
INTEGER PROGRAMMING MODELS

FOR THE BRANCHWIDTH PROBLEM

A Dissertation

by

ELIF ULUSAL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2008

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4273995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


c© 2008

ELIF ULUSAL

ALL RIGHTS RESERVED



INTEGER PROGRAMMING MODELS

FOR THE BRANCHWIDTH PROBLEM

A Dissertation

by

ELIF ULUSAL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Sergiy I. Butenko
Illya V. Hicks

Committee Members, Guy L.Curry
Halit Uster
Arthur Hobbs

Head of Department, Brett A. Peters

May 2008

Major Subject: Industrial Engineering



iii

ABSTRACT

Integer Programming Models

for the Branchwidth Problem. (May 2008)

Elif Ulusal, B.S., Bilkent University

Co–Chairs of Advisory Committee: Dr. Sergiy I. Butenko
Dr. Illya V. Hicks

We consider the problem of computing the branchwidth and an optimal branch de-

composition of a graph. Branch decompositions and branchwidth were introduced in

1991 by Robertson and Seymour and were used in the proof of Graph Minors The-

orem (GMT), a well known conjecture (Wagner’s conjecture) in graph theory. The

notions of branchwidth and branch decompositions have been proved to be useful for

solving many NP-hard problems that have applications in fields such as graph the-

ory, network design, sensor networks and biology. Branch decompositions have been

utilized for problems such as the traveling salesman problem by Cook and Seymour,

general minor containment and the branchwidth problem by Hicks by means of the

relevant branch decomposition-based algorithms.

Branch decomposition-based algorithms are fixed parameter tractable algorithms

obtained by combining dynamic programming techniques with branch decomposi-

tions. The running time and space of these algorithms strongly depend on the width

of the utilized branch decomposition. Thus, finding optimal or close to optimal branch

decompositions is very important for the efficiency of the branch decomposition-based

algorithms. Motivated by the vastness of the fields of application, we aim to increase

the efficiency of the branch decomposition-based algorithms by investigating effective
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techniques to find optimal branch decompositions.

We present three integer programming models for the branchwidth problem.

Two similar formulations are based on the relationship of branchwidth problem with

a special case of the Steiner tree packing problem. The third formulation is based on

the notion of laminar separations. We utilize upper and lower bounds obtained by

heuristic algorithms, reduction techniques and cutting planes to increase the efficiency

of our models. We use all three models for the branchwidth problem on hypergraphs as

well. We compare the performance of three models both on graphs and hypergraphs.

Furthermore we use the third model for rank-width problem and also offer a

heuristic for finding good rank decompositions. We provide computational results for

this problem, which can be a basis of comparison for future formulations.
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CHAPTER I

INTRODUCTION

In this dissertation, we study effective techniques for finding the branchwidth and

an optimal branch decomposition of a graph. We focus on integer programming

models of this problem, which is referred to as the branchwidth problem. Integer

programming is a tool for solving combinatorial optimization problems to optimality.

Many combinatorial optimization problems are NP-hard, which is evidence to the

potential intractability of those problems. But, in some cases, there is an absolute

need for exact solutions, and in some cases, exact solutions are strongly desirable.

Thus, designing fast exponential or sub-exponential algorithms, if possible, has been

an interesting and growing research area.

Since the early 1990’s, many width parameters and their related graph decom-

positions have been studied to develop fast sub-exponential algorithms for solving

NP-hard problems modeled on graphs. Some of these parameters were introduced in

the proofs of important graph theoretic results. The treewidth, branchwidth, path-

width, carvingwidth, clique-width, rank-width, etc. are some examples. Researchers

studied the advantages of each parameter and their best use. These width parameters

have been proved to be of great use both in theory and practice.

Branch and tree decompositions, and their connectivity invariants branchwidth

and treewidth were introduced by Robertson and Seymour in 1991 [79]. It has

been shown that treewidth is beneficial for solving NP-complete problems that are

modeled on graphs with bounded treewidth, using dynamic programming techniques

[1, 19]. The benefits of treewidth also apply to branchwidth since branchwidth and

The journal model is Mathematical Programming.
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treewidth of a graph bound each other by constants [79]. Thus, one can develop a

sub-exponential algorithm, if possible, for some NP-complete problem using branch-

width and dynamic programming. Although treewidth and branchwidth have similar

functions in related sub-exponential algorithms, it is easier to accomplish many proofs

in Graph Minors Theorem (GMT) when branchwidth is used instead of treewidth.

Also, branchwidth can be naturally generalized to hypergraphs and matroids. Geelen

et al. [39] generalized Robertson and Seymour’s [78, 79] theory on graphs to ma-

troids by using branchwidth. Recently, Hliněný et al. [57] explained the advantages

of branchwidth over treewidth.

Branchwidth and branch decompositions can be useful for solving many NP-hard

problems that have applications in fields such as graph theory, network design, sensor

networks, and biology. Many sub-exponential algorithms have been developed to solve

different NP-hard problems using branch decompositions [16, 17, 49, 50, 34]. These

algorithms are called branch decomposition-based algorithms. Some applications have

been shown to be practical. However, the drawback is that for some input integer k,

testing if a general graph has branchwidth at most k was proved to be NP-complete

[81]. Unfortunately, the running time and space of the branch decomposition-based

algorithms strongly depend on the width of the branch decomposition utilized in the

algorithm. It is highly desirable to construct good branch decompositions, those of

small width. Hence, it is necessary to find exact or close to optimal solutions for the

branchwidth problem.

I.1. Objectives

Motivated by the vastness of the fields of application, we investigate efficient tech-

niques to find optimal branch decompositions. The overall objective is to develop and
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implement integer programming models to construct optimal branch decompositions.

This research comprises a series of linked objectives. These are:

1. Develop and implement three models for branchwidth problem:

• An integer programming model that utilizes the relationship between the

branchwidth problem and the Steiner tree packing problem (IP1),

• Extension of IP1 with fewer variables and constraints (IP2), and

• An integer programming model that benefits from laminar separations

(IP3).

2. Explore the polyhedral structure and introduce local and global cuts.

3. Implement upper and lower-bounding techniques in conjunction with the integer

programming models.

4. Implement reduction techniques on the input graph for the branchwidth prob-

lem.

5. Compare the overall effectiveness of the three models.

6. Implement an extension of IP3 for rank-width problem.

7. Implement a heuristic to obtain a rank decomposition and an upper bound for

the rank-width.

8. Implement reduction techniques on the input graph for the rank-width problem.

I.2. Contribution

We offer three integer programming formulations, two of which are similar, that

compute the branchwidth and construct an optimal branch decomposition of a general
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graph. First two models utilize a Steiner tree packing formulation on a new graph

constructed using the given input graph. The last model benefits from the laminar

separations (defined later). All three models can be used to compute the branchwidth

and an optimal branch decomposition of a hypergraph as well. The third model can

also be used for the computation of the branchwidth and construction of an optimal

branch decomposition of symmetric submodular set functions. For instance, rank-

width of a graph, a graph complexity measure introduced by Oum and Seymour [72],

can be computed and its related decomposition can be constructed using the last

model. The rank-width is defined to be the branchwidth of the cut-rank function,

a symmetric submodular function, of a graph. We implement all three models for

general graphs and hypergraphs. Also, we implement the third model for the rank-

width problem.

In addition, we explore the polyhedral structure of the first two models to in-

troduce cuts. We implement some heuristics to obtain upper and lower bounds for

all three models. These heuristics help reduce the run times and increase efficiency

considerably. We use some reduction techniques and some anti-symmetry constraints

to reduce the run times even more. Moreover, we prove some important results on

laminar separations that leads us to the construction of the third model. Also, for

the implementation of the third model on the rank-width problem, we apply some

appropriate reductions on the input graph, and we implement a rank-width heuristic

to obtain upper bounds for the rank-width of the test instances.

The proposed integer programming models provide an optimal branch decom-

position and the branchwidth of a given graph, in a reasonable amount of time, for

small graphs or hypergraphs. These models can be useful in decreasing the running

time of the branch decomposition-based algorithms for combinatorial optimization

problems by means of the obtained optimal branch decomposition. To the best of our
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knowledge, our models are the first integer programming models for the branchwidth

problem. The computational results we obtained demonstrate the difficulty of solving

this problem to optimality and will be a basis of comparison for the future models

of the branchwidth problem. In addition, we have some computational results for

the rank-width problem, which will be a basis of comparison for the future models as

well. To the best of our knowledge, the application of the third model on rank-width

problem is also the first integer programming formulation for this problem.

I.3. Organization

The first part of Chapter II reviews the basic graph definitions. The other sections

give the definitions of branch decompositions, Steiner tree packing, and rank decom-

positions. Chapter III offers a literature review of the research done on branchwidth

and branch decompositions, including their theoretical and practical benefits in the

fields of graph theory and operations research. Also, it gives a short literature review

on rank-width, rank decompositions, and some different versions of the Steiner tree

packing problem.

Chapter IV starts with presenting the necessary notations, and then explains the

relationship between the branchwidth problem and a special case of the Steiner tree

packing problem. Also, it gives a formulation of the multicast congestion problem,

which is the closest problem to the special case we deal with in our study. Then, it

presents the first two formulations. Furthermore, it describes the upper and lower

bound heuristics that we have applied to our models, the preprocessing procedures,

and the cuts we have implemented for the first two models. Moreover it covers the

implementation of the first two models on hypergraphs. Finally, we offer computa-

tional results we have obtained using the first two models and some comments on the
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comparison of the two models both on graphs and hypergraphs.

Chapter V describes the third formulation and covers the upper and lower bound

heuristics we have implemented for the third model, as well as the implementation

of the third model on hypergraphs. The chapter also offers computational results

for the third model and their comparison with the results of the previous two mod-

els. Chapter VI reviews vertex-minors, a related notion to the rank-width that was

introduced by Oum [69], and also explains how we can implement the third model

for the rank-width problem. Furthermore, we explain the preprocessing steps and a

rank-width heuristic that we have implemented and offer computational results for

the rank-width problem. Finally, Chapter VII is reserved for conclusions and ideas

for future work.
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CHAPTER II

PRELIMINARIES

II.1. Basic definitions

A graph is an ordered pair (V, E) where V is a nonempty set, referred to as the set

of vertices or nodes ; E, the set of edges, is an unordered binary relation on V . A

hypergraph is an ordered pair (V, E) of nodes and edges, and an incidence relationship

between them that is not restricted to two ends for each edge. A graph is a hypergraph

where all edges have at most two ends. A directed graph is a graph where the edge

set is composed of ordered pair of vertices, which we refer to as directed edges. An

undirected graph is a graph with no directed edges. A loop is an edge (directed or

undirected), which starts and ends on the same vertex. Multiple edges or parallel

edges in a graph are two or more edges that are incident to the same two vertices. A

simple graph is a graph with no loops and no multiple edges. All of our graphs are

simple and undirected, unless stated otherwise.

A walk in a graph is a sequence of vertices such that from each of its vertices

there is an edge to the next vertex in the sequence. A path is a walk with no repeated

vertices. A cycle is a closed walk with no other repeated vertices than the starting

and ending vertices. A graph is connected, if every pair of vertices can be joined by a

path. A graph that does not contain any cycle is called a forest. A connected forest

is called a tree. The degree of a vertex v is the number of edges incident with v and

is denoted by deg(v). The leaves of a tree are the vertices of degree one. We refer

to the nodes that are not leaves as non-leaf nodes. A graph is called complete, if

there is an edge between every pair of vertices of the graph. A biconnected graph is a
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connected graph that is not divided into disconnected pieces when any single vertex

(and incident edges) is deleted. A graph is planar, if it can be embedded in a plane

such that no two edges cross.

The complement of a graph G = (V, E) is a graph Ḡ = (V, Ē) such that two

vertices in G are adjacent if and only if they are not adjacent in G. A graph Ĝ =

(V̂ , Ê) is a subgraph of the graph G = (V, E) if V̂ ⊆ V and Ê ⊆ E. For a subset

V ′ ⊆ V , G[V ′] denotes the subgraph induced by V ′, i.e., G[V ′] = (V ′, E ∩E ′), where

E ′ represents the edges of the complete graph on V ′. Contraction of an edge e means

deleting that edge and identifying the ends of e into one node. The parallel edges are

identified; and loops are deleted in the contraction process. A graph H is a minor of

a graph G if H can be obtained from a subgraph of G by a series of operations, such

as deletion of vertices, deletion of edges or contractions.

The connectivity of a graph is the smallest number of vertices which can be

removed to disconnect the graph. Similarly, the edge connectivity of a graph is the

smallest number of edges which can be removed to disconnect the graph. A graph is

called 2-edge connected if its edge connectivity is 2 or more.

II.2. Branch decompositions

Let G = (V, E) be a hypergraph and T be a ternary tree (a tree where every non-leaf

node has degree 3) with |E(G)| leaves. Let ν be a bijection from the edges of G to

the leaves of T . Then the pair (T, ν) is defined to be a branch decomposition of G by

Robertson and Seymour [79].

A separation of a graph G is a pair (G1, G2) of subgraphs with G1 ∪ G2 = G

and E(G1 ∩G2) = ∅, and the order of this separation is defined as |V (G1 ∩G2)|. An

example graph G with 6 vertices and 9 edges, and a separation of order 3 for G are
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shown in Figure 1. The rest of the figures in this section will be based on the example

graph of Figure 1.0 1a db 32 edhg fc b 54 i hg 0 1a db 1 32 edhg fc b 2 54 i hg 4
Fig. 1 : G (left) and a separation of order 3 (right)

Let (T, ν) be a branch decomposition. Then, removing an edge, say q, from

T partitions the edges of G into two subsets Aq and Bq. Figure 2 shows a branch

decomposition tree T of G on the left, and the separation generated by removing the

edge p from T on the right.

a edifgb

q

hc

0 1a db 1 32 edhg fc b 2 54 i hg 4
Fig. 2 : A branch decomposition tree T (left) of G and a separation of G

generated by removing edge q from T (right)

The width of an edge q is the number of vertices of G that are incident with

at least one edge in both sets Aq and Bq. These intersection vertices are called the

middle set of q and denoted by mid(q). The width of edge q is equal to the order

of the separation (G[Aq], G[Bq]). The width of edge q in Figure 2 is 3, and the
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middle set mid(q) = {1, 2, 4}. The width of a branch decomposition (T, ν) is the

maximum width among all edges of the branch decomposition. The branchwidth of

G, denoted by β(G), is the minimum width over all branch decompositions of G.

A branch decomposition of G with width equal to the branchwidth is an optimal

branch decomposition of G. Figure 3 shows two branch decompositions of G. The

branchwidth of G is 3. With a few calculations, we can easily see that the maximum

width among all the edges of these branch decompositions is 3. Thus, they are both

optimal branch decompositions.a edifgb
hc ia dei hgb fc

Fig. 3 : Two different optimal branch decompositions of G

A branch decomposition (T, ν) is called connected, if for every edge e ∈ E(T ), the

two edge-induced subgraphs of G corresponding to the two components of T\e are

both connected. The branch decompositions in Figure 3 are both connected. A partial

branch decomposition is a branch decomposition without the restriction of every non-

leaf node having degree 3. The branchwidth problem is to find the branchwidth and

an optimal branch decomposition.



11

II.3. Steiner tree packing

Let H = (VH , EH) be an undirected graph with positive integer capacities ce and

nonnegative lengths we for each edge e in EH . Let Φ = {Ni : i = 1, ..., k} be a family

of subsets of VH . Each subset Ni defines a net ; and Φ is called a netlist. The nodes

in a net are called terminals of that net.

A graph spans a vertex set, if that graph contains every vertex in that set. Let

Ti be a tree that spans Ni. Then, the set Γ = {Ti : i = 1, ..., k} is a family of trees,

which is called a routing. The tree Ti is called a Steiner tree for Ni. We define the

load or congestion L(Γ, e) on an edge e as the number of trees in Γ that contain edge

e. If the load of an edge is larger than the capacity of that edge, then the edge is

over-saturated. A routing that has no over-saturated edge is called a legal routing.

The Steiner tree packing problem is to find a legal routing1. Figure 4 shows a routing

for a netlist consisting of two nets. Assuming the edge capacities in the input graph

to be 1, the routing in the figure is not a legal routing, since there is an edge of load

two. If the edge capacities are 2, then the same routing is a legal routing.

The problem of finding a routing in an input graph for a netlist is called the global

routing problem. There are different versions of the global routing problem, which

also contains the variations of the Steiner tree packing problem. Routing problems

can be constrained or unconstrained. Finding a legal routing of minimum length, i.e.,

sum of the lengths of all edges in the routing, is called the constrained global routing

problem. In this version of the problem, over-saturation of the edges is not allowed.

A second version of the problem is finding the minimum length routing among those

that minimize the maximum over-saturation on an edge, which is referred to as an

1Most of the above terminology is taken from Chopra [15] and Lengauer and
Lügering [63].
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0 45 N1={0,1,2}N2={2,3,4}361 7 321
Fig. 4 : A routing of two nets

unconstrained global routing problem. Both versions of the problem are NP-hard since

they include a special case of the problem of finding a minimum length Steiner tree,

which is known to be NP-hard [35].

In our research, we focus on a slightly different version of the problem, where the

aim is to minimize the maximum load on an edge only, not the total length of the

routing. It is a special case of unconstrained global routing problem, where the edge

capacities are 1 and the lengths are 0. It is referred to as the multicast congestion

problem in the literature. We call the minimum of maximum loads of all routings

as the minmax load. Let κ(H, Φ) be the minmax load on graph H for netlist Φ.

Assuming that the input graph H is K5, the complete graph on 5 vertices, Figure 5

shows an example of an optimal routing for a multicast congestion problem on H ,

with a netlist Φ of 3 nets. Each type of line represents a Steiner tree that spans a

different net. Maximum congestion is 1 in this routing, and this is an optimal routing.

Thus, κ(H, Φ) = 1.
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0 104 24 3N1={0,1,2,3}N2={1,3,4}N {0 2 3 4}N3={0,2,3,4}
Fig. 5 : An optimal routing for a multicast congestion problem

II.4. Rank decompositions

Let Z be the set of integers. For a finite set S, a function f : 2S → Z is called

symmetric if f(X) = f(S \X) for all X ⊆ S. If f(X)+f(Y ) ≥ f(X ∩Y )+f(X ∪Y )

for all subsets X, Y of S then f is called submodular. Let T be a ternary tree and µ

be a bijection from the elements of S to the leaves of T . Then the pair (T, µ) is called

a branch decomposition of the symmetric submodular set function f . Then removing

an edge, say e, from T partitions the elements of S into two subsets X and Y . The

width of edge e is f(X). The width of a branch decomposition (T, µ) is the maximum

width among all edges of the branch decomposition. The branchwidth of f , denoted

by β(f), is the minimum width over all branch decompositions of f .

We use the notation used by Hliněný and Oum [56] to define rank-width. For an

|X|×|Y | matrix R (where rows are indexed by X and the columns are indexed by Y )

and A ⊆ X, B ⊆ Y , let R[A, B] be the |A| × |B| submatrix of R. For a graph G, let

Adj(G) be the adjacency matrix of G, that is a |V |×|V | binary matrix. An entry is 1

in Adj(G) if and only if there exists an edge in G between the vertices corresponding
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to the column and the row of that entry. The cut-rank function ρG(X) of a graph

G = (V, E) is defined as the rank of the matrix Adj(G)[X, V \X] for each subset X of

V . ρG(X) is symmetric and submodular [72]. The optimal branch decomposition and

branchwidth of the cut-rank function of G are called the optimal rank decomposition

and the rank-width of G. We illustrate an optimal rank decomposition of the example

graph G = (V, E) of Figure 1. Let X = {0, 1} ⊆ V . Figure 6 shows G, cut rank

function of X ⊆ V and an optimal rank decomposition of G.0 1a db 32 edhg fc b 54 i hg
0101

2
1010

rank

2 30 41 5
Fig. 6 : G (top), the cut rank function for the vertex set X = {0, 1} (left) and the

optimal rank decomposition of G (right)
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CHAPTER III

LITERATURE REVIEW

III.1. Branchwidth and branch decompositions

Branch decomposition-based algorithms have been proposed for ring routing [16],

traveling salesman [17], general minor containment [49], optimal branch decomposi-

tion [50], independent set [34], dominating set [34], longest cycle [34], bisection [34],

and (k, r)-center problems [25]. For instance, Demaine et al. [25] showed that there

is a polynomial time approximation scheme for the r-domination problem in both

planar graphs and map graphs, using branch decomposition-based algorithms.

As a practical example, Cook and Seymour [17] utilized branch decompositions to

obtain high-quality tours for the traveling salesman problem by merging collections

of tours produced by some traveling salesman heuristics. They show that branch

decomposition-based algorithms can be practical in large-scale optimization. They

offered computational results for graphs with more than 10,000 nodes. In addition,

Hicks [49] implemented a branch decomposition-based algorithm for the minor con-

tainment problem based on the framework given by Seymour and Thomas [80]. Given

a simple graph G and a simple connected graph H this algorithm checks if H is a

minor of G. He utilized some heuristics to compute the branch decomposition that

is used in this algorithm [49]. Interestingly, a pertinent practical aspect of this algo-

rithm is that, it can be used to find lower bounds for the branchwidth of non-planar

graphs. Moreover, Hicks [50] implemented a practical branch decomposition-based

algorithm for finding optimal branch decompositions.

Branch decomposition-based algorithms for combinatorial optimization problems
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modeled on graphs of bounded branchwidth can be summarized as follows. First, find

a branch decomposition of small width, and then use a polynomial-time algorithm

that solves the instances of bounded branchwidth. This procedure is promising for

finding fast algorithms. But, there are two important points about this procedure.

One is that not all optimization problems can be solved in polynomial time using this

procedure, e.g. the bandwidth minimization, which is proved to be NP-hard even on

ternary trees [36, 68]. The other point is that the running time and space of these

algorithms strongly depend on the width of the branch decomposition constructed in

the first step. The second step usually runs in exponential time in the width of that

branch decomposition. Unfortunately, testing if a general graph has branchwidth at

most k, some input integer, has been proved to be NP-complete [81].

Seymour and Thomas [81] proved that the branchwidth of a planar graph can be

computed in polynomial time and proposed an algorithm for computing the branch-

width of planar graphs. Hicks [51] implemented this algorithm. It computes only the

branchwidth of a planar graph. Hicks also implemented [52] another algorithm based

on the framework of Seymour and Thomas [81], improving the first algorithm with

the computation of an optimal branch decomposition. Also a linear time heuristic

was proposed for planar graphs by Tamaki [82]. Moreover, Gu and Tamaki [45] pro-

vided an O(n3) time algorithm for planar graphs, where n is the number of vertices.

Later, Bian et al. [5] offered efficient implementations of the procedure presented by

Seymour and Thomas [81]. Their implementation finds the branchwidth of planar

graphs up to 100,000 edges in a practical time and memory space. Also, for planar

graphs Fomin and Thilikos [34] proved that the branchwidth is at most 2.122
√

n,

where n is the number of vertices.

For general graphs, Robertson and Seymour offered the first heuristic which is

fast, but estimates branchwidth within a factor of 3. For instance, it decides either
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that a graph has branchwidth at least 10 or finds a branch decomposition of width

at most 30. This approximation algorithm is not practical. Although researchers

improved this method, the resulting algorithms were impractical as well [62, 65, 77,

6, 7].

In 1994, Cook and Seymour [16] offered a heuristic called the eigenvector method

for general graphs, which is based on an eigenvector technique for finding graph

separators. Later in 2003, they showed that it is practical by using it in a branch

decomposition-based algorithm for the traveling salesman problem(TSP) [17]. Two

other heuristics have been offered to find good branch decompositions, (i.e., branch

decompositions of small width) by Hicks [48]. One of the methods is called diameter

method and the other, referred to as the hybrid method, is a combination of the

eigenvector and diameter methods [48]. These three methods do not have a worst

case bound but perform well in general experimentally. Demaine et al. [24] proposed a

polynomial time algorithm to approximate branchwidth within a factor of 2.25. Fomin

and Thilikos [33] provided an upper bound for branchwidth based on its minimum

dominating set and genus.

Bodlaender and Thilikos [9] offered a linear time fixed parameter tractable algo-

rithm that decides if a graph has branchwidth at most k, for any constant k, and if so

constructs the corresponding branch decomposition, given a similar structure to the

branch decomposition as an input. Although this method is not practical, it leads

to a practical algorithm for k ≤ 3. In 1999, Bodlaender and Thilikos [10] offered

an algorithm that decides if the branchwidth is less than 3, and if so, computes an

optimal branch decomposition.

In addition, Kloks et al. [60] presented an algorithm that computes the branch-

width of interval graphs with n vertices in O(n3logn) time, and they showed that this

method can be generalized for permutation and trapezoid graphs. For split graphs
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and bipartite graphs they showed that it is NP-Complete to compute the branch-

width [60]. Also, Mazoit [66] proved that the branchwidth of circular-arc graphs can

be computed in polynomial time. Fomin et al. [31] proposed an algorithm that com-

putes the branchwidth of a general graph in O(2 +
√

3)n · nO(1) time, where n is the

number of vertices. Paul and Telle [76] introduced new structures that lead to fast

and simple algorithms to compute branchwidth. In addition, Hicks [50] implemented

the first practical algorithm that computes the branchwidth and an optimal branch

decomposition for general graphs. Given a graph G and a branch decomposition of G

of width k ≥ 3, his branch decomposition-based algorithm, by repeatedly lowering k,

decides if the graph has branchwidth at most k − 1, until it finds an optimal branch

decomposition.

Furthermore, there have been some studies on characterization of graphs of

bounded branchwidth. A class of graphs C is called minor closed if all the minors

of any member of C also belong to C. Given a minor closed class of graphs C, the

obstruction set of C is the set Q of graphs such that none of the members of Q belongs

to C, but all of their proper minors do. Robertson and Seymour [79] proved that for

a given integer k, the class of graphs with branchwidth at most k is a minor closed

class. Thus, if G has branchwidth at most k, then any minor of G has branchwidth

at most k as well. This implies that the class of graphs with branchwidth at most

k has a finite obstruction set. The only member of the obstruction set for graphs

with branchwidth at most 2 is K4 (4-clique) [79]. The obstruction set for graphs with

branchwidth at most 3 consists of K5 (5-clique), Q3 (cube3), M6 (octahedron), and

M8 (Möbius ladder) [10].

In addition, Robertson and Seymour [79] showed that n × n-grid graphs have

branchwidth n, and cliques have branchwidth ⌈(2/3)|V (G)|⌉. The branchwidth of

chordal graphs satisfies ⌈(2/3)ω(G)⌉ ≤ β(G) ≤ ω(G) where ω(G) is the maximum
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clique number of graph G [79, 47], and β(G) is the branchwidth of G. A graph

has branchwidth at most three if and only if it does not contain the aforementioned

members of its obstruction set as a minor [10]. Also, Paul et al. [75] studied the

edge-maximal graphs of branchwidth k.

Moreover, in his PhD thesis, Dorn [26] introduced the special branch decom-

positions, which link branch decompositions and tree decompositions. He also in-

troduced 3-width, which can be defined using branch decompositions, and proved

that the treewidth of a graph is equal to its 3-width and showed that any branch

decomposition-based algorithm can be transferred to a tree decomposition-based al-

gorithm that has the same running time, and vice versa [26]. Later, Dorn et al. [27]

used dynamic programming on special branch decompositions to design fast subex-

ponential algorithms for several graph problems.

In addition, Dorn and Telle [29] introduced semi-nice tree decompositions, which

are smaller structures similar to tree decompositions that combine the best of branch-

width and treewidth. They introduce simple algorithms to transform branch and

tree decompositions to semi-nice tree decompositions, and showed that for some op-

timization problems semi-nice tree decomposition-based algorithms give better run-

ning times than branch and tree decomposition-based algorithms [29]. Dorn [28]

also proposed a new approach for solving NP-hard problems by combining dynamic

programming on branch decompositions with matrix multiplication and showed that

this approach works faster than the dynamic programming algorithms for any vertex

subset problem on graphs of bounded branchwidth.

Branchwidth notion can also be extended to matroids. It has been shown that

branchwidth and branch decompositions are useful in producing matroid analogs of

Graph Minors Theorem (GMT) [39]. Hicks and McMurray [53], and idependently

Mazoit and Thomassě [67], showed that the branchwidth of a bridgeless graph is
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equal to the branchwidth of its cycle matroid. Robertson and Seymour [79] charac-

terized the class of matroids with branchwidth at most 2 and Geelen et al. [37] proved

that the size of excluded minors for the class of matroids with bounded branchwidth

is finite. Hall et al. [46] showed that the number of excluded minors for matroids

of branchwidth 3 is no more than 14. Then, Hliněný [54] proved that this number

is exactly 10. Also, Geelen et al. [38] studied the obstructions to branch decompo-

sition of matroids and obtained a qualitative characterization of matroids of large

branchwidth.

Moreover, in 2005, Hliněný [55] presented an algorithm that, for a given matroid

M of bounded branch-width t, finds a branch decomposition of width at most 3t. In

addition, Oum and Seymour [72] proposed a polynomial time algorithm to approx-

imate the branchwidth of a matroid. This is an O(n3.5) algorithm, which, given an

integer constant k, decides if a matroid M has branch-width at most k, and if so

finds a branch-decomposition of width at most 3k − 1. Later, Oum and Seymour

[73] presented a more precise but impractical algorithm which decides if a matroid M

has branchwidth k, an integer constant, and if so finds an optimal branch decompo-

sition. Hliněný and Oum [56] presented another algorithm that runs in O(n3) time

for a fixed k and gives a branch decomposition of width at most k, if there is one.

Recently, Cunningham and Geelen [23] showed that an integer programming model

can be solved in pseudo-polynomial time when the constraint matrix of the model is

non-negative and the column matroid of this matrix has constant branchwidth.

III.2. Rank-width and rank decompositions

Rank-width is another width parameter closely related to branchwidth. Other than

graphs, branchwidth can also be defined for symmetric submodular set functions.
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Rank-width is defined to be the branchwidth of the cut-rank function, a symmetric

submodular set function, of a graph. It is introduced by Oum and Seymour [72] in

2006 as a tool for devising an f(k)-expression for a graph with clique-width k, where

f is a fixed function.

Clique-width is another graph invariant that was introduced by Courcelle and

Olariu [20]. Like in the case of branchwidth and treewidth, many NP-hard graph

problems can be solved in polynomial time, given an input graph of bounded clique-

width and a corresponding decomposition, which is referred to as a k-expression. Not

surprisingly, it is shown to be NP-hard to find the clique-width of a general graph

[30]. On the other hand, rank-width and rank decompositions are successfully used

to construct f(k)-expressions for the graphs of bounded clique-width. But, finding

rank-width of a graph is proved to be NP-hard as well [56]. Thus, finding good rank

decompositions is necessary for the success of the algorithms that use clique-width as

the graph measure.

Oum [69] characterized the graphs of rank-width at most 1 and later proved that

the rank-width of a graph is less than or equal to its branch-width [71]. Oum and

Seymour [72] offered an algorithm that constructs a rank-decomposition of width at

most 3k + 1 for a graph of rank-width at most k. Then, Oum [70] improved this

algorithm. Later, Courcelle and Oum [21] proposed a polynomial time algorithm

that decides if a graph has rank-width at most k benefitting from Oum’s algorithm

and results [70, 69] on vertex-minors’ relation with rank-width. To fill in the missing

part of this algorithm, which is finding a rank decomposition of width at most k for

graphs of rank-width at most k, Oum and Seymour [73] presented a polynomial time

algorithm. However, this algorithm is not practical. Recently, Hliněný and Oum [56]

proposed another algorithm that runs in O(n3) time for a fixed k and constructs a

rank decomposition of width at most k, if there is one.
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III.3. Steiner tree packing

Though not obviously related to the width parameters, the Steiner tree packing prob-

lem (STPP) is another NP-Complete problem that has received considerable atten-

tion. A more general version is stated as the global routing problem, and widely used

in Very Large Scale Integrated (VLSI) design. There are different versions of the

global routing problem, which also contains variations of STPP. Many versions of the

problem are NP-hard since they include as a special case, the problem of finding a

minimum length Steiner tree, which is known to be NP-hard [35].

Several researchers have proposed different approaches to solve the global rout-

ing problem. Lengauer and Lügering [63] and Chopra [15] studied several integer

programming formulations of the global routing problem. Chopra [15] also ranked

them according to their LP-relaxation lower bounds. Lengauer and Lügering [64]

introduced some preprocessing techniques for this problem. Also, Terlaky et al. [83]

investigated generalized models for the global routing problem and presented an ap-

proximation algorithm.

In addition, Behjat et al. [3] utilized a widely used integer programming formu-

lation of the global routing model and proposed a matrix reordering technique that

would reduce the memory requirements and the running times for solving this model.

Later, Behjat et al. [4] proposed a global routing heuristic that combines several

objectives for VLSI design. Grötschel et al. [40, 41, 42, 43, 44] investigated the poly-

hedral structure of the STPP, cutting planes, facets and separation algorithms in their

series of papers and also provided computational results of a cutting plane algorithm.

In addition, Koch and Martin [61] implemented a branch and bound algorithm for

the same problem.

Moreover, Wang et al. [85] presented two heuristics for a different version of the
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STPP. Jain et al. [58] proposed an approximation algorithm for the edge-disjoint

version of the STPP. Cheriyan and Salavatipour [13, 14] studied the hardness of

approximation algorithms for several versions of the STPP on directed and undirected

graphs and presented a randomized algorithm for the element disjoint STPP. In 2007,

Lau presented a polynomial time constant factor approximation algorithm for the

edge-disjoint STPP.

The minimum multicast congestion problem is a generalization of the global

routing problem. This problem has a subtle relationship with branchwidth problem,

which we will explain in Chapter IV. Some approximation algorithms were offered by

Vempala and Vöcking [84], Carr and Vempala [12], Baltz and Srivastav [2], Jansen

and Zhang [59] for this problem. These are the only studies on minimum multicast

congestion problem of which we are aware.
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CHAPTER IV

MODELS 1 and 2

IV.1. Notations

Let G = (V, E) be a biconnected graph with |E| ≥ 3. For a node v ∈ V , let ev denote

a designated edge of G that is incident with v. Also, let Iv denote the set of all edges

incident with v. In a branch decomposition of G, there are |E| leaves since there is

a bijection between the leaves of the branch decomposition tree and the edges of G.

Also, there are |E| − 2 nodes of degree 3.

c0 1a 23 db 23 e
MaN B bA cA de

Fig. 7 : G and G′

Given G, we construct a graph G′ as follows. Let N denote a set of |E|−2 nodes,

which we refer to as the Steiner nodes, and let M be a set of |E| nodes corresponding

to |E| edges of G by a bijection ν. Since ν is a bijection, iterators for E and M will

be used interchangeably. Let A denote the set of all possible edges between each pair

of vertices in N and let B denote the set of all possible edges between a member of
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M and a member of N . Let Qv ⊆ M denote the set of nodes corresponding to the

set of edges Iv ⊆ E. G′ = (V ′, E ′) is the graph with V ′ = M ∪ N and E ′ = A ∪ B.

For better illustration we use a small graph. Figure 7 shows an example graph G and

the corresponding graph G′ that we construct out of G.

IV.2. The relationship between branch decompositions and Steiner tree

packing

In this section, we explain how the branch decomposition problem can be viewed as

a Steiner tree packing problem.

Our aim is to find an optimal branch decomposition of the input graph G. A

branch decomposition is a tree where each node has degree one or three. The leaf

nodes are mapped to the edges in E by a bijection. Now, let G′ be an input graph for a

Steiner tree packing problem. The edges of G′ have capacity 1 and length 0. Let each

node set Qv be a net. Let Tv be a Steiner tree that spans Qv and Γ = {Tv | v ∈ V }

be a special type of Steiner tree packing in G′, such that the packing forms a ternary

tree.

The structure we obtain by packing |V | Steiner trees on a ternary tree in G′

corresponds to a branch decomposition of G. It is obvious that vertex v belongs

to the middle set of some edge f if and only if f is used in a path between some

pair of nodes in Qv, i.e., f is used to construct the Steiner tree Tv. So, v belongs

to the middle set of the edges in Tv. As a summary, G′ being the input graph for

the Steiner tree packing problem and each set of nodes corresponding to the incident

edges of a vertex in G being a net, i.e., Φ = {Qv, v ∈ V } is the netlist, a Steiner tree

packing on a ternary tree in G′ (where the leaves are the members of M) is a branch

decomposition of G. The order of the separation induced by edge e of the branch
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decomposition is equal to the number of trees in the packing that employ this edge,

which is defined as the load of e.

Finding an optimal branch decomposition of G is equivalent to finding a Steiner

tree packing on a ternary tree T in G′ that minimizes the maximum load on an

edge. Note that, the version of Steiner tree packing problem that is concerned with

the minimization of maximum load is the multicast congestion problem. Since we

have a special Steiner tree packing, which is restricted to be on a ternary tree, this

constitutes a special case of the multicast congestion problem as well. We state this

relationship in the following theorem.

Theorem 1. An optimal branch decomposition of G is equivalent to a special case of

multicast congestion problem (a version of Steiner tree packing problem) on a ternary

tree, a subgraph of G′, for a netlist Φ = {Qv, v ∈ V }. Thus β(G) = κ(Ĥ, Φ), Ĥ being

a ternary tree and a subgraph of G′.

IV.3. A formulation for multicast congestion

Before we start explaining our formulations, we present an integer programming model

proposed for the multicast congestion problem by Baltz and Srivastav [2].

Let G = (V, E) be an input graph and {S1, S2...Sk} be a set of multicast requests.

A solution is a set of k Steiner trees {T1, T2..., Tk}, where each tree Ti spans the

terminals in the multicast request Si. The congestion of an edge e of the input graph

is the number of Steiner trees that contain edge e. An optimal solution is a set of

k Steiner trees, each spanning a different multicast request, such that the maximum

edge congestion is minimized.

Let τi be the set of all possible Steiner trees for i = {1, ..., k}. The cardinality

of τi may be exponentially large for each multicast request. Let vi(T ) be a decision
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variable, such that vi(T ) = 1 if T ∈ τi is chosen to span multicast request Si, and 0

otherwise. Let λ be the maximum congestion in a Steiner tree packing. The objective

is to minimize the maximum congestion on an edge. Then, the integer programming

model for multicast congestion problem is as follows:

min λ

s.t.

∑

T∈τi

vi(T ) = 1 ∀ i ∈ {1, ..., k}

k
∑

i=1

∑

T∈τi&e∈T

vi(T ) ≤ λ ∀ e ∈ E

vi(T ) ∈ {0, 1} ∀ i & ∀ T ∈ τi

Although our problem is a special case of the multicast congestion problem, the

above model cannot be directly implemented for our problem. Moreover, for the

global routing problem and its variations, integer programming methods have been

considered by Lengauer and Lügering [63, 64], and Grötschel et al. [40, 41, 42, 43,

44] and Chopra [15]. But, these formulations do not directly apply to the branch

decomposition problem as well since the Steiner trees are restricted to be packed on

a ternary tree in G′. We offer different formulations that are more convenient to the

special structure of our problem. We present our models in the next section.

IV.4. Formulations

In this section, we present the first integer programming formulations for the branch-

width problem. We construct our models benefitting from Theorem 1.
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IV.4.1. Decision variables

Define z to be a decision variable corresponding to the largest order of any separation

in a branch decomposition. We can also think of z being the largest load on an edge in

a Steiner tree packing. Then the objective function is z, and our goal is to minimize

z.

We introduce the decision variables uij for the edges (i, j) ∈ A. We define uij = 1

if in the branch decomposition there is an edge between the two Steiner nodes i, j ∈ N ,

0 otherwise. For simplicity, uji for j > i implies that we are actually referring to uij.

We have a set of variables tei for the edges (e, i) ∈ B. The variable tei = 1, if a leaf

node e in the branch decomposition, a node in the set M corresponding to an edge

e ∈ E in the original graph, is connected to Steiner node i ∈ N , and 0 otherwise. The

notation for the edges in E and the nodes in M are used interchangeably, since there

is a bijection between them. We define zv
ij for each edge (i, j) ∈ A and v ∈ V . Lets

denote the Steiner tree that spans the nodes in Qv by Tv. Then, zv
ij = 1 if the edge

(i, j) ∈ A is employed in the Steiner tree Tv that spans the net Qv, and 0 otherwise.

In a Steiner tree that connects the nodes of Qv, there exists a unique path between

each pair of nodes. So, we introduce yef
ij for each (i, j) ∈ A and e, f ∈ Qv for each

v ∈ V , where yef
ij = 1, if the edge (i, j) ∈ A is on the path between the leaf nodes e

and f in the Steiner tree Tv, and as well as in the branch decomposition, for e, f ∈ Qv

and v ∈ V , 0 otherwise. We don’t need to deal with every pair of incident edges of

a vertex, since every edge on a Steiner tree is on at least one of the paths between a

leaf and the others. Also, we define qef
i for each i ∈ N and e, f ∈ Qv, where qef

i = 1,

if the node i is on the path in between the leaves e and f in the Steiner tree Tv, and

so in the branch decomposition, for e, f ∈ Qv and v ∈ V , 0 otherwise.

Another set of decision variables are xv
i variables, where xv

i = 1 if Steiner node i



29

is in Steiner tree Tv, and 0 otherwise. The variables yef
ij and qef

i are replaced with xv
i

variables for the second formulation.

IV.4.2. Constraints

First, we set the degree of the nodes in set M to 1, so that a node corresponding to

an edge in the original graph has exactly one neighbor, which is a Steiner node. Let

|E| = m. We need the following set of m constraints for this purpose:

∑

i∈N

tei = 1 ∀ e ∈ E (4.1)

Since the branch decomposition is a tree, then the subgraph obtained by deleting

all the leaves of the branch decomposition tree is also a tree that consists of |N |

vertices. It has |N | − 1 edges. We ensure this by setting the sum of the uij variables

over set A to |N | − 1 = |E| − 3.

∑

(i,j)∈A

uij = |E| − 3 (4.2)

Also, we know that each Steiner node has degree 3 in the branch decomposition.

We ensure this with a set of |N | = |E| − 2 = m − 2 constraints. The constraint set

below sets the degree of each i ∈ N to 3.

∑

(i,j)∈A

uij +
∑

(e,i)∈B

tei = 3 ∀ i ∈ N (4.3)

At most two of the 3 edges incident with a Steiner node in the branch decompo-

sition can be edges from set B and at least one of them is an edge from set A. Thus,

we have two set of |N | = m − 2 constraints, one of which is sufficient to be used in
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the model. These constraints are as follows:

∑

e∈M

tei ≤ 2 ∀ i ∈ N

∑

j∈N

uij ≥ 1 ∀ i ∈ N (4.4)

Fomin et al. [32] showed that given a 2-edge-connected graph G and a branch

decomposition of G of width k, there also exists a connected branch decomposition

(defined in Section II.2) of G of width k′ ≤ k. They presented a polynomial time

algorithm that constructs a connected branch decomposition of width at most k, given

a 2-edge-connected input graph G and a branch decomposition T of width k for G [32].

Thus, assuming the input graph is 2-edge-connected, if two edges in the input graph

are not incident to each other, then there exists an optimal branch decomposition

where the leaves corresponding to those two edges do not share a Steiner node. We

add a constraint for each pair of non-incident edges in the original graph and this

helps us narrow our feasible region by omitting some branch decompositions that

are not connected. There are
(

m

2

)

possible pairs of edges. Some of these pairs are

connected. Thus, there are O(m2) of these constraints.

tei + tfi ≤ 1 ∀ e, f s.t. e, f don’t share a vertex (4.5)

We reduce the symmetry by using a function a(j) = 2j +1 to narrow the feasible

region even more. The label of the leaf (or the maximum label, if there are two

leaves) connected to a Steiner node with a smaller index is always strictly greater

than the label of the leaf (or the maximum label, if there are two leaves) connected

to a Steiner node with a larger index. In other words, the labels of the Steiner nodes

are ordered in the decreasing order of the maximum label of the leaves connected to

a single Steiner node. In fact, we choose the function a(j) in a fashion that there will
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be only a few ways of labeling for Steiner nodes of a certain branch decomposition.

The number of ways to label Steiner nodes increase with the number of Steiner nodes

connected to no leaves. 2 30 4876 41 55 1 0 6 32
2 30 4876 61 50 2 3 4 51

Fig. 8 : Two different labeling of the same branch decomposition

Since there are m−2 Steiner nodes in a branch decomposition, the anti-symmetry

constraints will eliminate many of (m− 2)! feasible solutions for each branch decom-

position. This saves a considerable amount of time. Figure 8 shows two branch

decompositions that are same in essence, but the second one will be eliminated from

the feasible solutions by means of the anti-symmetry constraints. We devise a set of

m − 2 constraints. These anti-symmetry constraints are as follows:

∑

ej∈M

(w(j) ∗ tej i − w(j) ∗ tej(i+1)) ≥ 0 ∀ i ∈ {0, 1..., |N | − 1} (4.6)

Another set of constraints are based on the idea of a Steiner node being used

in a Steiner tree on the path between two leaves. Let e1 and e2 be two edges in Iv
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and let the leaves corresponding to these edges have the same name. There are 4

configurations;

1- Both (e1, i) and (e2, i) is in Tv,

2- Either (e1, i) or (e2, i) is in Tv, but not both,

3- Neither (e1, i) nor (e2, i) is in Tv, but i is in Tv, and

4- i is not in Tv.

In the first three cases the following holds:

tei + tfi +
∑

j∈(N−{i})

yef
ij = 2 ∀ i ∈ N, e, f ∈ Qv, v ∈ V

For the last case, the above constraint with the right hand side equal to 0 holds. We

can combine these two constraints utilizing the decision variable we introduced as

qef
i . Let |V | = n. We need a constraint for each combination of a Steiner node and

two incident edges of a vertex in the input graph. There are m − 2 Steiner nodes.

Assuming one edge is fixed in each pair of incident edges of a vertex, there are totally

2m− n pairs of incident edges. Then, we devise the following set of (m− 2)(2m− n)

constraints to merge the above constraints:

tei + tfi +
∑

j∈(N−{i})

yef
ij − 2 ∗ qef

i = 0 ∀ i ∈ N, e, f ∈ Qv, v ∈ V (4.7)

This constraint set together with the constraint sets 4.1, 4.2 and 4.3 eliminate

subtours and impose the connectivity requirement for the branch decomposition. This

leads to a complete description of the associated polytope of the branchwidth problem.

Additionally, we have a set of constraints showing the ordering relationship be-

tween different sets of variables. For instance, yef
ij cannot be 1, if vertex i is not on

the branch decomposition tree on the path from leaf e to leaf f . So, if uij = 0 for
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an edge (i, j) on the branch decomposition, then yef
ij = 0 for all pairs of e and f s.t

e, f ∈ Qv. The variable zv
ij has to be equal to 1 if yef

ij is 1 for any i, j ∈ N , e, f ∈ Qv

and v ∈ V . Because, if edge (i, j) is on the path between two leaves e and f , then

it needs to be on the Steiner tree that employs e and f as leaves. Also, if edge (i, j)

is on a Steiner tree then it needs to be on the branch decomposition. Hence, uij has

to be equal to 1, if zv
ij is 1 for any i, j ∈ N and v ∈ V . If tei is 1, then at least

one neighbor zv
ij of i is 1 for any edge e ∈ Qv. The reason for this is, every Steiner

node in a Steiner tree has at least 1 edge that connects it to the other Steiner nodes.

There are (m−2)(m−3)(2m−n)
2

constraints in the first set, (m−2)(m−3)(2m−n)
2

constraints in

the second set, n(m−2)(m−3)
2

constraints in the third set, and 2m(m− 2) in the fourth.

These four set of constraints are as follows:

yef
ij ≤ qef

i ∀ i, j ∈ N, e, f ∈ Qv, v ∈ V (4.8)

yef
ij ≤ zv

ij ∀ i, j ∈ N, e, f ∈ Qv, v ∈ V (4.9)

zv
ij ≤ uij ∀ i, j ∈ N, v ∈ V (4.10)

tei ≤
∑

j∈(N−{i})

zv
ij ∀ i ∈ N, e ∈ Qv, v ∈ V (4.11)

One last set of ordering constraints ensure that if the sum of yef
ij variables over

(e, f) of edge pairs is 0, then uij is 0. Because, if edge (i, j) is not on the path between

any pair of leaves, then it is not on the branch decomposition. There are (m−2)(m−3)
2

of the following constraints:

uij ≤
∑

e,f∈E

yef
ij ∀ i, j ∈ N (4.12)

Moreover, we have a set of constraints for the Steiner trees. It is obvious that

the number of edges between non-leaf nodes in a Steiner tree is not less than |Qv|−2,

since these small trees also satisfy the properties of a tree and each has |Qv| leaves.
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So, we have the following n constraints;

∑

(i,j)∈A

zv
ij ≥ |Qv| − 2 ∀ v ∈ V (4.13)

A path satisfies the properties of a tree. Thus, the number of Steiner nodes in a

path between two leaves on a Steiner tree is one more than the non-leaf edges on the

path. We devise the following set of (m−3)(2m−n)
2

constraints:

∑

i∈N

qef
i −

∑

(i,j)∈A

yef
ij = 1 ∀ e, f ∈ Qv, v ∈ V (4.14)

Lastly, we have a set of constraints for the cardinality of middle sets of the

edges in the branch decomposition tree. The vertex v is in the middle set of the

edge (i, j) ∈ A in the branch decomposition, if and only if, zv
ij = 1. Therefore, the

cardinality of the middle set of edge (i, j) ∈ A (or the load on edge (i, j)) is equal

to the sum of zv
ij variables over all the vertices in |V |. The variable z, is the largest

cardinality of the middle sets, or the loads on edges. Thus, z is greater than or equal

to the cardinality of all middle sets, or loads on edges. Then, we have the following

(m−2)(m−3)
2

constraints:

∑

v∈V

zv
ij ≤ z ∀ i, j ∈ N (4.15)

Finally, our objective function is to minimize z. Below is the first formulation;
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min z

s.t.
∑

i∈N

tei = 1 ∀ e ∈ M

∑

(i,j)∈A

uij = |E| − 3

∑

(j∈N

uij +
∑

e∈M

tei = 3 ∀ i ∈ N

∑

e∈M

tei ≤ 2 ∀ i ∈ N

tei + tfi ≤ 1 ∀ i ∈ N, e, f s.t. e, f don’t share a vertex
∑

ej∈M

(a(j) ∗ teji − a(j) ∗ tej(i+1)) ≥ 0 ∀ i ∈ {0, 1..., |N |}

tei + tfi +
∑

j∈(N−{i})

y
ef
ij − 2 ∗ q

ef
i = 0 ∀ i ∈ N, e, f ∈ Qv, v ∈ V

y
ef
ij ≤ q

ef
i ∀ i, j ∈ N, e, f ∈ Qv, v ∈ V

y
ef
ij ≤ zv

ij ∀ i, j ∈ N, e, f ∈ Qv, v ∈ V

zv
ij ≤ uij ∀ i, j ∈ N, v ∈ V

tei ≤
∑

j∈(N−{i})

zv
ij ∀ i ∈ N, e ∈ Qv, v ∈ V

uij ≤
∑

e,f∈E

y
ef
ij ∀ i, j ∈ N

∑

(i,j)∈A

zv
ij ≥ |Qv| − 2 ∀ v ∈ V

∑

i∈N

q
ef
i −

∑

(i,j)∈A

y
ef
ij = 1 ∀ e, f ∈ Qv, v ∈ V

∑

v∈V

zv
ij ≤ z ∀ i, j ∈ N

uij, tei, y
ef
ij , q

ef
i , zv

ij ∈ {0, 1} ∀ i, j ∈ N, e, f ∈ Qv, v ∈ V

z ∈ Z

In Model 1, there are totally O(m3) constraints. Table 1 shows the number of

constraints in each constraint set for the first model.

For the second formulation, as we have mentioned before, we exclude the yef
ij and

qef
i variables and add xv

i variables to the model. As a reminder, xv
i = 1, if Steiner
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node i is in Steiner tree Tv, and 0 otherwise. Related to this change in the variable

set, we exclude some constraints and add new ones that have similar functions for the

Constraint set # of constraints

(4.1) m

(4.2) 1

(4.3) m − 2

(4.4) m − 2

(4.5) O(m2)

(4.6) m − 2

(4.7) (m − 2)(2m − n)

(4.8) (m−2)(m−3)(2m−n)
2

(4.9) (m−2)(m−3)(2m−n)
2

(4.10) n(m−2)(m−3)
2

(4.11) 2m(m − 2)

(4.12) (m−2)(m−3)
2

(4.13) n

(4.14) (m−3)(2m−n)
2

(4.15) (m−2)(m−3)
2

Table 1 : Number of constraints in Model 1

second formulation. Instead of constraint set 4.7, we add the following constraint set,

which has a similar function to the omitted constraint. The below set of constraints

ensure that if a Steiner node i ∈ N is being used in a Steiner tree, then it is connected

to at least 2 and at most 3 edges in that Steiner tree. There are (2m − n)(m − 2) of
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these constraints.

∑

e∈Qv

tei +
∑

j∈(N−{i})

zv
ij − 2 ∗ xv

i ≤ 1 ∀ i ∈ N, e ∈ Qv, v ∈ V (4.16)

Moreover, we take out the ordering constraints 4.8, 4.9, 4.12, which contain the

omitted set of variables, yef
ij and qef

i , and then we add some ordering constraints

associated with the new variable set xv
i . For all incident edges (i, j) of i, zv

ij needs to

be 0 if xv
i is 0. Also, tei needs to be 0 if xv

i is 0, where e is incident to v in the original

graph. We represent these relationships with the following two sets of constraints.

There are n(m−2)(m−3)
2

constraints in the first set, and 2m(m − 2) constraints in the

second.

zv
ij ≤ xv

i ∀ (i, j) ∈ A, v ∈ V (4.17)

tei ≤ xv
i ∀ (i) ∈ N, e ∈ Qv, v ∈ V (4.18)

One last set of constraints we add for the second formulation has a similar func-

tion to 4.14. Thus, we omit this set and add the following set of n constraints that

ensures the number of vertices in a Steiner tree to be one more than the number of

edges in that Steiner tree:

∑

i∈N

xv
i −

∑

(i,j)∈N

zv
ij = 1 ∀ v ∈ V (4.19)

Finally, the rest of the second formulation is exactly same with the first formula-

tion, including the objective function. There is an additional issue about the second

formulation, which we will explain in Section IV.7. In Model 2, there are O(nm2)

constraints. Table 2 shows the number of constraints in each constraint set for the

second model.
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Constraint set # of constraints

(4.1) m

(4.2) 1

(4.3) m − 2

(4.4) m − 2

(4.5) O(m2)

(4.6) m − 2

(4.16) (2m − n)(m − 2)

(4.17) n(m−2)(m−3)
2

(4.18) 2m(m − 2)

(4.10) n(m−2)(m−3)
2

(4.11) 2m(m − 2)

(4.13) n

(4.19) n

(4.15) (m−2)(m−3)
2

Table 2 : Number of constraints in Model 2

IV.5. Upper and lower bounds

In this section, we explain the upper and lower bound heuristics that we apply to

our model. These bounds, especially the lower bounds, are very important for this

problem. Good bounds can dramatically decrease the run time. Since the problem

is a minimization problem, a simple feasible solution obtained by a heuristic can

give us an upper bound. So, it is not very difficult to find upper bounds. The

reason why lower bounds are more important is that, since this is a minimization
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problem, any lower bound close to the optimal solution would greatly narrow the

feasible region, and decrease the run time of the branch and bound algorithm. Also,

in our experiments, we observed that we need good lower bounds to make the model

perform faster. Otherwise, it takes a considerable amount of time for the branch and

bound procedure to search for the different values of the variables, as illustrated in

Table 3 and 4.

Tables 3 and 4 serve as a basis of comparison for the later results of Section IV.9.

We run our models using C++ and CPLEX 9.0 on a Pentium 4 computer with 3.06

GHz CPU. In both tables, the times are given in seconds. An “X” on any of the

tables means that the model does not terminate before 18000 seconds. We illustrate

the run times for some selected test instances of the table on page 54. The title “β”

stands for branchwidth. The column titled “run” in Table 3 shows the run time when

no cut is applied to the first model. For many of these test instances upper bound

is 3, which means there is no sufficient space for the cuts to be effective. The model

will search for branch decompositions with width 2 only since the upper bound is 3

and the lower bound is 2 for biconnected graphs. The column titled “run” in Table

4 shows the run time when all cuts are applied to the second model. Some of the

cuts are required for this model to be complete, that is why we record the run time

with the cuts. The column titled “run” in Table 3 shows the run time when all cuts

are applied to the first model to have a conformable comparison. The cuts will be

explained later in Section IV.7.

If we do not apply any lower bound heuristic, Model 1 has run time greater than

18,000 seconds for 10 test instances, however Model 2 can solve 4 of these instances in

a short time. If we compare the run times, it is clear that the second model performs

better when no lower bound heuristic is used.
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Graph (|V |, |E|) β run

W6,2 (6,9) 3 6.1

K5 (5,10) 4 X

W8,3 (8,12) 4 X

sudtbl (11,14) 3 0.1

K6 (6,15) 4 X

W10,4 (10,15) 4 X

Petersen (10,15) 4 X

W12,5 (12,18) 4 X

laspow (14,18) 3 140.1

nprio (17,22) 3 1.3

drigl (21,29) 3 0

si (23,31) 3 2.7

seval (24,31) 3 0.4

dyeh (27,35) 3 2.7

linj (27,35) 3 0.6

recre (27,35) 3 X

bilan (37,49) 3 413.2

tcomp (38,50) 3 X

colbur (40,54) 3 300

sortie (44,62) 3 X

cardeb (48,64) 3 X

yeh (50,68) 3 207.9

pastem (158,214) 3 NA

Table 3 : Model 1 run times without the lower bound heuristic
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Graph (|V |, |E|) β run

W6,2 (6,9) 3 5.4

K5 (5,10) 4 X

W8,3 (8,12) 4 X

sudtbl (11,14) 3 0.1

K6 (6,15) 4 X

W10,4 (10,15) 4 X

Petersen (10,15) 4 X

W12,5 (12,18) 4 X

laspow (14,18) 3 0.1

nprio (17,22) 3 0.1

drigl (21,29) 3 0.2

si (23,31) 3 0.3

seval (24,31) 3 0.3

dyeh (27,35) 3 0.3

linj (27,35) 3 0.3

recre (27,35) 3 0.3

bilan (37,49) 3 0.7

tcomp (38,50) 3 1.5

colbur (40,54) 3 69.2

sortie (44,62) 3 1.7

cardeb (48,64) 3 15.8

yeh (50,68) 3 67.4

pastem (158,214) 3 NA

Table 4 : Model 2 run times without the lower bound heuristic
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IV.5.1. Upper bound heuristics

Cook and Seymour [16] introduced a heuristic for finding good branch decompositions

of a general graph. Then, Hicks [48] implemented two other heuristics, called diameter

and hybrid methods, that perform better experimentally. Both methods are composed

of a tree building and a separation finding component. In our model, we use the hybrid

method and add the width obtained using this heuristic as an upper bound for the

objective function.

We present a heuristic that we have devised for finding good branch decomposi-

tions. However, it does not perform as well as the above heuristics and is not used

in our model. This upper bound heuristic constructs a simple structured branch de-

composition with two Steiner nodes connected to two leaves and the rest connected

to one leaf. This structure of width k in essence is equivalent to so called monotone

k-expansion defined by Fomin et al. in [32]. It has been shown that monotone ex-

pansion number, i.e., the minimum k for which there is a monotone k-expansion, is

an upper bound for branchwidth [32]. For detailed information on k-expansions the

reader is referred to [32].

Briefly, the algorithm is as follows. Given a graph G, start with a minimum

degree vertex v of G. Select two incident edges of v and connect them to a Steiner

node in order to start forming the branch decomposition. Label these edges and their

ends in G. If there is an unlabeled edge with both ends labeled, add that edge to

the branch decomposition connecting it to a Steiner node, and then connecting this

Steiner node to the last Steiner node we have added to the branch decomposition. If

there is no such edge, then find a labeled vertex with minimum number of unlabeled

incident edges. Add one of the incident edges to the branch decomposition using the

same method as in the first case, and label this edge and its unlabeled ends in G.
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Repeat the last steps until there are only two unlabeled edges. Then, connect these

last two edges to a Steiner node and connect this node to the last Steiner node we

have added. This algorithm gives a branch decomposition tree of a simple structure,

where all the Steiner nodes are connected to at least one leaf. Thus, there are no

Steiner nodes that are incident to none of the leaves. The bounds generated by this

heuristic cannot beat the bounds of the previously mentioned three methods. We

used the hybrid method to obtain upper bounds for our models.

Step 1: At each branch node, find the LP relaxation values for the edges

between each pair of Steiner nodes (uij variables)

Step 2: Construct a graph of Steiner nodes and the edges connecting

them

Step 3: Assign the LP relaxation values as the edge weights

Step 4: Find a spanning ternary tree on the graph formed of Steiner

nodes

Step 5: Find the LP relaxation values for the edges between a leaf node

and a Steiner node (tei variables)

Step 6: Recursively, find the largest LP relaxation value and, if pos-

sible, assign the corresponding leaf node to the associated Steiner

node (ensuring that the properties of branch decomposition are not

violated)

Step 7: Find the width of the resulting branch decomposition

Fig. 9 : Upper bound heuristic using LP relaxation values

In addition, we use a second upper bound heuristic, which we have devised. This
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heuristic is based on a spanning ternary tree constructed using the LP relaxation

values of uij and tei variables at each branch node in the branch and bound tree.

The heuristic is described in Figure 9. If the width found at the current branch node

using this heuristic is lower than the best known upper bound, then the upper bound

is updated and a cut representing the new upper bound is added to the model.

IV.5.2. Lower bound heuristic

The treewidth and branchwidth of a graph bound each other by constants. It has

been proved that for a graph G = (V, E) E 6= ∅, max(β(G), 2) ≤ τ(G) + 1 ≤

max(⌊3
2
β(G)⌋, 2), where τ(G) is the treewidth of G [79]. Thus, any lower bound

for treewidth leads to a lower bound for branchwidth of a graph. The lower bound

heuristic we used is based on a treewidth lower bound offered by Bodlaender et al.

[8], which is called contraction degeneracy. There are other lower bounds presented

by [8] as well. But, in terms of the performance of the heuristics presented for these

lower bounds, one of the contraction degeneracy heuristics stands out. It runs in a

reasonable amount of time, and gives good lower bounds. This is the reason why we

used a contraction degeneracy heuristic.

The contraction degeneracy of a graph G is defined to be the maximum over all

minors of G of the minimum degree. So, δC(G) := maxG′{G′ is a minor of G and |V | ≥

1}. To determine if the contraction degeneracy of a graph G is at least k for some in-

teger k is NP-Complete [8]. Bodlaender et al. [8] implemented several heuristics with

different contraction strategies to find lower bounds for the contraction degeneracy.

The one that has been shown to be the best performing experimentally in general was

used for our computational results. Given an input graph G = (V, E), the contraction

degeneracy heuristic is summarized in Figure 10. The term “mind(G)” represents the

minimum degree of graph G.
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Step 1: Make a copy G′ of G, set the contraction degeneracy to be

mind(G′).

Step 2: Find a minimum degree vertex v of G′ randomly.

Step 3: Select a neighbor vertex u of v, such that u and v have the least

number of common neighbors.

Step 4: Contract edge (u, v), update G′, and compute mind(G′).

Step 5: If mind(G′) is larger than the contraction degeneracy, update

contraction degeneracy.

Step 6: Repeat steps 2-5 until G′ has less than 4 vertices.

Step 7: Repeat steps 1-6 at most |V |
mind(G)

many times, and select the

obtained highest contraction degeneracy

Fig. 10 : Contraction degeneracy heuristic

Usually in Step 2 of this algorithm, we encounter ties. Bodlaender et al. [8] do

not mention a method to break the ties. In our implementation we break the ties

randomly. [8] mentions that this heuristic may not perform very well for sparse graphs,

but we obtained good lower bounds for sparse graphs in our experiments, which we

think might be a consequence of random selection of minimum degree vertices, and

repeating this randomized algorithm for many times to get the best bound.

We compute a good contraction degeneracy lower bound, δLBC(G), using this

heuristic. Since contraction degeneracy is a lower bound for treewidth and treewidth

is a lower bound of branchwidth, we have the following relationship:
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δLBC(G) + 1 ≤ τ(G) + 1 ≤ max(⌊3

2
β(G)⌋, 2)

⇒ ⌈2

3
(δLBC(G) + 1)⌉ ≤ β(G)

We add the value of ⌈2
3
(δLBC(G) + 1)⌉ as a lower bound for the variable z, and

thus for the objective function in our models.

IV.6. Preprocessing

The leaves of a branch decomposition corresponding to the edges incident with vertices

of degree one and two can be assigned to the branch decomposition tree in a way

that we can still obtain a branch decomposition of G of width no more than the

branchwidth of G. Let v be a degree one vertex, and (v, u) be the edge incident

with v. In an optimal branch decomposition, the leaf corresponding to edge (v, u)

can be connected to the same Steiner node with the leaf corresponding to one of

the incident edges of u. This assignment will not increase the width of the branch

decomposition. In other words, there exists an optimal branch decomposition of G

such that the leaf corresponding to edge (v, u) is connected to a Steiner node where

the leaf corresponding to one of the incident edges of u, other than (v, u) is connected

to. Since we assumed our input graph to be a biconnected graph, there are no degree

one vertices. However, this reduction can be useful if we sacrifice some of the benefits

we obtained by having a biconnected graph as an input, and use our models for graphs

that are not biconnected.

In a biconnected graph, every separation of order 2 can be represented in an

optimal branch decomposition, if it does not violate other determined separations [17].

Thus, we focus on the reductions on degree two vertices. The separation generated
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by the incident edges of a degree two vertex has order 2. The reduction on these

vertices decrease the number of variables in the model. Similar to the case of degree

one vertices, we can say that there exists an optimal branch decomposition of G

such that the leaves corresponding to the incident edges of a degree two vertex are

connected to the same Steiner node.21 ed0 3a b f e4c b f g h765 i kj
2a,d e0 3,b fe4c b fg h da765 i kj2a,d e0 3,b f e4c b f g h765 i kj

0 3a,d,eb da e4c b fg h da e765 i kj
Fig. 11 : A series of reductions on G

In the reduction procedure, we first make a copy Ḡ of G. At each step we search

for a vertex of degree two, do a reduction on this vertex and update Ḡ. We repeat this

procedure until we have no degree two vertices in Ḡ. Let w be a vertex of degree two,

and let e = (w, q) and f = (w, r) be the edges incident with w in Ḡ. We can contract

one of the edges e and f in Ḡ, and connect the nodes in the branch decomposition

corresponding to both edges to a designated Steiner node. Sometimes, an edge in Ḡ

represents a subgraph of G, where the subgraph shrinks to an edge after a series of
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contractions. Hence, one or both of e and f may correspond to a set of edges that have

already gone through the reduction process. In this case, the subtree corresponding

to both set of edges is connected to a designated Steiner node. Figure 11 shows an

example graph and a few steps of reduction process and branch decomposition tree

construction.

IV.7. Cuts

Upper bound and lower bound heuristics and the preprocessing techniques are all

efforts for decreasing the size of the feasible region, and so the running time of the

algorithm. Another important method to decrease the running time is to add global

or local cuts to the models. We implement four types of global cuts and one type of

local cut.

The variable z represents the branchwidth of the input graph and also the max-

imum congestion on an edge, so it needs to be an integer. At every branch node,

CPLEX finds an LP relaxation value for the variable z, then we cut off the solutions

that employ values of z less than ⌈z⌉, since we cannot get a value better than ⌈z⌉ in

the partial branch and bound tree that is rooted in the current branch node. Thus,

at every branch node we add the following local cut;

z ≥ ⌈z⌉

One type of global cut is obtained as a result of the upper bound heuristic we

have mentioned in Figure 9. We explain the other types of global cuts in the following

section.
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IV.7.1. γ, δ and δ-Steiner cuts

Let T = (VT , ET ) be a tree, and S be any subset of the vertex set VT . Then, the

number of edges where both ends lie in S is no larger than |S| − 1 for all S ⊆ VT .

This condition avoids subtours.

The graph formed by the uij variables is supposed to be a tree, which is a

subgraph of the branch decomposition tree. Let us denote this tree by TU = (N, EU).

It is the induced subgraph of the branch decomposition tree formed by the Steiner

nodes. It is supposed to satisfy the above mentioned condition. Thus, we can add a

new cut to our model whenever we find a branch node where this condition is violated

by the LP relaxation values of the uij variables. We use an algorithm by Cunningham

[22] to determine some of the subsets of N that violates the above condition. Let R

be one of the subsets of N such that the sum of the LP relaxation values of the edges

where both ends lie in R is larger than |R|−1. Then, we add the following cut, which

is a subtour elimination constraint.

∑

i,j∈R

uij ≤ |R| − 1

Let T be a tree and S be a subset of the vertex set of T . Then, the cardinality of

the cut (S, VT −S) cannot be less than one. This constraint imposes the connectivity

requirement.

Since TU is a tree, it is supposed to satisfy the above condition. We use a

minimum cut algorithm [74] to find the minimum cut in the graph formed by the LP

relaxation values of the uij variables. If the value of the cut is less than one, then we

add a new cut to the model. Let P be one of the subsets of N such that (P, VT − P )

is a minimum cut and the cardinality of the cut is less than one. Then, we add the
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following cut;

∑

i∈P,j∈(VT−P )

uij ≥ 1

We obtain the δ-Steiner cuts using subtour elimination constraints on Steiner

trees that span each terminal set. Since every Steiner tree is a tree, the cardinality

of every cut on a Steiner tree needs to be at least one. We use a minimum cut

on the graph formed of the LP relaxation values of the zv
ij and tei variables. Let

Gv = (Vv, Ev) be the graph formed of the LP relaxation values of the zv
ij and tei

variables for a vertex v in V and all edges e ∈ Qv. Recall that G = (V, E) is the

original input graph. Among all the subsets W of Vv where both |W ∩ Qv| ≥ 1 and

|(Vv −W )∩Qv| ≥ 1 hold, let (W ′, Vv −W ′) be the minimum cut with cardinality less

than one. Then, we can add a cut to the model. One important issue we need to be

careful about is that we cannot guarantee the Steiner nodes used for that Steiner tree

at the current branch and bound node are the nodes that will be used for that Steiner

tree in the optimal branch decomposition. That is why we use the set V instead of

Vv in the following cut;

∑

i∈W ′,j∈(V −W ′)

zv
ij +

∑

e∈(W ′∩Qv),i∈(V −W ′)

tei +
∑

e∈(Vv−W ′)∩Qv,i∈(W ′−Qv)

tei ≥ 1

These cuts correspond to the Steiner cut inequalities of Grötschel et al. [44]. We

apply all the above mentioned cuts to both Model 1 and Model 2. For the second

formulation, there is a subtle point that requires δ-Steiner constraints. Since we do

not have path variables qef
ij , we cannot force the connectedness to the Steiner trees

and to the branch decomposition tree. We need to have δ-Steiner inequalities as

constraints in the second model to ensure the connectedness of the Steiner trees.

Because of the large number of δ-Steiner constraints, instead of adding them to the
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model directly, we add them as cuts when they are violated.

IV.8. Formulation on hypergraphs

We implemented both models on hypergraphs. We can use the upper bound heuristic

we developed on LP relaxation values directly. This heuristic is explained in detail

in section IV.5.1. To be able to use the hybrid method as an upper bound and the

contraction degeneracy heuristic as a lower bound we take advantage of the fact that

branchwidth of a hypergraph is equal to the branchwidth of a graph constructed by

using this hypergraph [81].

Let H be a hypergraph, and G be a graph constructed by replacing each hyper-

edge of form {u1, ..., ut} with a complete bipartite graph with vertex set {u1, ..., ut, v1, ..., vt}

s.t. there is an edge connecting every ui and vj , {i, j} ∈ {1, ..., t}. Seymour and

Thomas [81] proved that the branchwidth of H is equal to the branchwidth of G.

We cannot guarantee that the preprocessing steps we implemented on graphs

are appropriate for hypergraphs. However, we do apply the cuts we used for graphs

since these cuts are generated on the graphs formed by the LP relaxation values of

the variables.

Note that the result on connected separations can be generalized to hypergraphs.

Fomin et al. [32] presented a polynomial time algorithm that constructs a connected

branch decomposition of width at most k, given a 2-edge-connected input graph G and

a branch decomposition T of width k for G [32]. This algorithm can be directly used

for branch decomposition of hypergraphs to obtain a connected branch decomposition

of width at most k given a branch decomposition of width at most k, assuming that

the hypergraph is 2-edge-connected. The proof in [32] is valid for hypergraphs as

well. Hence, we can say that given a 2-edge-connected hypergraph H , there exists a
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connected branch decomposition of H of width equal to its branchwidth. Thus, we

can use the constraint set (4.5) that forces two non-incident edges to be connected to

different Steiner nodes in the branch decomposition.

IV.9. Computational results

We run our models using C++ and CPLEX 9.0. CPLEX has several parameters

that are set to a default value and can be changed by the user. These parameters

describe some details of the methods that will be used to obtain the solution, such

as which variable to branch on first, which method to use for solving subproblems of

a mixed integer program, etc. After considering the characteristics of our problem

and obtaining some experimental results on different values of some parameters, we

decided to keep most of the parameters in their default value, and set some other

parameters as follows. The parameter ”FinalFactor” is described as the indicator for

basis final factorization after the reverse operation (that occurs to build the original

model when presolve changes the model). This parameter is set to ”on” as default,

but we turned it ”off”. It is recommended for large models to save some time. The

parameter ”Probe” determines the probing level on the variables before branching.

In our experiments we tried all three levels (1-3)of probing and we set this parameter

to 2. The parameter ”VarSel” represents the rule for selecting the branching variable

at the branch node. The method we chose for ”VarSel” is strong branching. This

method partially solves a number of subproblems with tentative branches and then

decides to branch on the one that is the most promising. In terms of the cuts that

CPLEX generates by default, we used the default aggressiveness level where CPLEX

decides how aggressive it will apply a certain cut. The cuts that we generate in our

model is used additional to the default cuts of CPLEX.
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IV.9.1. Results on graphs

Our test instances are the biconnected graphs among compiler graphs used in [48],

some well known graphs such as K6, the Petersen graph, and the webs W6,2, W8,3,

W10,4, and W12,5. Compiler graphs are the test instances of control-flow graphs from

actual C compilations. These test instances were provided by Keith Cooper at Rice

University. A web Wn,i is a graph of n labeled vertices s.t. the edge set consists of the

edges of the form {(j, (j + i)Mod n), ..., (j, (j − i)Mod n)}. We also demonstrate run

times of the graphs K5, M6, M8 and Q3 and a set of graphs we generate by deleting

one edge from these graphs. The mentioned four graphs are edge transitive. Thus,

deleting one edge is equivalent to deleting any other edge. We also demonstrate run

times for some graphs we have generated and named as “g# #”. The branchwidth,

upper and lower bounds for all of the test instances are shown in Table 5 and 6. The

title “β” stands for the branchwidth. The columns titled “ub” and “lb” represent the

upper and lower bounds for the branchwidth, respectively.

We use a Pentium 4 computer with 3.06 GHz CPU to obtain our results. The

upper bound heuristic runs less than a second for all of the graphs and the lower

bound heuristic runs less than 200 seconds except for a few of them. The upper

bound and the lower bound heuristic run times are not shown in any of the tables for

simplicity. For the graphs shown in Table 5 there is no gap between upper and lower

bounds. These graphs are compiler graphs and 8 more graphs that we have mentioned

before. Thus, both models terminate with the branch decomposition obtained by the

upper bound heuristic.

Table 6 shows the test instances where there is a gap between upper and lower

bounds. In all of these test instances, except g28 64, the gap is only one. We set the

upper bound of the branchwidth as 1 less than the width obtained from the hybrid



54

Graph (|V |, |E|) β ub lb

dens (6,7) 2 2 2
W6,2 (6,9) 3 3 3
K−

5 (5,9) 2 2 2
K5 (5,10) 4 4 4

cosqb (8,10) 2 2 2
M−

8 (8,11) 3 3 3
Q−

3 (8,11) 3 3 3
M6 (6,12) 4 4 4

coeray (11,14) 2 2 2
sudtbl (11,14) 3 3 3

K6 (6,15) 4 4 4
arret (12,15) 2 2 2
supp (12,15) 2 2 2
W12,5 (12,18) 4 4 4
laspow (14,18) 3 3 3
tpart (14,18) 2 2 2
inter (16,21) 2 2 2
nprio (17,22) 3 3 3
saturr (17,23) 2 2 2
setinj (18,23) 2 2 2
genb (18,24) 2 2 2
laser (19,25) 2 2 2
drigl (21,29) 3 3 3

si (23,31) 3 3 3
seval (24,31) 3 3 3
bcndb (25,34) 2 2 2
dyeh (27,35) 3 3 3
linj (27,35) 3 3 3

recre (27,35) 3 3 3
injchk (33,44) 2 2 2
bilan (37,49) 3 3 3
tcomp (38,50) 3 3 3
colbur (40,54) 3 3 3
sortie (44,62) 3 3 3
cardeb (48,64) 3 3 3
prophy (48,65) 2 2 2

yeh (50,68) 3 3 3
verify (55,73) 2 2 2
bcnd (55,77) 2 2 2
tele56 (56,85) 3 3 3
heat (69,95) 2 2 2

ddeflu (92,124) 2 2 2
pastem (158,214) 3 3 3

Table 5 : Branchwidth, upper and lower bounds without any gap
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method. Thus, for these graphs the only thing the models need to verify is if the

lower bound is feasible or not.

Graph (|V |, |E|) β ub lb

M−
6 (6,11) 3 4 3

M8 (8,12) 4 4 3

Q3 (8,12) 4 4 3

W8,3 (8,12) 4 4 3

W10,4 (10,15) 4 4 3

Petersen (10,15) 4 4 3

g11 23 (11,23) 5 5 4

g19 33 (19,31) 5 5 4

g14 40 (14,40) 6 6 5

g28 64 (28,64) 7 7 5

Table 6 : Branchwidth, upper and lower bounds with a gap

Table 7 and Table 8 show the building and running times for the test instances

in Table 6 using the two formulations, respectively. Note that, when there is no

gap between upper and lower bounds both models assume the branch decomposition

given by the upper bound heuristic to be the optimal solution. Thus, building and

running times for the graphs in Table 5 are less than a second. The columns titled

“nc”, “loc”, “g&l”, “d&l”, “St&l”, “all” show the run times when no cuts, only local

cuts, local and γ cuts, local and δ cuts, local and δ-Steiner cuts, all types of cuts are

applied, respectively. An “X” on any of the tables means that the model does not

terminate before 18000 seconds.

If we compare run times of the test instances with the lower bound heuristic
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Graph (|V |, |E|) β build nc loc g&l d&l St&l all

M−
6 (6,11) 3 1.4 327.1 103.8 116.8 354.5 234.9 37.3

M8 (8,12) 4 2.9 X X X X X X
Q3 (8,12) 4 0.5 X X X X X X

W8,3 (8,12) 4 0.5 X X X X X X
W10,4 (10,15) 4 0.8 X X X X X X

Petersen (10,15) 4 0.6 X X X X X X
g11 23 (11,23) 5 0.9 X X X X X X
g19 33 (19,33) 5 1.7 X X X X X X
g14 40 (14,40) 5 3.1 X X X X X X
g28 64 (28,64) 7 12.8 X X X X X X

Table 7 : Model 1 building and running times

with Table 3 and 4, we can see how useful the lower bound is. When the lower bound

heuristic is applied the models terminate in less than a second for many of the graphs,

since the lower bounds happen to be equal to the upper bounds. For three of the

graphs it takes more than 18,000 seconds for both models to terminate without the

lower bound heuristic. However, the lower bound heuristic can obtain a bound equal

to the upper bound for these graphs.

As can be seen from Tables 7 and 8 the second model builds faster for M−
6 .

However, Model 1 runs faster when all cuts are applied. Both models run for more

than 18,000 seconds for M8, Q3, W8,3, W10,4 and Peterson graph. The second model

terminates in a reasonable amount of time for the rest of the graphs, although the

first one runs for more than 18,000 seconds. This might be because of the difference

in the number of variables and the number of constraints in the two model. As a

reminder, the models have O(m3) and O(nm2) constraints respectively. Also, we

don’t have yef
ij and qef

i variables in the second model, instead we have xv
i variables.

There is a huge decrease in the size of the variable set when we construct the second

model starting with the first one since we don’t need to consider all neighbor edge

pairs and associated variables for the second model. Thus, in the branch and bound
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Graph (|V |, |E|) β build run

M−
6 (6,11) 3 0.5 70.9

M8 (8,12) 4 0.6 X

Q3 (8,12) 4 0.6 X

W8,3 (8,12) 4 0.6 X

W10,4 (10,15) 4 0.6 X

Petersen (10,15) 4 0.6 X

g11 23 (11,23) 5 0.9 19.5

g19 33 (19,33) 5 2.8 70.8

g14 40 (14,40) 5 2.2 144.3

g28 64 (28,64) 7 10.7 9909.1

Table 8 : Model 2 building and running times

procedure, Model 2 has fewer variables to be branched on and fewer constraints of

which feasibility check needs to be done. This might be the reason why Model 2 runs

faster in general. In contrast Model 1, with all cuts, runs faster than Model 2 for

one test instance. CPLEX runs some heuristics at some branch nodes to find feasible

solutions to the problem to use as an upper bound. Model 1 with all cuts might have

had a branch node where the heuristic comes up with a good feasible solution for that

specific test instance.

In terms of comparison of the effectiveness of different cuts, we cannot come to a

conclusion based on the test instances we have presented so far. For the graphs with

less than 12 edges or for the compiler graphs that are very sparse and can be reduced

to much smaller graphs with the help of reductions, the run times using different cuts

do not show a great difference. For W8,3, W10,4, Petersen graph or larger graphs the
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run times are more than 18,000 seconds with both models and different combination

of cuts. Thus, we cannot see if the cuts are effective, since we do not run them to

completion. For this reason, we need small test instances that would run a reasonable

amount of time and show the difference in the effectiveness of the cuts despite the

fact that the functions that form the cuts take some time as well.

We use the graphs K−
5 , M−

6 , M−
8 and Q−

3 to show the effectiveness of the cuts.

We do not use upper and lower bound heuristics to spare some space for the cuts to

be effective. These graphs do not have many degree 2 vertices, which is a property

we prefer for the purpose of decreasing the tractability of the input. Table 9 shows

the run times of these test instances without any upper and lower bounds. We use

a Pentium 4 computer with 3.06 GHz CPU to obtain our results. The mentioned

graphs constitute the set that is obtained by deleting one edge from the obstruction

set of graphs of branchwidth less than 4. All of these graphs have branchwidth

3 and adding the appropriate edge to each creates members of the aforementioned

obstruction set, where all graphs have branchwidth 4. Thus, adding the necessary

edge to our test instances increases the branchwidth by one. We think this might be

the reason why the effectiveness of the cuts are better illustrated with these examples.

Another reason might be the absence of the upper and lower bound heuristics. This

leaves a larger feasible region for the models to run through, which also enables the

cuts to be more effective.

As can be seen in Table 9, other than the last test instance, local and δ cuts

perform the best. As a reminder, the columns titled “nc”, “loc”, “g&l”, “d&l”,

“St&l”, “all” show the run times when no cuts, only local cuts, local and γ cuts,

local and δ cuts, local and δ-Steiner cuts, all types of cuts are applied, respectively.

Especially for “M−
6 ” and “M−

8 ” local and δ cuts together decrease the run time

considerably, compared to the case when no cut is applied. The run times with
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Graph (|V |, |E|) β nc loc g&l d&l St&l all

K−
5 (5,9) 3 19.5 40.7 39.1 16.5 46.8 59.8

M−
6 (6,11) 3 1399.2 1620.1 2075.4 394 3599.9 1056.8

M−
8 (8,11) 3 1327 1739.2 1703.6 359.2 3656.8 1039.6

Q−
3 (8,11) 3 23.7 44.9 46.3 62.4 34 70.7

Table 9 : Comparison of the efficiency of the cuts

the other cuts can be much larger than the run times with no cuts. This might be

because these cuts are not as effective as the δ cuts, and the model wastes more time

to generate these cuts, compared to the time it saves by using them.

IV.9.2. Results on hypergraphs

We use some test instances we have generated and referred to as hg#, where # repre-

sents numbers 1 through 8. Also, we use hypergraph representations of some circular

clutters such as C3
5 , C3

8 , C4
7 , C4

11, C5
9 from [18]. The columns represent the nodes,

and the rows represent the edges of the hypergraph. A few of the test instances are

illustrated below:

C3
5=

























1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

1 0 0 1 1

1 1 0 0 1

























C4
7=







































1 1 1 1 0 0 0

0 1 1 1 1 0 0

0 0 1 1 1 1 0

0 0 0 1 1 1 1

1 0 0 0 1 1 1

1 1 0 0 0 1 1

1 1 1 0 0 0 1
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M(hg4)=





















































1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0

1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1

0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0





















































Table 10 shows the upper and lower bounds obtained for the hypergraph test

instances. The title “β” stands for the branchwidth of the hypergraph. The columns

titled “ub” and “lb” represent the upper and lower bounds for the branchwidth,

respectively. An M in any of the tables means that the code runs out of memory

for that test instance. An “X” on any of the tables means that the model does not

terminate before 18000 seconds. The gap between upper and lower bounds mostly

ranges from 0 to 3, however for the test instance hg7 the gap is 7. This might be

because it is the graph that has the highest number of vertices over number of edges

ratio among all of the test instances. Also, for all of the C#
# test instances, the above

mentioned ratio is 1, and the gap between upper and lower bounds is at most 2.

Table 11 and 12 show the building and running times of Model 1&2, respectively,

on hypergraphs. We use a Pentium 4 computer with 3.06 GHz CPU to obtain our

results. Model 1 can handle hypergraphs with up to 8 or 9 hyperedges in a reasonable

amount of time. For the larger hypergraphs, it takes more than 18,000 seconds to

solve the problem to completion.

In terms of the effectiveness of the cuts for hypergraphs, local and δ cuts seem to
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perform better than the other cuts. The run times with local and δ cuts are shorter

than the run times with other cuts (or without any cuts) for most of the test instances

that terminate before 18,000 seconds.

Graph (|V |, |E|) β ub lb

hg1 (10,6) 6 7 6

hg2 (12,7) 8 9 7

hg3 (14,8) 8 9 7

hg4 (16,9) 10 10 8

hg5 (18,10) 10 11 8

hg6 (18,11) 11 11 8

hg7 (20,12) NA 17 10

hg8 (18,13) 9 10 7

C3
5 (5,5) 4 4 4

C4
7 (7,7) 6 6 5

C3
8 (8,8) 4 4 4

C5
9 (9,9) 7 8 6

C4
11 (11,11) 6 6 5

C6
11 (11,11) 9 9 8

C7
13 (13,13) 11 11 9

Table 10 : Branchwidth, upper and lower bounds for hypergraphs

Similar to the first model, Model 2 can handle graphs up to 8 or 9 hyperedges

in a reasonable amount of time. The building and running times of Tables 11 and

12 are compared in Table 13. In general Model 2 builds and runs faster than Model

1 on hypergraphs, as in the case of graphs. However, for 8 of the test instances
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both models fail to terminate before 18,000 seconds, 6 of which Model 2 runs out of

memory.

Graph (|V |, |E|) β build nc loc g&l d&l St&l all

hg1 (10,6) 6 27.6 2.2 0.9 1.2 0.9 2.4 2.6
hg2 (12,7) 8 30.1 12 17.1 21 17.1 38.3 41.9
hg3 (14,8) 8 51.5 159 112 123.1 111.8 163.8 174.8
hg4 (16,9) 10 67.7 X X X X X X
hg5 (18,10) 10 94.2 X X X X X X
hg6 (18,11) 11 123 X X X X X X
hg7 (20,12) NA 162.7 X X X X X X
hg8 (18,13) 9 128.5 X X X X X X
C3

5 (5,5) 4 1 0.2 0.3 0.3 0.3 0.4 0.4
C4

7 (7,7) 6 1.2 12.5 19.2 23.4 19.2 43.5 47.6
C3

8 (8,8) 4 1 2.2 3 3.6 3 4.2 4.9
C5

9 (9,9) 7 41.8 4377.7 4828.63 4591.8 4462.2 6323.3 5831.7
C4

11 (11,11) 6 57.7 X X X X X X
C6

11 (11,11) 9 138.55 X X X X X X
C7

13 (13,13) 11 332.8 X X X X X X

Table 11 : Model 1 building and running times on hypergraphs

The results obtained for the hypergraphs are similar to the results obtained

for the graphs in terms of the comparison of two models. The second model runs

faster than the first model in general in graphs as well as in hypergraphs. As we

have mentioned before, the reason might be the smaller size of the variable and the

constraint sets of Model 2.

Table 14 shows the gap and the tree size obtained at the end of 5 hours for those

hypergraphs that cannot reach the solution in less than 5 hours. The columns titled

“gap1” and “gap2” show the gaps obtained by the two models, respectively. The gaps

are shown as percentages. The columns titled “tree1” and “tree2” show the size of the

trees obtained in the branch and bound procedure for the two models, respectively.

The size of the trees are shown in megabytes.
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Graph (|V |, |E|) β build run

hg1 (10,6) 6 0.5 2.1

hg2 (12,7) 8 0.5 15.1

hg3 (14,8) 8 0.6 115.9

hg4 (16,9) 10 0.7 M

hg5 (18,10) 10 1.1 M

hg6 (18,11) 11 1 M

hg7 (20,12) NA 1 M

hg8 (18,13) 9 0.8 X

C3
5 (5,5) 4 0.6 0.2

C4
7 (7,7) 6 0.5 21.1

C3
8 (8,8) 4 0.5 4.9

C5
9 (9,9) 7 0.6 920.9

C4
11 (11,11) 6 0.6 X

C6
11 (11,11) 9 0.7 M

C7
13 (13,13) 11 1.1 M

Table 12 : Model 2 building and running times on hypergraphs
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Graph (|V |, |E|) β build1 build2 run1 run2

hg1 (10,6) 6 27.6 0.5 2.6 2.1

hg2 (12,7) 8 30.1 0.5 41.9 15.1

hg3 (14,8) 8 51.5 0.6 174.8 115.9

hg4 (16,9) 10 67.7 0.7 X M

hg5 (18,10) 10 94.2 1.1 X M

hg6 (18,11) 11 123 1 X M

hg7 (20,12) NA 162.7 1 X M

hg8 (18,13) 9 128.5 0.8 X X

C3
5 (5,5) 4 1 0.6 0.4 0.2

C4
7 (7,7) 6 1.2 0.5 47.6 21.1

C3
8 (8,8) 4 1 0.5 4.9 4.9

C5
9 (9,9) 7 41.8 0.6 5831.7 920.9

C4
11 (11,11) 6 57.7 0.6 X X

C6
11 (11,11) 9 138.55 0.7 X M

C7
13 (13,13) 11 332.8 1.1 X M

Table 13 : Comparison of building and running times for hypergraphs
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Graph (|V |, |E|) β gap1 gap2 tree1 tree2

hg4 (16,9) 10 10% 10% 0.65 0.29

hg5 (18,10) 10 27.27% 27.27% 1.05 2.93

hg6 (18,11) 11 27.27% 27.27% 0.91 2.91

hg7 (20,12) NA 33.33% 28.57% 0.56 1.78

hg8 (18,13) 9 30% 30% 0.61 1.99

C4
11 (11,11) 6 16.67% 16.67% 0.51 0.25

C6
11 (11,11) 9 11.11% 11.11% 0.83 0.83

C7
13 (13,13) 11 18.18% 18.18% 1.05 0.73

Table 14 : Gaps and branch and bound tree size upon termination for

hypergraphs
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CHAPTER V

MODEL 3

V.1. Laminar separations and branch decompositions

We can think of a branch decomposition as an assignment of some separations of a

graph G on the edges of a ternary tree structure, since every edge in a branch de-

composition represents a separation. However, we need to do this assignment wisely

so that the leaves of the branch decomposition tree corresponds to the separations

where one part of the separation has cardinality one, and the maximum order of the

separations represented in the branch decomposition is minimized. To build our third

model, we utilize the relationship between the separations represented in a branch

decomposition. Two separations (A1, B1) and (A2, B2) are called laminar if either

A1 ⊆ A2, A1 ⊆ B2, B2 ⊆ A1, or A2 ⊆ A1. An edge e in a branch decomposition

represents two separations (Ae, Be) and (Be, Ae), which are basically the same sepa-

rations. In a branch decomposition the separation represented by an edge is laminar

with all the separations represented by the other edges of the branch decomposition.

In addition, if we have k pairwise laminar separations, they can all be represented by

the edges of a single branch decomposition tree. Theorem 2 describes the relationship

between laminar separations and branch decompositions.

Theorem 2. If (T, ν) is a branch decomposition of G, the set of all separations of

G represented by the edges of T is laminar. Conversely, if (Ai, Bi) : 1 ≤ i ≤ k is a

laminar set of separations of G, there is a branch decomposition (T, ν) such that:
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• for 1 ≤ i ≤ k, (Ai, Bi) is represented by a unique edge of T

• for each edge e of T , at least one of the separation represented by e equals

(Ai, Bi) for some i, if k is equal to the total number of edges in T .

Proof. First we prove that if (T, ν) is a branch decomposition of G, the set of all

separations of G made by the edges of T is laminar. Let (A1, B1) and (A2, B2) be

two separations of G, corresponding to two edges e1 and e2 of T respectively. Assume

(A1, B1) and (A2, B2) are not laminar, then it is obvious that the intersection of the

two sides of the separations are pairwise nonempty, i.e., A1 ∩ A2 6= ∅, A1 ∩ B2 6= ∅,

B1 ∩A2 6= ∅ and B1 ∩B2 6= ∅. Let TA1
, TB1

and TA2
, TB2

be the subtrees obtained by

removing e1 and e2 from T , respectively.

The intersection of subtrees of a tree is either empty set or a tree. Since the

intersections are all assumed to be nonempty, then there exists a subtree of T corre-

sponding to each intersection A1 ∩A2, A1 ∩B2 , B1 ∩A2 and B1 ∩B2. We know that

A1 ∪ B1 = A2 ∪ B2 = E. Thus, (A1 ∩ A2) ∪ (A1 ∩ B2) = A1, and we have the same

result for the union of other intersections. Hence, in T there exists an edge connecting

TA1∩A2
to TA1∩B2

, TA1∩A2
to TB1∩A2

, TA1∩B2
to TB1∩B2

and TB1∩A2
to TB1∩B2

. So, T

is 2-edge connected, which contradicts to T being a tree. Thus, the pairwise inter-

sections cannot be all nonempty. It is obvious that they cannot be all empty either,

since we have A1 ∪ B1 = A2 ∪ B2 = E. Hence, if (T, ν) is a branch decomposition of

G, then the set of all separations of G made by the edges of T is laminar.

For the other direction, we present an algorithm that helps us in the proof.

At the end of this algorithm we get a branch decomposition if k = 2|E| − 3. Let

(Ai, Bi) : 1 ≤ i ≤ k be a laminar set of separations of G. The algorithm is stated in

Figure 12.
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Step 1: Order the separations by the size of the min(|Ai|, |Bi|) from

highest to lowest.

Step 2: Start with a single node that represents all the edges in E, and

get the first separation in the list.

Step 3: If there exists a node that carries elements from both sides of

the separation, then split this node into two nodes, which represents the

partitions of that node formed by the current separation, and assign an

edge (that represents the current separation) between these two nodes.

Step 4: Else if there exists a node that carries all the elements of the

one side of the separation, and if it is not connected to a dummy node

then split this node into two nodes, one of which is a dummy node that

represents an empty set. This dummy node is a connection of the new

node to the rest of the tree. If the node is connected to a dummy node

already, then leave the node as it is.

Step 5: Get the next separation from the list.

Step 6: Repeat Step 3, 4 and 5 until the end of the separations list.

Fig. 12 : Building branch decomposition given k laminar separations

Note that since the separations are laminar (the intersection of the two sides of

the separations cannot be all pairwise nonempty, and they are not all pairwise empty

either), each time we pick the next separation in the list there will be at most one

node that has elements belonging to both sides of the separation. If there is one, this

single node can be split by means of that separation. If there is no such node then

there is a node that represents exactly all the elements in one side of the separation.
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Then, this node is connected to the rest of the graph with an edge that represents the

current separation. At the end of the algorithm we obtain a tree with k edges, since

we had represented each separation with an edge. It is obvious that for 1 ≤ i ≤ k,

(Ai, Bi) is made by a unique edge of this tree.

V.2. Formulation

In this section we present our third formulation. We benefit from Theorem 2, the

relationship between laminar separations and branch decompositions. All the sep-

arations represented in a branch decomposition are pairwise laminar. Since there

are 2|E| − 3 edges in a branch decomposition, we look for 2|E| − 3 pairwise laminar

separations such that the branch decomposition formed by these separations has the

optimal width.

V.2.1. Decision variables

Let S be the set of all separations of the graph G. There are 2|E|−1 − 1 separations

in a graph. We know that there are |E| separations with one edge in one side of the

partition. Let this set be denoted by U . The separations in U are represented in all

branch decompositions of |G| as the leaves of the branch decomposition. In addition,

we assume that G is 2-edge-connected. Using the result in Fomin et al. [32], we can

focus on the separations where the both sides of the separation is connected, since

these separations are sufficient to find an optimal branch decomposition. Let us call

such separations as connected separations. Let S ′ be the set of connected separations

that are in (S − U). This reduction in the set of separations is going to be very

helpful in the effectiveness of our model. For instance, in Petersen graph we have

214 − 1 = 16383 separations, and 3772 connected separations.
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We introduce decision variable xs for each separation s ∈ S ′. We define xs = 1

if s is represented in the branch decomposition tree, 0 else. We define z to be the

decision variable corresponding to the largest order of any separation in a branch

decomposition like in the previous models. We write s ⊲⊳ s′ if two separations s and

s′ are laminar.

V.2.2. Constraints

Among the 2|E| − 3 separations represented in any branch decomposition of G, |E|

of them are the leaves, which correspond to the separations in set U . Thus, we are

searching for the rest of the necessary separations that leads to an optimal branch

decomposition. We need the number of employed separations in the model to sum

up to |E| − 3. We need a single constraint for this purpose.

∑

s∈S′

xs = |E| − 3 (5.1)

It is obvious that any separation is laminar with the separations in set U . In

addition, the |E| − 3 separations we are looking for needs to be pairwise laminar.

This is ensured by the following set of constraints:

(|E| − 4)xs −
∑

s′∈S′ s.t. s⊲⊳s′

xs′ ≤ 0 ∀ s ∈ S ′ (5.2)

Let F (s) be the order of separation for separation s. Note that, the order of

a separation is the width of the edge corresponding to that separation in a branch

decomposition. Since, the width of a branch decomposition is the maximum width

over all edges of the branch decomposition, we have the following constraint set;

F (s)xs ≤ z ∀ s ∈ S ′
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Finally, our objective is to minimize z like in the previous formulations.

V.3. Upper and lower bounds

We use the hybrid heuristic by Hicks [48] described in Section IV.5.1. We find a

feasible solution with this method, which gives an upper bound for the branchwidth.

To save time and reduce the number of feasible solutions, we discard the separations

with order greater than the upper bound and update the set S ′. Thus, we can

have even fewer variables, if we have a better upper bound. Hence, we can save

considerable amount of time in the branch and bound process. The last upper bound

heuristic described in Figure 9 is not applicable for this model since it is based on the

LP relaxation values of the uij variables. As a lower bound, we use the same lower

bound we use for the first two models, which is a contraction degeneracy heuristic. In

addition, we utilize the same preprocessing methods we used for the first two models,

and fix some of the variables to 1 by means of these reductions.

V.4. Formulation on hypergraphs

We implemented Model 3 also on hypergraphs. In terms of a bound on the branch-

width, like in the first two models, we construct a graph using the input hypergraph

as described by Seymour and Thomas [81], and set the upper and lower bounds

on the branchwidth of the input hypergraph as the upper and lower bounds on the

branchwidth of the constructed graph.

V.5. Computational results

We run our model using C++ and CPLEX 9.0. Our test instances are the same

instances we used for Models 1 and 2.
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V.5.1. Results on graphs

Table 15 shows the performance of the third model on the test instances with gap

between upper and lower bounds. The column title “β” stands for the branchwidth

and the columns titled with “build” and “run” shows the building and the running

times of the model. An “X” on any of the tables means that the model does not

terminate before 18000 seconds. In general, Model 3 performs well in terms of run

time. However, the building times can be significantly greater than the building times

of the first two models due to the construction of all connected separations. As we

can see in Table 15, it takes more than 18,000 seconds to build the model for those

test instances with more than 30 edges.

Graph (|V |, |E|) β build run

M−
6 (6,11) 3 1.1 0.4

M8 (8,12) 4 1.3 0.7

Q3 (8,12) 4 1.3 1.1

W8,3 (8,12) 4 1 0.4

W10,4 (10,15) 4 5.5 2.3

Petersen (10,15) 4 5.3 2.2

g11 23 (11,23) 5 1890.7 14720.9

g19 33 (19,31) 5 X NA

g14 40 (14,40) 5 X NA

g28 64 (28,64) 7 X NA

Table 15 : Model 3 building and running times

Table 16 demonstrates a comparison of the building and the running times of



73

all three models, for the test instances of Table 15. We use a Pentium 4 computer

with 3.06 GHz CPU to obtain our results. The columns titled “build1”, “build2”, and

“build3” show the building times of all three models, respectively. The columns titled

“run1”, “run2”, and “run3” show the run times of all three models, respectively. The

column “run1” is the run time when all cuts are applied to Model 1.

Graph (|V |, |E|) β build1 build2 build3 run1 run2 run3

M−
6 (6,11) 3 1.4 0.5 1.1 37.3 70.9 0.4

M8 (8,12) 4 2.9 0.6 1.3 X X 0.7

Q3 (8,12) 4 0.5 0.6 1.3 X X 1.1

W8,3 (8,12) 4 0.5 0.6 1 X X 0.4

W10,4 (10,15) 4 0.8 0.6 5.5 X X 2.3

Petersen (10,15) 4 0.6 0.6 5.3 X X 2.2

g11 23 (11,23) 5 0.9 0.9 1890.7 X 19.5 14720.9

g19 33 (19,33) 5 1.7 2.8 X X 70.8 NA

g14 40 (14,40) 5 3.1 2.2 X X 144.3 NA

g28 64 (28,64) 7 12.8 10.7 X X 9909.1 NA

Table 16 : Comparison of building and running times

For the graphs with branchwidth 5 or more the second model performs the best.

It builds and runs in a reasonable amount of time for these graphs. For the graphs

with branchwidth 4, Model 3 performs much better than the first two models. It

solves these instances in less than 5 seconds. For the test instances with less than 15

edges, the third model performs the best in general.
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V.5.2. Results on hypergraphs

We use the test instances of section IV.9.2. Table 17 shows the building and running

times of Model 3 on hypergraphs. An “X” on any of the tables means that the model

does not terminate before 18000 seconds. We use a Pentium 4 computer with 3.06

GHz CPU to obtain our results.

Graph (|V |, |E|) β build run

hg1 (10,6) 6 13.5 0.1

hg2 (12,7) 8 27.8 0.1

hg3 (14,8) 8 49.5 0.1

hg4 (16,9) 10 59.8 2.2

hg5 (18,10) 10 101.3 8.7

hg6 (18,11) 11 137.4 82.5

hg7 (20,12) NA 264.9 X

hg8 (18,13) 9 577.8 7570.3

C3
5 (5,5) 4 3.6 0.1

C4
7 (7,7) 6 13.8 0.1

C3
8 (8,8) 4 13.8 0.1

C5
9 (9,9) 7 42.8 0.2

C4
11 (11,11) 6 98.2 0.2

C6
11 (11,11) 9 142.5 2.6

C7
13 (13,13) 11 753.6 3305.5

Table 17 : Model 3 building and running times on hypergraphs

Model 3 can handle hypergraphs with up to 13 hyperedges. However for the
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test instance “hg7” it runs for more than 18,000 seconds and still cannot solve it,

although it has 12 edges. The reason might be the larger size of the vertex set of this

hypergraph, or the performance of the upper and lower bound heuristics. Because

for this test instance there is a gap of 7 between upper and lower bounds. Upon

termination in 18,000 seconds, the size of the branch and bound tree is 13.74MB, and

the gap is 14.25% for this test instance. The best feasible solution it finds has a width

of 14 and the obtained best lower bound in the branch and bound procedure is 12.

Graph (|V |, |E|) β build1 build2 build3 run1 run2 run3

hg1 (10,6) 6 27.6 0.5 13.5 2.6 2.1 0.1

hg2 (12,7) 8 30.1 0.5 27.8 41.9 15.1 0.1

hg3 (14,8) 8 51.5 0.6 49.5 174.8 115.9 0.1

hg4 (16,9) 10 67.7 0.7 59.8 X X 2.2

hg5 (18,10) 10 94.2 1.1 101.3 X X 8.7

hg6 (18,11) 11 123 1 137.4 X X 82.5

hg7 (20,12) NA 162.7 1 264.9 X X X

hg8 (18,13) 9 128.5 0.8 577.8 X X 7570.3

C3
5 (5,5) 4 1 0.6 3.6 0.4 0.2 0.1

C4
7 (7,7) 6 1.2 0.5 13.8 47.6 21.1 0.1

C3
8 (8,8) 4 1 0.5 13.8 4.9 4.9 0.1

C5
9 (9,9) 7 41.8 0.6 42.8 5831.7 920.9 0.1

C4
11 (11,11) 6 57.7 0.6 98.2 X X 0.2

C6
11 (11,11) 9 138.55 0.7 142.5 X X 2.6

C7
13 (13,13) 11 332.8 1.1 753.6 X X 3305.5

Table 18 : Comparison of building and running times for hypergraphs
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Table 18 compares the building and running times of all three models on hyper-

graphs. It is clear that the third model performs the best for the hypergraph test

instances, which might be because these hypergraphs have less than 14 hyperedges.

Thus, Model 3 can build all the test instances in a reasonable amount of time, and

with the help of upper bounds it can eliminate many separations and keep the size

of the model as small as possible. Hence, this makes the third model advantageous

over the other two models for hypergraphs up to 13 hyperedges.
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CHAPTER VI

RANK-WIDTH PROBLEM

The rank-width and the rank decompositions are used as a tool for finding f(k)-

expression for a graph with clique-width k, where f is a fixed function. Clique-width,

like treewidth and branchwidth, is used for solving NP-hard problems. Many hard

problems can be solved in polynomial time if modeled on graphs of bounded clique-

width, given corresponding k-expression of the input graph. Oum and Seymour [72]

proved that, even if the k-expression is not provided, clique-width can still be utilized

for solving NP-hard problems. This was achieved by means of rank decompositions.

Thus, finding good rank decompositions can be crucial for the effectiveness of the

algorithms that utilize clique-width.

The rank-width problem is very much related with the branchwidth problem.

Given a graph G, the rank decomposition of G is the branch decomposition of the

cut-rank function of G, and the rank-width problem is to compute the rank-width

and an optimal rank decomposition of a graph. Chapter III gives detailed definitions

of rank-width and optimal rank decomposition.

VI.1. Vertex-minors

The vertex-minors relationship of graphs is a graph containment relation similar to

graph minors. As we have mentioned in section III.2, there is a nice relationship

between graph minors and branch decompositions. For a given integer k, the class

of graphs with branchwidth at most k is a minor closed class, meaning that if G has

branchwidth at most k, then any minor of G has branchwidth at most k as well [79].

Vertex-minor containment was introduced with the name l-reduction by Bouchet [11]
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and its connection with rank-width was developed by Oum [69] while searching for

a similar relationship for clique-width. For a fixed k, the class of graphs with rank-

width at most k is a vertex-minor closed class. Thus, if G has rank-width at most k,

then any vertex-minor of G has rank-width at most k [69].

Most of the terminology we use in this Chapter is taken from Oum [69]. Let

G = (V, E) be a graph and v be a vertex in V . Deleting v from G means removing v

and its incident edges from G. The graph obtained by deleting v is denoted by G \ v.

The local complementation at v is to replace the edges of the subgraph obtained by

the neighbors of v, by the edges of its complement. The graph obtained by local

complementation at v to G is denoted by G ∗ v. For an edge (u, v), pivoting is to do

local complementation at u, then v and then u again. The graph obtained by pivoting

(u, v) is denoted by G ∧ (u, v), and G ∧ (u, v) = G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v. Oum

[69] showed that local complementation or pivoting does not change the rank-width,

which means a graph obtained by a series of local complementations or pivotings has

the same rank-width with the original graph. But, the rank-width of a graph obtained

by a deletion of a vertex can be either equal to or one less of the rank-width of the

original graph [69]. An example of a local complementation is shown in Figure 13.

0 132 54 0 132 54
Fig. 13 : G and a local complementation at vertex 0

Figure 14 shows two graphs. The one on the left shows a graph obtained by local
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complementation at vertex 4 for the graph (on the right) of Figure 13 and the one on

the right shows a local complementation at vertex 0 for the obtained new graph. The

local complementations at vertices 0, 4 and 0 again is equivalent to pivoting (0,4) on

the original graph (on the left) of Figure 13.

0 132 54 0 132 54
Fig. 14 : The graph obtained by local complementation at vertices 0 and 4 on G

(left) and the graph obtained by pivoting (0,4) on G (right)

A graph H is a vertex-minor of G if H can be obtained by a series of vertex

deletions and local complementations on G. H is a pivot-minor of G if H can be

obtained by a series of vertex deletions and pivotings on G. If G has rank-width at

most k, then any vertex-minor or pivot-minor of G has rank-width at most k [69].

VI.2. Formulation

The cut-rank function is defined on the vertex set of the input graph. Since the third

model we have presented is based on the separations of a set, it can be used for rank-

width problem as well. In a branch decomposition of a graph the separations of the

edge set are employed, and the order of a separation is the number of vertices that

have incident edges in both sides of the separation. But, for a rank decomposition we

have the separations of the vertex set. Also, the order of a separation is defined as the
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rank of the submatrix of the adjacency matrix formed by the sides of the separation.

Thus, we use the cut-rank function as the function F in the third model. Also, we

apply some reductions on the input graph, which will be explained in detail in section

VI.4.

VI.3. Upper and lower bounds

Oum [71] recently proved that the rank-width of a graph is less than or equal to its

branchwidth. For this reason, any upper bound for the branchwidth can be an upper

bound for the rank-width. We develop and implement a heuristic that computes a

rank decomposition and the width of this decomposition. In our model we use the best

bound obtained by the branchwidth heuristic (hybrid method) and the rank-width

heuristic. Note that the bound obtained by the hybrid method does not provide a

rank decomposition, but the rank-width heuristic does. Thus, if the hybrid method

provides a better bound, then we eliminate the separations with cut-rank function

value greater than this bound, but if the rank-width heuristic provides a better bound,

then we eliminate the separations with cut-rank function value greater than or equal

to this bound. In addition, with the help of preprocessing steps, we can check if the

input graph has rank-width 1 or conclude that the lower bound for the rank-width is

2.

VI.3.1. The rank-width heuristic

The rank-width heuristic computes a rank decomposition and its width using a wise

way of recursively determining the set of vertices that will be represented as a separa-

tion in the rank decomposition. We compare the width we obtain from this heuristic

and the hybrid method, and the smaller one serves as an upper bound on the rank-
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width. Let G be the input graph. The rank-width heuristic is described in Figure

15.

Step 1: For each pair of nodes in G compute the value of the cut-rank

function of the separation where one side consists of this pair of

nodes.

Step 2: Among the node pairs of minimum cut-rank function value,

select a pair that has minimum number of neighbors that are not

in common.

Step 3: Identify the selected pair of nodes (the new node represents the

two identified nodes), and update G.

Step 4: Connect the subtrees representing the identified nodes to a new

non-leaf node. If the subtree is a single node connect it to the new

non-leaf node by an edge. If the subtree is larger than a vertex,

then connect the non-leaf node of degree 2 in this subtree to the

new non-leaf node.

Step 5: Repeat Steps 1-4 until G has 3 nodes.

Step 6: Connect the three subtrees represented by the remaining 3

nodes to a new non-leaf node, as explained in Step 4.

Fig. 15 : Rank-width heuristic

Two vertices in a graph G are called twins if they are adjacent to exactly the

same neighbor vertices in G. This algorithm naturally utilizes the degree one vertices

and twins at the very beginning, since we can obtain a cut-rank function value of 1

using the degree one vertices or twins. The value of 1 is the minimum that can be
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achieved with a cut-rank function if the graph is connected. The algorithm searches

for a pair of nodes that will result with a minimum cut-rank function value, and

among such pairs selects a pair, which has minimum number of neighbors that are

not in common. With this approach we try to keep the cut-rank function value of the

selected separations as small as possible, while trying to have minimum number of

columns in the submatrices of the selected separations, hoping that this might lead

to separations of small cut-rank function value in the later steps. Thus, this is a type

of greedy heuristic.

VI.3.2. Lower bound

Oum [69] proved that G is distance hereditary if and only if G has rank-width at most

1. A graph G is called distance-hereditary if and only if for every connected induced

subgraph H of G, the distance between every pair of vertices in H is the same as

in G. It is proved that every distance-hereditary graph can be obtained by creating

twins and adding degree one vertices.

When we go through the preprocessing steps we contract the incident edges of

degree one vertices and identify the twin vertices. The details of these reductions will

be explained in the next section. At the end of this process if we end up with a single

vertex, this means that the input graph is distance hereditary. Hence, the rank-width

is 1. Otherwise, we set the lower bound of the rank-width for the input graph to 2.

VI.4. Preprocessing

In terms of preprocessing, we studied the reductions that could be done on vertices

of degree one and two. Moreover, we apply a reduction on twin vertices.
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VI.4.1. Degree one vertices and twins

We have a few observations on vertices of degree one and twins. Let N(u) denote the

neighbor set of a vertex u. Let the vertices u and v be twins. Then N(u) − {v} =

N(v) − {u}. Thus, the value of the cut-rank function for the separation {u, v} is

1. Then, it does not increase the width of the rank decomposition to have u and v

connected to the same non-leaf node in the rank decomposition. Having one of these

vertices connected to a non-leaf node is exactly the same with having both connected

to the same non-leaf node, since the submatrices of the adjacency matrix formed by

the separations ({u}, (V \{u}), ({v}, (V \{v}) and ({u, v}, (V \{u, v}) are same after

obtaining linearly independent rows.

For the reduction on the input graph, we identify the twin vertices and connect

them to the same non-leaf node in the rank decomposition. Identifying twins is

basically the same operation with deleting one of them. This leads us to a vertex

minor of the original graph. In general, deleting a vertex, say u, may decrease the

rank-width of the graph by one, but for this case the rank-width stays the same.

We can obtain an optimal rank decomposition of the original graph by replacing v

(assuming u and v are twins) on the optimal rank decomposition of the reduced graph

by the pair u and v. The width does not increase with this replacement.

Now, let the vertex w be a vertex of degree one, and t be its neighbor. The value

of the cut-rank function for the separation {w, t} is 1, since t is the only neighbor of

w. Then, it does not increase the width of the rank decomposition to have w and

t connected to the same non-leaf node in the rank decomposition. Having vertex t

connected to a non-leaf node is almost the same with having both t and w connected

to a non-leaf node, since the submatrices of the adjacency matrix formed by the

separations ({t}, (V \ {t}) and ({t, w}, (V \ {t, w}) has only one row that differs by
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only one column, which is the column represented by w.

In terms of the reduction on the input graph, we contract the incident edge of

the vertex of degree one, and connect the degree one vertex and its neighbor to the

same non-leaf node in the rank decomposition. Contracting the mentioned edge is

the same operation with deleting the degree one vertex. This operation leads us to

a vertex minor of the original graph. Like in the operation of identifying twins, the

rank-width stays the same. We can obtain an optimal rank decomposition of the

original graph by replacing t (assuming w is a degree one vertex and t is its only

neighbor) on the optimal rank decomposition of the reduced graph by the pair t and

w. The width does not increase with this replacement, since the submatrices of all

the separations do not change.

VI.4.2. Degree two vertices

Let G be a graph and the vertices u and v be neighbors in G, and let both of them

have degree two. So, u has exactly one neighbor other than v, and v has exactly one

neighbor other than u. We claim that in an optimal rank decomposition u and v

are connected to the same non-leaf node. To prove this we first prove the following

theorem.

Theorem 3. Given G = (V, E), let u and v be two vertices of degree two and (u, v) ∈

E. For every separation (A, V \ A) of V s.t. {u} ⊂ A and {v} ⊂ (V \ A), ρ(A, V \

A) − 1 ≤ ρ(A ∪ {v}, V \ (A ∪ {v})) ≤ ρ(A, V \ A), where ρ represents the cut-rank

function.

Proof. This theorem states that every separation that separates u and v has a cut-

rank function value that is same or exactly one more than the cut-rank function value

of the separation obtained by carrying one of these two vertices to the other side of



85

the separation.

Let N(u) = {v, w} and N(v) = {u, t}. Let (A, V \ A) be a separation of V s.t.

{u} ⊂ A and {v} ⊂ (V \A). Then there are three cases to consider. These cases are

shown in Figure 16. (V\A )A u v ( \ )Aw tCase 1Case 1
(V\A )A u v (V\A )Aw tCase 2

u v (V\A )Aw tCase 3
Fig. 16 : Three cases for set A

Case 1: If w ∈ A and t ∈ V \ A, then the cut-rank function value of the new

separation obtained by carrying v to the other side of the separation will be exactly

the same with or one less than the cut-rank function value of the original separation.

In the submatrix that represents (A, V \ A) there is a row for vertex u that has a

1 on the column representing vertex v and 0 on other columns. In the submatrix

that represents (A∪{v}, V \ (A∪{v})), this row is replaced by a row that represents
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vertex v that has a 1 on the column representing vertex t and 0 elsewhere. Other

rows stay the same. This new row may be linearly dependent to the other rows of

the submatrix. Thus, the rank of this new matrix is either the same with or one less

than the previous matrix.

Case 2: If w, t ∈ A, then the cut-rank function value of the new separation

obtained by carrying v to the other side of the separation will be clearly one less than

the cut-rank function value of the original separation, since all neighbors of vertex v

is in A.

Case 3: If t ∈ A and w ∈ V \ A, then similar to case 2, since all neighbors of

vertex v is in A, then carrying v to the other side will decrease the cut-rank function

value by one.

Thus, for every separation (A, V \ A) of V s.t. {u} ⊂ A and {v} ⊂ (V \ A),

ρ(A, V \ A) − 1 ≤ ρ(A ∪ {v}, V \ (A ∪ {v})) ≤ ρ(A, V \ A).

Theorem 4. Let G be a graph and u and v be two neighbor vertices where |N(u)| =

|N(v)| = 2, then there exists an optimal rank decomposition of G such that the leaves

corresponding to u and v are connected to the same non-leaf node.

Proof. Since Theorem 3 holds for every separation (A, V \ A) of V s.t. {u} ⊂ A and

{v} ⊂ (V \A) then there is no additional cost for forcing vertices u and v to be in the

same separation (for the separations, where the sizes of both sides are at least 2) on

the rank decomposition tree. To have u and v connected to the same non-leaf node

on the rank decomposition does not increase the width of the rank decomposition.

Hence, Theorem 4 follows.

Using Theorem 4, in the reduction procedure we can contract the edge between

two vertices of degree two if they are neighbors, and connect them to the same non-

leaf node in the rank decomposition. The obtained separation will have a cut-rank
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function value of 2.

VI.4.3. Reduction procedure

The complete reduction procedure is as follows. At each step we first search for a

degree one vertex, and if there is one we contract the incident edge to that vertex,

and connect the subtrees corresponding to the degree one vertex and its neighbor

to the same new non-leaf node. If there is no degree one vertex then we search for

twins. If there is a twin pair, then we identify those two vertices and connect the

subtrees corresponding to the twins to the same new non-leaf node. If there are no

twins either, then we search for two neighbor vertices of degree two, identify these

two vertices and connect the subtrees corresponding to these vertices to the same new

non-leaf node. If a subtree we deal with in this process consists of a single vertex

then we can connect it to the appropriate non-leaf node by an edge. If it is larger

than a single vertex, then we connect the degree two non-leaf node in this subtree to

the appropriate non-leaf node by an edge. The reduction procedure stops when there

is no degree one vertex, or twins, or two neighbor vertices of degree two.

VI.5. Computational results

We use the same test instances we use for the branchwidth problem. Additionally, we

use “tele” graphs provided by W. J. Cook and some test instances we have generated.

We run the rank-width heuristic using C++ on a Pentium 4 computer with 1.60 GHz

CPU. We run the model on rank-width problem using C++ and CPLEX 9.0 on a

Pentium 4 computer with 3.06 GHz CPU.

Table 19 and 20 show the performance of the rank-width heuristic and compare

the bounds with the bounds obtained by the hybrid method. The columns “hm”,
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Graph (|V |, |E|) hm timehm rwh timerwh

dens (6,7) 2 0 2 0
W6,2 (6,9) 3 0 2 0
K5 (5,10) 4 0 1 0

cosqb (8,10) 2 0.1 2 0.1
W8,3 (8,12) 4 0 3 0.1

coeray (11,14) 2 0 2 0.2
sudtbl (11,14) 3 0 3 0.2

K6 (6,15) 4 0 1 0.1
W10,4 (10,15) 4 0.1 4 0.2

Petersen (10,15) 4 0.1 4 0.2
arret (12,15) 2 0 2 0.3
supp (12,15) 2 0 2 0.3
W12,5 (12,18) 4 0.1 4 0.3
laspow (14,18) 3 0.1 3 0.5
tpart (14,18) 2 0 2 0.8
inter (16,21) 2 0 2 0.8
nprio (17,22) 3 0 3 1
saturr (17,23) 2 0.1 2 1.5
setinj (18,23) 2 0 3 1.4
genb (18,24) 2 0 2 1.3
laser (19,25) 2 0 2 1.6
drigl (21,29) 3 0.1 3 1.9

si (23,31) 3 0 3 3.7
seval (24,31) 3 0 3 4.9
bcndb (25,34) 2 0 2 4.9
dyeh (27,35) 3 0.1 3 7.7
linj (27,35) 3 0 3 6.2

recre (27,35) 3 0 3 7
injchk (33,44) 2 0.1 2 24.8
bilan (37,49) 3 0.1 3 26.6
tcomp (38,50) 3 0.1 3 27.6
colbur (40,54) 3 0 4 32.3
sortie (44,62) 3 0 4 51.1
cardeb (48,64) 3 0.1 3 71.5
prophy (48,65) 2 0.1 4 67.9

yeh (50,68) 3 0.1 3 80.8
verify (55,73) 2 0.1 3 117.3
bcnd (55,77) 2 0 3 120.6
heat (69,95) 3 0.1 3 389.6

ddeflu (92,124) 2 0.2 4 941.3
pastem (158,214) 3 0.4 5 8131.4

Table 19 : Rank-width heuristic run times and bounds
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Graph (|V |, |E|) hm timehm rwh timerwh

g11 31 (11,31) 5 0 4 0.4
g14 52 (14,52) 7 0 5 1
g19 33 (19,33) 4 0 4 2.6
g19 88 (19,88) 10 0 7 3.5
tele20 (20,21) 2 0 1 2.6

g20 119 (20,119) 12 0.1 8 4.6
g25 92 (25,92) 11 0.1 9 9.5
g25 168 (25,168) 15 0.2 9 11
g28 63 (28,63) 6 0 6 12.7
g34 221 (34,221) 16 0.4 12 36.4
tele39 (39,90) 7 0.1 6 48.5

g40 239 (40,239) 19 0.8 14 65.3
g43 284 (43,284) 20 0.7 15 91
g45 88 (45,88) 8 0.1 7 82.7
g45 325 (45,325) 23 0.8 15 112.797
g52 100 (52,100) 8 0.2 10 144.5
g53 86 (53,86) 9 0.1 11 152.6
tele53 (53,97) 6 0.2 6 156
g54 90 (54,90) 9 0.2 9 165
tele56 (56,85) 3 0.1 3 186.7

g57 696 (57,696) 33 1.6 19 331.2
g57 785 (57,785) 36 2 19 345.1
g58 577 (58,577) 31 2.2 20 338.1
g58 788 (58,788) 39 0.6 19 364.3
g59 729 (59,729) 36 1.3 20 387.1
g59 822 (59,822) 37 1.6 20 395.7
g60 112 (60,112) 10 0.4 13 255.7
tele62 (62,138) 6 0.2 8 299.4

g62 930 (62,930) 41 1.2 21 501
g63 986 (63,986) 41 1.1 21 529.4
g64 1021 (64,1021) 41 1.6 22 570.3
g67 950 (67,950) 41 2.1 23 653.4
g81 141 (81,141) 12 0.8 15 835
tele89 (89,144) 7 0.1 6 1180.1
tele133 (133,212) 5 0.7 8 6008.6
tele226 (226,288) 5 0.8 NA X

Table 20 : Rank-width heuristic run times and bounds for additional test instances
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“timehm”, “rwh” and “timerwh” represent the bound obtained by the hybrid method,

the running time of the hybrid method, the bound obtained by the rank-width heuris-

tic and the running time of the rank-width heuristic, respectively. The run times are

given in seconds. An “X” on any of the tables means that the model does not termi-

nate before 18000 seconds.

We use a Pentium 4 computer with 1.60 GHz CPU to obtain our test instances.

As we can see in Table 19 and 20, the run times of the rank-width heuristic increase

considerably with the size of the test instance. The bounds obtained by the rank-

width heuristic is smaller than the bounds obtained by the hybrid method for many

of the test instances. For larger sparse graphs hybrid method performs better. The

rank-width heuristic performs better on dense graphs. Branchwidth of a graph is a

tight bound on the rank-width of that graph. The effectiveness of hybrid method

and rank-width heuristic on different graphs might lead to a conclusion that the gap

between the branchwidth and the rank-width of a graph increases as the graph gets

denser. In terms of time requirement hybrid method outperforms the rank-width

heuristic. But this is a trade off since we will be saving some model run time if we

get a good lower bound by spending more time. In our model we use both methods

and set the smaller bound we obtain from the two heuristics as an upper bound.

Table 21 shows the rank-width, building and running times for the test instances

using the third model to compute rank-width. We use a Pentium 4 computer with

3.06 GHz CPU to obtain our results. The column |V ′| represents the number of ver-

tices in the graph obtained after preprocessing steps. The columns “rw”, “buildno”,

“buildw”, “runno”, “runw” represent the rank-width, building time with no upper

bound heuristic and reductions, building time with upper bound heuristic and reduc-

tions, running time with no upper bound heuristic and reductions and running time

with upper bound heuristic and reductions, respectively.
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Graph (|V |, |E|) |V ′| rw buildno buildw runno runw

dens (6,7) 3 2 0.5 0 0.1 0
W6,2 (6,9) 6 2 0.5 0 0.1 0
K5 (5,10) NA 1 0.5 0 0.1 0

cosqb (8,10) 3 2 0.8 0.1 0.2 0
W8,3 (8,12) 8 3 1 0.8 1.5 0.4

coeray (11,14) 8 2 4.3 0 0.2 0
sudtbl (11,14) 10 3 6.5 1 3432.6 0.8

K6 (6,15) NA 1 0.5 0 0.1 0
W10,4 (10,15) 10 3 6.6 1.9 50.2 18.2

Petersen (10,15) 10 3 6.9 1.8 67.7 16.5
arret (12,15) 3 2 9 0.1 0.3 0
supp (12,15) 3 2 8.8 0.1 0.4 0
W12,5 (12,18) 12 3 36.5 5.5 17158.8 597.8
laspow (14,18) 10 2 54.4 1.8 X 0.7
tpart (14,18) 3 2 38 0.2 1035.2 0
inter (16,21) 13 2 165.8 0.1 2731.9 0
nprio (17,22) 10 2 458.2 1.6 X 0.1
saturr (17,23) 10 2 363.8 0.2 0.9 0
setinj (18,23) 8 2 767.1 1.1 X 0.2
genb (18,24) 10 2 766.8 0.5 X 0
laser (19,25) 12 2 1696.3 0.3 1.39 0
drigl (21,29) 13 3 7931.1 9.7 18010.8 4

si (23,31) 16 2 X 91 NA 0.3
seval (24,31) 20 NA X 1699.3 NA X
bcndb (25,34) 11 2 X 1.2 NA 0
dyeh (27,35) 12 3 X 7.7 NA 13.1
linj (27,35) 12 3 X 10.2 NA 50

recre (27,35) 24 NA X X NA NA
injchk (33,44) 17 2 X 2.8 NA 0
bilan (37,49) 29 NA X X NA NA
tcomp (38,50) 34 NA X X NA NA
colbur (40,54) 27 NA X X NA NA
sortie (44,62) 33 NA X X NA NA
cardeb (48,64) 26 NA X X NA NA
prophy (48,65) 31 2 X X NA NA

yeh (50,68) 28 NA X X NA NA
verify (55,73) 48 2 X X NA NA
bcnd (55,77) 37 2 X X NA NA
heat (69,95) 37 NA X X NA NA

ddeflu (92,124) 57 2 X X NA NA
pastem (158,214) 100 NA X X NA NA

Table 21 :Model 3 building and running times for the rank-width
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Table 21 shows the effectiveness of the upper bound and the reductions. For all of

the test instances, both building times and the running times are much smaller when

upper bound and reductions are used. Building procedure includes the construction

of separations with cut-rank function value less than or equal to the upper bound.

Hence, the building times of the test instances with more than 26 vertices are greater

than 18,000 seconds, if they have a rank-width heuristic bound greater than 2. For

the test instance “injchk”, the model builds and runs quickly because the rank-width

heuristic bound is 2. The run times can be very long even for a graph with 24

vertices, such as the test instance “seval”, depending on the number of reduction

steps implemented. The reduction procedure can reduce “seval” to a graph of 20

vertices. Obtaining all separations for this graph takes 1699.3 seconds. However for

a larger graph such as “linj” with 27 vertices, it takes only 10.2 seconds to build the

model because the reduced graph is smaller than the reduced graph of “seval”.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

We implemented three integer programming models for the branchwidth problem.

The first two models are very similar although the second model has fewer constraints

in the main formulation. In addition, the second model requires some constraints to

be added as cuts when these constraints are violated. There are O(m3) constraints in

the first model, and O(nm2) constraints in the main formulation of the second model.

Also, Model 2 has fewer variables. In general, Model 2 performs better than Model 1

in terms of run time. The building times can be very close, but the run times of the

second model are shorter than the run times of the first model in many of the test

instances.

We run our models using C++ and CPLEX 9.0 on a Pentium 4 computer with

3.06 GHz CPU. We set a time limit of 5 hours for the termination of all three models.

If the graph test instance can be reduced to a very small graph, like in the case of

compiler graphs, both models perform well. In contrast, they may not perform very

well when the graph has more than 11 edges and a minimum degree larger than two.

For those graphs that can be reduced to smaller graphs, depending on the structure

of the new graph, the second model can run to the completion in less than 18,000

seconds, which is equivalent to 5 hours. For the same graphs, Model 1 can take

more than 5 hours to terminate. One possible reason is that the second model has

fewer variables and fewer constraints and it is easier to verify feasibility with fewer

constraints. Also, the number of branches that the model needs to go through is

smaller when we have fewer variables. However, for graphs such as M8 and Q3 both

models run for more than 5 hours although these graphs have only 12 edges.
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The third model can perform well for graphs with up to 23 edges. The building

times are longer compared to the first two models, though still less than 5 hours. The

building times grow exponentially with the number of edges, and become more than

5 hours when we have more than 23 edges. This model has fewer variables, and fewer

constraints than the first two formulations for small graphs. The drawback is the

time required for obtaining all connected separations. When we compare this model

with the first two models, depending on the structure of the graph after reductions

Model 2 and Model 3 usually result in short running times. However, the model

building times are much longer in Model 3. In our computations, we observed that

for the graphs with branchwidth 4, the third model runs much faster. However, for

the graphs with branchwidth 5, the second model is better.

We have applied upper bound and lower bound heuristics to all three models.

We obtained upper bounds equal to lower bounds for all of the compiler graphs. For

many other test instances this is the case. For these graphs all three models use the

branch decomposition obtained by the upper bound heuristic as the optimal branch

decomposition. Thus, the run times were less than a second. For the remainder of

the test instances, both heuristics still perform very well, and can attain a gap of 1

for most of the test instances. However, even for a gap of 1, the first two models can

run more than 5 hours for graphs as small as M8. Branchwidth of maximum planar

subgraph of the input graph is another lower bound that could be considered for

our models. However, we did not implement any further methods to compute lower

bounds since when the lower bound is not equal to the upper bound, for slightly

larger graphs we will not be able to reach the optimal solution in less than 5 hours

using any of the three models.

Moreover, we used some reduction techniques to reduce the size of the input

graph, and the size of the model as well. These reductions are based on the degree
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one and degree two vertices. We implemented some cuts for the first two models, and

compared their performances on some test instances. The experiments indicate that

in general local and δ cuts together perform the best compared to the other cuts, or

the no cuts option.

A difficulty we encountered was generating test instances that would have a gap

of at least 1 between their upper and lower bounds, and run less than 5 hours. But,

at the same time these test instances need to run sufficiently long such that the effect

of the time spent for generating cuts is balanced, so that we can have a realistic

comparison of the different cuts. Branchwidth problem on small graphs, or graphs

that can be reducible to small graphs can be solved in less than a second. The upper

bound is equal to the lower bound for these graphs. For graphs as small as M8

or the Petersen graph, the first two models run for more than 5 hours. However,

for larger graphs such as g11 23 and g19 33 the second model solves the problem

in less than 5 hours. For even larger graphs all three models run for longer than 5

hours. Thus, generating test instances to have a good comparison of the three models

was challenging as well. This is the reason behind having a limited number of test

instances for comparison purposes.

Furthermore, Hicks [50] implemented a branch decomposition-based algorithm

to compute the branchwidth and an optimal branch decomposition of a graph. In his

paper the run times for some test instances with up to 919 edges are illustrated. For

the test instances with up to 45 edges his algorithm solves the instance in less than

20 seconds. For larger graphs the algorithm can still achieve the optimal solution in

less than 1000 seconds for most of the illustrated test instances. Thus, Model 3 is

not comparable to this algorithm since it cannot build the test instances with more

than 23 edges in less than 5 hours. Models 1&2 do not perform very well when the

graph cannot be reduced to a smaller graph. Thus, compared to the three integer
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programming models we have Hicks’ branch decomposition based algorithm is faster

and can deal with much larger graphs, i.e., graphs with up to several hundred edges,

depending on the input branch decomposition, which is found using a heuristic.

In addition to the implementation on graphs, we used the three models to com-

pute the branchwidth and optimal branch decomposition of hypergraphs. Hicks’s

above mentioned algorithm is developed for graphs only. The third model performs

the best in our experiments for hypergraphs. This is mainly because this model has

fewer variables and fewer constraints compared to the other two models. Our com-

parison was based on the hypergraphs with up to 13 hyperedges. Thus, the building

times for the third model were reasonable as well. A direction for future research

on all three models is finding appropriate reduction techniques for hypergraphs, and

targeting larger hypergraphs.

For the branchwidth problem in general, all the models are open to be improved

to obtain reasonable running times for larger graphs or hypergraphs. However, we

need to mention that for a graph with m edges, there are (2m− 5)!! possible branch

decompositions (“n!!” is equal to the multiplication of the odd numbers up to n). For a

graph with 10 edges, there exists more than 2 million possible branch decompositions.

This indicates the degree of difficulty of the branchwidth problem.

Other than the work done on branchwidth problem, we implemented the third

model for the rank-width problem. We applied some reduction procedures on degree

one and degree two vertices as well as twins. The model performs very well for

compiler graphs with up to 24 nodes. For larger graphs, depending on the size of

the graph after the reduction procedure and the bound obtained by the upper bound

heuristics, it can handle compiler graphs with up to 33 nodes. Before we applied the

reductions and the upper bound heuristics, the model could handle compiler graphs

with up to 14 vertices, or sometimes up to 21 vertices, depending on the structure of
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the test instance.

Moreover, we implemented a rank-width heuristic to increase the efficiency of our

model. This heuristic outputs a feasible integer solution for the rank-width problem.

This output serves as a possible upper bound for our model. Branchwidth of a graph

is another upper bound for the rank-width of that graph. Thus, we use the best bound

obtained by a branchwidth heuristic (hybrid method in this case) and the rank-width

heuristic. The rank-width heuristic runs longer than the hybrid method, but the

model can benefit greatly from the solution, especially if the output of the rank-

width heuristic is smaller than or equal to the output of the hybrid method, because

the rank-width heuristic also provides a rank decomposition, but hybrid method does

not.

Run times of the test instances using the third model on the rank-width problem

can be reduced by adding a good lower bound and more reduction techniques to the

model. Eliminating a set of separations, like in the case of connected separations for

the branchwidth problem, would narrow the feasible region, and reduce the running

times even more. Building times may increase, and this can be a trade off. Reducing

the running time of the third model on the rank-width problem by investigating the

possible reductions, cuts, and lower bounds can be a direction for future research.

Building another model for the rank-width problem can be another direction. The

model we have implemented for the rank-width problem can be a basis of comparison

for the future models.
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