555 research outputs found

    Scalable Community Detection

    Get PDF

    Shorter Labeling Schemes for Planar Graphs

    Get PDF
    An \emph{adjacency labeling scheme} for a given class of graphs is an algorithm that for every graph GG from the class, assigns bit strings (labels) to vertices of GG so that for any two vertices u,vu,v, whether uu and vv are adjacent can be determined by a fixed procedure that examines only their labels. It is known that planar graphs with nn vertices admit a labeling scheme with labels of bit length (2+o(1))logn(2+o(1))\log{n}. In this work we improve this bound by designing a labeling scheme with labels of bit length (43+o(1))logn(\frac{4}{3}+o(1))\log{n}. In graph-theoretical terms, this implies an explicit construction of a graph on n4/3+o(1)n^{4/3+o(1)} vertices that contains all planar graphs on nn vertices as induced subgraphs, improving the previous best upper bound of n2+o(1)n^{2+o(1)}. Our scheme generalizes to graphs of bounded Euler genus with the same label length up to a second-order term. All the labels of the input graph can be computed in polynomial time, while adjacency can be decided from the labels in constant time

    Parameterized Graph Modification Beyond the Natural Parameter

    Get PDF

    Parameterized Graph Modification Beyond the Natural Parameter

    Get PDF

    Integer programming models for the branchwidth problem

    Get PDF
    We consider the problem of computing the branchwidth and an optimal branch decomposition of a graph. Branch decompositions and branchwidth were introduced in 1991 by Robertson and Seymour and were used in the proof of Graph Minors Theorem (GMT), a well known conjecture (Wagner's conjecture) in graph theory. The notions of branchwidth and branch decompositions have been proved to be useful for solving many NP-hard problems that have applications in fields such as graph theory, network design, sensor networks and biology. Branch decompositions have been utilized for problems such as the traveling salesman problem by Cook and Seymour, general minor containment and the branchwidth problem by Hicks by means of the relevant branch decomposition-based algorithms. Branch decomposition-based algorithms are fixed parameter tractable algorithms obtained by combining dynamic programming techniques with branch decompositions. The running time and space of these algorithms strongly depend on the width of the utilized branch decomposition. Thus, finding optimal or close to optimal branch decompositions is very important for the efficiency of the branch decomposition-based algorithms. Motivated by the vastness of the fields of application, we aim to increase the efficiency of the branch decomposition-based algorithms by investigating effective techniques to find optimal branch decompositions. We present three integer programming models for the branchwidth problem. Two similar formulations are based on the relationship of branchwidth problem with a special case of the Steiner tree packing problem. The third formulation is based on the notion of laminar separations. We utilize upper and lower bounds obtained by heuristic algorithms, reduction techniques and cutting planes to increase the efficiency of our models. We use all three models for the branchwidth problem on hypergraphs as well. We compare the performance of three models both on graphs and hypergraphs. Furthermore we use the third model for rank-width problem and also offer a heuristic for finding good rank decompositions. We provide computational results for this problem, which can be a basis of comparison for future formulations

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    The bidimensionality theory and its algorithmic applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.Includes bibliographical references (p. 201-219).Our newly developing theory of bidimensional graph problems provides general techniques for designing efficient fixed-parameter algorithms and approximation algorithms for NP- hard graph problems in broad classes of graphs. This theory applies to graph problems that are bidimensional in the sense that (1) the solution value for the k x k grid graph (and similar graphs) grows with k, typically as Q(k²), and (2) the solution value goes down when contracting edges and optionally when deleting edges. Examples of such problems include feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex- removal parameters, dominating set, edge dominating set, r-dominating set, connected dominating set, connected edge dominating set, connected r-dominating set, and unweighted TSP tour (a walk in the graph visiting all vertices). Bidimensional problems have many structural properties; for example, any graph embeddable in a surface of bounded genus has treewidth bounded above by the square root of the problem's solution value. These properties lead to efficient-often subexponential-fixed-parameter algorithms, as well as polynomial-time approximation schemes, for many minor-closed graph classes. One type of minor-closed graph class of particular relevance has bounded local treewidth, in the sense that the treewidth of a graph is bounded above in terms of the diameter; indeed, we show that such a bound is always at most linear. The bidimensionality theory unifies and improves several previous results.(cont.) The theory is based on algorithmic and combinatorial extensions to parts of the Robertson-Seymour Graph Minor Theory, in particular initiating a parallel theory of graph contractions. The foundation of this work is the topological theory of drawings of graphs on surfaces and our results regarding the relation (the linearity) of the size of the largest grid minor in terms of treewidth in bounded-genus graphs and more generally in graphs excluding a fixed graph H as a minor. In this thesis, we also develop the algorithmic theory of vertex separators, and its relation to the embeddings of certain metric spaces. Unlike in the edge case, we show that embeddings into L₁ (and even Euclidean embeddings) are insufficient, but that the additional structure provided by many embedding theorems does suffice for our purposes. We obtain an O[sq. root( log n)] approximation for min-ratio vertex cuts in general graphs, based on a new semidefinite relaxation of the problem, and a tight analysis of the integrality gap which is shown to be [theta][sq. root(log n)]. We also prove various approximate max-flow/min-vertex- cut theorems, which in particular give a constant-factor approximation for min-ratio vertex cuts in any excluded-minor family of graphs. Previously, this was known only for planar graphs, and for general excluded-minor families the best-known ratio was O(log n). These results have a number of applications. We exhibit an O[sq. root (log n)] pseudo-approximation for finding balanced vertex separators in general graphs.(cont.) Furthermore, we obtain improved approximation ratios for treewidth: In any graph of treewidth k, we show how to find a tree decomposition of width at most O(k[sq. root(log k)]), whereas previous algorithms yielded O(k log k). For graphs excluding a fixed graph as a minor, we give a constant-factor approximation for the treewidth; this via the bidimensionality theory can be used to obtain the first polynomial-time approximation schemes for problems like minimum feedback vertex set and minimum connected dominating set in such graphs.by MohammadTaghi Hajiaghayi.Ph.D

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore