translation: In these questions we find different kinds of documents that should be modeled since they are
specific to the judges domain.

15Translation: Denuncia, demanda, recurso y auto are documents that should be represented.

145

5. Evaluation of the DILIGENT Methodology

“No es suficiente con que estos documentos se consideren tipos de documen-
tos sino que deberían ser una clase de documentos específica, ya que forman
parte de un proceso.”16

Besides summarizing the argumentation in the wiki they also proceeded more effec-
tively, since they had ordered the competency questions according to the sub modules, such
as legal documents, legal process, legal phase or roles. Hence, they conclusively discussed
an issue at a time, proceeded with a similar next issue until all competency questions for
the sub module were treated. If modeling decisions were unclear, they collected system-
atically the pros and cons for the idea and came to a decision. If the discussion related to
an already discussed issue was resumed it could be terminated quickly either by adding
new pros or cons to the existing line of reasoning or by finding that all pros and cons were
already listed and did not need to be repeated.

They decided on the issues and ideas and built the ontology described in the next para-
graph. To exemplify the importance of tracking the argumentation and the decisions we
summarize the discussion regarding the role concept in the following:

The need for the role concept within the legal domain had also been contemplated in
other relevant legal ontologies. In the legal core ontology (cf. (Breuker & Winkels, 2003))
role is a subclass of mental_entity, described as a functional view on a physical_object,
agent_behaviour or mental_process. For these authors, roles are played by persons who
are agents (Breuker & Winkels, 2003).

Another approach to model role is the one presented by Gangemi et al. (2003a) as part
of the Jur-(Ital)Wordnet project, an extension to the legal domain of the Italian version
of EuroWordnet. Jur-(Ital)Wordnet has been based on the DOLCE foundational ontology
(Gangemi et al., 2003b). In the preliminary linking of legal concepts to DOLCE , Jur-
(Ital)WordNet, contains that natural_person (considered a physical_object) is separated
from functional roles. Under this point of view, judge, defendant and prosecutor would be
functional roles, whether or not they are physical objects. The legal experts decided that
one agente [agents] might play several roles during a process and might have several open
processes where it plays different roles.

Output The OJPK has, currently, nearly 50 concepts, 100 relations and more than 300
instances (cf. Figure 5.3). At the moment, some top classes of the domain ontology have
been identified: acto_procesal, órgano_ judicial, calificación_jurídica, rol_procesal, doc-
umento_procesal, fase_procesal, jurisdicción, proceso_judicial, profesión_jurídica, and
sanción.

Acto_procesal [procedural act] represents a specific action taking place in the course
of a judicial procedure. A subclass of acto_ procesal is acto_de_comunicación

16Translation: It is not enough to have these as kinds of documents, but a specific class of documents since
they are part of a process.

146

5.4. Case Studies

[communication act], a class that includes all those acts of communication made by
the court.

Órgano_judicial [court] is a subclass of agente [agent]. It is a class of organización
[organization] and can perform actions with or without consciousness.

Persona [person] is also a subclass of agent.

Calificación_jurídica [legal status] is a required class which consists of all those types
of crimes, felonies, misdemeanors or legal status regulated by norms or established
by final rulings.

Fase_procesal [procedural phase] is an important concept for the OJPK ontology as it
represents the time phases in relation to the judicial process. This concept is subclass
of fase [phase].

Proceso_judicial [judicial process] is a key concept for the OJPK ontology, as most of
the questions are somehow related to procedural problems during on-duty periods
or during normal opening hours.

Rol_procesal [procedural role] is a subclass of role. A role is the part that an agent
plays in a specific situation.

Documento_jurídico [procedural document] is a subclass of documento [document].

Jurisdicción [jurisdiction] and sanción [sanction] are relevant concepts regarding the
geographical distribution of courts and the different types of sanctions (derived from
civil or criminal liability), respectively.

Some properties/attributes of concepts and relations between concepts have also been
identified and some are summarized in the following list:

Agente
- has_role {instances of rol}
- is_involved_in {instances of hecho [event]}
- has_state {instances of estado [status]}
- has_location {instances of localización [location]}

Acto_procesal
- has_document {instances of documento_procesal}

Fase_procesal
- begins_with
- ends_with
- followed_by {instances of fase_procesal}
- has_time_interval

Proceso_judicial
- has_phase {instances of Fase_procesal}

147

5. Evaluation of the DILIGENT Methodology

Rol_procesal
- played_by {instances of agente & instances of profesión_ jurídica}
- has_time_interval

Figure 5.3.: Ontology of Judicial Professional Knowledge

Tools Ontology building was supported by several tools used in parallel17. These tools
were the wiki, used for the tracking of the argumentation, the KAON OI Modeler, used for
the visualization of the ontology, and Protégé, used for the formalization of the ontology.
In Figure 5.4 we see a screen shot of the wiki, running on the SEKT portal, showing the
concept Hecho with its description, argumentation and attributes, as well as a graph made
with the KAON OIModeller showing the concept and its attributes.

5.4.3.5. Lessons Learned

Starting from our objectives the legal case study gives evidence that (1) the argumenta-
tion framework enables non-ontology engineers to effectively build an ontology, that it (2)

17The prototypical implementation of the tools lead often to work done more than once, due to the lack of
interoperability of them

148

5.4. Case Studies

structures the argumentation process and that it (3) enhances traceability of design deci-
sions. The wiki interface to capture the argumentation was sufficient to summarize the
argumentation for each issue. It was not possible, though, to capture all arguments. For
summarization the classification according to the five argument types Elaboration, Justi-
fication, Example, Alternative and Counter Example was straightforward. The summaries
were helpful as the discussion proceeded and previous argumentations had to be recalled.

For the tools supporting the argumentation framework we were confronted with a num-
ber of deficiencies and strengths of using a standard wiki tool in combination with ontology
editors. The partners of the legal case study appreciated the intuitive user interface of the
wiki while they had problems with the ontology editors. Furthermore, they did not want
to use more than one tool to perform the task.

The experiences with this setup lead to the following requirements for a future tool for
supporting the argumentation framework:

• More push-technolgies need to be applied. Monitoring changes and the discussions
of the ontology should be allowed: now, with the wiki, the user must actively look
for changes in his domain of interest, but he cannot ask the system to actively tell
him when a change occurs, e.g., by email notification.

Figure 5.4.: Wiki-based Argumentation in the Legal Case Study

149

5. Evaluation of the DILIGENT Methodology

• A stronger integration with an ontology engineering environment will become cru-
cial. For now the user had to keep the wiki up to date as well as the formalized
ontology. In the wiki no semantic relationships exist between the different pages
although the ontology would provide them.

• Visualization of the ontology is important. The users invested time to provide a
visualization manually, even if it meant a lot of manual work. A future tool should
include some kind of visualization and connect this to the captured argumentation.

• The classification of the arguments in the wiki was only text based. The advan-
tages of the Argumentation Ontology did thus not materialize. In a specific tool the
argumentation should not only be visually traceable but also semantically.

Overall the case study met our expectations and underlined the use of the argumentation
framework.

5.5. Summary and Outlook

The case studies demonstrate that DILIGENT supports the building and maintenance of
shared ontologies in decentralized organizational environments. Users like to agree on a
shared ontology as it externalizes their shared interests. With the appropriate tools and
an integration in the work environment ontology building can be performed by users. In
this case some users change the shared ontology in order to adapt it to new requirements.
Ontology evolution is important in order to keep the ontology in line with changing user
requirements. The involvement of the users in the ontology building process was experi-
enced as motivating.

Capturing the argumentation in ontology engineering discussions according to a prede-
fined set of argument types structures the building process and makes the discussion more
coherent. The legal case study shows, that the predefinition of argument types provides
more fine-grained support for non-expert users. The semi-formal representation of argu-
ments facilitates their later retrieval and allows for the detection of inconsistencies in the
user argumentation.

We envision several directions for future extensions of DILIGENT. In particular for the
application of DILIGENT in a business context the evaluation of the controlling activities
in large scale ontology development processes is interesting. Furthermore, effort estima-
tion incorporating accurate cost benefit analysis for ontology based applications is still an
open issue. Effort estimation may also guide decisions related to the initial size of the
shared ontology and its update cycle. Tool development is another aspect for future de-
velopment. The development of plug-ins for other OEE than OntoEdit may increase the
acceptance of the methodology.

150

Part III.

The REMINDIN’ Routing Algorithm
“In order not to try all possibilities,

a resourceful machine must classify problem situations
into categories associated with the domains of effectiveness

of the machine’s different methods.”
— Marvin Minsky,

STEPS TOWARD ARTIFICIAL INTELLIGENCE

6. Routing in Semantic Peer-to-Peer
Systems with REMINDIN’

Overview

DILIGENT is a methodology guiding users and ontology engi-
neers in the process of building and evolving an ontology in dis-
tributed settings. REMINDIN’ is a routing algorithm building on
such ontologies to find requested information within such sys-
tems. Based on information about remote peers knowledge RE-
MINDIN’ selects a number of locally known receivers for a re-
quest and forwards it to them. REMINDIN’ defines several strate-
gies based on a shared ontology in order to ensure that (i) the right
information can be found, (ii) the network is not flooded with
messages, (iii) the local peer needs to maintain only a limited
index. In this chapter we define the general problem of finding
information in a distributed system. We then describe existing
strategies to the problem at hand and present the idea behind RE-
MINDIN’. The idea has been translated into a number of algo-
rithms which are introduced afterwards. Chapter 7 focuses on the
evaluation setup for REMINDIN’ and its result.

References: This chapter is based on the publications (Tempich
et al., 2004b), (Haase et al., 2004a), (Löser & Tempich, 2005),
(Löser et al., 2005b), (Löser et al., 2005a) and (Tempich et al.,
2005b)

6.1. Feasibility Study

In this section we motivate the design decisions for our routing algorithm. We derive the
requirements for the routing algorithm from our use cases (cf. Section 3.1, page 33) in
Section 6.1.2 and select an appropriate query routing model in Section 6.1.3.

6.1.1. Semantic Routing Use Cases

The development of the REMINDIN’ algorithm was driven by the requirements from the
two use cases of the SWAP project. The two use cases are representative for the general

153

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

distributed knowledge management (DKM) scenario. They have already been introduced
in Section 3.1, page 33, thus, we emphasize the aspects relevant to routing here.

6.1.1.1. The IBIT Use Case

In the IBIT case study XAROP supports different organizations in sharing information
about sustainable development, new technologies and quality and hospitality management.
An ontology represents the relevant concepts for each of these domains (cf. Section 5.4.1).
The participants use the ontology, i.e. construct complex queries, to search for information
and they store relevant answers in their own knowledge base. The information they share
changes often to account for the latest development for example in tourist arrivals and it
may not be accessed by everybody. They want to search for information at remote peers
which they know and get to know people sharing similar interests. They want to retrieve
relevant information rather than all available information, because they are also prepared
to call somebody if they do not get the answer quickly. As their infrastructure is not at the
latest technological level they are short in storage and computing resources. Thus they do
not run the P2P system all the time, but often leave and join the network. As some organi-
zations are also competitors they have strict requirements w.r.t. to the accessibility to their
local information. They may, however, give access to local information to remote peers
depending on the request. For the same reason they do not want to publish their expertise
in certain fields, as others could profit from this information. Besides it is a well know
problem in knowledge management, that knowledgeable employees do not want to pub-
lish their expertise to prevent an overwhelming number of requests from other employees,
while not so knowledgeable people overestimate their expertise in order to be promoted.

6.1.1.2. The Bibster Use Case

In the Bibster case study, we have explored the sharing of BibTEX information between
peers of researchers. BibTEX is locally harvested from files and stored on each peer in
the SWAP LNR. The BibTEX entries are assigned to topics defined in the ACM topic hi-
erarchy either manually or automatically based on keyword matches of title strings and
topics or both. Each researcher may search on the own peer as well as in the P2P net-
work in order to retrieve the appropriate bibliographic data. This scenario is particularly
interesting, because (i) BibTEX data have a stable interesting core, but also greatly varying
additional fields as each user may define his own BibTEX entries; (ii) BibTEX data can
never be fully captured in a centralized repository, because one repository, such as DBLP
can only reflect a small set of topics (e.g., databases and AI, but not organizational issues
of knowledge management). The researchers search for BibTEX entries based on a combi-
nation of different properties defined in BibTEX and the ACM categorization of the entries.
Researchers are interested in more than one result to a query, because answers might be
complementary; they are not interested in all possible answers, though. Relevant result sets
are integrated into the local repository. As in the IBIT case study researchers like to search

154

6.1. Feasibility Study

remote repositories of people they know and of researchers with similar research interests.
For researchers the number of returned BibTEX entries is less relevant than their relevance
to the request, because the time saved by finding complete BibTEX entries should not be
consumed by the search process. For the same reason the network should respond quickly,
even if the number of participants increases. Researchers often leave and join the network.
As researchers need actual information on the latest research trends the entries they share
change rapidly. In this scenario security issues are of no concern.

6.1.2. Requirements for Semantic Routing Algorithms

We have organized the requirements arising from our use cases according to the dimen-
sions defined in Section 3.2, page 34.

Expressiveness The routing algorithm should support complex queries expressed in
terms of the ontology. In both case studies we use SeRQL as a query language.

Comprehensiveness In both case studies the routing algorithm should support the re-
trieval of more than one answer to a search request.

Autonomy In the IBIT case study peers connect preferably to other peers in their or-
ganization but also to semantically close peers. They want to determine who can
search and open their files. In the Bibster case study peers also connect preferably
to colleges and researchers with similar interests. For researchers it could be in-
teresting, who is interested in particular papers. Therefore, complete autonomy is
required in both case studies.

Efficiency In the IBIT case study efficiency is relevant w.r.t. to resource consumption
of the P2P application but due to the small number of peers not as relevant w.r.t. to
network usage. In the Bibster case study network efficiency is relevant.

Quality of service Neither case studies requires that the routing algorithm supports the
retrieval of all available answers to query.

Robustness In both case studies the network should cope with a high volatility w.r.t.
the availability of peers and changing interests of the peers. We do not expect any
denial of service attacks which might destruct the network. In neither case study
a particular organization wants to take the responsibility to run and maintain the
application for all participants.

Security In the IBIT case study access to information is restricted to peers explicitly
authorized. Security is of no concern in the Bibster case study.

155

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

6.1.3. Selection of a Routing Approach

In order to select an appropriate approach to routing for our use cases we compare the
requirements from our case studies with the advantages and disadvantages of the different
routing paradigms (cf. Section 2.4.2.2, page 30).

The result of that comparison is summarized in Table 6.1 and further elaborated in the
following.

Expressiveness In P2P architectures which build on the transmission of index informa-
tion to different peers it is difficult to support conjunctive queries. In such networks
keys or index terms from one peer are placed on different remote peers, thus finding
information for a query with more than one query term requires a join of the infor-
mation of different peers. In P2P architectures which have a centralized index this
is not a problem.

Comprehensiveness In P2P systems building on purely decentralized architectures
without structure it is not possible to guarantee that all answers to a query are found
while for the remaining system architectures such a guarantee is possible.

Autonomy Only in purely decentralized architectures peers can connect to any remote
peer, without being forced to establish an additional connection with a particular
peer or a set of particular peers.

Efficiency Efficiency should be discussed according to two lines: network load and lo-
cal resource consumption. Except purely decentralized architectures without struc-

1In cases that the requirements for the IBIT case study differ from the ones in the Bibster case study the first
indicator refers to the IBIT case study and the second to the Bibster case study.

Requirement
Category

Purely Decentralized
Architectures

Partially Centralized
Architectures

Hybrid Decentralized
Architectures

a Unstruc-
tured

Structured
Index

(Super Node) (Client/Server) a

Expressiveness YES NO YES YES

Comprehensiveness No guaran-
tee

YES YES YES

Autonomy YES NO NO NO

Efficiency No guaran-
tee

YES YES YES

Quality of service No guaran-
tee

YES YES YES

Robustness YES YES YES NO

Security YES NO/ YES1 NO/YES NO/YES

Table 6.1.: Selection of a Routing Approach for Distributed Knowledge Management

156

6.2. Foundations of the REMINDIN’ Routing Algorithm

ture the rest of the approaches to routing generate some network load when a peer
goes online, as an update of the index information is transmitted to the indexing
peers. As the information can be found at predictable places the maximal number
of messages sent to answer a query is also predictable (Milojicic et al., 2002). In
purely decentralized architectures no messages are generated when a peer joins the
network, but there are no guarantees w.r.t. to the necessary number of messages to
retrieve information.

Quality of service In purely decentralized architectures there is no guarantee that the
requested information can be found even if it is available while the other approaches
to routing guarantee it.

Robustness All architectures except the hybrid one are robust enough for our scenarios
as we do not expect denial of service attacks.

Security Purely decentralized architectures using structured information to support
query routing and thus have to distribute information to remote peers are not ad-
equate for our scenario, as the local information may be distributed to any place in
the network.2 Therefore, only purely unstructured decentralized architectures fulfill
the requirements of our scenario w.r.t. security. In the Bibster case transmission
of index information to remote peers does not raise security concerns, while in the
IBIT case that would be an issue.

Summary

From the comparison of the case study requirements with the properties of the different
P2P architectures we conclude that only purely decentralized architectures without struc-
ture meet them w.r.t. autonomy and expressivity. The main challenge in these architec-
tures, though, is to ensure sufficient efficiency for a requested quality of service. In the next
sections we present the REMINDIN’ routing algorithm developed for purely decentralized
P2P architectures without structure, which meets the requirements just elaborated.

6.2. Foundations of the REMINDIN’ Routing Algorithm

P2P networks based on a purely decentralized architecture without structured overlays are
comparable to the social networks of persons where a peer corresponds to one person.
Projecting the task of efficiently finding relevant information in a P2P network on such
social networks we observe that people deploy successful strategies in everyday life to sat-
isfy their information needs. Studies of social networks show that the challenge of finding
relevant information may be reduced to the task of asking the ’right’ persons. ‘The right

2Corresponding to column Structured Index.

157

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

persons’ are the ones who either have the desired piece of information and can directly
provide the relevant content or the ones who can recommend ‘the right persons’.

Milgram (1967) and Kleinberg (2000) experiments illustrated that people with only local
knowledge of the network (i.e., their immediate acquaintances) were quite successful at
constructing acquaintance chains of short length by selecting ‘the right persons’. The
emerging networks have ’small-world’ characteristics. In such a network, an information
request is forwarded to those persons who are ’closest’ to the destination. The request
reaches the destination with a small number of hops although sender and receiver may be
far away from each other, as some persons among the immediate acquaintances have far
reaching links. We observe that such mechanisms in social networks work although

• people may not always be available to respond to requests,

• people may shift their interests and attention,

• people may not have exactly the ‘right’ knowledge, but only knowledge which is
semantically close.

In the following we motivate the Routing Enabled by Memorizing INformation
about Distributed INformation (REMINDIN’) algorithm looking at the social inter-
actions which enable persons to select among their acquaintances the appropriate ones.3

We abstract from these interactions and introduce a number of overlay layers to model
them. In this overlay layers each peer plays the role of a person in a social network.

6.2.1. Routing Based on Social Metaphors

We observe that a human who searches for answers to a question may exploit the following
assumptions4:

1. A question is asked to the person who one assumes that he best answers the ques-
tion.5

2. One perceives a person as knowledgeable in a certain domain if he/she knew answers
to our previous questions.

3. A general assumption is that if a person is well informed about a specific domain,
he/she will probably be well informed about a similar, e.g., the next more general,
topic, too.

3The algorithm was also presented under the acronym INGA (Interest Node Grouping Architecture). In this
thesis we use the name REMINDIN’, because the original idea was published under this acronym.

4We do not claim that these observations of social networks are in any way exhaustive or without exceptions.
5‘Best’ in our current terms only means that he has the most knowledge. In future versions one may consider

properties like latency, costs, etc.

158

6.2. Foundations of the REMINDIN’ Routing Algorithm

4. A person who knows many others has a good chance to know somebody who can
answer our question.

5. If someone (A) asks another person (B), B will remember A and his question. If the
B has to answer the same question, he will then return the question to A — assuming
that he has gathered valuable information in the meanwhile.

6. In some cases a person asks anybody either because no one else is available or
because the other one is physically close.

REMINDIN’ builds on the metaphors of P2P networks being like a human social net-
work and adopts the above mentioned assumptions in an algorithmic manner.

6.2.2. Routing with Semantic Overlay Layers

In order to mirror the observations from social networks in our routing algorithm we intro-
duce different semantic overlay layers to organize a semantic shortcut index. A shortcut
in our system is a non forwarding indexing link for a specific item of the index. Each peer
maintains its own personal semantic shortcut index and organizes the shortcuts according
to four different layers. The shortcuts are used to select appropriate remote peers if the lo-
cal peer sends a query or it forwards a query from another remote peer (cf. social metaphor
1).

• The best peers to query are those that already have answered the query or a seman-
tically similar query successfully in the past. We call such peers content providers
(cf. social metaphor 2).

• If no content providers are known, peers are queried that have issued semantically
similar queries in the past. The assumption is that this peer has been successful in
getting matching answers and now we can directly learn from him about suitable
content providers. We call such peers recommenders (cf. social metaphor 5).

• If we do not know either of the above we query peers that have established a good
social network to other persons over a variety of general domains. Such peers form
a bootstrapping network (cf. social metaphor 4).

• If we fail to discover any of the above we fall back to the default layer of neighboring
peers. To avoid overfitting to peers already known we occasionally select random
peers for a query. We call this the default network (cf. social metaphor 6).

If a local peer needs to select remote peers it searches each of the layers for best fitting
shortcuts. The basic principle laying behind the shortcut mechanism consists of dynami-
cally adapting the topology of the P2P network so that the peers that share common inter-
ests spontaneously form well-connected semantic communities. Crespo & Garcia-Molina

159

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

(2002b) shows that each user is only interested in a rather limited number of different top-
ics. Therefore, being part of a community that shares common interests is likely to increase
search efficiency and success rate. We exploit the semantic relationships between the avail-
able shortcuts and the query in order to find most relevant ones (cf. social metaphor 3). If
no relevant shortcuts can be found on one layer information from the next layer is applied.
The value of selected shortcuts is evaluated each time we receive an answer from the net-
work to one of our own queries. In the next section we provide more detailed information
on the layers itself, their creation and maintenance.

6.3. The REMINDIN’ Semantic Overlay Layers

REMINDIN’ acquires knowledge about remote peers in the network at runtime of the
underlying application. Depending on the kind of knowledge shortcuts are created on dif-
ferent layers: these contain an increasing amount of information about the specific knowl-
edge of a remote peer. The network layer stores routing information about remote peers
known from the physical network; the bootstrapping layer contains general information
about the knowledge of remote peers; the recommender layer stores information about
potentially knowledgable peers; and the content provider layer contains specific infor-
mation about remote peers. Before we explain the layers in more detail, we introduce the
knowledge and query model which constitute the basis of the layers.

Knowledge model REMINDIN’ is an instance of the SWAP system peer selector com-
ponent. As described before (cf. Section 3.3) knowledge in the SWAP system is stored as
an RDF(S) model in the local node repository. We attach to each resource in the local node
repository a Swabbi- and Peer-object. These objects contain the layer and rating informa-
tion thus representing a shortcut. REMINDIN’ can be applied to other knowledge models.
It is important to note, however, that a shortcut sc is created in the form sc(indexTerm, pid,
queryhits, shortcutType, update), where indexTerm is the indexed resource, pid is a unique
peer identifier, queryhits is the number of returned hits for the indexTerm, shortcutType
is a reference to the layer and update refers to the time of the last update of the shortcut.
In our specific case indexTerms are resources of the RDF(S) model. In Section 6.4 we
demonstrate the usage of the semantic information related to resources in order to select
appropriate shortcuts.

Query model The query language used in the SWAP system is SeRQL. SeRQL supports
conjunctive queries and other boolean operators similar to SQL. REMINDIN’ requires that
the queried resources can be extracted from the query.

Shortcut index size Shortcuts of any kind can be created to any peer in the network
for any resource. However, due to limited local resources and each peer specific interests,

160

6.3. The REMINDIN’ Semantic Overlay Layers

peers only maintain a bounded index of shortcuts. The decision of replacing a shortcut
from the index, i.e. promoting new peers as shortcut acquaintances, depends on the history
of the responses to previous requests issued by each peer.

Example The following example illustrates the definition of the various layers and the
execution of the REMINDIN’ algorithms. It considers a small P2P network consisting of
three peers. The three peers share the ontology modeled in Table 6.2 and organize their
knowledge accordingly. Table 6.3 summarizes the content stored in the LNR of the three
peers. The example uses a small fraction of the ontology constructed for the IBIT case
study.

Concepts Relations

Document hasTopic =⇒ Topic

Topic

TourismActivity

DestinationManagement

TravelDistribution

TourismTechnology

BookingSystem

GeographicalInformationSystem

Table 6.2.: Example: Shared Ontology for Peers in the Network

6.3.1. Content Provider Layer

The design of the content provider shortcut overlay is comparable to existing work as
published by Sripanidkulchai et al. (2003) or Cooper (2004) and helps to exploit the
simple, yet powerful principle of interest-based locality.6 That means if a content provider
peer has a particular piece of content that another peer is interested in, it can be considered
very likely that the content provider will also have other interesting items for that peer.
A content provider shortcut is an indexing link to a remote peer which indicates that the
remote peer has information about a specific indexing term.

6.3.1.1. Creation of the Content Provider Layer

When a peer joins the system, it may not have any information about the interest of other
peers. It first attempts to receive answers for its queries by exploiting less specific layers
of the REMINDIN’ peer network, such as the network layer, e.g., by flooding. The lookup

6See the related work Section 8.3, page 217 for a detailed discussion.

161

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

returns a set of peers that store answers to the query. These peers are potential candidates
to be added to the content provider shortcut list. Each time the querying peer receives an
answer from a remote peer, content provider shortcuts to new remote peers are added to the
list in the form: sc(resource, pid, queryhits, ’c’, update), where resource is the query terms
taken from the query message, pid is the unique identifier of the answering peer, queryhits
is the number of returned statements, ’c’ is the type of content provider shortcuts and
update is the time, when the shortcut was created or the last time, when the shortcut was

Peer Resource No. of documents

2 TourismActivity 0

DestinationManagement 0

TravelDistribution 10

TourismTechnology 0

BookingSystem 0

GeographicalInformationSystem 0

3 TourismActivity 10

DestinationManagement 10

TravelDistribution 10

TourismTechnology 10

BookingSystem 10

GeographicalInformationSystem 10

GeographicalInformationSystem ∧ DestinationManagement 5

5 TourismActivity 30

DestinationManagement 50

TravelDistribution 100

DestinationManagement ∧ TravelDistribution 10

TourismTechnology 0

BookingSystem 0

GeographicalInformationSystem 0

8 TourismActivity 0

DestinationManagement 0

TravelDistribution 0

TourismTechnology 40

BookingSystem 20

GeographicalInformationSystem 100

GeographicalInformationSystem ∧ BookingSystem 10

Table 6.3.: Example: Content Distribution for peers 3, 5 and 8

162

6.3. The REMINDIN’ Semantic Overlay Layers

2

4

3

1
5

?

Route by FloodingContent Provider Shortcut

(a) Content provider shortcut creation

2

4

3

8

1

5

?

Route by Flooding RecommenderShortcutContent Provider Shortcut

(b) Recommender shortcut creation

Figure 6.1.: Resource Specific Shortcut Creation

updated. For conjunctive queries a content provider shortcut is created for each resource
contained in the query.7 The content provider shortcut list will grow with each submitted
query until the maximum number of content provider shortcuts is reached.

6.3.1.2. Maintenance of the Content Provider Layer

Content provider and recommender shortcuts (cf. Section 6.3.2) are stored in the same list.
As the number of created shortcuts increases the list fills up. If the maximum number of
shortcuts stored in the index has been reached we delete existing shortcuts. Each time a
short cut is added to the list, the total size of the index is calculated and if it exceeds the
maximum index size the shortcuts are ranked according to their quality. The shortcuts of
the lowest quality are deleted from the list. Quality criteria depend for example on the
application domain. In Section 6.3.3 we define a number of quality criteria and propose a
function to combine them.

Example Consider Figure 6.1(a). Peer 2 discovers shortcuts for the resource /Topic/-
TourismActivity/TravelDistribution8 by flooding the default network with a maximum num-
ber of hops (TTL) of three hops and creates two content provider shortcuts to peer 3 and
peer 5. Another two content provider shortcuts are created for peer 1 and 4; as they have
not answered the query the number of query hits is set to 0. The created shortcut index is
listed in Table 6.4.9

7For conjunctive queries it is more difficult to update the number of statements for a particular shortcut, as
only the number of statements for the combined query are known. Cooper (2004) proposed the use of
moving averages to overcome this problem.

8In the examples the relation ‘subclass-of’ is indicated by ‘/’ and the complete path is spelled out. The
SeRQL query contains only the specific query resource in this case, e.g., TravelDistribution.

9The calculation of the numbers in the different columns will be explained in the following sections. The
Maxsim column indicates the similarity between the shortcut and the local content and is also explained
later.

163

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

6.3.2. Recommender Layer

Very active peers issue many successful queries and produce many shortcuts. If a remote
peer issues queries that are similar to the own interests, it can be beneficial to establish
indexing links to this peer. The reason is that, if a remote peer has established a shortcut to
an interesting content provider, it is likely that this peer will issue other queries on related
resources that one will be interested in, too. Such recommender shortcuts thus represent
a new kind of indexing links in the semantic overlay structure. If a peer can not directly
determine a content provider peer for a given query, it can forward the query to the best
matching recommender.

6.3.2.1. Creation of the Recommender Layer

In order to quickly fill up the shortcut index we create shortcuts for incoming queries that
are routed through the local peer. Recommender shortcuts sc(resource, pid, 1, ’r’, update)
are created, where resource is the set of query terms from the query message. The pid for
a respective shortcut is extracted from the query message as the PID of the querying peer.
Since we will get no information about the number of results retrieved for the query, we set
the number of query hits to 1. Finally r indicates the type of the shortcut for recommender
shortcut and update is the time, when the shortcut was created or updated.

6.3.2.2. Maintenance of the Recommender Layer

As mentioned earlier content provider and recommender shortcuts are stored in the same
index. If a new recommender shortcut is added to the list, we count the number of shortcuts
and rank them according to their quality if the number exceeds the maximum index size.
Shortcuts of the lowest quality are deleted from the list.

Example Consider again Figure 6.1(b). Peer 2 issues the query /Topic/TourismActivity/-
TravelDistribution. Peer 8 creates a shortcut to peer 2 since this query was routed through

Pid Resource Query Hits Maxsim Type Update Rank

5 . . . /TourismActivity/TravelDistribution 100 1 c 45 sec 1

3 . . . /TourismActivity/TravelDistribution 10 1 c 40 sec 2

1 . . . /TourismActivity/TravelDistribution 0 1 c 19 sec 3

4 . . . /TourismActivity/TravelDistribution 0 1 c 20 sec 4

Table 6.4.: Example: Shortcut Index of Peer 2 after Query for /Topic/TourismActivity/Trav-
elDistribution

164

6.3. The REMINDIN’ Semantic Overlay Layers

peer 8. Table 6.5 represents the new shortcut index of peer 8. The same shortcuts with dif-
ferent similarity values are created at peer 1, 3, 4, 5 and other remote peers which receive
the query.

Pid Resource Query Hits Maxsim Type Update Rank

8 . . . /TourismActivity/TravelDistribution 1 0,45 r 1 sec 1

Table 6.5.: Example: Shortcut Index of Peer 8 after query for /Topic/TourismActivity/Trav-
elDistribution

6.3.3. Ranking Content Provider and Recommender Shortcuts

We assume that each peer can only store a limited amount of shortcuts, hence only knows
a limited set of resource specific neighbors it can route a query to. If the local index size
is reached a peer has to decide, which shortcut should be deleted from the index. For each
shortcut in the index we compute a rank based on the following types of localities:

Semantic-locality We measure the maximum semantic similarity maxsim between the
resource of a shortcut and the resources represented by the local content of a peer
according to Equation 6.3 on page 174. Hence, we retain a shortcut about resource
t to a remote peer, if t is close to our own interests.

LRU-locality To adapt to changes in the content and interests we use a least-recently-
used (LRU) replacement policy (Aho et al., 1971). Shortcuts that have been used
recently receive a higher rank. Each local shortcut is marked with a time stamp
when it was created. The time stamp will be updated, if the shortcut is successfully
used by the local peer. There is thus an ’oldest’ and ’latest’ shortcut. The value
update ∈ [0..1] is calculated as difference between the shortcuts time stamp and the
’oldest’ time stamp divided by the difference between the ’latest’ and the ’oldest’.

Community-locality We measure how close a shortcut leads us to an answer. Content
provider shortcuts, marked with a c, provide an one hop distance, we set type = 1.
Recommender shortcuts, marked with a r require at least two hops to reach a peer
with relevant answers, we set type = 0.5.

We weight the localities and compute the index relevance according to Equation 6.1.

relevance =
simInfluence ∗maxsim

simInfluence + typeInfluence + timeInfluence
+

typeInfluence ∗ type

simInfluence + typeInfluence + timeInfluence
+

timeInfluence ∗ update

simInfluence + typeInfluence + timeInfluence
(6.1)

165

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

Shortcuts with the highest relevance are ranked at the top of the index, while shortcuts
with a lower relevance are deleted from the index. Table 6.6 exemplifies the ranking of
shortcuts.

Pid Resource Query Hits Maxsim Type Update Rank

5 . . . /TourismActivity/TravelDistribution 100 1 c 145 sec 1

3 . . . /TourismActivity/TravelDistribution 10 1 c 140 sec 2

3 . . . /TourismActivity/DestinationManagement 1 0,63 r 40 sec 3

8 . . . /TourismTechnology/BookingSystem 1 0,42 r 10 sec 4

1 . . . /TourismActivity/TravelDistribution 0 1 c 119 sec 5

4 . . . /TourismActivity/TravelDistribution 0 1 c 120 sec 6

Table 6.6.: Example: Shortcut Index of Peer 2 after a Number of Queries

6.3.4. Bootstrapping Layer

The content provider and recommender layer contain shortcuts to remote peers for specific
resources. In cases a query can not be routed through these query specific shortcuts peer
selection could be based on, e.g., random selection of peers or on flooding. Adamic et al.
(2001), however, shows that a high degree search strategy significantly reduces messages
in unstructured networks in contrast to a flooding strategy. Bootstrapping shortcuts are
links to peers that have established many shortcuts for different query topics to a lot of
remote peers. We determine the bootstrapping capability by analyzing the in-degree and
out-degree of a peer. We use the out-degree as a measure of how successful a peer discovers
other peers by querying. To weight the out-degree, we measure the amount of distinct
sources a peer receives queries from. We use the in-degree as a measure, that such a
peer may share prestigious shortcuts with a high availability. By routing a query along
bootstrapping shortcuts, we foster the probability to find a matching shortcut for a query
and avoid the drawbacks of having to select peers randomly, e.g., by flooding.

6.3.4.1. Creation of the Bootstrapping Layer

Each incoming query that is stored in our index includes the bootstrapping information of
the querying peer. While a peer is online it continually updates its bootstrapping index
based on incoming queries and stores bootstrapping shortcuts in the form sc(pid, Bo),
where pid is the PID of the querying peer and Bo its bootstrapping capability. Once an
initial set of bootstrapping nodes is found, a peer may route its queries to the nodes with
the highest Bo value. A peer calculates its Bopid value using Equation 6.2

Bopid = (1 + |outdegree|)× (1 + |indegree|) (6.2)

166

6.4. Deploying Semantic Overlay Layers for Peer Selection

where out-degree is the number of distinct remote peers it knows. To compute an approx-
imation of the in-degree without any central server we count the number of distinct peers
that sent a query via the peer. In order to obtain a list of remote peers which know the local
peer the local peer examines the message path of the queries routed through it. To avoid
zero values we add one to both values.

In continuation of our example we assume that peer 2 has received the queries directly
from peer 3 and 8 and no other peers have sent queries to peer 2. The Bo2 value for peer
2 is than equal to (1 + 4)× (1 + 2) = 15. The bootstrapping shortcut index contains then
shortcuts for peer 3 and 8. We assume in our examples that Bo3 = 40 and Bo8 = 25.

6.3.4.2. Maintenance of the Bootstrapping Layer

We select bootstrapping peers only from the list of peers which are referenced in the short-
cut index. There exist, thus, no separate maintenance mechanism for bootstrapping peers.
As the selection of shortcuts is partly based on the similarity to the content of the local
peer, not all peers in the network establish bootstrapping links to the same remote peers.

6.3.5. Default Network Layer

The default network layer facilitates the communication of the peers in the network. Differ-
ent implementations for this layer exist. The SWAP system is based on the JXTA protocol.
In JXTA peers register with a rendezvous server and publish their availability. Gnutella
peers send ping messages to neighboring peers. Independently of the technique a peer es-
tablishes a number of connections to remote online peers to ensure that it can communicate
at all.

6.4. Deploying Semantic Overlay Layers for Peer Selection

In the previous section we have introduced a number of shortcut layers to construct an
overlay topology above the default network layer. Before we evaluate our routing approach
and compare it with related routing approaches in the next chapter we describe the process
and algorithms used to select appropriate remote peers from the different shortcut layers.

6.4.1. Peer Selection Process

REMINDIN’ consists of several steps executed locally and across the network when for-
warding as well as answering queries and when receiving responses. Assuming the user
of a peer issues a query to the P2P network, the query is evaluated:

Locally against the local node repository. Its answers are presented.

167

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

Across the network: Recommending. Whenever a peer receives a query message, it
first extracts meta-information about the querying peer and updates its bootstrap-
ping and recommender index if needed. Then the REMINDIN’ forwarding strategy
is invoked to select a set of k peers that appear most promising to answer the query.
The selection of the remote peers is itself a multistage process. The resources ref-
erenced in the predicates of the query are extracted. For each resource the shortcut
index is searched and matching peers are selected (cf. algorithm 1). If no shortcuts
exactly match the query resources the query resources are relaxed and semantically
close shortcuts are searched for (cf. algorithms 5 and 7). This process is continued
until either enough remote peers could be selected or a threshold is reached. The re-
mote peers are ranked according to different measures. If no remote peers could be
selected from the resource specific shortcut index know remote peers are ranked ac-
cording to their bootstrapping capability (cf. algorithm 3). If the capability exceeds
a certain threshold those peers are selected otherwise remote peers from the default
layer are chosen (cf. algorithm 4). Finally the original query message is forwarded
to k peers.

Across the network: Answering Queries. When a peer receives a query, it will try to
answer the query with local content. We only return non-empty, exact results and
route them directly to the querying peer. If the maximum number of hops is not yet
reached, the query is forwarded to a set of peers selected as above.

Receiving Responses. On the arrival of result items a querying peer analyzes the mes-
sage path and the respective number of results to create or update local content
provider and recommender shortcuts. The sender of a query can also update its in-
formation about the remote peers he had originally selected for answering his query.
If he was right about his assumption that the selected remote peers were knowledge-
able about the query shortcut information can be updated accordingly. If the remote
peers did not answer the query he can at least store that they did not know anything
about the query and omit their selection the next time.

6.4.2. Peer Selection Algorithms

The REMINDIN’ shortcut selection algorithm determines the candidate peers that are most
promising to forward the given query to. The REMINDIN’ strategy is based on the avail-
able local knowledge about the query resources as it is stored in the shortcut index of the
peer:

• REMINDIN’ only forwards a query via its k best matching shortcuts.

• REMINDIN’ prefers content and recommender shortcuts over bootstrapping and
default network shortcuts for forwarding queries.

168

6.4. Deploying Semantic Overlay Layers for Peer Selection

• The REMINDIN’ strategy constitutes a greedy k best-search heuristics. As such it
may be led astray into a subnetwork of peers that appear to be the optimal choice
from a local point of view, but that do not yield all the appropriate answers. To let
the search escape such local optima, some queries are forwarded to a random set of
peers.

This randomness will later on show two major beneficial effects: First, it allows
the individual peer to have a larger overview of the whole network and, hence, to
establish the appropriate short distance and long distance shortcuts.10 Second, it
facilitates accommodation to volatility (especially in the form of new joining peers).

Algorithm 1 REMINDIN’ Peer Selection:
peerSelection(O,Q,MP, k, tgreedy, rand,SC,maxTTL, queryRelaxation)
Require: LocalNodeRepository O, Query Q, MsgPath MP , int k, float tgreedy,

float rand, Set SC, int maxTTL, boolean queryRelaxation
Ensure: |MP | < maxTTL

1: Set resourceDependentShortcuts := SC.resourceDependentShortcuts
2: Set bootstrappingShortcuts := SC.bootstrappingShortcuts
3: Set defaultNetworkShortcuts := SC.defaultNetworkShortcuts
4: Queue selectedPeers := resourcePeerSelection(O,Q, k, tgreedy,

resourceDependentShortcuts, queryRelaxation)
5: if (|selectedPeers| < k) then
6: selectedPeers.append(topBoot(bootstrappingShortcuts, (k − |s|))
7: end if
8: selectedPeers.append(randomFill(defaultNetworkShortcuts, rand, k))
9: selectedPeers :=removeAlreadyVisitedPeers(selectedPeers,MP)

10: Return selectedPeers.

Algorithm 1 defines the basic peer selection procedure for choosing k peers: First it
selects at most k peers from content or recommender shortcuts that match the resources of
the query (cf. Line 4). Depending on the relaxation mechanism we either rank shortcuts
according to their similarity with the query or we apply a query relaxation procedure. To
avoid forwarding queries along shortcuts with only low similarity a minimum similarity
threshold tgreedy is required to hold between the resource(s) of the query and the short-
cut. If less than k shortcuts have been found, the algorithm selects the top bootstrapping
shortcuts (cf. Line 6). Finally, remaining slots for query forwarding are filled by a random
selection from the default network (cf. Line 8). The algorithm is not invoked if the query
has reached its maximum number of hops. Furthermore, the algorithm is constrained such
that a query is not forwarded to a peer if this peer has already occurred in the message path
of the query (cf. Line 9).

Algorithm 2 allows for selecting the top peers depending on resource specific shortcuts.
Independently of the relaxation strategy the query is first split into its atomic triple queries
10‘short’ and ‘long distance’ as seen from the default underlying network.

169

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

(cf. Line 1). The resource specific peer selection algorithms are applied for all distinct
triple queries and result in a selection of peers for each of them. The algorithm using
query relaxation techniques for peer selection is described in more detail in section 6.4.2.1
while section 6.4.2.2 elaborates on peer selection based on semantic similarities between
resources. The results for each triple query are combined according to the function defined
in Section 6.4.2.3 (cf. Line 12) and ranked (cf. Line 13). Only the k best ranking peers are
returned for further processing.

Algorithm 3 selects the peers with highest locally known bootstrapping capability
(cf. Line 1). The local index contains only bootstrapping shortcuts to peers for which
resource depended shortcuts are known. The function rankBootstrapping orders the
available peers according to their bootstrapping capability calculated according to Equa-
tion 6.2. Moreover, the selection as bootstrapping peer depends on the local peers own
bootstrapping capability. If a remote peer passes the bootstrapping threshold, i.e., has at
least twice the bootstrapping capability of the local peer it can qualify as bootstrapping
peer (cf. Line 4). The factor was determined in experiments. Only the highest k are re-
turned for further processing (cf. Line 7).

The task of algorithm randomFill is twofold. On the one hand it chooses from the
default network layer a number of peers in order to ensure that any query can be sent
to k different peers. On the other hand the algorithm prevents overfitting of the selec-

Algorithm 2 Resource Dependent Peer Selection:
resourcePeerSelection(O,Q, k, tgreedy, resourceDependentShortcuts, queryRelaxation)
Require: LocalNodeRepository O, Query Q, int k, float tgreedy,

Set resourceDependentShortcuts, boolean queryRelaxation
1: Set T Q :=extractTripleQuery(Q)
2: Set selectedResourcePeers := ∅
3: Queue selectedPeers := ∅
4: for all TQ ∈ T Q do
5: URI queryResource :=extractQueryResource(TQ)
6: if queryRelaxation then
7: selectedResourcePeers :=relaxationBasedPeerSelection(O, queryResource,

TQ, k, tgreedy, resourceDependentShortcuts, selectedResourcePeers);
8: else
9: selectedResourcePeers :=similarityBasedPeerSelection(O, queryResource,

TQ, k, tgreedy, resourceDependentShortcuts);
10: end if
11: end for
12: selectedPeers :=calculateMultiplication(selectedResourcePeers)
13: selectedPeers :=rankSelectedPeers(selectedPeers)
14: return selectTopKPeers(selectedPeers, k)

170

6.4. Deploying Semantic Overlay Layers for Peer Selection

Algorithm 3 Bootstrapping Peer Selection: topBoot(bootstrappingShortcuts, k)
Require: Set bootstrappingShortcuts, int k

1: Queue selectedPeers :=rankBootstrapping(bootstrappingShortcuts)
2: for all peer ∈ selectedPeers do
3: if peer.bootStrappingCapability < 2 ∗ localPeer.bootStrappingCapability

then
4: selectedPeers.remove(peer)
5: end if
6: end for
7: return selectTopKPeers(selectedPeers, k)

tion process11 by exchanging selected peers with randomly chosen ones depending on the
probability rand.

Algorithm 4 Random Peer Selection:
randomFill(selectedPeers, defaultNetworkShortcuts, rand, k)
Require: Queue selectedPeers, Set defaultNetworkShortcuts, float rand, int k

1: Queue postSelectedPeers := ∅
2: Set tmpNetwork := defaultNetworkShortcuts
3: while not (selectedPeers equals ∅) do
4: Peer Next := selectedPeers.pop()
5: if rand(0, 1) > rand then
6: postSelectedPeers.push(Next)
7: end if
8: end while
9: int k := k − |postSelectedPeers|

10: while k > 0 do
11: postSelectedPeers.push(tmpNetwork.pop())
12: k := k − 1
13: end while
14: Return postSelectedPeers

Example In our example peer 2 selects two peers for a query regarding /Topic/-
TourismTechnology/BookingSystem ∧ /Topic/TourismTechnology/GeographicalInforma-
tionSystem. 12

11Inspired by experiences in the field of simulated annealing and other optimization techniques (Kirkpatrick
et al., 1983).

12 The respective SeRQL query can be formulated as: construct * from
{instance} <!http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
{<!http://swap.ibit#BookingSystem>};
<!http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

171

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

In the first step the local shortcuts are extracted from the shortcut index (cf. Algorithm 1
line 1 ff.). The resource dependent shortcuts are listed in Table 6.6 . Bootstrapping
shortcuts are available for peer 3 and 8 while peer 2 is connected to peer 1 and 4 on the
default network.
In Algorithm 2 the query is split into two triple queries namely
(*,rdf:type,http://swap.ibit#BookingSystem) and
(*,rdf:type,http://swap.ibit#GeographicalInformationSystem);
both triple queries are evaluated in either the relaxation based or similarity based peer
selection algorithm. The application of the relaxation based algorithm with a value for
tgreedy = 0, 4 results in the selection of peer 8 (1)13 for the first and second resource. The
application of the similarity based algorithm with a value for tgreedy = 0, 4 results in the
selection of peers 8 (1) and 5 (100) for both query resources. The number of statements
of the selected peers are combined and the resource based selection algorithm returns
peer 8 for the query relaxation based algorithm and peers 5 and 8 for the similarity based
algorithm.

In the query relaxation based peer selection case the peer list contains only one peer,
thus the bootstrapping peer selection algorithm is invoked. Only peer 3 has twice peer 2’s
Bo value. Peer 3 is appended to the list of selected peers.

In the similarity based peer selection case the peer list contains two peers, thus the
bootstrapping algorithm is not invoked. According to Algorithm 4 the selected peers can
be exchanged with a certain probability for peers from the default network layer. In case no
peers are exchanged, the query is sent to peer 8 and 3 in the query relaxation case and peer
5 and 8 in similarity case. The receiving peers answer the query and forward it following
the same procedure as peer 2. In our network only peer 8 is able to answer the query. On
the arrival of that answer peer 2 updates its shortcut index (cf. Table 6.7).

Pid Resource Query Hits Maxsim Type Update Rank

5 . . . /TourismActivity/TravelDistribution 100 1 c 245 sec 1

3 . . . /TourismActivity/TravelDistribution 10 1 c 240 sec 2

3 . . . /TourismActivity/

DestinationManagement 1 0,63 r 140 sec 3

8 . . . /TourismTechnology/BookingSystem 10 0,42 c 0 sec 4

8 . . . /TourismTechnology/

GeographicalInformationSystem 10 0,42 c 0 sec 5

1 . . . /TourismActivity/TravelDistribution 0 1 c 219 sec 6

4 . . . /TourismActivity/TravelDistribution 0 1 c 220 sec 7

Table 6.7.: Example: Shortcut Index of Peer 2 after the Response from Peer 8

{<!http://swap.ibit#GeographicalInformationSystem>}
13Number in brackets represents the number of statements

172

rdf:type
http://swap.ibit#BookingSystem
rdf:type
http://swap.ibit#GeographicalInformationSystem

6.4. Deploying Semantic Overlay Layers for Peer Selection

6.4.2.1. Query Relaxation Based Peer Selection Algorithm

Relaxation of a query can be achieved in a number of ways. We exploit the following
considerations, which are also summarized in Table 6.8. The relaxation order corresponds
to the shortcut creation and evaluation strategy and gives more value to subject and object
part of a triple query than on the predicate.

1. A peer may be knowledgeable about a particular query, if one knows he had state-
ments about the same subject-object combination, but with other predicates (states
1-3).

2. A peer may be knowledgeable about a subject-predicate combination, if one knows
he had statements about the same subject alone, but maybe with other predicates
(state 4).

3. A peer may be knowledgeable about an object, if one knows he had statements about
the object, but where the object appeared in the subject position (state 5).

4. A peer may be knowledgeable about a property, if one knows he had statements
about the superproperty (state 6).

5. A peer may be knowledgeable about a subject, if either

a) the subject is a class and one knows the peer was knowledgeable about the
superclass (state 7a), or

b) the subject is an instance and one knows the peer was knowledgeable about a
class the subject is an immediate instance of (state 7b).

6. A query for everything or the ROOT concepts or properties (i.e. in RDF these are
rdf:resource, rdfs:class, rdfs:property, rdf:type, etc.) cannot be relaxed further.

Algorithm 6 implements these considerations. It exploits Table 6.8 in order to de-
rive a(n often single-element) set of relaxed queries (cf. Line 16 in Algorithm 5). One
may note in particular: (i) multiple relax queries exist when one asks for super proper-
ties of a given property or immediate types of a subject; (ii) implicitly this relaxation
is recursively applied in Algorithm 5 (cf. Line 20); and, (iii) there remain other options
for query relaxation; first tests revealed that the above ones give quite good results for
later-on selecting an appropriate peer to send the original query to. Other query for-
malisms such SQL require different query relaxation techniques (cf. e.g., (Chu et al., 1996;
Motro, 1990)).

The average number of statements for different shortcuts from the same peer is calcu-
lated in the method rankPeers (cf. Line 18) and the peers are sorted according to the
resulting number of statements.

173

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

State Query Relaxed Query

1 (s, p, o) (s, ∗, o)
2 (s, p, ∗) (s, ∗, ∗)
3 (∗, p, o) (∗, ∗, o)
4 (s, ∗, o) (s, ∗, ∗)
5 (∗, ∗, o) (o, ∗, ∗)
6 (∗, p, ∗) (∗, super(p), ∗)
7a (s, ∗, ∗) (super(s), ∗, ∗)
7b (s, ∗, ∗) (class(s), ∗, ∗)
8 (∗, ∗, ∗) ∨ (ROOT , ∗, ∗)∨

(∗,ROOT , ∗)

Table 6.8.: Query Relaxation Order

Example The query (*,rdf:type,http://swap.ibit#BookingSystem) is
first relaxed to (*,*,http://swap.ibit#BookingSystem) and evaluated, and
then to (http://swap.ibit#BookingSystem,*,*) before the first shortcut can be
found. Peer 8 is appended to the list of selected peers. The query is further relaxed to
(http://swap.ibit#Topic,*,*) in order to select enough shortcuts for query rout-
ing. The similarity between Topic and the query resource is 0.35, thus below the threshold
leading to the termination of the algorithm. The same procedure is followed for the query
(*,rdf:type,http://swap.ibit#GeographicalInformationSystem).

6.4.2.2. Semantic Similarity Based Peer Selection Algorithm

Exploiting a shared ontology to select promising remote peer for query forwarding is also
the idea of approaches based on semantic similarities between a query and indexed short-
cuts. Algorithm 7 uses a similarity function between a triple query q and a shortcut sc,
which are both given by query terms in the same ontology with the following property:
sim : q×sc → [0; 1]. Such similarity metrics are often domain specific and depend on the
query semantics. In our implementation we use a similarity metric for topic hierarchies
proposed by Li et al. (2003) (but of course any other suitable similarity measure can be
used, e.g., cf. (Ehrig, 2006)):

simTopic(q, sc) =

{
e−αl · eβh−e−βh

eβh+e−βh if q 6= sc

1 otherwise
(6.3)

where l is the length of the shortest path between q and sc in the graph spanned by the
sub concept relation and h is the minimal level in the ontology of either q or sc. α and β
are parameters scaling the contribution of shortest path length l and depth h, respectively.
Based on the benchmark data set given in Li et al. (2003), we chose α = 0.2 and β = 0.6
as optimal values.

174

rdf:type
http://swap.ibit#BookingSystem
http://swap.ibit#BookingSystem
http://swap.ibit#BookingSystem
http://swap.ibit#Topic
rdf:type
http://swap.ibit#GeographicalInformationSystem

6.4. Deploying Semantic Overlay Layers for Peer Selection

Algorithm 5 Query Relaxation Based Peer Selection:
relaxationBasedPeerSelection(O, queryResource, T Q, k, tgreedy,
resourceDependentShortcuts, selectedPeers)
Require: LocalNodeRepository O, URI queryResource, Set T Q, int k, float tgreedy,

Set resourceDependentShortcuts, Queue selectedPeers
1: T Qrelaxed := ∅
2: Set selectedResourcePeers:= ∅
3: for all TQ ∈ T Q do
4: URI relaxedResource :=extractQueryResource(TQ)
5: if sim(relaxedResource, queryResource) > tgreedy then
6: SQ :=performQuery(O, TQ)
7: for all S ∈ SQ do
8: URI answerResource :=extractAnswerResource(S)
9: for all sc ∈ resourceDependentShortcuts do

10: if sc.resource = answerResource then
11: selectedResourcePeers.push(pid, sc)
12: end if
13: end for
14: end for
15: end if
16: T Qrelaxed := T Qrelaxed+relaxQuery(O, TQ)
17: end for
18: selectedPeers := selectedPeers.append(rankPeers(selectedResourcePeers))
19: if |selectedPeers| < k then
20: selectedPeers :=relaxationBasedPeerSelection(O, queryResource, T Qrelaxed,

k, tgreedy, resourceDependentShortcuts, selectedPeers)
21: end if
22: return selectedPeers

Algorithm 6 Query Relaxation: relaxQuery(O, TQ)
Require: O, TQ

1: state := determineState(TQ)
2: T Q := newQuery(O, TQ, state)
3: return T Q

The Algorithm 7 makes use of the semantic similarity between the shortcuts and the
query resources in two different ways. First, only shortcuts above the similarity threshold
tgreedy are selected for further processing. Second, the selected shortcuts are ranked taking
into account the similarity with the query resource. The method sortSimCSRS sorts the
shortcuts according to their similarity with the query resource (cf. Line 7). In case of equal
similarity, the number of content statements is considered. If this ranking does not produce
a complete ordering of the shortcuts, no further order operation is performed. Only the k

175

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

Algorithm 7 Similarity Based Peer Selection:
similarityPeerSelection(O, queryResource, TQ, k, tgreedy, resourceDependentShortcuts)
Require: LocalNodeRepository O, URI queryResource, Query TQ, int k, float

tgreedy,
Set resourceDependentShortcuts

1: Queue selectedResourcePeers := ∅
2: for all sc ∈ resourceDependentShortcuts do
3: if sim(sc, queryResource) > tgreedy then
4: selectedResourcePeers.push(pid,sim(sc, queryResource), sc)
5: end if
6: end for
7: selectedResourcePeers.sortSimCSRS()
8: int i := 0
9: while i <= k do

10: (pid,sim(sc, queryResource), sc) := selectedResourcePeers.pop()
11: selectedPeers.push(pid, sc)
12: i := i + 1
13: end while
14: return selectedPeers

best ranked peers are returned (cf. Line 9 ff.).

Example The similarities between . . . /BookingSystem and . . . /GeographicalInformationSystem
and the available shortcuts are calculated. This results in the selection of peer 8 with the
shortcut . . . /BookingSystem14 and peer 5 with the shortcut . . . /TravelDistribution15 for the
first and second query resource.

6.4.2.3. Conjunctive Queries

Each query may be composed of several triple queries, e.g., Select all resources that be-
long to the topic GeographicalInformationSystem and to the topic DestinationManage-
ment. In our context we formalize this query using common ontologies: Find any re-
source with the topics Topic/TourismTechnolgy/GeographicalInformationSystem∧ /Topic/-
TourismTechnology/DestinationManagement. A default approach would route a query
only to a remote peer for which shortcuts for all triple queries of the query are stored using
an exact match paradigm. Too specific query predicates under the exact match paradigm
often lead to empty result sets and do not appropriately consider negation. The notion
of best matches and relative importance of predicates can be a good alternative to satisfy
users information needs independently of the individual peer instances. In Tempich et al.

14Similarity with the first query resource 1 and the second 0,42.
15Similarity with the first query resource 0,63 and the second 0,42.

176

6.5. Summary

(2005b) we investigated metrics to determine the best peers to route a query using multi
predicate queries in shortcut networks. We observed satisfying results using the selection
function described in Cooper (2004) which uses an equation similar to Equation 6.4 to
combine query hits for distributed document retrieval. We refer to this strategy as Multi-
ply.

Rp(q) =
#t∏
i=1

qp
i (6.4)

We calculate the relevance R for a peer p for a query q using Equation 6.4, where #t
represents the number of resources in the query, qp

i represents the query hits per re-
source i of each peer matching at least one of the resources of the query. We select the
peers with the highest relevance. Equation 6.4 is executed in Algorithm 1 in the method
calculateMultiplication (cf. Line 12).

6.5. Summary

REMINDIN’ is a query routing algorithm for pure and unstructured P2P networks. It
meets the requirements on query routing of a distributed knowledge management sce-
nario. REMINDIN’ imitates social metaphors, observed in human social networks, in
order to select among a number of available peers the most appropriate ones. A peer har-
vests knowledge about remote peers if queries are forwarded to it for query processing.
REMINDIN’ organizes the collected information in different semantic overlay layers by
creating non-forwarding indexing links, i.e. shortcuts. It maintains content provider, rec-
ommender and bootstrapping shortcuts on top of the default network layer in a shortcut
index. In order to maintain a small shortcut index REMINDIN’ retains only shortcuts
which are up to date and semantical similar to the local content. Appropriate peers to send
or forward a complex query to are selected by comparing the query with the shortcuts. If
REMINDIN’ cannot find an exact match between a query and a local shortcut the ontology
is utilized to find similar shortcuts and thus remote peers which might be able to answer
the query. REMINDIN’ implements relaxation strategies and similarity measures based
on RDF(S) ontologies. In that REMINDIN’ uses only local information to select remote
peers. This enables the user to decide on a per-query basis if he wants to share knowledge
with remote peers.

The simulations presented in the next Chapter demonstrate, that peers using REMIND-
IN’ find a high proportion of the knowledge available in the network. REMINDIN’
achieves this in static as well as volatile networks. The limitation of the index size does
not considerably influence the performance.

177

6. Routing in Semantic Peer-to-Peer Systems with REMINDIN’

178

7. Evaluation of REMINDIN’

Overview

The evaluation of the REMINDIN’ algorithms is based on sim-
ulations of a semantic peer-to-peer network. We developed our
own simulation environment. The components in the simulation
are the same as for the SWAP system except the communication
layer which is based on an discrete event simulator. The discus-
sion of the evaluation results begins with the selection of evalu-
ation criteria followed by the description of the evaluation data
sets. We list a number of hypothesis before we present the results
of the simulation.

References: This chapter is based on the publications (Ehrig
et al., 2003), (Tempich et al., 2004b), (Löser et al., 2005b), (Löser
et al., 2005a), and (Tempich et al., 2005b).

7.1. Evaluation Criteria for Routing Algorithms

The evaluation criteria for peer-to-peer (P2P) routing algorithms depend on the require-
ments of the application scenario. We recall that the requirements are structured according
to the dimensions Expressiveness (1), Comprehensiveness (2), Autonomy (3), Efficiency
(4), Quality of service (5), Robustness (6) and Security (7) (cf. Section 6.1.2). Require-
ments 1, 2, 6 and 7 determine the architecture of the P2P system while requirements 3, 4
and 5 are subject to evaluation. In following we define the evaluation measures in order to
determine the level of compliance with requirements 3 to 5. The remaining requirements
are the source for the hypothesis formulated in Section 7.3.

The efficiency and quality of service are measured in terms of recall and messages per
query.

Recall describes the proportion between all relevant answers in peer network and the
retrieved ones. Hereby, we defined ‘relevant’ as ‘matches the query’. We imply that a high
recall corresponds to a high quality of service. We do not rank the answers and assume
that all of them are equally relevant to the query. The recall is calculated according to
Equation 7.1.

R =
|retrieved|
|relevant|

(7.1)

179

7. Evaluation of REMINDIN’

Messages per query (Mq) represent the required search costs. This criteria is used
to determine the efficiency of the routing algorithm. The less messages the algorithm
produces for one query the more efficient it is.

Message Gain (MGq) is defined as recall per message. We use the message gain in
some charts to visualize the trade-off between recall and number of messages. The mes-
sage gain is calculated according to Equation 7.2.

MGq =
R

Mq
(7.2)

Clustering coefficient and average path length are measures to evaluate the small-world
characteristics of a network (Albert & Barabási, 2002). Small-world networks are char-
acterized by a high clustering coefficient and a low average path length.1 These charac-
teristics are on the one hand associated with efficient search results (Adamic et al., 2001)
and a high fault tolerance against random node failures (Hong, 2001). On the other hand,
the clustering coefficient indicates that peers with similar interests are close to each other
in the network. In our knowledge management scenarios it is desirable that people who
share common interests get to know each other. Hence, the design of the routing algorithm
allows for a high peer autonomy yet if the clustering coefficient reaches a high level it still
supports collaboration.

Clustering coefficient The clustering coefficient represents the compactness of the net-
work. It captures how many of the neighbors of a node are connected to each other. The
clustering coefficient is defined according to Equation 7.3.

C =
1
|V |

∑
v∈V

E(Γv)
kv ∗ (kv − 1)

(7.3)

V denotes the set of peers in the network, kv denotes the maximum number of shortcuts
for a peer v, Γv the direct neighbors of a peer and E(Γv) represents a function that counts
the number of links in Γv.

Average path length A short average path length denotes a highly directed information
flow between two peers in the network. Given two arbitrary selected peers v1, v2 ∈ V
and dmin(v1, v2) the minimum path length between v1 and v2, the average path length is
defined as

d =
1(
|V |
2

) ∑
v1 6=v2

dmin(v1, v2) (7.4)

1The clustering coefficient is high in comparison to a random network. A random network has a low average
path length and a low clustering coefficient. The average path length is low in comparison to a network
organized in a ring. A ring has a high clustering coefficient and a long average path length.

180

7.2. Evaluation Setting

7.2. Evaluation Setting

Evaluation of the routing algorithms is performed in a multi stage process. First, we have
selected three different data sets. A data set represents the total knowledge available in the
simulated P2P network. Second, the complete data set is divided into possibility overlap-
ping chunks of knowledge. These chunks setup the peer local knowledge. Third, from a
data set we generate queries. The statements retrieved if a query is evaluated against the
complete data set determines the number of relevant answers. Forth, each peer is assigned
a number of queries which the peer submits to the network. Fifth, the peers are arranged
in a default network topology before the simulation is started. Sixth, during the simulation
we collect data to calculate the evaluation measures. Finally, the simulations are repeated
with different parameter settings to demonstrate the influences of single parameters. In
the remainder we describe the data sets, the content distribution and the queries and their
distribution.

7.2.1. Evaluation Data Sets

Three data sets are used as content in the P2P network simulation. The Bibster data set
was generated from real world observations of the Bibster system. The DMOZ data set
is an extract from a real Web site catalog. The synthetic data sets were generated using
different generation parameters.

7.2.1.1. The Bibster Data Set

This data set bases on real query data captured from the P2P bibliography network Bibster
(cf. Section 3.1.2, (Haase et al., 2004a)). We use data from observations in a four month
period. In this time 520 peers were online. As we logged only the queries and the number
of retrieved answers not all shared BibTEX items are available for the simulation setup.
From the answers and queries we constructed a data set containing in total 26.173 distinct
BibTEX items and 37 distinct classes. The items are classified against the different topics
available from an ACM-topic hierarchy2.

7.2.1.2. The DMOZ Data Set

Participants of the open directory project (DMOZ) manually categorize Web pages of gen-
eral interest into a topic hierarchy. Editors contribute links to Web pages, define subtopics
and associate related topics to the DMOZ topic pages. The DMOZ data is available as
an RDF dump comprising a small schema and many instances. The main classes of the
DMOZ data set are Topic, Alias, and ExternalPage:

2The RDF serialization of the ACM-topic hierarchy is available online at:
http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/acmtopics.rdf

181

http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/acmtopics.rdf

7. Evaluation of REMINDIN’

Topic The resource Topic represents a topic in the DMOZ hierarchy and has properties
for link3, containing a reference to an ExternalPage and to an editor, viz. an editor
of the topic. The properties related, symbolic and narrow describe relations to other
topics and aliases.

Alias The resource Alias represents a topic with a similar meaning as the topic and has
properties for Title and Target. Target is the relation pointing to the similar Topic.

ExternalPage The resource ExternalPage represents URIs to Web pages and has the
properties Title and Description

The data source has some interesting properties rendering it adequate for our evaluation
purposes: (1) There are many relations other than taxonomic ones between the topics —
in contrast to many other datasets. (2) Topics have editors, many have several — implying
a natural way to assign statements to peers. (3) Topics are ‘populated’ with many links.

The DMOZ hierarchy is available in pure RDF only. To enhance its semantic descrip-
tion, we have converted it to RDFS. We converted the topics to instances of rdfs:class.
narrow and narrow1 were converted into rdfs:subClassOf. The properties link
were interpreted as rdf:type of the topics they belong to. For instance, http:
//www.w3.org/People/Berners-Lee/ is then an instance of http://dmoz.
org/Computers/Internet/History/People/Berners-Lee,_Tim/.

DMOZ RDF(S) entity Example Number

Schema

Topic Class Top/Arts 1657

Property Property symbolic, related 16

Instances

link rdf:type “http://www.w3.org/People/
Berners-Lee/” rdf:type “Top/Comput-
ers/Internet/”

45347

symbolic, related symbolic, related “Top/Arts/” related “Top/
Business/Arts_and_Entertainment”

3520

narrow, narrow1 subClassOf “Top/Arts/Movies” subClassOf “Top/Arts” 1952

editor Peer 1024

Table 7.1.: Survey of DMOZ Open Directory Structure Realized as RDF Schema and In-
stances

In order to handle the sheer size of the DMOZ hierarchy, we included only the first three
levels of the hierarchy in our experiments. Table 7.1 summarizes the properties of the data
set used in the simulation.

3DMOZ distinguishes important and less important links by categorization into link, link1, link2. We have
merged these three again into one property. The analogous case is true for symbolic, etc.

182

http://www.w3.org/People/Berners-Lee/
http://www.w3.org/People/Berners-Lee/
http://dmoz.org/Computers/Internet/History/People/Berners-Lee,_Tim/
http://dmoz.org/Computers/Internet/History/People/Berners-Lee,_Tim/
http://www.w3.org/People/Berners-Lee/
http://www.w3.org/People/Berners-Lee/

7.2. Evaluation Setting

7.2.1.3. Synthetic Data Sets

The data in the Bibster as well as the DMOZ data set is distributed manually by humans
working with the respective systems. In order to explore the influence of data distribution
parameters on REMINDIN’ several synthetic data sets are created. We describe the prop-
erties and settings for the generation of synthetic data sets for semantic P2P simulations.
Such a data set comprises an instantiated ontology formalizing the complete knowledge
available in the network, and an assignment of knowledge to peers in the network. The
number of classes, the number of properties and the number of sub-class relationships to-
gether with their respective distributions determine the schema of the ontology. The num-
ber of instances and the number of relations between instances determine the distribution
of the instance data. The distributions are modeled as Zipf distributions with parameter
settings according to observations from real world data sets. The parameter settings for
the schema generation are based on Tempich & Volz (2003) while the parameter settings
for instance generation are based on observation of Cholvi et al. (2004). Data distribution
on the peers follow the model presented in (Crespo & Garcia-Molina, 2002b).

For the schema we choose to generate an ontology with 1.000 classes and assign a
popularity based on a Zipf distribution with skew factor 1 to each class. The popularity of a
class influences the number of instances, the replication in the network and the connectivity
with other classes through properties. We select the number of sub-classes and the number
of properties of a class according to a Zipf distribution with the skew factor 1.1. This
results in 357 properties.

200.000 instances are generated and assigned to classes based on the pop-
ularity of the different classes; each instance is assigned to one class. A
TotalNoPropertyInstances = 100 ∗ TotalNoProperties of properties between in-
stances are generated. Likewise to classes, a property schema (one could also call it a
binary relation), has a popularity based on a Zipf distribution with skew factor 1 that is
considered when generating properties between instances (i.e. when populating the binary
relations).

7.2.2. Content Distribution

The described data sets are distributed and represent the local knowledge of the peers. The
goal of the knowledge distribution is to resemble the knowledge distribution in a real world
network. The next sections elaborate on the chosen distribution parameters.

7.2.2.1. Content Distribution of the Bibster Data Set

The BibTEX items are assigned to peers following the observations on the real network.
Each peer is assigned the items which it has sent as answers to queries. The Bibster data
can thus be distributed in the same way as it has been in the real world setting. In average

183

7. Evaluation of REMINDIN’

each peer shared 50 items and provided data for 1 class. However, the distribution is highly
skewed as visualized in Figures 7.1 and 7.2, e.g., 328 peers do not share any knowledge
while one peer contributes 5% of all BibTEX items and covers nearly 30% of the classes.

Class Distribution - Bibster Data Set

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11

No. of Classes

N
o

. o
f

P
ee

rs

Figure 7.1.: Bibster Data Set: Class Distribution on Peers

Instance Distribution - Bibster Data Set

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 8 10 15 20 30 40 50 75 10
0

12
5

20
0

25
0

35
0

50
0

65
0

90
0

12
00

16
00

22
00

No. Of Instances

N
o

. P
ee

rs

Figure 7.2.: Bibster Data Set: Instance Distribution on Peers

7.2.2.2. Content Distribution of the DMOZ Data Set

All of the 1657 topics in the first three levels of the DMOZ hierarchy have one or more
editors assigned to them. Everybody can become an editor of a category in DMOZ. DMOZ
encourages users to “choose a topic you know something about and join”. Hence, we
assume that editors who edit a topic (which became classes in RDF(S)) also locally store
links they have assigned to a topic. Since a topic can have more than one editor not all of

184

7.2. Evaluation Setting

the links need to come from one editor alone. Finally, editors may also add links to other
topics. Thus, they are probably also informed about related topics but to a lesser extent.

These assumptions led us to the following distribution of instances in our simulation.
We represent one editor by one peer, thus we have 1024 peers. Assuming that an editor
is not the source of all instances within ‘his’ topic (‘his’ class) we choose randomly 70%
of the direct instances within ‘his’ class and assign them to the Local Node Repository
(LNR) of the peer. In addition, we consider all classes directly related to ‘his’ class (via

subclass-of, via related, etc.) and we randomly assign 12% of the direct instances of these
directly related classes to the LNR of the peer. Thus, all peers have an individual local node
repository. The resulting information distribution is visualized in Figures 7.3 and 7.4.

Class Distribution - DMOZ Data Set

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 25 35 50 70

No. of Classes

N
o

. o
f

P
ee

rs

Figure 7.3.: DMOZ Data Set: Class Distribution on Peers

Instance Distribution - DMOZ Data Set

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 8 10 15 20 30 40 50 75 10
0

12
5

20
0

25
0

35
0

50
0

65
0

90
0

12
00

16
00

22
00

No. Of Instances

N
o

. P
ee

rs

Figure 7.4.: DMOZ Data Set: Instance Distribution on Peers

185

7. Evaluation of REMINDIN’

7.2.2.3. Content Distribution of the Synthetic Data Sets

For the synthetic data set no ‘natural’ knowledge distribution over peers is available. In
order to distribute the content over the peers we adopt the model presented in (Crespo
& Garcia-Molina, 2002b). Assignment of data to peers is based on the assumption that
users are generally interested in a small subset of the entire content available in a P2P
network. We have modeled that the interests are more likely in only a limited number
of content classes and thus users would be more interested in some classes while less
in others. The maximum number of classes that a peer is interested in is computed as
ClassesOfInterest = ln(NoOfClasses) ∗ 2. The actual number of classes is chosen
randomly from a uniform distribution. Observing the studies in Cholvi et al. (2004) neither
do all peers share the same amount of data and nor exhibit the same ‘social behavior’. For
instance, a large number of users are so-called ‘free riders’ or freeloaders who do not
contribute anything to the network but essentially behave like clients. On the other hand, a
small number of users (less than 5%) provide more than two thirds of the totally available
amount of data and thus behave like servers. Considering the study in Adar & Huberman
(2000) the following storage capacity is assigned to the peers in the network: 70% of the
peers do not share any instances (free riders); 20% share 100 instances or less; 7% share
101 up to 1000 instances and finally, only 3% of the peers share between 1001 and 2000
instances. Instances are chosen from the classes the user is interested in. The resulting
information distribution is visualized in Figures 7.5 and 7.6. A peer sharing an instance
knows all its properties and the type of the range instance.

Class Distribution - Synthetic Data Set

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 20

No. of Classes

N
o

. o
f

P
ee

rs

Figure 7.5.: Synthetic Data Set: Class Distribution on Peers

7.2.3. Queries and Query Distribution

Besides the content distribution the assignment of queries to peers influences the evaluation
results of the algorithms. The assignment of queries to peers should resemble real world

186

7.2. Evaluation Setting

Instance Distribution - Synthetic Data Set

0

50

100

150

200

250

0 1 2 3 4 5 6 8 10 15 20 30 40 50 75 10
0

12
5

20
0

25
0

35
0

50
0

65
0

90
0

12
00

16
00

22
00

No. Of Instances

N
o

. P
ee

rs

Figure 7.6.: Synthetic Data Set: Instance Distribution on Peers

querying behavior. We describe for the three data sets the assignment of queries to peers.

7.2.3.1. Queries for the Bibster Data Set

For the Bibster data set we know from our observations the originating peers of the queries.
In total 398 peers issued 3319 queries. From these queries 1949 contained 1 predicate,
1180 contained 2, 180 contained 3, 7 contained 4, 2 contained 5 and 1 contained 6. A
query containing two attributes looks, e.g., like

construct ∗ from
{} <!http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
{<!http://www.semanticweb.org/ontologies/swrc-onto-2001-12-11.daml#
Publication>};
<!http://www.semanticweb.org/ontologies/swrc-onto-2001-12-11.daml#
year>
{name1}
where name1 like “2003”;

In the simulation a peer issues the same queries as during the observation period. In
order to scrutinize the effects of a longer experiment a query may be repeated in the simu-
lation.

7.2.3.2. Queries for the DMOZ Data Set

Queries are generated in the experiments by instantiating the blueprint (∗, < rdf : type >
, topic), with topics arbitrarily chosen from the set of topics that had at least one instance.
We generated 1657 different queries of the following type.

187

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.semanticweb.org/ontologies/swrc-onto-2001-12-11.daml#Publication
http://www.semanticweb.org/ontologies/swrc-onto-2001-12-11.daml#Publication
http://www.semanticweb.org/ontologies/swrc-onto-2001-12-11.daml#year
http://www.semanticweb.org/ontologies/swrc-onto-2001-12-11.daml#year

7. Evaluation of REMINDIN’

construct ∗ from
{} <!http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
{<!http://dmoz.org/Top/Computers/Internet/Searching>}

In the simulation the peers issue 30.000 queries uniformly distributed over the 1657
generated queries. We choose a uniform query distribution instead of a ZIPF-distribution,
typically observed in file sharing networks (Saroiu et al., 2003), thus the algorithm does
not take advantage of often repeated queries for popular topics. The set of 1657 queries is
split into two sets of equal size. There were two phases. First, there was a ‘learning phase’
where the peer network was confronted with the first set 828 queries. Then, there was an
explicit ‘test phase’, in which one could observe how the peer network would re-adjust to
the second set of queries.

7.2.3.3. Queries for the Synthetic Data Set

In order to test our algorithm we have generated two different types of queries. All
queries ask for instances satisfying a varying number of constraints. The first query
type instantiates the blueprint (instance; isTypeOf ; class) ∧ (instance; property;
instance2) ∧ (instance2; isTypeOf ; class2). We thus query for all instances of
a certain class with the constraint that the instance has one particular property
pointing to another instance. The range of the property determines the type of
instance2. From this type of queries we generated 2194. The second query
type extends the first one by adding a constraint on the properties and instanti-
ates the blueprint (instance; isTypeOf ; class)∧ (instance; property; instance2) ∧
(instance2; isTypeOf ; class2) ∧ (instance; property2; instance3)∧ (instance3;
isTypeOf ; class3). From this type of queries we generated 1087. Such a query is vi-
sualized in the example.

construct ∗ from
{instance} <!http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
{<!http://swap.simulation#class28>};
<!http://swap.simulation#property70> {} <!http://www.w3.org/1999/02/
22-rdf-syntax-ns#type> {<!http://swap.simulation#class3>},
{instance} <!http://swap.simulation#property72> {} <!http://www.w3.org/
1999/02/22-rdf-syntax-ns#type> {<!http://swap.simulation#class2>}

Queries are chosen randomly from all available queries. We choose a uniform query
distribution.

7.2.4. Configuration of the Simulation

We setup all simulations with the same initial network topology. In experiments looking at
the effects of a volatile network we follow a well defined strategy to determine the online
and offline times of a peer.

188

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dmoz.org/Top/Computers/Internet/Searching
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://swap.simulation#class28
http://swap.simulation#property70
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://swap.simulation#class3
http://swap.simulation#property72
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://swap.simulation#class2

7.2. Evaluation Setting

7.2.4.1. Gnutella Style Network

The simulation is initialized with a network topology which resembles the small-world
properties of file sharing networks as found in Gnutella4. We simulated 1024 peers and
connect each peer with 5 remote peers on the network layer. In the simulation a peer can
establish arbitrary connections to remote peers, if it knows the network identifier of the
peer. The selection of peers for query issuing is randomized with a uniform distribution
over peers. For the DMOZ and the synthetic data set the queries are chosen randomly from
the available queries with a uniform distribution. As mentioned above for the Bibster data
set we simulate the real world query distribution. The peers decide on the basis of their
local information which remote peers to send the query to. Within one simulation peers
use the same routing algorithm to select up to k = 2 peers to send the query to. Each query
is forwarded until the maximal number of hops hmax = 6 is reached.

7.2.4.2. Volatile Network Characteristics

The simulation environment follows two strategies to determine if a peer is connected to
the network or not. In the first set of simulations we assume a static network, i.e. all
peers are always online. In the second round of simulations we us a dynamic network
model observed for Gnutella networks by Saroiu et al. (2003): 60% of the peers have an
availability of less than 20%, while 20% of the peers are available between 20 and 60% and
20 % are available more then 60%. Hence only a small fraction of peers is available more
than half of the simulation time, while the majority of the peers is only online a fraction of
the simulation time. The real online and offline times of peers are determined randomly at
simulation runtime so that their cumulative online times resemble the distribution found in

4We used the Colt library http://nicewww.cern.ch/~hoschek/colt/ to generate the small-world topology

Volatile Network - Online Peers

460

470

480

490

500

510

520

0 5000 10000 15000 20000 25000 30000

No. of Queries

N
o

. o
f

 P
ee

rs
 O

n
lin

e

Online Peers

Figure 7.7.: Volatile Network: Number of Peers Online

189

http://nicewww.cern.ch/~hoschek/colt/

7. Evaluation of REMINDIN’

(Saroiu et al., 2003). Figure 7.7 visualizes the number of peers online during the simulation
run. A peer ensures before it forwards a query that it is connected to at least five online
remote peers on the network layer. If a remote peer is offline it is exchanged with an online
peer. A peer discovers with rendezvous techniques online peers on the network layer.

We also consider changing user interests. In order to simulate changing interests the
peers choose the first 15 queries5 from one half of the total queries and the second 15
queries from the remaining ones. Although studies of interest shift in file sharing networks
show a smoother transition between interests, this drastic shift is better suited to exemplify
the behavior of the algorithms (cf. (Liang et al., 2005; Christin et al., 2005)). For the
Bibster data set we omit this procedure.

7.2.4.3. Simulator Setup and Simulation Statistics

We used a round based simulation framework. Table 7.2 presents the main parameters of
the simulation framework. In total we simulated 1024 peers. To determine the standard
error of our observations for a 95% confidence interval (p < 0.05) each simulation was ex-
ecuted eight times. We set the greedy search threshold to 0.50 and the random contribution
to 0.15.

7.3. Evaluation Hypothesis

The evaluation of the REMINDIN’ algorithm serves two purposes: First, we show that
REMINDIN’ meets the requirement defined in section 6.1.2. Second, we show that the
REMINDIN’ routing algorithm delivers better results w.r.t. our evaluation criteria than
related approaches to routing. Before we present the results of our evaluation in the next
section we formulate the hypotheses we investigate.

1. REMINDIN’ is more efficient and has a higher quality of service than related routing
algorithms in static networks with single triple queries. The hypothesis is validated
if the recall of REMINDIN’ is higher than that of related routing algorithms and the
number of messages is lower.

2. REMINDIN’ is more efficient and has a higher quality of service than related routing
algorithms in volatile networks with single triple queries. REMINDIN’ is thus more
robust than related routing algorithms. The hypothesis is validated according to the
same evaluation measures as hypothesis 1.

3. REMINDIN’ is more efficient and has a higher quality of service than related routing
algorithms in volatile networks with conjunctive triple queries. REMINDIN’ thus
meets the expressivity requirement. The hypothesis is validated according to the
same evaluation measures as hypothesis 1.

5This equals to ca. 15.000 queries over all peers

190

7.3. Evaluation Hypothesis

Parameter Value

Queries 30.000

Queries per peer ca. 30

Query time to life (maxTTL) 6

Selected peers per query (k) 2

Greedy search threshold (tgreedy) 0.5

Random contribution (rand) 15 %

Index size 40

Index parameters

(simInfluence, typeInfluence, timeInfluence) (0.1, 0.8, 0.1)

Relaxation based on similarity

(queryRelaxation) false

DMOZ data set

Classes 1657

Queries before interest shift 829

Queries after interest shift 828

Simulated peers 1024

Bibster data set

ACM topics 1293

Queries 3319

Simulated peers 520

Synthetic data set

Classes 1000

Queries before interest shift 1641

Queries after interest shift 1640

Simulated peers 1024

Table 7.2.: Simulation Parameter Setting

4. Each layer contributes to the performance of the REMINDIN’ algorithm. The hy-
pothesis is validated if the message gain increases when applying an additional layer.

5. REMINDIN’ is efficient in terms of memory consumption as a small shortcut index
size is sufficient to maintain its performance levels. The hypothesis is validated if
the message gain does not change for different index sizes.

6. The use of semantics for query routing is beneficial and increases REMINDIN’s
efficiency. The hypothesis is validated if the message gain increases if tgreedy < 1.

7. REMINDIN’ is adaptable to different application areas by adjusting its parame-
ter setting, e.g., to increase the proximity between peers of similar interests. The
hypothesis is validated if the clustering coefficient depends on different parameter
settings.

191

7. Evaluation of REMINDIN’

7.4. Evaluation Results

This section presents the evaluation results of the REMINDIN’ algorithm. The evalua-
tion is organized following the order of the hypothesis formulated in the previous section.
The simulations are setup with the parameter settings listed in Table 7.2. The evaluations
compare REMINDIN’ with related routing algorithms which fulfill the requirements of
the DKM scenario. In particular the simulation environment includes implementations for
flooding based routing (Kan, 2001) and Interest based locality (IBL) routing (Sripanidkul-
chai et al., 2003).

Kan (2001) (Naive) This routing algorithm is naive. (1) It either forwards a query to
all remote peers a peer is connected to on the default network layer. This strategy
results in a high recall but produces a high number of messages, because this strategy
queries non-selectively most of the available peers. (2) An alternative naive strategy
selects randomly from the remote peers known on the network layer a predefined
number of peers k and forwards the query only to the selected peers. This strategy
results in a lower recall but produces also a lower number of messages. For the
purpose of clarity the figures present only the results of the later strategy. The results
of the first strategy are described in the text.

Sripanidkulchai et al. (2003) (IBL) This routing algorithm stores non-forwarding in-
dexing links to remote peers which have answered previous queries of the peer.
Queries are sent on non-forwarding search links to all remote peers stored in the in-
dex. If none of the queried peers responses the query is distributed according to the
second naive routing strategy. In order to compare the IBL strategy with REMIND-
IN’ both routing algorithms use the same index size. IBL uses a least recently used
strategy to maintain the index size.

Hypothesis 1 Figures 7.8 and 7.9 graphically summarize the comparison between RE-
MINDIN’, REMINDIN’ without random contribution, the naive approach and the IBL
strategy in a static network using the DMOZ data set. Peers issue queries for Web site links
related to one topic in the DMOZ hierarchy. REMINDIN’ and IBL use an index of size
40. REMINDIN’ uses the relaxation based peer selection strategy (queryRelaxation =
true). During the simulation run each peer issues in average 30 queries approximately
corresponding to a 2 hour period in a real file sharing network. After 15 queries the peers
shift interest and choose queries from the second half of the available ones. Figure 7.8 fo-
cuses on the recall achieved by the different routing strategies. The total number of issued
queries is plotted against the achieved recall. Points in all the graphs represent averages
for 1000 queries. The recall for REMINDIN’ increases with the number of sent queries
and levels off at about 55% recall.6 In the event of interest shift the recall nearly halves

6Higher recall rates can be achieved increasing the maximum number of hops hmax at the cost of more
messages.

192

7.4. Evaluation Results

but recovers after another 15 queries per peer to the same levels as before. The recall for
REMINDIN’ without random contribution behaves similar, but at lower levels. The IBL
strategy produces recall levels of around 25%, and o around 13% after the interest shift.
The recall levels off at around 20% after the interest shift. Following the naive routing
strategy – randomly selecting k = 2 peers – results in circa 10% recall independently of
the interest shift. The alternative strategy – selecting all known network peers – results in
circa 60% recall at the cost of circa 600 messages per query.
Figure 7.9 plots the number of messages per query against the total number of sent
queries. The number of messages per query produced by REMINDIN’ decreases over
time until the interest shift, when the number of messages briefly increases. It levels
off again to the end of the simulation at 60. The number of messages per query is
slightly higher for REMINDIN’ with random contribution than without. The random
contribution ensures that more remote peers may contribute to the answer. Other disci-
plines have also found the advantageous effects of serendipity cf. (Merugu et al., 2003;
Ramakrishnan & Grama, 1999). The number of messages produced by the naive approach
is constant at around 75. The number of messages produced by IBL first increases and lev-
els off at around 85 messages. The interest shift does not affected the number of messages
produced by the IBL strategy.

Static Network - DMOZ Data Set - Comparision with Related Routing Algorithms

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5000 10000 15000 20000 25000 30000

No. of Queries

R
ec

al
l (

S
ta

te
m

en
ts

)

REMINDIN'

Sripanidkulchai et. al., 2003

Kan, 1999 (Naive)

REMINDIN' without random contribution

Figure 7.8.: Static Network: Comparison of Query Routing Algorithms: Recall

The simulations validate the hypothesis that REMINDIN’ has a better performance
than related routing approaches in static unstructured P2P networks. REMINDIN’ learns
quicker about the available knowledge than IBL and adapts better to interest shifts. The
simulations in relation to Hypothesis 2 and 4 show that the first answer is in average found
only after 3.5 hops, thus the IBL strategy is less effective and that the recommender layer
contributes to REMINDIN’ better performance. The simulations in relation to Hypoth-
esis 6 demonstrate that in particular the use of query relaxation enable the algorithm to
adapt quickly to interest shifts. The selection of arbitrary peers instead of the selected ones
as a result of the random contribution prevents over-fitting of the algorithm at the cost of

193

7. Evaluation of REMINDIN’

Static Network - DMOZ Data Set - Comparision with Related Routing Algorithms

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

es
 p

er
 Q

u
er

y

REMINDIN'

Sripanidkulchai et. al., 2003

Kan, 1999 (Naive)

REMINDIN' without random contribution

Figure 7.9.: Static Network: Comparison of Query Routing Algorithms: Messages per
Query

more messages.

The more effective shortcut creation of REMINDIN’ in comparison with IBL also in-
fluences the number of messages produced per query. Although the number of messages
used by the algorithms is always lower than the theoretically maximum number of mes-
sages (126+13 = 1397), since the query messages are forwarded to the same remote peer
through different routes and not processed further, the recommender layer enables many
peers to learn quickly about the available knowledge in the network and a query is more
often forward to the same remote peer. In the event of an interest shift the effect of the
tgreedy parameter becomes obvious. In some cases no local shortcuts are similar enough
to the new queries so that the algorithm falls back on the bootstrapping or the default net-
work layer. As the selection of peers is more random in this cases the aforementioned
query reduction principle does not apply any more and the number of messages increases.

Hypothesis 2 Figures 7.10, 7.11, 7.12 and 7.13 visualize the evaluation results of the
comparison between REMINDIN’, the naive approach and the IBL strategy in a dynamic
network using the DMOZ data set. Peers issue queries for Web site links related to one
topic in the DMOZ hierarchy. REMINDIN’ and IBL use an index of size 40. REMIND-
IN’ uses the similarity based peer selection strategy (queryRelaxation = true). During
the simulation run each peer issues in average 30 queries approximately corresponding
to a 2 hour period in a real file sharing network. After 15 queries the peers shift inter-
est and choose queries from the second half of the available ones. Figure 7.8 focuses on
the recall achieved by the different routing strategies. The total number of issued queries

7The number of hops is set to six, and two peers are selected each time. Thus the query can reach 2 + 4 +
8 + 16 + 32 + 64 = 126 peers. On average 13 peers can provide a partial answer to a query.

194

7.4. Evaluation Results

is plotted against the achieved recall. The line ‘Online available’ indicates the maximal
achievable recall as not all peers are always online. Likewise in the static network the re-
call of REMINDIN’ increases with the number of sent queries and levels off at about 25%
corresponding to 46% of the achievable recall. In the event of interest shift the recall nearly
halves. It does not recover as strong as in the static case, though. The continues black line
represents the mean of eight simulations runs with the same parameter setting. The gray
range around it additionally visualizes the confidence interval for the simulation results.8

The range shows that REMINDIN’ is statistically significantly better than the related ap-
proaches. The IBL strategy produces recall levels of around 18% or 33% of the achievable
recall with a fall in the event of an interest shift. The naive routing strategy results in circa
10% (19% of achievable) recall independently of the interest shift. Figure 7.11 plots the

Volatile Network - DMOZ Data Set - Comparision with Related Routing Algorithms

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5000 10000 15000 20000 25000 30000

No. of Queries

R
ec

al
l (

S
ta

te
m

en
ts

)

Reihe6

Reihe5

Online available

Kan, 1999 (Naive)

Sripanidkulchai et. al., 2003

REMINDIN'

Figure 7.10.: Volatile Network: Comparison of Query Routing Algorithms: Recall

8Confidence Intervall The confidence interval of a mean is a range around the mean calculated from observed
data (cf. e.g., (Bol, 2004)). It expresses that the real mean of a data set falls with a certain probability –
usually 95% (p < 0, 05) – within this range. An observation is statistically significantly different from
another observation if their confidence intervals do not overlap. The confidence interval for a mean is
calculated multiplying the standard error (σn) of a mean with a t-value (Student’s t-test). The standard
error and the t-value depend on the number of repetition of an experiment.
Given a number of repetitions n of an experiment and observations for a data point x the mean µ, the
standard deviation σ, and the standard error σn are defined as:

µ =
∑n

i=1 xi

n
;σ2 =

1
n− 1

n∑
i=1

(xi − µ)2;σn =
σ√
n

The confidence interval of the mean is then

µ± σn ∗ t(p;n− 1)

The experiments have been repeated n = 8 times such that t(p; n− 1) = t(0, 05; 7) = 2, 36.

195

7. Evaluation of REMINDIN’

Volatile Network - DMOZ Data Set - Comparision with Related Routing Algorithms

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

es
 p

er
 Q

u
er

y

Reihe5

Reihe4

Kan, 1999 (Naive)

Sripanidkulchai et. al., 2003

REMINDIN'

Figure 7.11.: Volatile Network: Comparison of Query Routing Algorithms: Messages per
Query

Volatile Network - DMOZ Data Set - Comparision with Related Routing Algorithms

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

es
 p

er
 Q

u
er

y

+

-

Kan, 1999 (Naive)

Sripanidkulchai et. al., 2003

REMINDIN'

Figure 7.12.: Volatile Network: Comparison of Query Routing Algorithms: Message Gain

number of messages per query against the total number of sent queries. The number of
messages per query produced by REMINDIN’ decreases over time independently of the
interest shift and levels off at around 45. The number of messages produced by the naive
approach is constant at around 105. The number of messages produced by IBL increases a
little bit and levels off at around 95 messages. The interest shift does not affect the number
of messages produced by the IBL strategy.
Figure 7.12 combines the results of Figures 7.8 and 7.11 and plots the message gain against
the number of sent queries.
Figure 7.13 plots the average number of hops required to find the first peer with an answer

196

7.4. Evaluation Results

Volatile Network - DMOZ Data Set - Comparision with Related Routing Algorithms

0

1

2

3

4

5

6

0 5000 10000 15000 20000 25000 30000

No. of Queries

H
o

p
s

to
 F

ir
st

 R
es

p
o

n
se

Reihe5

Reihe4

Kan, 1999 (Naive)

Sripanidkulchai et. al., 2003

REMINDIN'

Figure 7.13.: Volatile Network: Comparison of Query Routing Algorithms: Time to First
Response

against the number of sent queries. REMINDIN’ finds knowledgeable peers quicker than
the related approaches, while the IBL strategy is better than the naive strategy. The interest
shift slightly increases this figure for REMINDIN’ but it falls again afterwards.

The simulations validate the hypothesis that REMINDIN’ has a better performance than
related routing approaches also for dynamic unstructured P2P networks. The relative recall
of REMINDIN’ reaches almost the levels as observed in the static network, at least in the
initial learning phase. After the interest shift these levels are not reached anymore. In a
volatile network the bootstrapping peers correspond to the peers which are most of the
time online. This behavior results in a decreasing number of messages per query over the
entire simulation, but it also limits the discovery of new peers. The simulations related to
Hypothesis 4 show that the omission of the bootstrapping layer increases the recall at the
cost of more sent messages. The message gain figure is better with the bootstrapping layer
activated.
IBL and the naive algorithm produce a different number of messages per query than in
the static scenario, because the known remote peers on the network layer change with the
simulation time. Peers which are online most of the time have a higher probability to end
up on many network layers, reducing the variety in comparison with the static network.

Hypothesis 3 Figures 7.14 and 7.15 plot the evaluation results comparing REMIND-
IN’, the naive approach and the IBL strategy in a dynamic network using the Bibster data
set. Peers issue complex queries for bibliographic entries offering the BibTEX properties
and a classification according to the ACM topic hierarchy. REMINDIN’ and IBL use an
index of size 40. REMINDIN’ uses the similarity based peer selection strategy. During the
simulation run each peer issues in average 30 queries approximately corresponding to a 2

197

7. Evaluation of REMINDIN’

hour period in a real file sharing network. Figures 7.16 and 7.17 use the same parameter
setting with the synthetic data set and corresponding queries.

Volatile Network - Synthetic Data Set - Comparision with Related Routing Algorithms

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2000 4000 6000 8000 10000 12000 14000 16000

No. of Queries

R
ec

al
l (

S
ta

te
m

en
ts

)

REMINDIN'

Sripanidkulchai et. al., 2003

Kan, 1999 (Naive)

Online Available

Figure 7.14.: Volatile Network: Comparison of Query Routing Algorithms – Conjunctive
Queries – Bibster Data Set: Recall

Volatile Network - Bibster Data Set - Comparision with Related Routing Algorithms

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000 12000 14000 16000

No. of Queries

M
es

sa
g

es
 p

er
 Q

u
er

y

REMINDIN'

Sripanidkulchai et. al., 2003

Kan, 1999 (Naive)

Figure 7.15.: Volatile Network: Comparison of Query Routing Algorithms – Conjunctive
Queries – Bibster Data Set: Messages per Query

Figures 7.14 and 7.16 chart the recall for the three different routing approaches. 90%
of the available answers are found independently of the used routing algorithm for the
Bibster data set. The recall of REMINDIN’ approaches 75% w.r.t. to the available content
after 2000 queries and stays at this level during the simulation. The interest shift has a
minor influence on the algorithms performance. IBL has also high recall levels at the
beginning but its performance decreases in the course of the simulation and finishes with

198

7.4. Evaluation Results

60% recall w.r.t. the achievable recall. The recall of the naive algorithm is constantly 15%
w.r.t. the achievable recall.

Figures 7.15 and 7.17 chart the messages per query for the three different approaches.
REMINDIN’ and IBL produce both in average 63 messages per query on the Bibster data
set. The naive algorithm starts with 120 messages and finishes with 100 messages per
query. On the synthetic data set REMINDIN’ starts with 65 messages and produces 40
messages at the end of the simulation. The number of messages produced by IBL decreases

Volatile Network - Synthetic Data Set - Comparision with Related Routing Algorithms

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5000 10000 15000 20000 25000 30000

No. of Queries

R
ec

al
l (

S
ta

te
m

en
ts

)

REMINDIN'

Sripanidkulchai et. al., 2003

Kan, 1999 (Naive)

Online Available

Figure 7.16.: Volatile Network: Comparison of Query Routing Algorithms – Conjunctive
Queries – Synthetic Data Set: Recall

Volatile Network - Synthetic Data Set - Comparision with Related Routing Algorithms

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

es
 p

er
 Q

u
er

y

REMINDIN'

Sripanidkulchai et. al., 2003

Kan, 1999 (Naive)

Figure 7.17.: Volatile Network: Comparison of Query Routing Algorithms – Conjunctive
Queries – Synthetic Data Set: Messages per Query

199

7. Evaluation of REMINDIN’

from 90 to 70 in the course of the simulation.

The hypothesis that REMINDIN’ is more efficient and has a higher quality of service in
dynamic P2P networks using complex queries than related approaches can only be partially
validated. On the Bibster data set all routing algorithm show the same performance levels.
This is only partially conclusive, though. The distribution of the content is very skewed,
therefore content location is particularly easy. The parameter setting for the maximum
number of hops maxTTL = 6 is high for the small Bibster network. The bootstrapping
layer does not show its message reducing effect, as most of the querying peers quickly cre-
ate shortcuts. Only 398 peers did submit queries. On the synthetic data set the performance
levels of the naive algorithm are comparable to the ones observed for the DMOZ data set.
The difference between the IBL approach and REMINDIN’ w.r.t. the recall figure is only
gradual compared to the results of the single class queries. It is not intuitive that the total
recall for both approaches is higher than for single class queries. The distribution of the
data set explains this result. A smaller number of peers contribute more knowledge in the
synthetic data set than in the DMOZ data set. Additionally learns REMINDIN’ quicker,
because it can create more than one short cut with each query.
The recall analysis of the IBL strategy shows that it decreases during the simulation time.
This is due to its indexing strategy which is only based on time.
Chart 7.17 demonstrates that REMINDIN’ reduces the number of messages sent in net-
works of the same size independently of the data set. IBL produces less messages for the
synthetic data set than for the DMOZ data set, due to the concentration of content on fewer
peers.

The interpretation of the evaluation results should consider, however, that the Bibster
system is prototypical and the data set may not completely resemble observations obtain-
able from a commercial solution. Moreover, the synthetic data set is, though its properties
are well founded, still a synthetic data set. Nevertheless, the results point in the same di-
rection as the evaluations based on the DMOZ data set: REMINDIN’ achieves the same or
a higher recall than related approaches, while it may reduce the number of messages per
query.

Hypothesis 4 Figure 7.18 illustrates the contribution of the different layers to the perfor-
mance of REMINDIN’. Each chart is the result of using the indicated layer and all lower
layers, e.g., the content provider layer uses also the default network layer. The figure plots
the message gain against the total number of sent queries. The simulations are setup with
the same parameters as for Hypothesis 2.
The default network layer follows a naive routing strategy and offers a constant but low
performance contribution. The use of content provider layer steadily increases the recall,
while it leaves the number of messages per query unaffected. In the event of new queries
the recall falls back and recovers only slowly. The recommender layer allows the algorithm
to learn quicker and to achieve a higher recall. Finally, the bootstrapping layer reduces the
number of messages per query, but slightly decreases the recall. In total, however, the
message gain is at its highest level using all three layers.

200

7.4. Evaluation Results

Volatile Network - DMOZ Data Set - Layer Contribution

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

e
G

ai
n

 p
er

 Q
u

er
y

REMINDIN'

Content Provider + Recommender Layer

Content Provider Layer

Default Network Layer

Figure 7.18.: Performance Contribution of each Overlay Layer

Hypothesis 4 is validated, because each layer contributes to REMINDIN’ performance.
The performance gains are achieved, because the content provider layer directs queries
to knowledgable peers. The recall contribution of remote peers reached through content
provider shortcuts is the highest. The recommender layer gathers information from queries
which are routed through the local peer. Although this information is not precise it is a
good indicator for the direction a query should travel. The direct recall contribution of
remote peers reached through recommender links is low, but the selected peers forward
queries to knowledgeable content providers. The bootstrapping metric favors remote peers
which are well connected and receive a high number of queries. In case a peer has no
information about any of the classes used in the query it will forward the query to the
best bootstrapping peers. As the bootstrapping capabilities of the peers are disseminated
in the network, more peers select the same remote peers and thus the number of messages
decreases. The recall decreases slightly but less than the messages, thus the message gain
increases. The application of the bootstrapping layer depends on the concrete application
scenario. If the number of sent messages per query is crucial the bootstrapping layer offers
an efficient way to reduce them. If an increase in messages is acceptable – from 45 to 85
in a network of size 1024 – the application of only the recommender layer is advisable.

Hypothesis 5 Figure 7.19 presents the evaluation results comparing the performance of
REMINDIN’ using different index sizes. The figure plots the message gain against the
total number of sent queries. The simulations are setup with the same parameters as for
Hypothesis 2.
The size of the index determines the required resource allocation for routing purposes at
the local peer. The index size is constantly increased starting from 20, to 40, 100 and
finally unlimited number of shortcuts per peer.

We observe that within a certain range the limit to the number of shortcuts stored at

201

7. Evaluation of REMINDIN’

Volatile Network - DMOZ Data Set - Shortcut Index Size Influence

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

e
G

ai
n

 p
er

 Q
u

er
y

REMINDIN': Index Size 40

REMINDIN': Unlimited Index Size

REMINDIN': Index Size 100

REMINDIN': Index Size 20

Figure 7.19.: Influence of the Shortcut Index Size

the local peer does not affect the results in terms of message gain. Peers store different
shortcuts, because the ranking of the shortcuts partially depends on the local knowledge of
the peer. Although the number of local shortcuts is low, the collective number of different
shortcuts is high. This allows REMINDIN’ to achieve the performance levels already with
a relatively small index size. An index size between 40 and 100 is sufficient.

Hypothesis 6 Figures 7.20, 7.21, 7.22, and 7.23 visualize the evaluation results re-
lated to the effects of a tgreedy parameter variation. This parameter sets the minimal
similarity between a query and a shortcut used for peer selection. If tgreedy = 0 all
shortcuts are considered, otherwise shortcuts must be increasingly similar to the query
in order to be considered. The simulations are setup for a dynamic network using the
DMOZ data set. The DMOZ hierarchy is the reference ontology to determine the simi-
larities between shortcuts and queries. The index size is set to 40. This evaluation com-
pares additionally to the influence of the tgreedy parameter the two relaxation strategies
(queryRelaxation = true/false).

Figure 7.20 plots the recall against the total number of issued queries. Independently of
the value for tgreedy increases the recall with the number of issued queries, collapses in the
event of an interest shift and slightly recovers afterwards. The simulations using parameter
settings for tgreedy equal or below 0.5 perform distinctively better than simulations with
parameter settings above 0.5. A decrease in the value for tgreedy increases the recall. The
relaxation based peer selection mechanism (queryRelaxation = true) achieves a higher
recall, faster than the similarity based peer selection mechanism with the same value for
tgreedy.9 A low value for tgreedy is in particular helpful in the event of interest shift, as the
recall decrease is not as drastic as in cases with a high value for tgreedy.

9The bootstrapping layer is not activated for this strategy.

202

7.4. Evaluation Results

Volatile Network - DMOZ Data Set - Influence of Similarity Parameter Setting

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 5000 10000 15000 20000 25000 30000

No. of Queries

R
ec

al
l (

S
ta

te
m

en
ts

)

REMINDIN' similarity tgreedy=0,5

REMINDIN' similarity tgreedy=0,7

REMINDIN' similarity tgreedy=1

REMINDIN' similarity tgreedy=0

REMINDIN' relaxation tgreedy=0,5

Online available

Figure 7.20.: Influence of Similarity Parameter Settings: Recall

Volatile Network - DMOZ Data Set - Influence of Similarity Parameter Setting

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

es
 p

er
 Q

u
er

y

REMINDIN' similarity tgreedy=0,5

REMINDIN' similarity tgreedy=0,7

REMINDIN' similarity tgreedy=1

REMINDIN' similarity tgreedy=0

REMINDIN' relaxation tgreedy=0,5

Figure 7.21.: Influence of Similarity Parameter Settings: Messages

Figure 7.21 charts the messages per query against the total number of sent queries.
The number of messages per query is not as much influenced by the tgreedy parameter
as the recall. In all cases using the similarity based relaxation strategy with an activated
bootstrapping layer the number of messages per query falls with the total number of sent
queries. A higher value of tgreedy coincides with a lower number of messages per query
at the end of the simulation. The chart for the relaxation based strategy emphasizes the
message reducing influence of the bootstrapping layer, as the number of messages per
query is almost twice as high as in the simulations using the bootstrapping layer.

Figure 7.22 concentrates on the similarity based peer selection strategy and combines
the recall and messages per query figures in the message gain.

Figure 7.23 emphasizes the tradeoff between the higher recall achieved with the relax-

203

7. Evaluation of REMINDIN’

Volatile Network - DMOZ Data Set - Influence of Similarity Parameter Setting

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

e
G

ai
n

 p
er

 Q
u

er
y

REMINDIN' similarity tgreedy=0,5

REMINDIN' similarity tgreedy=0,7

REMINDIN' similarity tgreedy=1

REMINDIN' similarity tgreedy=0

Figure 7.22.: Influence of Similarity Parameter Settings: Message Gain

Volatile Network - DMOZ Data Set - Influence of Similarity Parameter Setting

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

e
G

ai
n

 p
er

 Q
u

er
y

REMINDIN' similarity tgreedy=0,5

REMINDIN' relaxation tgreedy=0,5

REMINDIN' relaxation tgreedy=1

Figure 7.23.: Influence of Similarity Parameter Settings – Query Relaxation Approach:
Message Gain

ation based peer selection strategy without the bootstrapping layer and the lower number
message per query for the similarity based peer selection strategy using the bootstrapping
layer. The highest message gain can be achieved with the similarity base peer selection
strategy with the application of the bootstrapping layer.

The simulation results validate the hypothesis, that the use of semantics is beneficial
for the peer selection process. The lower the value of tgreedy the more shortcuts are con-
sidered in the shortcut selection process. The algorithm favors shortcuts which are closer
to the query. If peers locally store content which is semantically close to each other the
service quality of the routing algorithm increases. This is particularly interesting in the

204

7.4. Evaluation Results

event of interest shift. The relaxation based peer selection offers for some cases a better
performance than the similarity based peer selection strategy. It depends on the data set
and the structure of the shared ontology which approach is better suited for an application.
Similarity based approaches are better suited for ontologies in which classes are primarily
connected through properties, because they can incorporate domain specific information
into the similarity measure. Relaxation based approaches profit most from a deep class
hierarchies, since the query is gradually broadened implying that the algorithm considers
few additional peers in each relaxation step.

Hypothesis 7 Figures 7.24, 7.25 and 7.26 depict the influence of different parameter
settings for the indexing strategy on the overall performance of REMINDIN’. The simu-
lations are setup with the same parameter setting as for Hypothesis 2. In each simulation
only the values set for simInfluence, typeInfluence, and timeInfluence are changed.
In REMINDIN’ all three parameters influence the index management. The parameters are
set to simInfluence = 0.1, typeInfluence = 0.8 and timeInfluence = 0.1. RE-
MINDIN’ LRU corresponds to the parameter setting in which only the time is consid-
ered to rank shortcuts for index maintenance (simInfluence = 0, typeInfluence =
0, timeInfluence = 1). Similarly REMINDIN’ community considers only the short-
cut type (simInfluence = 0, typeInfluence = 1, timeInfluence = 0). Finally,
REMINDIN’ similarity considers only the similarity of shortcuts to the local content
(simInfluence = 1, typeInfluence = 0, timeInfluence = 0).

Volatile Network - DMOZ Data Set - Shortcut Indexing Strategy

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

No. Of Queries

M
es

sa
g

e
G

ai
n

 p
er

 Q
u

er
y

REMINDIN'

REMINDIN' LRU

REMINDIN' Community

REMINDIN' Similarity

Kan, 1999 (Naive)

Figure 7.24.: Influence of Indexing Parameter Settings: Message Gain

Figure 7.24 plots the message gain against the total number of sent queries for four
different parameter settings and the naive routing approach. The pure indexing strategies
only based on similarity and time cannot increase the message gain levels above the levels
observed for the naive algorithm. Only with the community strategy message gain levels
comparable to REMINDIN’ are achievable. No parameter setting alleviates the problem

205

7. Evaluation of REMINDIN’

Volatile Network - DMOZ Data Set - Shortcut Indexing Strategy

0

1

2

3

4

5

6

7

8

0 5000 10000 15000 20000 25000 30000

No. Of Queries

A
ve

ra
g

e
P

at
h

 L
en

g
th

REMINDIN'

REMINDIN' LRU

REMINDIN' Community

REMINDIN' Similarity

Kan, 1999 (Naive)

Figure 7.25.: Influence of Indexing Parameter Settings: Average Path Length

Volatile Network - DMOZ Data Set - Shortcut Indexing Strategy

0

0,05

0,1

0,15

0,2

0,25

0,3

0 5000 10000 15000 20000 25000 30000

No. Of Queries

C
lu

st
er

in
g

 C
o

ef
fi

ci
en

t

REMINDIN'

REMINDIN' LRU

REMINDIN' Community

REMINDIN' Similarity

Kan, 1999 (Naive)

Figure 7.26.: Influence of Indexing Parameter Settings: Clustering Coefficient

that recall levels do not recover to levels observed during the learning phase. The boot-
strapping peers receive a larger proportion of the queries, reducing the number of messages
but also the recall as they are not aware of peers able to answer the new set of queries. As
mentioned before with the exclusion of the bootstrapping layer from the query selection
process this problem may be overcome. A user driven deletion of all indexing information
is another option.

Figure 7.25 compares the development of the average path length for different routing
approaches and parameter settings. Independently of the parameter setting the average path
length decreases below the average path length observed for the naive routing approach
during the simulation time.

Figure 7.26 compares the development of the clustering coefficient for different routing

206

7.5. Summary and Outlook

approaches and parameter settings. The initial average path length and clustering coeffi-
cient are roughly the same for all settings, because the simulations start with a small-world
network topology. The clustering coefficient of the naive algorithm decreases quickly af-
ter the simulation start. The clustering coefficient for REMINDIN’ LRU and REMINDIN’
community are unchanged during the simulation time. The clustering coefficient for RE-
MINDIN’ similarity increases steadily, while it increases slightly for REMINDIN’.

The naive algorithm establishes new connections to randomly chosen remote peers in
the simulation, because some peers go offline and the initial network layer configuration
changes. The resulting network topology is more similar to a random topology than to a
small-world topology as indicated by the two measures.

The simulations support the hypothesis that different parameter settings for the indexing
strategy influence the network organization. Increasing the influence of the simInfluence
parameter results in an increasing clustering coefficient. The REMINDIN’ parameter set-
ting combines the higher recall achievable through an emphasis on the typeInfluence
parameter and the higher clustering coefficient achievable through an emphasis on the
simInfluence. In application scenarios in which the detection of persons with similar
interest is more relevant than a high recall the parameter setting can be changed in favor
for the simInfluence parameter.

The recall for REMINDIN’ LRU and REMINDIN’ similarity are lower than for the
combined strategy, because neither strategy considers the importance of content providers.
Although peers with similar interests are clustered together the recall does not increase, be-
cause neither strategy distinguishes between content provider shortcuts and recommender
shortcuts. Recommender shortcuts boost performance levels only in combination with
content provider shortcuts.

7.5. Summary and Outlook

The evaluation of REMINDIN’ on three different data sets demonstrates the applicability
of this routing approach in pure unstructured P2P networks. REMINDIN’ outperforms
related routing approaches in terms of recall and messages in static networks. In dynamic
networks REMINDIN’ reaches the same recall levels as related approaches, but produces
less messages per query. Further on it finds answers with less hops than related routing
strategies. Depending on the application scenario its customization to use more messages
to reach a higher recall is straightforward. The performance of REMINDIN’ can be further
fine-tuned by varying the parameter setting. A change in the shortcut index size slightly
affects its performance. A variation in the parameter setting for the index maintenance
allows to support the creation of clusters with semantically similar content.
The main finding of our evaluation studies is that the use of semantics is beneficial for rout-
ing. Due to its semantics awareness REMINDIN’ achieves higher learning rates, adapts to
changing user interests and clusters peers with similar interests better.

207

7. Evaluation of REMINDIN’

Nevertheless, the performance of REMINDIN’ may be improved if we consider a num-
ber of open issues: The determination of the right parameter setting is laborious. For
example the optimal number of hops (maxTTL) depends on the network size; a strategy
for an automatic adaptation may be therefore beneficial. The same line of reasoning can
be applied for the parameters related to the index maintenance, the tgreedy parameter or
the bootstrapping threshold. REMINDIN’ currently does not offer a solution for the case
that no answers have been found. A combination with a feedback mechanism in which a
query is first sent with a lower value for maxTTL and only later if no results could be
found with a higher value could be a solution for this problem. Such a strategy may also
overcome the issue that the recall of the algorithm does not achieve higher levels after an
interest shift. Finally, we mention the evaluation of different routing approaches using data
sets from commercial solutions.

208

Part IV.

Related Work & Conclusions
“Das also war des Pudels Kern!”
— Johann Wolfgang von Goethe

Faust I, Vers 1323

8. Related Work
Und es gibt Dinge in denen auch der Geist ist.

— Anaxagoras

Overview

This part contains (i) related work and (ii) conclusions.

In this chapter we present related work on distributed knowl-
edge management systems in Section 8.1, on ontology engineer-
ing methodologies and argumentation support in Section 8.2 and
on query routing in Section 8.3.

8.1. Related Work on Distributed Knowledge Management
Systems

The SWAP system was designed to meet the requirements of a DKM scenario. The fol-
lowing scenario properties influenced the system design to a great extent (cf. Section 3.2):
The system supports the representation and sharing of user knowledge on their local ma-
chines. The knowledge as well as the peers are volatile. The system represents knowledge
which is sensitive.
Comparing the SWAP system with related approaches to knowledge sharing we look in
particular at these properties.

InfoQuilt The InfoQuilt system provides a framework for formulating complex informa-
tion requests, involving multiple ontologies, and supporting a form of knowledge discovery
(Arumugam et al., 2002). Likewise the SWAP system they use Semantic Web representa-
tion languages to formalize the exchanged knowledge. Their focus, though, is on efficient
query processing as the system was originally designed to support queries on distributed
databases. In their case the representation of user knowledge is of no concern, as they
assume that queries should be executed on already available databases. Hence, they do not
provide and do not need a methodology to support the construction of a shared ontology.
As their system is designed to integrate a limited number of data sources they propose a
mapping mechanism to enable integrated query processing. They do not address volatility
of knowledge providers. In order to find relevant information sources and ontologies stored
in the system they use centralized indices as opposed to our decentralized architecture.

211

8. Related Work

EDUTELLA EDUTELLA is a P2P system based on the JXTA platform, which offers
very similar base functionality as the SWAP system (Nejdl et al., 2002). The system is
designed to support the exchange of learning material between educational institutions to
facilitate its reuse. They have focused on the definition of a new meta query language to
integrate existing query languages, such as SQL, by means of Semantic Web representation
languages. The use case assumes a lightweight publishing process in which the learning
material is annotated w.r.t. a predefined core ontology. Volatility of peers is of less concern
in their use case and the published knowledge is publicly available. The have developed a
routing algorithm which is further discussed in section 8.3.

EDAMOK EDAMOK is a DKM system also referred to as KEEx . Their use case is the
same as ours (Bonifacio et al., 2002). The EDAMOK system thus provides functionality
to integrate and share user knowledge; they do not use Semantic Web representation lan-
guages but their own formalism, though. The users in their scenario are also volatile and
share sensitive information. Their research focus lies on the discovery of mappings be-
tween different user conceptualizations. Instead of offering a methodology to facilitate the
building of shared conceptualizations they propose a technical solution to bridge between
different conceptualizations. The application of their approach to knowledge integration
in case studies, however, moved their research focus more in the direction taken by our
methodology (Bonifacio et al., 2004b). They did not investigate routing strategies to find
peers in their network as they relied on manual created links between the peers.

8.2. Related Work To DILIGENT

The related work discussion for the DILIGENT methodology is separated into the presen-
tation of ontology engineering methodologies and argumentation frameworks supporting
ontology engineering.

8.2.1. Related Ontology Engineering Methodologies

The development of the DILIGENT methodology is driven by the requirements, i.e., de-
centralization, non expert builders, autonomy and iteration, as elaborated in Section 4.1.2,
page 46. Describing the related work we will pay particular attention to these factors.
Table 5.1, page 115 visualizes the differences between the major methodologies and DILI-
GENT.

The selection of related work is based on existing surveys on ontology engineering
methodologies and recent publications. An extensive state-of-the-art overview of method-
ologies for ontology engineering can be found in Gómez-Pérez et al. (2003). Jones et al.
(1998) compiled an early review on ontology engineering methodologies. More recently

212

8.2. Related Work To DILIGENT

Cristani & Cuel (2005) proposed a framework to compare ontology engineering method-
ologies and evaluated the established ones accordingly. A very practical oriented descrip-
tion for ontology building can be found in Noy & McGuinness (2001).

In our context, the following approaches are especially noteworthy.

IDEF5 IDEF5 is an ontology building methodology to support the creation of ontologies
for centralized settings (Benjamin et al., 1994). It is well documented. It originates and
is applied by a company and is therefore not published on academic conferences. The
methodology is divided into five main activities: Organize and Define Project, Collect
Data, Analyze Data, Develop Initial Ontology and Refine and Validate Ontology. The
organization and definition activity defines the managerial aspects of the ontology devel-
opment project. During the collect data activity the domain analysis is performed and
knowledge sources are determined and exploited. The result of the analyze data activity
is a first conceptualization of the domain. In the following activities the ontology engi-
neers start defining so called Proto-Concepts which are high level concepts characterizing
the domain. These are refined with relations and axioms. The Proto-Concepts are later
refined until the validation results in an ontology which meets the requirements set in the
beginning. Even though ontology evolution is supported by means of the extension of
Proto-Concepts, decentralized development and issues around partial autonomy are not
dealt with in IDEF5.

Enterprise Ontology The Enterprise Ontology proposed three main steps to engineer
ontologies: (i) to identify the purpose, (ii) to capture the concepts and relationships be-
tween these concepts, and the terms used to refer to these concepts and relationships,
and (iii) to codify the ontology (Uschold & King, 1995; Uschold & Grüninger, 1996;
Uschold et al., 1998b). The principles behind this methodology influenced many re-
searchers in the ontology community, as they have been among the first to propose a solu-
tion for the ontology engineering problem. However, they do not provide methodological
guidelines for the distributed and evolving ontology development.

CO4 CO4 (Cooperative construction of consensual knowledge bases) is a protocol to
build consensual ontologies in a distributed setting and provides a solution for a similar
setting as the one we are aiming at. It is supported by the CO4 system (Euzenat, 1995;
Euzenat, 1997). The starting point for this system are a number of knowledge bases (KB)
which are distributed but depend on each other hierarchically. The closer a knowledge
base is to the root knowledge base the more consensual knowledge it contains. The KBs
at a lower level send requests for consensus building to higher level KBs. The higher level
KBs will then distribute the request to all KBs below in the tree and collect their replies.
If all KBs accept the change request it becomes part of the consensual knowledge. The
KBs can also comment on the request and the proposer can reply to the comments. CO4

was evaluated in two case studies. It is concerned with the technical and formal aspects

213

8. Related Work

of the agreement process. It does not specify the way comments should be provided.
The protocol defines only activities related to the formal model of the knowledge base,
it is not concerned with the specification or knowledge acquisition related activities as in
DILIGENT.

METHONTOLOGY METHONTOLOGY is among the more comprehensive ontology
engineering methodologies as it is one for building ontologies either from scratch, reusing
other ontologies as they are, or by a process of re-engineering them (Gómez-Pérez, 1996;
Fernández-López et al., 1999). The framework enables the construction of ontologies at
the “knowledge level”, i.e., the conceptual level, as opposed to the implementation level.
The framework consists of: identification of the ontology development process with the
identification of the main activities, such as, evaluation, configuration, management, con-
ceptualization, integration implementation; a life cycle based on evolving prototypes; and
the methodology itself specifying the steps for performing the activities, the techniques
used, the outcomes and their evaluation. They describe very detailed the process to build
an ontology for centralized ontology based systems. They do not provide guidance for
decentralized ontology development and do not focus on post development processes.

CommonKADS CommonKADS is not per se a methodology for ontology development
(Schreiber et al., 1999). It covers aspects from corporate knowledge management, through
knowledge analysis and engineering, to the design and implementation of knowledge-
intensive information systems. CommonKADS has a focus on the initial phases for de-
veloping knowledge management applications. CommonKADS, thus, does not support
the creation of distributed knowledge management applications as they assume central-
ized development. Ontology evolution is not an issue in their methodology.

HOLSAPPLE & JOSHI In (Holsapple & Joshi, 2002) a methodology for collaborative
ontology engineering is proposed. The aim of their work is to support the creation of a
static ontology in a community process. A knowledge engineer defines an initial ontology
which is extended and changed based on the feedback from a panel of domain experts.
The feedback is collected with a questionnaire. The knowledge engineer examines the
questionnaires, incorporates the new requirements and a new questionnaire is sent around,
until all participants agree with the outcome. Their methodology neither supports the
evolution of ontologies nor does it provide a structured model to capture the feedback
from the domain experts.

On-To-Knowledge Methodology The On-To-Knowledge Methodology divides the on-
tology engineering task into five main steps. Each step has numerous sub-steps, requires
a main decision to be taken at the end and results in a special outcome (Sure, 2003). The
phases are Feasibility Study, Kickoff, Refinement, Evaluation and Application & Evolu-
tion. The sub-steps of the, e.g., Refinement are “Refine semi-formal ontology description”,

214

8.2. Related Work To DILIGENT

“Formalize into target ontology” and “Create prototype” etc. The documents resulting
from each phase are, e.g., for the Kickoff phase an “Ontology Requirements Specification
Document (ORSD)” and the “Semi-formal ontology description”. The documents are the
basis for the major decisions that have to be taken at the end to proceed to the next phase,
e.g., whether in the Kickoff phase one has captured sufficient requirements. The phases Re-
finement - Evaluation - Application - Evolution typically need to be performed in iterative
cycles. In a nutshell the On-To-Knowledge Methodology completely describes all steps
which are necessary to build an ontology for a centralized system. However, the methodol-
ogy does not cover scenarios where the participants are distributed in several locations. It
provides no guidance to systematically evolve an ontology neither does it provide support
for structured argumentation.

HCOME In (Kotis & Vouros, 2005) the authors present a very recent approach to
ontology development. HCOME stands for Human-Centered Ontology Engineering
Methodology. It supports the development of ontologies in a decentralized fashion. They
introduce three different spaces in which ontologies can be stored. The first one is the
Personal Space. In this space users can create and merge ontologies, control ontology
versions, map terms and word senses to concepts and consult the top ontology. The evolv-
ing personal ontologies can be shared in the Shared Space. The shared space can be
accessed by all participants. In the shared space users can discuss ontological decisions
based on the IBIS (Kunz & Rittel, 1970) model. After a discussion and agreement the
ontology is moved to the Agreed space. Although HCOME supports the same use case
as DILIGENT it focuses on the technical problems of it. HCOME does not provide a
detailed description of the process steps to follow in order to reach agreement among the
participants. Moreover, they have not extended the IBIS model which we found essential
for applying it to ontology engineering discussions.

UPON The Unified Process for ONtology building (UPON), has been proposed in (De
Nicola et al., 2005). Although the methodology has not been well tested in projects yet,
and tool support is still in its infancy, it is conceptually well founded. It is based on the
Unified Software Development Process and supported by UML (Unified Modeling Lan-
guage). UPON defines a series of work flows which are cyclically performed in different
phases. The work flows are Requirements identification, e.g., by writing a story board
and using competency questions, Analysis, which includes the identification of existing
resources and the modeling of the application scenario, Design and conceptualization, Im-
plementation and finally Test, in which the coverage of the application domain should be
guaranteed and the competency questions are evaluated. The work flows apply to the four
phases Inception, Elaboration, Construction and Transition defined in the methodology.
These phases are performed in a cyclic manner. After each cycle an applicable ontology is
produced. Although UPON supports the evolution of ontologies it does not define method-
ological guidelines for decentralized ontology development. As it is recent work, it shows
the raising interest in the research community in use cases treated by DILIGENT.

215

8. Related Work

8.2.2. Related Argumentation Frameworks

The DILIGENT argumentation framework facilitates the building and evolution of shared
ontologies in decentralized partially autonomous environments. The customization of the
IBIS model for ontology engineering and its formalization are the two main distinguishing
factors. Related work is discussed with a focus on these factors.

Easterbrook Easterbrook (1991) comprehensively summarizes the field of conflict me-
diation. He gives an introduction to economic and behavioral models to conceptualize and
resolve conflicts in discussions and proposes a new model to systematically resolve con-
flicts. The proposed model starts with identification of the conflict type according to the
model presented in (Shaw & Gaines, 1989). First, the parties establish correspondences
between their different conceptualizations. Second, the identify conflicting issues. The
conflicting issues are discussed supported by gIBIS. The parties externalize the assump-
tions behind the decisions and justify them. In this way goals and motivations become
clear to all participants. For conflicting issues resolution criteria should be defined. In
a next phase the participants should generate resolution options to resolve the different
conflicts. Given the evaluation criteria for the different issues, one can select the best res-
olution criteria for each issue.
This work establishes the basic framework for argumentation based conflict resolution.
The DILIGENT argumentation framework elaborates on this basis and introduces a frame-
work focusing on ontology engineering discussions.

Skuce Skuce (1995) is among the first to mention the importance and the difficulties in
reaching agreement on ontological commitments. His work focuses on the definition of
an upper-level ontology. It is similar to our work as he proposes to start with an initial
shared ontology, send it to the participants, collect comments and update it. He introduces
an intermediate level between the natural language description of the purpose for an on-
tology and the formal model. In this intermediate level the assumptions, justifications and
definitions should be captured in order to make assumptions underlying the formal model
explicit. In contrast to DILIGENT the proposed model is only roughly described. It does
not aim at the continuous evolution of the ontology in parallel to its usage, but at the cre-
ation of a static ontology with evolving prototypes. The discussion is not supported at a
fine-grained level.

Compendium In (Buckingham Shum et al., 2002) a case study in engineering an on-
tology from the combination of three existing ones is described. The compendium tool
(Selvin et al., 2001) is used to guide the discussion in a synchronous meeting.1 The results
of the case study show that structured argumentation is beneficial for ontology engineer-
ing. The traceability of the decisions was enhanced. However, the authors were more

1Compendium is a tool to support IBIS like discussions.

216

8.3. Related Work on Routing in Peer-to-Peer Networks

concerned with the evaluation of their tool than with the specific issues arising in an dis-
cussion concerning an ontology. The authors do not examine which kinds of arguments
are exchanged and how the discussion could be made more efficient.

Aschoff et. al. Aschoff et al. (2004) propose and evaluate a three-phased knowledge
mediation procedure which is especially conceived to integrate different perspectives and
information needs into one consensual ontology. The knowledge mediation procedure
consists of three main phases. In the generation phase users are jointly brainstorming
about relevant concept and instances of the knowledge domain to outline the content of
the ontology. During the explication phase each user independently works out a taxon-
omy by adding definitions and relations to the collected concepts. In the integration phase
the knowledge mediator supports the users to integrate their proposed taxonomies into a
shared conceptualization. They test the procedure with and without a moderator. With a
moderator the participants exchange more elaborated arguments and try to structure their
arguments better. They identify useful questions which can guide the actors in the ontolog-
ical discussion. However, they do not analyze the dominant types of arguments which are
used in the discussion and neither provide a formal model to capture the argumentation.

KUABA The KUABA design rationale ontology is a formal model of the IBIS argumen-
tation vocabulary (de Medeiros et al., 2005). It is used to capture design rationales in the
Software Design domain. The Kuaba ontology is represented in OWL. It contains con-
cepts and relations to capture Arguments, Questions, Ideas, Decisions and other entities in
order to model Software design rationales. The use of the ontology shall enhance reusabil-
ity and traceability and makes them machine processable. Neither does KUABA define a
subset of arguments particulary suitable for software design nor do the authors report on a
case study evaluation. KUABA demonstrates the interest in the topic in adjacent research
communities.

8.3. Related Work on Routing in Peer-to-Peer Networks

Their exist a number of different approaches to routing in P2P networks. As discussed in
Section 2.4.2.2, page 30 they can be categorized according to the two dimensions central-
ization and structure. The discussion of related routing algorithms follows this categoriza-
tion. The selection of related work was influenced by the surveys (Milojicic et al., 2002),
(Androutsellis-Theotokis & Spinellis, 2004), (Oram, 2001), (Tsoumakos & Roussopoulos,
2003b) and (Siebes, 2002).

REMINDIN’ is a decentralized routing algorithm for unstructured P2P networks, thus
meeting the autonomy and security requirements of our use case maintaining efficiently a
high quality of service in a volatile application setting. REMINDIN’ supports queries for
semantically enriched content. We will review related work particularly considering these
aspects.

217

8. Related Work

8.3.1. Routing Algorithms for Centralized Peer-to-Peer Networks

GlOSS and CORI First approaches for efficient indexing in P2P architectures were cen-
tral indices, that have to transmit metadata about the available content to central indexing
peers, like e.g., GlOSS (Gravano & García-Molina, 1995) and CORI (Callan et al., 1995).
These systems were designed to support the selection of best fitting databases for a query.
The algorithms establish non-forwarding indexing links between the indexed information
sources and the central server. The user queries the central server, which in turn answers
with the best fitting database which then answers the query. These systems, however, did
not aim at very-large-scale, highly dynamic, self-organizing P2P environments, because
they were not an issue at the time these systems were developed.

Napster Napster Shirky (2001) was one of the first applications which raised public
interest in the P2P paradigm. Napster facilitated the exchange of music files between
peers. Peers uploaded their music file descriptions to Napster servers and users could
search it. The results contained the peer identifiers where the proper music file could be
downloaded. Napster was closed down due to copyright problems on the shared data.

As discussed in the Section 6.1.3 a centralized system does not meet our requirements.

8.3.2. Routing Algorithms for Super-Peer-Based Peer-to-Peer Networks

EDUTELLA EDUTELLA uses a super-peer-based routing mechanism based (Nejdl
et al., 2003). Peers which have topics in common are arranged in a hypercube topol-
ogy. This topology guarantees that each node is queried exactly once for each query. It
is thus a very efficient approach to flood queries to all online peers. From the require-
ments perspective this solution for query routing is not adequate in our use case as the
peers have to publish their expertise to the super-peers. Their are also technical problems
in highly volatile P2P environments, as the hypercube topology must be maintained. Our
algorithm is not based on an explicit topology, thus it does not generate any overhead to
establish it. Our simulations illustrate that we need much less messages per query than the
number of peers available in the network in order to reach the most knowledgeable ones.
REMINDIN’cannot ensure a complete answer, though.

A second routing algorithm for the EDUTELLA system uses content provider shortcuts
for document retrieval (Balke et al., 2005). Only exact matches between content provider
shortcuts and queries are considered for peer selection. The peers publish their local in-
dices in a static super-peer network. The shortcut index policy considers temporal locality,
each index entry has a certain time to live after which the shortcut has to be reestablished
for the next query on that topic. In contrast to REMINDIN’ they only consider exact
matches between shortcuts and queries, hence they do not investigate complex ranking
metrics for semantically similar shortcuts. They do not use the concept of recommender
peers.

218

8.3. Related Work on Routing in Peer-to-Peer Networks

KAZAA We selected KAZAA as an example for currently running popular P2P file ex-
changes (Sharman Networks, 2006). KAZAA uses super-peers to locate content in the
network. KAZAA and other public P2P systems do not offer extended semantic querying
capabilities, such as the ones required in our scenarios, instead search is restricted to a
limited number of attributes, e.g., a file name, or a song title.

8.3.3. Related Routing Algorithms for Decentralized Peer-to-Peer Networks

The discussion of related routing algorithms for decentralized P2P networks is divided into
the review of structured and unstructured approaches to routing.

8.3.3.1. Routing Algorithms for Structured Decentralized Peer-to-Peer Networks

DHT One of today’s main technique for indexing P2P systems are so-called distributed
hash tables (DHTs). As discussed in Section 2.4.2.2, page 30 they come in two flavors. In
the one approach a hash key is generated from the indexing terms and the mapping between
keys and peers is stored in a well defined way. In the other approach the content itself is
replicated in a well defined manner in the network. We survey some of the more prominent
implementations of such networks. All of them could not be applied in our use case as
they do not support queries for semantic content. Furthermore, recent research shows that
due to the publishing/unpublishing overhead, DHTs lack efficiency when highly replicated
items are requested (Loo et al., 2004). The performance decreases further if the network
has to cope with a high churn rate. Content on the desktop of users is co-located with other
relevant items and can thus be used in a DKM setting. A disadvantage of structured P2P
topologies for distributed knowledge management is that structured overlays destroy this
locality meaning that enhanced opportunities for browsing are lost (Keleher et al., 2002).

Structured P2P topologies are different w.r.t. three efficiency criteria: the number of
hops a request has to travel until the key is found, the size of the index at each peer and the
number of peers which are contacted when a peer leaves or joins the network. The Chord
algorithm organizes keys or documents in a ring (Stoica et al., 2001). The identifier space
is uni dimensional. In a Chord ring a key can be found in log(N) hops, while each peer
maintains a list of log(N) entries, with N the number of peers connected to the network.
Joining the network causes log(N)2 messages. The identifier space in a CAN topology
is multidimensional (Ratnasamy et al., 2001). The number of hops to retrieve a key may
be reduced by increasing the number of dimensions, while the size of the index and the
number of insertion operations increases with number of dimensions. Pastry organizes the
keys in a Plaxton style global mesh (Rowstron & Druschel, 2001). In contrast to Chord
only log(N) peers need to be notified if a peer joins or leaves the network.

pSearch pSearch builds on the CAN model and combines information retrieval tech-
niques with CAN’s key generation function (Tang et al., 2003b; Tang et al., 2003a). The

219

8. Related Work

system is designed to support keyword based document retrieval. They use the vector
space model and latent semantic indexing in order to generate keys which place the cor-
responding content in the network according to its ‘semantic’ similarity. The semantic
similarity is determined by the latent semantic indexing function. This approach to struc-
ture topologies facilitates the answering of requests with more than one query term, while
maintaining the efficiency of DHT. It remains restricted to keyword based search, though.

P-Grid Gridvine is build on top of the P-Grid P2P infrastructure (Aberer et al., 2004;
Aberer et al., 2003). P-Grid offers the classical properties of DHT building on a balanced
tree and order preserving hashing functions. The Gridvine extension allows for querying
RDF(S) structures stored in the P-Grid system. Gridvine stores RDF triples in the DHT.
A peer is responsible for all triples related to a specific resource. Besides the storing and
retrieval functionality for RDF it integrates a semantic gossiping algorithm which allows
for the detection of correspondences between different schemas stored in the network.
Gridvine is not applicable in our scenario as triples are stored at well defined peers in the
network which are not related to the peer creating it.

8.3.3.2. Routing Algorithms for Unstructured Decentralized Peer-to-Peer Networks

For application scenarios where DHT approaches to routing are not adequate, such as ours,
different routing algorithms have been proposed.2

Gnutella The Gnutella protocol is a very early routing algorithm for unstructured P2P
networks (Kan, 2001). In Gnutella remote peers are detected by ping messages within
the local IP subnetmask. The detected remote peers build the neighborhood of a Gnutella
peer with an average size of 5. A request is routed in the network by flooding it, i.e., by
sending it to all neighbors. Answers are returned directly to the querying peer. A request
is tagged with a maximum number of hops (TTL) and contains an ID in order to prevent
that one peer answers a query twice. As the flooding approach to query routing does not
scale to large number of peers for obvious reasons, the random walk algorithm has been
proposed by Lv et al. (2002). A predefined number of random walkers is originated at
the querying peer and travels the network. At each remote peer the random walker checks
with the originating peer, whether an answer has been found and whether the walker should
continue or not. The random walker query routing is from a performance point of view
comparable to the naive approach presented in this thesis. We compared REMINDIN’ to
the naive approach to routing and show REMINDIN’s superior performance.

Small-World The small-world characteristics of P2P networks and their emergence are
the topic of numerous research contributions (cf. e.g., (Watts & Strogatz, 1998; Faloutsos

2See Section 6.1.3 for a discussion why DHT’s are not suitable for our scenario.

220

8.3. Related Work on Routing in Peer-to-Peer Networks

et al., 1999; Kleinberg, 2000; Pujol et al., 2004)). Search strategies exploiting small-world
characteristics are scrutinized in, e.g., Adamic et al. (2001). Two ideas are proposed: A
peer establishes search links with remote peers of a high out-degree. Applying a flooding
strategy in such a network reaches a large portion of the available remote peers with a
relative small number of hops3. This strategy produces many messages ensuring a high
quality of service. According to the second idea non-forwarding indexing and forwarding
search links are established between the local peer and a remote peer with a high in-degree.
A request is sent to a remote peer which is aware of the content of many other remote peers.
It can thus forward the request to the most promising remote peer.
A routing strategy according to the second idea does not meet the requirements of our use
case, as peers must advertise their expertise. The first idea influenced the definition of the
bootstrapping layer of REMINDIN’.

SON In order to improve Gnutella’s performance Crespo & Garcia-Molina (2002a),
Crespo & Garcia-Molina (2002b) introduce two new query routing solutions for keyword
based document retrieval. They explore the advantages of locally storing the query results
from different peers in combination with a number of indexing terms from the retrieved
documents (Crespo & Garcia-Molina, 2002a). This approach is comparable to the con-
tent provider layer in REMINDIN’. They later introduce the notion of semantic overlay
layers (Crespo & Garcia-Molina, 2002b). Based on the clustering results of local docu-
ments a peer joins different semantic overlay layers each responsible for a specific cluster.
The content is categorized according to shared topic hierarchies. In this algorithm super-
peers are used to decide upon the assignment of peers to clusters. A request is handled by
the overlay to which this document presumably belongs. While the specific technique is
only applicable to documents they do not mention how to manage the overlay index in a
completely distributed scenario. Likewise our approach they make use of the shared topic
hierarchy to identify promising peers if no exact matches for a query can be found.

Anthill Anthill is a framework to support different P2P applications, such as file sharing
and distributed computing (Babaoğlu et al., 2002). In the Anthill framework a peer is
associated with a nest of ants, while ants represent messages. An ant can travel from one
nest to another to fulfill its task. For the file sharing scenario each nest stores a number of
keyword-hash – nest pairs. An ant can evaluate the list and decide to which nest to move
next. If an ant has found an answer to a request it travels back its route and updates the
keyword-hash – nest pairs in the visited nests. Although they have applied this approach
to routing only for keyword based search, it is comparable to our creation strategy for
recommender shortcuts. In our scenario we cannot inform the peers on the message path
about the result of the query, as this would contradict our security requirements. They do
not exploit any semantic relaxation techniques to enhance the peer selection quality.

3In Miligram’s original experiments 5 to 6 hops were sufficient to connect any American with each other.
Today, this average degree of separation, has decreased to 4 to 5.

221

8. Related Work

Fireworks model The query routing algorithm presented in Hang Ng et al. (2003) con-
siders first the creation of clusters of semantically close peers and second the exploitation
of these clusters through a fireworks routing strategy. They define a general similarity
function which can be based on arbitrary attributes. Peers publish the values of these at-
tributes in the network, while receiving peers decide based on the similarity whether they
keep search links to the remote peer or not. Clusters of semantically close peers emerge. A
query is first sent on a random walk into the network. If the query encounters a peer which
can answer the query the query is forwarded to all neighbors of that remote peer. This
query routing algorithm can be adapted to meet the requirements of our scenarios. Their
paper, however, remains too general to be applied directly to our use cases. We have tested
the approach with our similarity function, but realized that we could not substantiate sig-
nificant performance gains with our data sets, because most queries target at information
stored at few peers only.

PlanetP PlanetP concentrates on P2P communities in unstructured P2P networks for
keyword based document retrieval (Cuenca-Acuna et al., 2002). They introduce two data
structures for searching and ranking which create a replicated global index using gossiping
algorithms. Each peer maintains an inverted index of its documents and spreads the term-
to-peer index. Thus forwarding indexing links are created. Inspired on the simple TF-
IDF metric and based on this replicated index a simple ranking algorithm based on the
inverse peer frequency is implemented. They focus on the reduction of advertisement
messages sent when a peer joins the network. They only resend an advertisement when
the content has changed significantly and the retrieved answers do not correspond to the
index information. Advertisement based approaches do not meet the requirements of one
of our scenarios. For the Bibster use case, however, the advanced advertisement strategies
can be considered.

Interest based locality (IBL) Sripanidkulchai et al. (2003) introduce a routing algo-
rithm exploiting interest-based locality in a static network. The system is used for keyword
based document retrieval. They create shortcuts to remote peers which have successfully
answered a query. These shortcuts are later exploited to forward requests. They are thus
comparable to content provider shortcuts or non-forwarding search links. A new request
is first sent to all peers listed in the shortcut index, but the remote peers do not forward
the query. If the first strategy does not return any results, the query is forwarded according
to the Gnutella protocol. To update the index they use a LRU strategy. In comparison
to REMINDIN’ they do not exploit semantic similarity between queries and shortcuts to
select peers neither do they use shortcuts for forwarding. Our simulations show that RE-
MINDIN’ is better suited for the tested scenarios than the IBL approach.

Different indexing strategies for the IBL approach are investigated in Voulgaris et al.
(2004), which influenced the design of our own indexing strategy. They find that an in-
dexing strategy considering the number of retrieved documents outperforms a pure LRU

222

8.3. Related Work on Routing in Peer-to-Peer Networks

strategy. In our indexing strategy we additionally consider semantic similarity which par-
ticularly assists community creation.

Intelligent Search The Intelligent Search (Kalogeraki et al., 2002) and the Adaptive
Probabilistic Search (Tsoumakos & Roussopoulos, 2003a) algorithms are both designed to
optimize keyword based search for documents. The use local index information obtained
from queries and answers from remote peers to guide a query through the network. This
is comparable to our content provider shortcuts. Additionally they inform all peers on the
message path about the result of the query. This is comparable to our recommender short-
cuts. They compare their algorithm in an information retrieval scenario with the Gnutella
protocol and show the algorithm superior performance. They do, however, provide active
feedback to the peers on the message path about the quality of the search result. This does
not meet the requirements for our application, as a peer may only return an answer to the
querying peer does not want to inform others about his expertise.

Bibster For the Bibster system two routing strategies are implemented. In Haase et al.
(2004b) an expertise based peer selection algorithm is introduced. From the local content
the expertise of a peer is derived and represented in a shared topic hierarchy. The expertise
is advertised to remote peers found on the network layer through non-forwarding indexing
links. A peer decides based on the semantic similarity between the advertisement and
its local expertise whether to store or discard the advertisement. A semantic topology
emerges. Drawbacks of this approach to routing are that the decision if a peer knows about
a specific topic is a yes / no decision which does not take into account the quantity of
expertise and that the indexing links are static. The publishing of expertise produces some
message overhead when a peer joins the network.
As the algorithm requires the advertisement of expertise it does not completely meet the
requirements of the IBIT scenario. Besides we show in Tempich & Staab (2005) that
REMINDIN’ provides a higher quality of service after a warm-up phase as REMIND-
IN’ adapts dynamically with new queries. We also investigate the combination of the two
routing algorithms with the result that the combined algorithm learns faster, is less affected
by changing queries and reaches generally a higher recall.

Infobeacons The Infobeacons system supports the selection of databases from keyword
queries (Cooper, 2004). An Infobeacon is assigned to each participating database in the
distributed system. An Infobeacon stores for successful queries important keywords and
query terms of the retrieved documents with the number of retrieved documents. This is
comparable to the content provider shortcuts we introduce for RDF resources. We have
adapted the Infobeacons ranking strategy for conjunctive queries. As the system is de-
signed for document retrieval it does not use semantics for query relaxation or as an input
for an indexing strategy.

223

8. Related Work

More recently they have studied load balancing strategies on unstructured P2P net-
works by comparing different approaches to create and maintain search and indexing links
(Cooper & Garcia-Molina, 2005). They conclude that efficient load balancing is possi-
ble using only local information. They do not use semantic information for the decision
whether a search link or an indexing link should be created, though. Their analysis is based
on different parameters for a random based selection, while they consider a semantically
motivated decision procedure as future work.

8.4. Summary

The review of the related work emphasizes the contribution of this thesis.

A number of research prototypes have been implemented to support knowledge sharing
with P2P systems. The SWAP system was the first which was customized for distributed
knowledge management settings and enabled the exchange of knowledge represented in
terms of RDF(S).

Research in ontology engineering methodologies is mature. A number of elaborated
ontology engineering methodologies exists. They support the creation of ontologies for
centralized ontology-based applications. Currently a number of methodologies addressing
the requirements of decentralized ontology creation and evolution are under investigation.
DILIGENT is the first reporting on case study experiences and providing a detailed de-
scription of the process.

The support of knowledge acquisition with an argumentation model has been investi-
gated before. However, empirical findings show, that existing argumentation methods are
too general, for the ontology engineering task. DILIGENT proposes a customization of
conventional argumentation models, which is adequate for the consensus building process
in ontology engineering discussions.

Routing in P2P systems has attracted many research contributions. Most of the existing
solutions are not applicable to our scenario for functional or security reasons. REMINDIN’
is unique in this field as it has higher performance levels than related routing approaches
and supports explicit semantics.

224

9. Conclusions

Overview

In this chapter we summarize the main contributions of this work
in Section 9.1 and present an outlook to future work and research
directions in Section 9.2.

9.1. Summary

Knowledge workers in contemporary organizations increasingly work in decentralized au-
tonomous teams in order to cope with the rapidly changing business requirements. The
underlying paradigm shift from the centralized hierarchical organization towards the de-
centralized autonomous organization of knowledge workers was early predicted by Peter
F. Drucker in his study on the influence of information technology on the society. In order
to adequately support knowledge workers in collecting, sharing and deploying knowledge
from a technical point of view distributed knowledge management systems have been pro-
posed. Apart from the direct analogy between decentralized autonomous teams and nodes
in distributed knowledge management systems, these systems promise cost advantages and
lower barriers of entry to knowledge sharing in comparison to centrally organized knowl-
edge management systems. However, the decentralized system organization encourages
heterogeneous knowledge structuring, makes knowledge location difficult and raises secu-
rity concerns.

This thesis analyzes the requirements arising in distributed knowledge management sys-
tems and has three main contributions.

1. It proposes a system architecture and implementation for a distributed knowledge
management system.

2. It proposes an ontology engineering methodology supporting the consensus building
process in distributed, autonomous and evolving ontology engineering settings.

3. It proposes a novel routing algorithm enabling knowledge location in distributed
knowledge management systems.

The SWAP system is a P2P infrastructure supporting distributed knowledge manage-
ment. Knowledge representation in terms of the Semantic Web language RDF enables

225

9. Conclusions

knowledge exchange between peers in the network. The SWAP system supports integra-
tion of local knowledge sources into a local node repository and their annotation with
semantic information. It offers visualization, retrieval, and integration services to facili-
tate knowledge sharing and enables the location of people with a certain expertise in the
organization. The SWAP system is customized to two uses cases: XAROP supports dis-
tributed knowledge management in the tourism domain; Bibster supports the exchange of
bibliographic information between researchers. The system has been evaluated in two case
studies.

DILIGENT is an ontology engineering methodology addressing the requirements of
the distributed knowledge management scenario. A board comprising ontology engineers
starts the process by building a small initial ontology which is distributed to the users. The
users are allowed to locally adapt the shared ontology in order to comply with changing
business requirements. The user changes serve as input for a next version of the shared
ontology. A board of ontology engineers and users updates the shared ontology in the
central analysis and revision stage. The users locally update their shared ontology to the
new version. In this way the shared ontology responds to emerging requirements, while
the process allows for cost savings through small set up costs in comparison to a central
approach.

A major issue in DILIGENT relates to the consensus building process, because the
heterogeneous knowledge models created by the users should be partly integrated into
the shared ontology. DILIGENT supports the consensus building process extending an
existing argumentation model and adapts it to the requirements of ontology engineering
discussions. It suggests a restricted set of argument types, thereby offers a systematic
guidance for the discussions. As a result the agreement process becomes more structured
and traceable. The methodology has been successfully evaluated in three case studies. The
requirements on ontology engineering of the distributed knowledge management scenario
are similar to the ones of the Semantic Web. The process is thus promising for this larger
scenario, too.

REMINDIN’ is a novel routing algorithm enabling knowledge location in pure unstruc-
tured peer-to-peer networks. REMINDIN’ uses only local knowledge to direct complex
queries to knowledgeable remote peers in the network. It uses responses to queries as well
as information from queries routed through the peer in order to build up a local shortcut
index. It uses semantic information of the ontology for peer selection and index mainte-
nance. REMINDIN’ is efficient in terms of resource consumption and effective in terms of
peer selection. REMINDIN’ follows a layered approach to query routing, which offers the
possibility to customize it to scenarios in which a high recall is more important than a low
number of messages per query or vice versa. Evaluations on three data sets demonstrate
that REMINDIN’ has higher performance levels w.r.t to recall and messages per query
in static and dynamic networks than related routing approaches. Furthermore, the simu-
lations show that the use of semantics is beneficial for query routing. On the one hand
explicit semantics can help to cope with interests shifts in the query behavior of peers. On
the other hand it enables the clustering of peers with similar interests. REMINDIN’ thus

226

9.2. Outlook

supports socializing in distributed knowledge management scenarios.

This thesis provides solutions for some of the organizational and technical challenges
encountered in distributed knowledge management. Accounting for the empirical findings
of this work in the next section we point out a number of future research directions for
improving the economic viability of current approaches to distributed knowledge manage-
ment.

9.2. Outlook

The SWAP system provides an infrastructure to solve many of the technical challenges in
a distributed knowledge management environment. In order to become a commercially
viable solution it should be none obtrusively integrated into the work environment of its
potential users, e.g., on the desktop. Current developments in the field of desktop search
engines point in this direction. The integration of data from multiple applications is a sec-
ond requirement for an eventual economic break through. The results achieved in research
related to the social semantic desktop may contribute to the alleviation of this problem.

However, a serious thread to any further development of commercial P2P system is US
Supreme Court ruling from the 27th of June 2005. It holds P2P application providers re-
sponsible for any copyright infringements supported by the platform, such as downloading
music files. A byproduct of a knowledge exchange platform is that it also supports the ex-
change of copyright protected information. Future research should find solutions enabling
knowledge exchange while maintaining the copyrights of the owners.

DILIGENT has demonstrated its use for the development of ontologies in distributed
knowledge management settings. The next challenges come with its application in the
larger Semantic Web context. The process may be particularly interesting for projects con-
cerned with large scale ontology development, such as currently ongoing in the life science
domain. For this to happen, the supporting tools should meet the usability requirements
of these communities. Current developments related to the Web 2.0 could provide the
infrastructure to build lightweight ontology engineering platforms supporting the DILI-
GENT methodology.
With an increasing deployment of ontologies in commercial applications cost estimations
related to the creation and maintenance of ontologies become more important. As DILI-
GENT covers the entire life cycle of the ontology development it can also be the basis to
calculate the total cost of ownership related to an ontology.
Another open issue in ontology engineering methodologies relates to the advances in the
field of ontology learning. Although these techniques are not yet perfect, they offer ac-
ceptable performance levels to support the ontology engineering effort. However, only an
integration into the overall ontology engineering process ensures that these performance
gains can be lifted in ontology development projects.

As demonstrated with the help of simulations REMINDIN’ improves the routing quality

227

9. Conclusions

in pure unstructured P2P networks. Future research could analyze routing approaches for
unstructured P2P networks analytically to determine maximal performance levels. The
combination of structured and unstructured approaches to routing is also promising. The
network layer could be organized in a structured overlay while the semantic layers remain
unstructured. The advantage of such an approach is that broadcasts can be executed more
efficiently. Another option is the combination of advertisement based strategies with the
passive strategy of REMINDIN’. This may be feasible for knowledge areas were privacy
is of less concern. In any case the community could profit from more standardized test
data sets in order to make the evaluation results of different groups comparable.

The starting point of this work is the postulate that distributed knowledge management
systems offers advantages in comparison to centralized approaches in that it causes lower
setup costs, lowers the barrier of entry for knowledge sharing and better fits to the knowl-
edge creation process in organizations. The decentralized autonomous knowledge man-
agement organization comes with a number of organizational and technical challenges.
This thesis proposes some solutions on the organizational as well as on the technical side
to cope with these challenges and underlines the feasibility of the distributed approach to
knowledge management.

228

Part V.

Appendix
‘Synonyms, ordered by estimated frequency’ search for noun ‘appendix’:

Sense 1
appendix – (supplementary material that is collected and appended

at the back of a book)
=> addendum, supplement, postscript – (textual matter that

is added onto a publication; usually at the end)

Sense 2
appendix, vermiform appendix, vermiform process, cecal appendage – (a
vestigial process that extends from the lower end

of the cecum and that resembles a small pouch)
=> process, outgrowth, appendage – (a natural prolongation

or projection from a part of an organism either
animal or plant; ‘a bony process’)

— Derived from WordNet 1.7.1, Copyright 2001 by Princeton University.
All rights reserved.

A. Evaluating the SWAP Metadata Model

Section 3.4.1 introduces the SWAP metadata model. The model captures provenance and
other information required by the SWAP system and the routing algorithm. This section
evaluates the efficiency of this approach to store metadata.

A.1. Evaluation Methodology

In order to evaluate the efficiency of this approach to store metadata we analyze three
major use cases:

Use Case 1 The peer adds new content to the local node repository. He uses Onto-
Scrape to extract local information from his machine and integrates it with the exist-
ing knowledge in the local node repository. In this case the Metadata Integrator adds
provenance information according to the SWAP metadata model to the extracted in-
formation before it is integrated with the existing local knowledge.

Use Case 2 The peer uses the information stored in the metadata model in order to
select remote peers in case a query is routed through the peer or it sends a query
itself. In this case the peer retrieves metadata information related to the resources
occurring in the query.

Use Case 3 The peer ranks all available remote peers according to their bootstrapping
value. It retrieves all peer objects from the local node repository.

The efficiency is determined in terms of the required time to accomplish the tasks related
to a use case. For evaluation purposes a data set generated from the DBLP web site1 is
used. The DBLP data set includes nearly 420.000 statements describing 126.000 instances.
Each instance is defined by an average of three statements, which classify it according to
the ontology, state the title and its type.

A.2. Evaluation Results

All tests were performed on a 1 GHz machine with 512 Mb RAM. In the figures the
abbreviations have the following meaning:

1http://www.informatik.uni-trier.de/~ley/db/

231

http://www.informatik.uni-trier.de/~ley/db/

A. Evaluating the SWAP Metadata Model

Sstatement type = statement

|S| = number of statements

SO = swabbi-object

|SO| = number of swabbi-objects

SP = swabbi peer-object

|SP | = number of swabbi peer-objects

Use Case 1 The local node repository is empty and all statements are added the first
time. The test is performed with an in-memory version of the LNR. The time con-
sumed including all available DBLP data in the repository is compared with the time
consumed by the metadata integrator.

Figures A.1 and A.22 depict the time used to integrate new statements. The ex-
periments are repeated with a varying number of statements to integrate. While
Figure A.1 concentrates on the content integration from the local peer, Figure A.2
visualizes the effects of integrating knowledge from remote peers into the LNR.
Generating the new statements takes about as much time as integrating the state-
ments into the repository. The annotation of the content statements doubles the
integration time. The complexity is O(|S| ∗ |P |).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

tim
e

in
 m

s

Number of content statements (|S[C]|)

Total
Metadata Integrator
Integration in LNR

Figure A.1.: First Time Storage Annotation Times

Use Case 2 In this case we observe the time consumed to retrieve a swabbi-object from
the LNR. Figure A.3 plots the time to retrieve one swabbi-object against the num-
ber of content statements. The time represents the average of ten runs. The figure

2Note that 1.000ms = 1s; 100.000ms = 1’40”min; 106ms = 16’40”min; 107ms = 2:46’40”std.

232

A.2. Evaluation Results

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

in
 m

s

Number of content statements (|S[C]|)

Total first integration; |SP|=1
|SP|=30
|SP|=100

Figure A.2.: First Time Storage Annotation Times Increasing the Number of Peers

suggests that the retrieval of the swabbi-objects is little influenced by the number of
content statements.

 0

 2

 4

 6

 8

 10

 12

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Re
tr

ie
va

l t
im

e
in

 m
s

Number of content statements (|S[C]|)

The Swabbi-objects for one resource

Figure A.3.: Time to Retrieve a Swabbi-object

Use Case 3 Figure A.4 plots the time to retrieve all swabbi peer-objects against the
number of swabbi peer-objects, changing the number of content statements in the
repository.

In summary the inclusion of the swabbi-objects in the repository is feasible. The time to
include the statements into the repository doubles. With a growing number of peers refer-

233

A. Evaluating the SWAP Metadata Model

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

tim
e

in
 m

s

Number of swabbi peer-objects (|S P|)

R etrieval of all S P ;|S | = 1000
|S | = 10000

Figure A.4.: Time to Retrieve All Peers

enced in the LNR the time to retrieve these objects increases exponentially. The number of
remote peers, which the routing algorithm is, however, low enough that this is uncritical.

234

Bibliography

Abecker, A. & van Elst, L. (2004). Ontologies for knowledge management. In Staab, S.
& Studer, R. (Eds.), Handbook on Ontologies, pages 435–454. Springer.

Abecker, A., van Elst, L., & Dignum, V. (Eds.) (2004). Proceedings of the 2nd Workshop
on Agent-Mediated Knowledge Management at the 16th European Conference on
Artificial Intelligence (ECAI’2004).

Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M., &
Schmidt, R. (2003). P-Grid: a self-organizing structured P2P system. ACM SIGMOD
Record, 32(3):29–33.

Aberer, K., Cudre-Mauroux, P., Hauswirth, M., & van Pelt, T. (2004). GridVine: Building
Internet-Scale Semantic Overlay Networks. In (van Harmelen et al., 2004), pages
107–121.

Adamic, L. A., Lukose, R. M., Puniyani, A. R., & Huberman, B. A. (2001). Search in
power-law networks. Physical Review E, 64(046135):1–8.

Adar, E. & Huberman, B. (2000). Free riding on gnutella. First Monday, 5(10).

Aho, A. V., Denning, P. J., & Ullman, J. D. (1971). Principles of optimal page replacement.
Journal of the ACM, 18(1):80–93.

Alavi, M. & Leidner, D. E. (2001). Review: Knowledge management and knowledge
management systems: Conceptual foundations and research issues. MIS Quarterly,
25(1).

Albert, R. & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews
of Modern Physics, 74(1):47–97.

Albrecht, F. (1993). Strategisches Wissensmanagement der Unternehmensressource Wis-
sen. Verlag Peter Lang.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., & Werthimer, D. (2002).
Seti@home: an experiment in public-resource computing. Communications of the
ACM, 45(11):56–61.

Androutsellis-Theotokis, S. & Spinellis, D. (2004). A survey of peer-to-peer content dis-
tribution technologies. ACM Computing Surveys, 36(4):335–371.

235

BIBLIOGRAPHY

Arrow, K. J. (1963). Social Choice and Individual Values. Wiley, New York.

Arumugam, M., Sheth, A., & Arpinar, I. B. (2002). The peer-to-peer semantic web: A
distributed environment for sharing semantic knowledge on the web. In Proceedings
of the Workshop on Real World RDF and Semantic Web Applications at the 11th
International World Wide Web Conference (WWW2002).

Aschoff, F., Schmalhofer, F., & van Elst, L. (2004). Knowledge mediation: A procedure
for the cooperative construction of domain ontologies. In (Abecker et al., 2004),
pages 20–28.

Babaoğlu, Ö., Meling, H., & Montresor, A. (2002). Anthill: A framework for the develop-
ment of agent-based peer-to-peer systems. In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS2002), pages 15–22. IEEE
Computer Society.

Balke, W.-T., Nejdl, W., Siberski, W., & Thaden, U. (2005). Progressive distributed Top-k
retrieval in peer-to-peer networks. In Proceedings of the 21st International Confer-
ence on Data Engineering (ICDE2005), pages 174–185. IEEE Computer Society.

Benjamin, P. C., Menzel, C., Mayer, R. J., Fillion, F., Futrell, M. T., DeWitte, P., & Lingi-
neni, M. (1994). Ontology capture method (IDEF5). Technical report, Knowledge
Based Systems, Inc.

Benjamins, V. R., Casanovas, P., Breuker, J., & Gangemi, A. (2005a). Law and the Se-
mantic Web. Springer.

Benjamins, V. R., Casanovas, P., Contreras, J., Lopez-Cobo, J. M., & Lemus, L. (2005b).
Iuriservice: An intelligent frequently asked questions system to assist newly ap-
pointed judges. In (Benjamins et al., 2005a), pages 201–217.

Berners-Lee, T. (1993). Naming and addressing: URIs, URLs, ... W3C Overview. avail-
able at http://www.w3.org/Addressing/.

Berners-Lee, T. (1998). Cool URIs don’t change. W3C Style. available at
http://www.w3.org/Provider/Style/URI.html.

Berners-Lee, T. (2000). Semantic Web. http://www.w3.org/2000/Talks/1206-xml2k-tbl/
slide10-0.html. Talk at the XML2000 conference.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American,
284(5):34–43.

Bol, G. (2004). Deskriptive Statistik. Oldenbourg.

Bonifacio, M., Bouquet, P., Danieli, A., Donà, A., Mameli, G., & Nori, M. (2004a). KEEx:
A peer-to-peer solution for distributed knowledge management. In Proceedings of the

236

http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

BIBLIOGRAPHY

4th International Conference on Knowledge Management (I-KNOW’04), pages 43–
52. Journal of Universal Computer Science (J.UCS).

Bonifacio, M., Camussone, P., & Zini, C. (2004b). Managing the KM Trade-Off: Knowl-
edge centralization versus distribution. Journal of Universal Computer Science,
10(3):162–175.

Bonifacio, M., Bouquet, P., & Traverso, P. (2002). Enabling distributed knowledge man-
agement: Managerial and technological implications. Novatica and Informatik/Infor-
matique, III(1):22–29.

Boose, J. H. (1989). A survey of knowledge acquisition techniques and tools. Knowledge
Acquisition, 1(1):3–37.

Breuker, J. & Winkels, R. (2003). Use and reuse of legal ontologies in knowledge en-
gineering and information management. In Proceedings of the Workshop on Legal
Ontologies and Web-based Information Management at the 9th International Confer-
ence on Artifical Intelligence and Law (ICAIL2003).

Broekstra, J. (2003). SeRQL: Sesame RDF query language. Technical report, University
of Karlsruhe. http://swap.semanticweb.org/public/Publications/swap-d3.2.pdf.

Broekstra, J., Ehrig, M., Haase, P., van Harmelen, F., Kampman, A., Sabou, M., Siebes,
R., Staab, S., Stuckenschmidt, H., & Tempich, C. (2003). A metadata model for
semantics-based peer-to-peer systems. In Proceedings of the 1st Workshop Semantics
in Peer-to-Peer and Grid Computing (SemPGRID) at the 12th International World
Wide Web Conference (WWW 2003), pages 23–42.

Broekstra, J., Kampman, A., & van Harmelen, F. (2002). Sesame: A generic architecture
for storing and querying RDF and RDF schema. In (Horrocks & Hendler, 2002),
pages 54–64.

Buckingham Shum, S., Gangmin Li, V. U., Domingue, J., & Motta, E. (2003). Visualizing
internetworked argumentation. In Kirschner, P. A., Shum, S. J. B., & Carr, C. S.
(Eds.), Visualizing Argumentation: Software Tools for Collaborative and Educational
Sense-Making, pages 185–204. Springer.

Buckingham Shum, S., Motta, E., & Domingue, J. (2002). Augmenting design deliberation
with compendium: The case of collaborative ontology design. In Proceedings of the
Workshop on Facilitating Hypertext-Augmented Collaborative Modeling (HypACoM
2002) at the ACM Hypertext Conference. Retrieved May 20, 2006 from http://kmi.
open.ac.uk/projects/compendium/SBS-HT02-Compendium.html.

Buckingham Shum, S. & Hammond, N. (1994). Argumentation-based design ratio-
nale: what use at what cost? International Journal of Human-Computer Studies,
40(4):603–652.

237

http://swap.semanticweb.org/public/Publications/swap-d3.2.pdf
http://kmi.open.ac.uk/projects/compendium/SBS-HT02-Compendium.html
http://kmi.open.ac.uk/projects/compendium/SBS-HT02-Compendium.html

BIBLIOGRAPHY

Bussler, C., Davies, J., Fensel, D., & Studer, R. (Eds.) (2005). Proceedings of the 2nd
European Semantic Web Conference (ESWC2005). Springer.

Callan, J. P., Lu, Z., & Croft, W. B. (1995). Searching distributed collections with inference
networks. In Proceedings of the 18th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 21–28. ACM Press.

Camarinha-Matos, L. M. & Afsarmanesh, H. (Eds.) (2003). Processes and Foundations
for Virtual Organizations. Kluwer Academic Publishers.

Casanovas, P., Casellas, N., Tempich, C., Vrandečić, D., & Benjamins, R. (2005). OPJK
modeling methodology. In Proceedings of the Workshop on Legal Ontologies and
Artificial Intelligence Techniques (LOAIT) at the 11th International Conference on
Artificail Intelligence and Law (ICAIL2005), pages 121–134. Wolf Legal Publishers.

Chen, P. P. (1976). The entity-relationship model - toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36.

Cholvi, V., Felber, P., & Biersack, E. (2004). Efficient search in unstructured peer-to-peer
networks. European Transactions on Telecommunications: Special Issue on P2P
Networking and P2P Services, 15(6):535–548.

Christin, N., Weigend, A. S., & Chuang, J. (2005). Content availability, pollution and
poisoning in file sharing peer-to-peer networks. In Proceedings of the 6th ACM con-
ference on Electronic commerce (EC2005), pages 68–77. ACM Press.

Chu, W. W., Yang, H., Chiang, K., Minock, M., Chow, G., & Larson, C. (1996). Cobase:
a scalable and extensible cooperative information system. Journal of Intelligent In-
formation Systems, 6(2-3):223–259.

Conklin, J. & Begeman, M. L. (1988). gIBIS: a hypertext tool for exploratory policy
discussion. In Proceedings of the 1988 ACM conference on Computer-supported
cooperative work, pages 140–152. ACM Press.

Conklin, J., Selvin, A., Shum, S. B., & Sierhuis, M. (2001). Facilitated hypertext for
collective sensemaking: 15 years on from gIBIS. In Proceedings of the 12th ACM
conference on Hypertext and Hypermedia, pages 123–124. ACM Press.

Cooper, B. F. (2004). Guiding queries to information sources with infobeacons. In
Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware
(Middleware ’04:), pages 59–78. Springer.

Cooper, B. F. & Garcia-Molina, H. (2004). Sil: Modeling and measuring scalable peer-to-
peer search networks. In Proceedings of the 1st workshop on Databases, Information
Systems, and Peer-to-Peer Computing (DBISP2P), pages 2–16. Springer.

Cooper, B. F. & Garcia-Molina, H. (2005). Ad hoc, self-supervising peer-to-peer search
networks. ACM Transactions on Information Systems (TOIS), 23(2):169–200.

238

BIBLIOGRAPHY

Corcho, O., Fernández-López, M., & Gómez-Pérez, A. (2003). Methodologies, tools and
languages for building ontologies: where is their meeting point? Data & Knowledge
Engineering, 46(1):41–64.

Crespo, A. & Garcia-Molina, H. (2002a). Routing indices for peer-to-peer systems. In
Proceedings of the 22nd International Conference on Distributed Computing Systems,
pages 23–34. IEEE Computer Society.

Crespo, A. & Garcia-Molina, H. (2002b). Semantic Overlay Networks for P2P Systems.
submitted for publication http://www-db.stanford.edu/~crespo/publications/op2p.pdf.

Cristani, M. & Cuel, R. (2005). A survey on ontology creation methodologies. Interna-
tional Journal on Semantic Web Information Systems, 1(2):49–69.

Cuenca-Acuna, F. M., Peery, C., Martin, R. P., & Nguyen, T. D. (2002). PlanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Commu-
nities. Technical Report DCS-TR-487, Department of Computer Science, Rutgers
University.

D. ÓLeary (1998). Using AI in knowledge management: Knowledge bases and ontologies.
IEEE Intelligent Systems, 13(3):34–39.

Daswani, N., Garcia-Molina, H., & Yang, B. (2003). Open problems in data-sharing peer-
to-peer systems. In Proceedings of the 9th International Conference on Database
Theory (ICDT2003), pages 1–15. Springer.

Davenport, T. H. & Prusak, L. (1998). Working Knowledge – How organisations manage
what they know. Havard Business School Press.

Davenport, T., De Long, D., & Beers, M. (1998). Successful knowledge management
projects. Sloan Management Review, 39(2):43–57.

Davenport, T. H. (2005). Thinking for a Living. Havard Business School Press.

de Hoog, R. (1998). Methodologies for building knowledge based systems: Achievement
and prospects. In Handbook of Applied Expert Systems, pages 1–14. CRS Press.

de Mántaras, R. L. & Saitta, L. (Eds.) (2004). Proceedings of the 16th European Confer-
ence on Artificial Intelligence (ECAI 2004). IOS Press.

de Medeiros, A. P., Schwabe, D., & Feijó, B. (2005). Design rationale for model-based
designs in software engineering. Monografias em Ciência da Computação 02/05,
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO.

De Nicola, A., Missikoff, M., & Navigli, R. (2005). A Proposal for a Unified Process for
Ontology Building: UPON. In Proceedings of the 16th International Conference on
Database and Expert Systems Applications (DEXA 2005), pages 655–664. Springer.

239

http://www-db.stanford.edu/~crespo/publications/op2p.pdf

BIBLIOGRAPHY

Dean, M., Connolly, D., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L.,
Patel-Schneider, P. F., & Stein, L. A. (2002). Owl web ontology language 1.0 refer-
ence. Technical report, W3C Working Draft.

Devedžić, V. (2002). Understanding ontological engineering. Communications of the
ACM, 45(4):136–144.

Drucker, P. (1997). Looking ahead: Implications of the present. Harvard Business Review,
76(5):18–32.

Drucker, P. (1988). The coming of the new organization. Harvard Business Review,
66(1):45–53.

Easterbrook, S. (1991). Handling conflict between domain descriptions with computer-
supported negotiation. Knowlege Acquistion, 3(3):255–289.

Ehrig, M. (2006). Ontology Alignment: Bridging the Semantic Gap. PhD thesis, Institut
AIFB, Universität Karlsruhe (TH).

Ehrig, M., Schmitz, C., Staab, S., Tane, J., & Tempich, C. (2003). Towards evaluation of
peer-to-peer-based distributed knowledge management systems. In (van Elst et al.,
2003), pages 73–88.

Euzenat, J. (1995). Building consensual knowledge bases: Context and architecture.
In Proceedings of the 2nd International Conference on Building and Sharing Very
Large-Scale Knowledge Bases (KBKS), pages 143–155. IOS Press.

Euzenat, J. (1997). A protocol for building consensual and consistent repositories. Rapport
de recherche 3260, INRIA Rhône-Alpes, Grenoble (FR).

Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the
internet topology. In Proceedings of the ACM SIGCOMM 2002 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communication,
pages 251–262. ACM.

Fensel, D. (2001). Ontologies: Silver bullet for knowledge management and electronic
commerce. Springer.

Fensel, D., Staab, S., Studer, R., van Harmelen, F., & Davies, J. (2003). A future per-
spective: Exploiting peer-to-peer and the semantic web for knowledge management.
In Towards the Semantic Web Ontology-based Knowledge Management, pages 245–
264. Wiley.

Fernández-López, M., Gómez-Pérez, A., Sierra, J. P., & Sierra, A. P. (1999). Building a
chemical ontology using Methontology and the Ontology Design Environment. IEEE
Intelligent Systems, 14(1):37–46.

Fox, G. (2001). Peer-to-peer networks. Computing in Science & Engineering, 3(3):75–78.

240

BIBLIOGRAPHY

Gaines, B. R. (1989). Social and cognitive processes in knowledge acquisition. Knowledge
Acquisition, 1(1):39–58.

Gangemi, A., Pisanelli, D., & Steve, G. (1998). Ontology integration: Experiences with
medical terminologies. In (Guarino, 1998b), pages 163–178.

Gangemi, A., Sagri, M. T., & Tiscornia, D. (2003a). Metadata for content description in le-
gal information. In Proceedings of the Workshop on Legal Ontologies and Web-based
Information Management at the 9th International Conference on Artifical Intelligence
and Law (ICAIL2003).

Gangemi, A., Guarino, N., Masolo, C., & Oltramari, A. (2003b). Sweetening WORDNET
with DOLCE. AI Magazine, 24(3):13–24.

Gil, Y., Motta, E., Benjamins, V. R., & Musen, M. A. (Eds.) (2005). Proceedings of the
4th International Semantic Web Conference (ISWC2005). Springer.

Gómez-Pérez, A. (2001). Evaluation of ontologies. International Journal of Intelligent
Systems, 16(3):391–409.

Gómez-Pérez, A. (1996). A framework to verify knowledge sharing technology. Expert
Systems with Application, 11(4):519–529.

Gómez-Pérez, A., Fernández-López, M., & Corcho, O. (2003). Ontological Engineering.
Advanced Information and Knowlege Processing. Springer.

Gong, L. (2001). Project JXTA: A technology overview. Technical report, Sun Microsys-
tems Inc.

Gotel, O. & Finkelstein, A. (1994). An analysis of the requirements traceability prob-
lem. In Proceedings of International Conference on Requirements Engineering 1994,
pages 94–101. IEEE CS Press.

Gravano, L. & García-Molina, H. (1995). Generalizing GlOSS to vector-space databases
and broker hierarchies. In Proceedings of the 21th International Conference on Very
Large Databases, VLDB, pages 78–89. Morgan Kaufmann.

Grüninger, M. & Fox, M. (1995). Methodology for the design and evaluation of ontologies.
In Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing
at the 14th International Joint Conference on Artificial Intelligence (IJCAI1995).

Groove Networks (2001). Groove networks product backgrounder. White paper, Groove
Networks. http://www.groove.net/pdf/backgrounder/GVO-Backgrounder.pdf.

Gruber, T. R. (1993a). A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199–220.

241

http://www.groove.net/pdf/backgrounder/GVO-Backgrounder.pdf

BIBLIOGRAPHY

Gruber, T. R. (1995). Towards principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, 43(5/6):907–928.

Gruber, T. R. (1993b). Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. In Formal Ontology in Conceptual Analysis and Knowledge Represen-
tation. Kluwer Academic Publishers.

Grüninger, M. & Fox, M. (1995). TOVE: Manual of the Toronto Virtual Enterprise. Tech-
nical report, Department of Industrial Engineering, University of Toronto. available
at http://www.ie.utoronto.ca/EIL/tove/ontoTOC.html.

Guarino, N. (1998a). Formal ontology and information systems. In (Guarino, 1998b).

Guarino, N. (Ed.) (1998b). Proceedings of the First International Conference on Formal
Ontologies in Information Systems (FOIS). IOS-Press.

Guarino, N. & Welty, C. (2002). Evaluating ontological decisions with OntoClean. Com-
munications of the ACM, 45(2):61–65.

Haase, P., Broekstra, J., Ehrig, M., Menken, M., Mika, P., Plechawski, M., Pyszlak, P.,
Schnizler, B., Siebes, R., Staab, S., & Tempich, C. (2004a). Bibster - a semantics-
based bibliographic peer-to-peer system. In (van Harmelen et al., 2004), pages 122–
136.

Haase, P., Siebes, R., & van Harmelen, F. (2004b). Peer selection in peer-to-peer networks
with semantic topologies. In Proceeding of the 1st International Conference on Se-
mantics of a Networked World: Semantics for Grid Databases (ICSNW2004), pages
108–125. Springer.

Handschuh, S. (2005). Creating Ontology-based Metadata by Annotation for the Semantic
Web. PhD thesis, Institut AIFB, Universität Karlsruhe (TH).

Hang Ng, C., Cheung Sia, K., & Chan, C.-H. (2003). Advanced peer clustering and
firework query model in the peer-to-peer network. In Proceedings of the 12th Inter-
national World Wide Web Conference (WWW2003) - Posters. ACM.

Hartmann, J., Sure, Y., Haase, P., del Carmen Suárez-Figueroa, M., Studer, R., Gómez-
Pérez, A., & Palma, R. (2005). Ontology metadata vocabulary and applications. In
Proceedings of the Workshop on Web Semantics (SWWS) at the International Con-
ference on Ontologies, Databases and Applications of Semantics (OTM2005), pages
906–915. Springer.

Herzog, O., Schek, H.-J., Fuhr, N., Chowdhury, A., & Teiken, W. (Eds.) (2005). Proceed-
ings of the 14th International Conference on Information and Knowledge Manage-
ment (CIKM2005). ACM Press.

Holsapple, C. W. (Ed.) (2003). Handbook on Knowledge Management 2 – Knowledge
Directions. Springer, Heidelberg.

242

http://www.ie.utoronto.ca/EIL/tove/ontoTOC.html

BIBLIOGRAPHY

Holsapple, C. W. & Joshi, K. D. (2002). A collaborative approach to ontology design.
Communications of the ACM, 45(2):42–47.

Hong, T. (2001). Performance. In (Oram, 2001), pages 203–241.

Horrocks, I. & Hendler, J. (Eds.) (2002). Proceeding of the 1st International Semantic
Web Conference (ISWC 2002). Springer.

House, E. (1980). Evaluating with validity. Sage Publications, Beverly Hills.

IEEE (1990). IEEE standard glossary of software engineering terminology. IEEE Standard
610.12-1990, ISBN 1-55937-067-X.

IEEE (1996). IEEE guide for developing of system requirements specifications. IEEE
Standard 1233-1996.

Jasper, R. & Uschold, M. (1999). A framework for understanding and classifying ontol-
ogy applications. In Proceedings of the 12th Workshop on Knowledge Acquisition,
Modeling and Management (KAW-99).

Jones, D., Bench-Capon, T., & Visser, P. (1998). Methodologies for ontology develop-
ment. In Proceedings of the IT&KNOWS Conference of the 15th IFIP World Com-
puter Congress. Chapman-Hall.

Kalogeraki, V., Gunopulos, D., & Zeinalipour-Yazti, D. (2002). A Local Search Mecha-
nism for Peer-to-Peer Networks. In Proceedings of the 11th International Conference
on Information and Knowledge Management (CIKM), pages 300–307. ACM Press.

Kalyanpur, A., Parsia, B., & Hendler, J. A. (2005). A tool for working with web ontologies.
International Journal on Semantic Web and Information Systems, 1(1):36–49.

Kan, G. (2001). Gnutella. In (Oram, 2001), pages 94–122.

Karagiannis, D. & Reimer, U. (Eds.) (2004). Proceeding of the 5th International Confer-
ence on Practical Aspects of Knowledge Management (PAKM2004). Springer.

Keleher, P. J., Bhattacharjee, B., & Silaghi, B. D. (2002). Are virtualized overlay networks
too much of a good thing? In Revised Papers from the 1st International Workshop on
Peer-to-Peer Systems (IPTPS ’01), pages 225–231. Springer.

Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42(4):741–843.

Kirkpatrick, S., Gelatt, C., & Vecci, M. (1983). Optimisation by simulated annealing.
Science, 220(4598):671–680.

Kleinberg, J. (2000). Navigation in a small world. Nature, 406:845.

243

BIBLIOGRAPHY

Kotis, K. & Vouros, G. A. (2005). Human-centered ontology engineering: The HCOME
methodology. Knowledge and Information Systems.

Kuhn, T. S. (1996). The Structure of Scientific Revolutions. University of Chicago Press,
3rd edition.

Kunz, W. & Rittel, H. W. J. (1970). Issues as elements of information systems. Working
Paper 131, Institute of Urban and Regional Development, University of California,
Berkeley, California.

Lamparter, S., Ehrig, M., & Tempich, C. (2004). Knowledge extraction from classification
schemata. In Proceeding of the International Conference on Ontologies, Databases
and Applications of SEmantics (ODBASE2004), pages 618–636. Springer.

Lassila, O. & Swick, R. (1999). Resource description framework (RDF). Proposed rec-
ommendation, W3C. http://www.w3c.org/TR/WD-rdf-syntax.

Lekatos, I. (1978). The Methodology of Scientific Research Programmes. Cambridge
University Press.

Lenat, D. B. & Guha, R. V. (1990). Building large knowledge-based systems. Representa-
tion and inference in the Cyc project. Addison-Wesley, Massachusetts.

Leonard, D. (1995). Wellsprings of Knowledge: Building and Sustaining the Sources of
Innovation. Harvard Business School Press.

Li, Y., Bandar, Z. A., & McLean, D. (2003). An approach for measuring semantic sim-
ilarity between words using multiple information sources. IEEE Transactions on
Knowledge and Data Engineering, 15(4):871–882.

Liang, J., Kumar, R., Xi, Y., & Ross, K. (2005). Pollution in P2P file sharing systems.
In The 24th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2005). IEEE.

Lladó, E., Salamanca, I., & Llodrà, B. (2002). D7.1 first user environment definition.
SWAP project deliverable 7.1, Fundación IBIT.

Loo, B., Hellerstein, J., Huebsch, R., Shenker, S., & Stoica, I. (2004). Enhancing P2P
file-sharing with an internet-scale query processor. In Proceedings of the Interna-
tional Conference on Very Large Databases (VLDB2004), pages 432–443. Morgan
Kaufmann.

Löser, A., Staab, S., & Tempich, C. (2005a). Semantic methods for P2P query routing.
In Proceedings of the 3rd German Conference on Multiagent System Technologies
(MATES2005), pages 15–26. Springer.

244

BIBLIOGRAPHY

Löser, A. & Tempich, C. (2005). On ranking peers in semantic overlay networks. In WM
2005: Professional Knowledge Management - Experiences and Visions, Contribu-
tions to the 3rd Conference Professional Knowledge Management - Experiences and
Visions. DFKI, Kaiserslautern.

Löser, A., Tempich, C., Quilitz, B., Staab, S., Balke, W. T., & Nejdl, W. (2005b). Searching
dynamic communities with personal indexes. In (Gil et al., 2005), pages 491 – 505.

Lozano-Tello, A. & Gómez-Pérez, A. (2004). ONTOMETRIC: A Method to Choose the
Appropriate Ontology. Journal of Database Management, 15(2):1–18.

Lv, Q., Cao, P., Cohen, E., Li, K., & Shenker, S. (2002). Search and replication in unstruc-
tured peer-to-peer networks. In Proceedings of the 2002 International Conference on
Supercomputing (ICS 2002), pages 84–95. ACM Press.

Maedche, A., Motik, B., & Stojanovic, L. (2003). Managing multiple and distributed
ontologies on the semantic web. The VLDB Journal, 12(4):286–302.

Maedche, A. & Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent
Systems, 16(2):72–79.

Maier, R. & Hädrich, T. (2004). Centralized versus peer-to-peer knowledge management
systems. In Proceedings of the 5th European Conference on Organizational Knowl-
edge, Learning and Capabilities (OKLC).

Mann, W. C. (2005). RST Web Site. http://www.sfu.ca/rst.

Mann, W. C. & Thompson, S. A. (1988). Rhetorical Structure Theory: Towards a func-
tional theory of text organization. Text, 8(3):243–281.

Marcu, D. (1997). The rhetorical parsing of natural language texts. In Proceed-
ings of the 35th Annual Meeting of the Association for Computational Linguistics,
(ACL’97/EACL’97), pages 96–103. Morgan Kaufmann.

McGuinness, D. L. (2003). Ontologies come of age. In Spinning the Semantic Web, pages
171–194. MIT Press.

Merugu, S., Srinivasan, S., & Zegura, E. (2003). Adding Structure to Unstructured Peer-
to-Peer Networks: The Role of Overlay Topology. In Group Communications and
Charges: Technology and Business Models. ICQT 2003 Proceedings, pages 83 – 94.
Springer.

Milgram, S. (1967). The small world problem. Psychology Today, 67(1).

Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins,
S., & Xu, Z. (2002). Peer-to-peer computing. Technical Report HPL-2002-57, HP
Laboratories Palo Alto.

245

http://www.sfu.ca/rst

BIBLIOGRAPHY

Motro, A. (1990). FLEX: A tolerant and cooperative user interface to databases. IEEE
Trans. on Knowledge and Data Engineering (TKDE), 2(2):231–246.

Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M.,
& Risch, T. (2002). EDUTELLA: A P2P networking infrastructure based on RDF.
In Proceedings to the 11th International World Wide Web Conference (WWW2002),
pages 604–615. ACM.

Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., & Löser,
A. (2003). Super-peer-based routing and clustering strategies for RDF-based peer-to-
peer networks. In Proceedings of the 12th International World Wide Web Conference,
WWW2003, pages 536–543. ACM.

Nonaka, I. & Takeuchi, H. (1995). The Knowledge-Creating Company. Oxford University
Press, Oxford.

Nottelmann, H., Aberer, K., Callan, J., & Nejdl, W. (Eds.) (2005). Proceedings of the 2005
ACM Workshop on Information Retrieval in Peer-to-Peer Networks (P2PIR 2005).

Noy, N. & Klein, M. (2003). Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems, 6(4):428–440.

Noy, N. & McGuinness, D. L. (2001). Ontology development 101: A guide to creat-
ing your first ontology. Technical Report KSL-01-05 and SMI-2001-0880, Stanford
Knowledge Systems Laboratory and Stanford Medical Informatics.

Noy, N. F. & Musen, M. A. (2002). The prompt suite: Interactive tools for ontology merg-
ing and mapping. Technical report, Stanford Medical Informatics, Stanford Univer-
sity, Stanford, California, USA.

Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W., & Musen, M. A.
(2001). Creating semantic web contents with protégé-2000. IEEE Intelligent Systems,
16(2):60–71.

Oram, A. (Ed.) (2001). Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology.
O´Reilly, Sebastopol (CA).

Paslaru Bontas, E. & Tempich, C. (2005). How Much Does It Cost? Applying ONTOCOM
to DILIGENT. Technical Report TR-B-05-20, FU Berlin.

Pinto, H. S., Staab, S., Sure, Y., & Tempich, C. (2004a). OntoEdit empowering SWAP:
a case study in supporting DIstributed, Loosely-controlled and evolvInG Engineer-
ing of oNTologies (DILIGENT). In Proceedings of the 1st European Semantic Web
Symposium ESWS2004, pages 16–30. Springer.

Pinto, H. S., Staab, S., & Tempich, C. (2004b). DILIGENT: Towards a fine-grained
methodology for DIstributed, Loosely-controlled and evolvInG Engineering of oN-
Tologies. In (de Mántaras & Saitta, 2004), pages 393–397.

246

BIBLIOGRAPHY

Pinto, H. S. (2000). Ontology Integration: Characterization of the Process and a Method-
ology to Perform it. PhD thesis, UNIVERSIDADE TÉCNICA DE LISBOA INSTI-
TUTO SUPERIOR TÉCNICO.

Pinto, H. S. & Martins, J. P. (2002). Evolving Ontologies in Distributed and Dynamic Set-
tings. In Proceedings of the 8th International Conference on Principles and Knowl-
edge Representation and Reasoning (KR-02), pages 365–374. Morgan Kaufmann.

Pinto, H. S. & Martins, J. (2001). A Methodology for Ontology Integration. In Proceeding
of the 1st International Conference on Knowledge Capture (K-CAP2001), pages 131–
138. ACM Press.

Pinto, H. S., Tempich, C., Staab, S., & Sure, Y. (2005). Distributed Engineering of On-
tologies (DILIGENT). In Semantic Web and Peer-to-Peer, pages 301–320. Springer.

Pinto, H. S. A. N. P. & Martins, J. P. (2004). Ontologies: How can they be built? Knowlege
Information Systems, 6(4):441–464.

Plechawski, M. (2004a). D11.2 integrated platform with authorization. SWAP project
deliverable 11.2, empolis Polska.

Plechawski, M. (2004b). D11.3 swap-orenge integration. SWAP project deliverable 11.3,
empolis Polska.

Polanyi, M. (1966). The Tacit Dimension. Doubleday & Co., Garden City, NY.

Potts, C. & Bruns, G. (1988). Recording the reasons for design decisions. In Proceedings
of the 10th international conference on Software engineering, pages 418–427. IEEE
Computer Society Press.

Probst, G., Raub, S., & Romhardt, K. (1998). Wissen managen. Gabler Verlag, Wiesbaden.

Pujol, J. M., Flache, A., Sangüesa, R., & Delgado, J. (2004). Emergence of complex
networks through local optimization. In (de Mántaras & Saitta, 2004), pages 48–52.

Ramakrishnan, N. & Grama, A. Y. (1999). Data mining-guest editors’ introduction: From
serendipity to science. Computer, 32(8):34–37.

Ramesh, B. & Dhar, V. (1992). Supporting systems development by capturing delibera-
tions during requirements engineering. IEEE Transactions on Software Engineering,
18(6):498–510.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001). A scalable content
addressable network. In Proceedings of the Conference on applications, technologies,
architectures, and protocols for computer communications (ACM SIGCOMM ’01),
pages 161–172. ACM Press.

247

BIBLIOGRAPHY

Rowstron, A. & Druschel, P. (2001). Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In Proceedings of the International Confer-
ence on Distributed Systems Platforms (Middleware2001), pages 329–350. Springer.

Saroiu, S., Gummadi, P. K., & Gribble, S. D. (2003). A measurement study of peer-to-peer
file sharing systems. Multimedia Systems, 9(2).

Schmitz, C., Staab, S., & Tempich, C. (2004). Socialisation in peer-to-peer knowledge
management. In (Tochtermann & Maurer, 2004), pages 35–42.

Schmücker, J. & Müller, W. (2003). Praxiserfahrungen bei der Einfürung dezentraler
Wissensmanagement Lösungen. Wirtschaftsinformatik, 45(3):307–311.

Schneider, U. (1996). Management in der wissensbasierten Unternehmung. In Wissens-
management, pages 13–48. Frankfurter Allgemeneine Zeitung.

Schoder, D. & Fischbach, K. (2003). Peer-to-Peet Netzwerke für das Ressourcenmanag-
ment. Wirtschaftsinformatik, 45(3):313–323.

Schollmeier, R. (2001). A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In Proceedings of the 1st International
Conference on Peer-to-Peer Computing (P2P 2001), pages 101–102. IEEE Computer
Society.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., van de Velde,
W., & Wielinga, B. (1999). Knowledge Engineering and Management — The Com-
monKADS Methodology. The MIT Press, Cambridge, Massachusetts.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1–47.

Selvin, A., Shum, S. B., Sierhuis, M., Conklin, J., Zimmermann, B., Palus, C., Drath, W.,
Horth, D., Domingue, J., Motta, E., & Li, G. (2001). Compendium: Making meetings
into knowledge events. In Proceedings of the Knowledge Technologies Conference.

Sharman Networks (2006). Kazaa. http://www.kazaa.com.

Shaw, M. & Gaines, B. (1989). Comparing conceptual structures: Consensus, conflict,
correspondence and contrast. Knowledge Acquisition, 1(4):341–363.

Shirky, C. (2001). Listening to Napster. In (Oram, 2001), pages 21–37.

Siebes, R. (2002). Peer to peer solutions in the semantic web context: an overview. SWAP
deliverable D1.1., Vrije Universiteit Amsterdam.

Skuce, D. (1995). Conventions for reaching agreement on shared ontologies. In Proceed-
ings of the 9th Banff Knowledge Acquisition Based Systems Workshop, pages 3–19,
Banff.

248

http://www.kazaa.com

BIBLIOGRAPHY

Skype Limited (2006). Skype. http://www.skype.com.

Sowa, J. F. (2000). Knowledge Representation, Logical, Philosophical and Computational
Foundations. Brooks Cole Publishing Co., Pacific Grove, CA.

Sripanidkulchai, K., Maggs, B., & Zhang, H. (2003). Efficient Content Location Using
Interest Based Locality in Peer-to-Peer System. In Proceedings of the 22nd Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM
2003). IEEE.

Staab, S., Schnurr, H.-P., Studer, R., & Sure, Y. (2001). Knowledge processes and ontolo-
gies. IEEE Intelligent Systems, 16(1):26–34.

Staab, S., Studer, R., & Sure, Y. (2003). Knowledge processes and knowledge meta
processes in ontology-based knowledge management. In (Holsapple, 2003), pages
47–68.

Stoica, I., Morris, R., Karger, D., Kaashoek, F., & Balakrishnan, H. (2001). Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proceedings of
the Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (ACM SIGCOMM 2001), pages 149–160. ACM.

Stojanovic, L., Maedche, A., Motik, B., & Stojanovic, N. (2002). User-driven ontol-
ogy evolution management. In Proceedings of the 13th European Conference on
Knowledge Engineering and Knowledge Management EKAW2002, pages 285–300.
Springer.

Störig, H. J. (1992). Kleine Weltgeschichte der Philosophie. Fischer Taschenbuch Verlag,
Frankfurt am Main.

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering principles and
methods. Data and Knowledge Engineering, 25(1–2):161–197.

Sure, Y. (2003). Methodology, Tools and Case Studies for Ontology based Knowledge
Management. PhD thesis, University of Karlsruhe.

Sure, Y., Angele, J., & Staab, S. (2003). Ontoedit: Multifaceted inferencing for ontology
engineering. Journal on Data Semantics, 2800:128–152.

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., & Wenke, D. (2002). OntoEdit:
Collaborative ontology development for the semantic web. In (Horrocks & Hendler,
2002), pages 221–235.

Sure, Y. & Studer, R. (2002). On-To-Knowledge methodology. In On-To-Knowledge:
Semantic Web enabled Knowledge Management, pages 33–46. J. Wiley and Sons.

249

http://www.skype.com

BIBLIOGRAPHY

Sure, Y., Tempich, C., Vrandecic, D., & Pinto, S. H. (2004). Guidelines and evaluation for
sekt ontology engineering. SEKT official deliverable 7.1.2, Institute AIFB, University
of Karlsruhe (TH).

Susarla, A., Liu, D., & Whinston, A. B. (2003). Peer-to-peer enterprise knowledge man-
agement. In (Holsapple, 2003), pages 129–139.

Swartout, B., Patil, R., Knight, K., & Russ, T. (1996). Toward distributed use of large-scale
ontologies. In Proceedings of the 10th Knowledge Acquisition Workshop (KAW’96).

Tang, C., Xu, Z., & Dwarkadas, S. (2003a). Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In Proceedings of the Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication
(ACM SIGCOMM 2003), pages 175–186. ACM.

Tang, C., Xu, Z., & Mahalingam, M. (2003b). pSearch: information retrieval in structured
overlays. Computer Communication Review, 33(1):89–94.

Tempich, C., Pinto, H. S., Staab, S., & Sure, Y. (2004a). A case study in supporting DIs-
tributed, Loosely-controlled and evolvInG Engineering of oNTologies (DILIGENT).
In (Tochtermann & Maurer, 2004), pages 225–232.

Tempich, C., Pinto, H. S., Sure, Y., & Staab, S. (2005a). An argumentation ontology for
DIstributed, Loosely-controlled and evolvInG Engineering processes of oNTologies
(DILIGENT). In (Bussler et al., 2005), pages 241–256.

Tempich, C. & Staab, S. (2005). Semantic query routing in unstructured networks using
social metaphors. In Stuckenschmidt, S. & Staab, S. (Eds.), Semantic Web and Peer-
to-Peer, pages 105–122. Springer.

Tempich, C., Staab, S., & Wranik, A. (2004b). REMINDIN’: Semantic query routing in
peer-to-peer networks based on social metaphors. In Proceedings of the 13th Inter-
national World Wide Web Conference, (WWW 2004), pages 640–649. ACM.

Tempich, C., Ehrig, M., Fluit, C., Haase, P., Martí, E. L., Plechawski, M., & Staab, S.
(2004c). XAROP: A midterm report in introducing a decentralized semantics-based
knowledge sharing application. In (Karagiannis & Reimer, 2004), pages 259–270.

Tempich, C., Ehrig, M., Staab, S., van Harmelen, F., Stuckenschmidt, H., Sabou, M.,
Siebes, R., & Broekstra, J. (2003). SWAP: Ontology-based knowledge management
with peer-to-peer. In Proceedings of the Workshop ontologiebasiertes Wissensman-
agement (WM 2003), pages 17–20. Gesellschaft für Informatik.

Tempich, C., Löser, A., & Heizmann, J. (2005b). Community based ranking in peer-to-
peer networks. In Proceedings of the OTM Confederated International Conferences
CoopIS, DOA, and ODBASE 2005, pages 1261–1278. Springer.

250

BIBLIOGRAPHY

Tempich, C., Pinto, H. S., & Staab, S. (2006). Ontology engineering revisited: an iter-
ative case study with diligent. In Proceedings of the 3rd European Semantic Web
Conference (ESWC2006), pages 110–124. Springer.

Tempich, C., Pinto, H. S., Sure, Y., Vrandecic, D., Casellas, N., & Casanovas, P. (2005c).
Evaluating DILIGENT ontology engineering in a legal case study. In Proceedings
of the 22nd World Congress - Law and Justice in a Global Society (IVR2005), pages
330–336. University of Granada.

Tempich, C. & Volz, R. (2003). Towards a benchmark for semantic web reasoners
- an analysis of the DAML ontology library. In Proceedings of the 2nd Work-
shop on Evaluation of Ontology-based Tools (EON2003) at the 2nd International
Semantic Web Conference (ISWC 2003), volume 87. CEUR-Workshop proceedings
http://ceur-ws.org.

The Economist (2006a). The new organisation: a survey of the company. The Economist,
378(8461). Survey.

The Economist (2006b). Taxonomy: Today we have naming of parts. The Economist,
378(8464). Survey.

Tochtermann, K. & Maurer, H. (Eds.) (2004). Proceedings of the 4th International Con-
ference on Knowledge Management (I-KNOW’04). Journal of Universal Computer
Science (J.UCS).

Toulmin, S. (1958). The Uses of Arguments. Cambridge University Press.

Toulmin, S., Rieke, R., & Janik, A. (1984). An introduction to reasoning. Macmillan
Publishing.

Tsoumakos, D. & Roussopoulos, N. (2003a). Adaptive probabilistic search for peer-to-
peer networks. In Proceedings of the 3rd International Conference on Peer-to-Peer
Computing (P2P 2003), pages 102–109. IEEE Computer Society.

Tsoumakos, D. & Roussopoulos, N. (2003b). A comparison of peer-to-peer search
methods. In Proceedings of the International Workshop on Web and Databases
(WebDB2003), pages 61–66.

Tsui, E. (2001). Technologies for personal and peer-to-peer (P2P) knowledge manage-
ment. Technical report, CSC Leading Edge Forum (LEF).

Tsui, E. (2003). Tracking the role and evolution of commercial knowledge management
software. In (Holsapple, 2003), pages 5–28.

Ullman, J. D. (2000). Information integration using logical views. Theoretical Computer
Science, 239(2):189–210.

251

http://ceur-ws.org

BIBLIOGRAPHY

Uschold, M. & Grüninger, M. (1996). Ontologies: Principles, methods and applications.
Knowledge Sharing and Review, 11(2):93–155.

Uschold, M., Healy, M., Williamson, K., Clark, P., & Woods, S. (1998a). Ontology Reuse
and Application. In (Guarino, 1998b), pages 179–192.

Uschold, M. & King, M. (1995). Towards a methodology for building ontologies. In
Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing at
the International Joint Conference on Artificial Intelligence (IJCAI-95).

Uschold, M., King, M., Moralee, S., & Zorgios, Y. (1998b). The enterprise ontology.
Knowledge Engineering Review, 13(1):31–89.

Uschold, M. & Grüninger, M. (2004). Ontologies and semantics for seamless connectivity.
SIGMOD Record, 33(4):58–64.

Uschold, M. (1996). Building ontologies: Towards a unified methodology. In Proceedings
of the 16th Annual Conference of the British Computer Society Specialist Group on
Expert Systems.

Valente, A. (2005). Types and roles of legal ontologies. In Law and the Semantic Web,
pages 65–76. Springer.

van Elst, L., Dignum, V., & Abecker, A. (Eds.) (2003). Agent-Mediated Knowledge Man-
agement International Symposium (AMKM 2003). Springer.

van Harmelen, F., McIlraith, S., & Plexousakis, D. (Eds.) (2004). Proceedings of the 3rd
International Semantic Web Conference (ISWC2004). Springer.

Visser, P., van Kralingen, R., & Bench-Capon, T. (1997). A method for development of
legal knowledge systems. In Proceedings of International Conference in Artificial
Intelligence and Law (ICAIL1997), pages 151–160. ACM.

Voulgaris, S., Kermarrec, A.-M., Massoulie, L., & van Steen, M. (2004). Exploiting
semantic proximity in peer-to-peer content searching. In Proceedings of the 10th
IEEE International Workshop on Future Trends in Distributed Computing Systems
(FTDCS’04), pages 238–243. IEEE.

Vrandecic, D., Pinto, H. S., Sure, Y., & Tempich, C. (2005). The diligent knowledge
processes. Journal of Knowledge Management, 9(5):85–96.

Vrandecic, D., Sure, Y., Tempich, C., & Engler, M. (2006). Sekt methodology: Initial
lessons learned and tool design. SEKT official deliverable 7.2.1, Institute AIFB,
University of Karlsruhe (TH).

W3C (2001). World Wide Web Consortium (W3C) Semantic Web Activity Statement,
available at http://www.w3.org/2001/sw/Activity/.

252

BIBLIOGRAPHY

W3C (Ed.) (2004). Proceedings of the 13th International World Wide Web Conference,
(WWW 2004). ACM.

Watts, D. J. & Strogatz, S. (1998). Collective dynamics of ’small-world’ networks. Nature,
393:440–442.

Wegner, H. (2002). Vorteile des einsatzes von agentenbasierten p2p-technologien im
wissensmanagement. In Proceedings of the 4. Konferenz zum Einsatz von Knowl-
edge Management in Wirtschaft und Verwaltung (KnowTech 2002). ekkono GmbH.
http://www.knowtech2002.de/wegner_ekkono_darmstadt.pdf.

Wiederhold, G. (1992). Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49.

Wikipedia (2005). Wiki. http://en.wikipedia.org/wiki/WIKI.

Wikipedia (2006a). Routing. http://en.wikipedia.org/wiki/Routing.

Wikipedia (2006b). Voting systems. http://en.wikipedia.org/wiki/Voting_system.

Yin, R. K. & Campbell, D. T. (2003). Case Study Research: Design and Methods, vol-
ume 5. Sage Publications Inc., Thousand Oaks, CA.

Zaihrayeu, I. & Bonifacio, M. (Eds.) (2004). Proceedings of the Workshop on Peer-to-
Peer Knowledge Management (P2PKM 2004) at the MobiQuitous’04, volume 108 of
CEUR Workshop Proceedings. CEUR-WS.org.

Zaihrayeu, I. & Robertson, D. (Eds.) (2005). Proceedings of the Second Workshop on
Peer-to-Peer Knowledge Management (P2PKM ’05) at the The Second Annual Inter-
national Conference on Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous 2005), volume 139 of CEUR Workshop Proceedings. CEUR-WS.org.

Zimmermann, H. (1980). OSI Reference Model - The ISO Model of Architecture for
Open Systems Interconnection. IEEE TRANSACTIONS ON COMMUNICATIONS,
28(4):425–432.

Please note: The cited URLs were provided by the author in all conscience. They were
last checked in June 2005. However, even though “cool URIs don’t change” (cf. (Berners-
Lee, 1998)), URIs in the dynamic surrounding of the WWW (typically referred to as URLs
(Berners-Lee, 1993)) and the content they represent are subject to change. In future they
may differ from the cited sources in this work.

253

http://www.knowtech2002.de/wegner_ekkono_darmstadt.pdf
http://en.wikipedia.org/wiki/WIKI
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Voting_system

BIBLIOGRAPHY

254

Index

case study, 110, 112, 117
AIFB case study, 131
IBIT case study, 118
Legal case study, 139

CO4, 213
CommonKADS, 214
Compendium, 24, 216

data set, 181
Bibster data set, 181, 183, 184, 187,

189–191, 198, 199
DMOZ data set, 181, 184, 185, 187,

191, 192, 194, 200, 202
Synthetic data set, 183, 186–188,

191, 199, 200
DILIGENT, 48

Central Analysis, 50, 62, 121, 128
Central Build, 49, 52, 119
Central Revision, 50, 67, 124, 129
Local Adaptation, 49, 56, 120, 127
Local Update, 50, 70, 126, 130

distributed hash table, 31, 219, 220

Easterbrook, 216
EDAMOK, 5, 212

HOLSAPPLE & JOSHI, 214

IBIS, 24–26, 78, 79, 81, 85, 89, 107,
215–217

INGA see routing algorithm
REMINDIN’ 158

KUABA, 217

ONTOCOM, 54
ontology engineering methodology, 21

DILIGENT, 45
Enterprise Ontology, 213
HCOME, 114, 115, 215
IDEF5, 213
METHONTOLOGY, 54, 110, 114,

115, 141, 214
OTK methodology, 52–54, 110, 114,

115, 214
UPON, 215

OntoScrape, 94, 97, 120, 121, 231
ORSD, 53, 59, 66, 69, 75, 76, 89, 215

peer-to-peer system, 27
Anthill, 32, 221
Bibster, 6, 32, 36, 39, 42, 197, 198,

200, 223
EDUTELLA, 5, 32, 212, 218
Gnutella, 32, 167, 189, 192, 220–

222
Groove, 27
InfoQuilt, 211
KAZAA, 27, 32, 219
KEEx system, 17, 212
Napster, 32, 218
P-Grid, 32, 220
PlanetP, 32, 222
pSearch, 32, 219
Seti@Home, 27
Skype, 27
SWAPSTER, 3, 8, 17, 33, 100
XAROP, 42, 95, 96, 98, 99, 104

REMINDIN’ see routing algorithm
REMINDIN’ 158

routing algorithm, 30

255

Index

Adaptive Probabilistic Search, 32,
223

CAN, 32, 219
Chord, 32, 219
CORI, 32, 218
Firworks model, 32, 222
GlOSS, 32, 218
Infobeacons, 32, 223
IntelligentSearch, 32, 223
Interest based locality (IBL), 32,

192–200, 222
Pastry, 32, 219
REMINDIN’, 153, 158
Semantic Overlay Network, 32

RST, 24–27, 86, 132–135, 137

Semantic Overlay Network, 9, 29, 159,
221

Semantic Web, 5, 6, 19, 91, 107, 114,
116, 131, 211, 212, 225–227

Skuce, 216
Small-World, 32, 158, 180, 189, 207,

220, 221
Swabbi-object, 40, 41, 102, 160, 231–

233

Toulmin Model, 24, 25, 79

use case, 33
Bibster use case, 34, 154
IBIT use case, 33, 45, 154

W3C, 19

256

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	Acronyms
	Foundations
	Introduction & Overview
	Motivation
	Goals and Contributions of This Thesis
	Reader Guide

	Review of Related Areas
	Knowledge Management
	Distributed Knowledge Management
	Distributed Knowledge Management Systems

	Ontologies
	Ontology Use in Information Systems
	Ontology Engineering Methodologies

	Argumentation
	Toulmin Model
	Issue Based Information Systems
	Rhetorical Structure Theory

	Peer-to-Peer Systems
	Challenges for Peer-to-Peer Data Sharing Applications
	Routing in Peer-to-Peer Systems

	SWAP: A Semantic Peer-to-Peer System
	Use Case Description
	The IBIT Use Case
	The Bibster Use Case

	Requirements for a Semantic Peer-to-Peer System
	Infrastructure Level
	Application Level
	Community Level

	A Generic Semantic Peer-to-Peer System Architecture
	SWAP Application Metadata
	SWAP Metadata Model
	The SWAP Knowledge Model

	Summary

	The DILIGENT Methodology
	DILIGENT Ontology Engineering
	Feasibility Study
	Ontology Engineering Use Case
	Requirements for Ontology Engineering Methodologies

	The DILIGENT Process
	Key Roles
	Process Stages

	DILIGENT Detailed Process Description
	Central Build
	Local Adaptation
	Central Analysis
	Central Revision
	Local Update

	The DILIGENT Argumentation Framework
	Arguments in the DILIGENT Process
	The Argumentation Process
	Building an Argumentation Ontology
	Argument Selection for the Argumentation Ontology

	DILIGENT Tool Support
	Requirements Derived from the Process Stages
	DILIGENT OntoEdit Plugin
	DILIGENT Argumentation Tools

	Summary and Outlook

	Evaluation of the DILIGENT Methodology
	Evaluating a Methodology
	Goal Free
	Professional Review
	Case Study

	Goal Free Evaluation
	Professional Review
	DILIGENT Process Evaluation
	Argumentation Framework Evaluation

	Case Studies
	The IBIT Case Study
	The AIFB Case Study
	The Legal Case Study

	Summary and Outlook

	The REMINDIN' Routing Algorithm
	Routing in Semantic Peer-to-Peer Systems with REMINDIN'
	Feasibility Study
	Semantic Routing Use Cases
	Requirements for Semantic Routing Algorithms
	Selection of a Routing Approach

	Foundations of the REMINDIN' Routing Algorithm
	Routing Based on Social Metaphors
	Routing with Semantic Overlay Layers

	The REMINDIN' Semantic Overlay Layers
	Content Provider Layer
	Recommender Layer
	Ranking Content Provider and Recommender Shortcuts
	Bootstrapping Layer
	Default Network Layer

	Deploying Semantic Overlay Layers for Peer Selection
	Peer Selection Process
	Peer Selection Algorithms

	Summary

	Evaluation of REMINDIN'
	Evaluation Criteria for Routing Algorithms
	Evaluation Setting
	Evaluation Data Sets
	Content Distribution
	Queries and Query Distribution
	Configuration of the Simulation

	Evaluation Hypothesis
	Evaluation Results
	Summary and Outlook

	Related Work & Conclusions
	Related Work
	Related Work on Distributed Knowledge Management Systems
	Related Work To DILIGENT
	Related Ontology Engineering Methodologies
	Related Argumentation Frameworks

	Related Work on Routing in Peer-to-Peer Networks
	Routing Algorithms for Centralized Peer-to-Peer Networks
	Routing Algorithms for Super-Peer-Based Peer-to-Peer Networks
	Related Routing Algorithms for Decentralized Peer-to-Peer Networks

	Summary

	Conclusions
	Summary
	Outlook

	Appendix
	Evaluating the SWAP Metadata Model
	Evaluation Methodology
	Evaluation Results

	Bibliography
	Index

