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Abstract

An adjacency labeling scheme for a given class of graphs is an algorithm that for every graphG from

the class, assigns bit strings (labels) to vertices of G so that for any two vertices u, v, whether u and v
are adjacent can be determined by a �xed procedure that examines only their labels. It is known that

planar graphs with n vertices admit a labeling scheme with labels of bit length (2 + o(1)) log n. In this

work we improve this bound by designing a labeling scheme with labels of bit length ( 4
3 + o(1)) log n.

All the labels of the input graph can be computed in polynomial time, while adjacency can be decided

from the labels in constant time.

In graph-theoretical terms, this implies an explicit construction of a graph on n4/3+o(1)
vertices

that contains all planar graphs on n vertices as induced subgraphs, improving the previous best upper

bound of n2+o(1)
.

Our labeling scheme can be generalized to larger classes of topologically-constrained graphs, for

instance to graphs embeddable in any �xed surface or to k-planar graphs for any �xed k, at the cost of

larger second-order terms.
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1 Introduction

When representing graphs, say with adjacency lists or matrices, vertex identi�ers usually do not play any

particular role with respect to the structure of the graph: they are essentially just pointers in the data

structure. In contrast, a graph is implicitly represented when each vertex of the graph is associated to more

information so that adjacency, for instance, can be e�ciently determined from the identi�ers without the

need of any global data-structure (cf. [KNR88, Spi03]). For example, ifG is an interval graph withn vertices,

one can associate with each vertex u some interval I(u) ⊆ [1, 2n] with integer endpoints so that u, v are

adjacent if and only if I(u) ∩ I(v) 6= ∅. Clearly, no adjacency lists or matrices are required anymore.

Although G may have a quadratic number of edges, such an implicit representation uses 2 log n + O(1)
bits per vertex

1
, regardless of its degree, which is asymptotically optimal [GP08]. Compact representations

have several advantages, not only for the memory storage, but also from algorithmic perspectives. For

instance, given a succinct representation, BFS traversal can be done inO(n) time [RLDL94, ACJR19], even

if the graph has Ω(n2) edges. Speedups due to succinct representations are ubiquitous in the design of

algorithms and data structures.

Formally introduced by Peleg [Pel00, Pel05], informative labeling schemes present a way to formalize

implicit representations of graphs. For a given function Π de�ned on pairs of vertices of a graph from

some given class of graphs, an informative labeling scheme has two components: an encoding algorithm

that associates with each vertex a piece of information (label); and a decoding algorithm that computes

Π(u, v,G), the value of Π applied on vertices u, v of the graph G. The input of the decoding algorithm

consists solely of the labels of u and of v, with no other information provided. So, �nding an implicit

representation of a graph G can be restated as computing an adjacency labeling scheme for G, that is, an

informative labeling scheme where Π(u, v,G) is true if and only if u, v are adjacent in G.

In this paper we will focus on such adjacency labeling schemes (referred to as labeling schemes from

now on), but many functions Π other than adjacency are of great interest. Among them there are labeling

schemes designed for ancestry [FK10b] and lowest common ancestors in rooted trees [AGKR04, AHGL14],

distances [GU16, GKU16, AGHP16, FGNW17] and forbidden-set distances [ACGP16], compact rout-

ing [FG01, TZ01, RT15], �ow problems [KKKP04], and many others. We refer to [GP03], and references

therein, for a survey of informative labeling schemes and their applications in distributed computing, and

also to [Rot16] for a survey on recent developments in labeling schemes specialized for trees.

Planar graphs. Planar graphs are perhaps one of the most studied class of graphs in this area, due to

the wide variety of their implicit representations. To mention just a few, planar graphs are contact graphs

of circles [Koe36], of 3D boxes [Tho86], of triangles [dFOdMR94], and more recently, of L-shapes [GIP18].

They also have 1-string representations [CGO10], and their incidence graphs form posets of dimension

three [Sch89]. Each of these representations leads to a labelling scheme where each vertex can be encoded

using a label consisting of O(log n) bits, independent of its degree.

The �rst explicit bound on the label length, given by Kannan et al. [KNR88], was 4 dlog ne bits. Using

the fact that planar graphs have arboricity at most three together with a labeling scheme for forests with

label length log n + o(log n), one can achieve also a similar 3 log n + o(log n) upper bound for planar

graphs, where the lower-order term o(log n) directly depends on the second-order term of the bound for

forests. It was a challenging question to optimize this second-order for forests. It has been successively

reduced from O(log log n) [Chu90] to O(log∗ n) [AR02], and then to a constant only recently by Alstrup

et al. [ADBTK17]. As explained above, this leads to an upper bound of 3 log n + O(1) for planar graphs.

1

Throughout the paper, by logn we denote the binary logarithm of n.
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By improving the labeling scheme for bounded treewidth graphs, namely from O(k log n) [KNR88] to

log n+O(k log log n), Gavoille and Labourel [GL07] showed that partitioning the edges of a planar graph

into two bounded treewidth subgraphs, rather than into three forests, leads to a shorter representation:

with labels consisting of 2 log n + O(log log n) bits. Until this work, this has been the best known upper

bound for planar graphs.

The best known results for several subclasses of planar graphs are reported in Table 1.

Graph classes Upper bound References

(with n vertices) (label length in bits)

maximum degree-2 log n+O(1) [AABTKS16, But09, ELO08]

caterpillars log n+O(1) [BGL06]

bounded degree trees log n+O(1) [Chu90]

bounded depth trees log n+O(1) [FK10a]

trees log n+O(1) [ADBTK17]

bounded degree outerplanar log n+O(1) [Chu90, AR14]

outerplanar log n+O(log log n) [GL07]

bounded treewidth planar log n+O(log log n) [GL07]

maximum degree-4 planar
3
2 log n+O(log log n) [AR14]

bounded degree planar 2 log n+O(1) [Chu90]

planar 2 log n+O(log log n) [GL07]

planar
4
3 log n+O(log log n) [this paper]

Table 1: State-of-the-art for adjacency labeling schemes on planar graphs and some subclasses. The bounds

from references [Chu90, ELO08, But09] come from induced-universal graphs, whereas all the others come

from labeling schemes. The only known lower bound for planar graphs is log n+ Ω(1).

Our contribution. In this work we present a new labeling scheme for planar graphs that uses labels of

length bounded
2

by
4
3 log n. Note that this not only improves the previously best known bound of 2 log n

for general planar graphs [GL07], but even the re�ned bound of
3
2 log n for the case of planar graphs of

maximum degree 4 [AR14].

The main ingredient of our result is the recent product structure theorem of Dujmović et al. [DJM
+

19],

which says the following: Every planar graph G is a subgraph of a graph of the form H � P , where H
is a graph of treewidth at most 8, P is a path, and � denotes the strong graph product (see Section 2 for a

de�nition). Moreover, H , P , and a subgraph embedding witnessing this can be found in polynomial time.

The �rst step in our proof is the design of an auxiliary labeling scheme with labels of length log n+log d,

assuming that the graph G in question is given together with an embedding into H � P , where H has

bounded treewidth andP is a path of length d. This parameterized bound is never worse than the currently

best known bound of 2 log n, because we may always assume d < n, but later in the general case we use it

for d = O(n1/3). We remark that the proof of the product structure theorem of Dujmović et al. [DJM
+

19]

2

For brevity, in this informal exposition we ignore additive terms of lower order o(logn).
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in fact yields a subgraph embedding into H � P where P has length bounded by the diameter of the

considered graphG, so as a side result we obtain a labeling scheme for planar graphs with diameter d that

uses labels of length bounded by log n+ log d.

The second step — the main case — relies on the layering technique applied on the structure provided

by the product structure theorem. Precisely, for a given planar graphGwe compute a subgraph embedding

ϕ of G into H � P , where H is a graph of bounded treewidth and P is a path (with no nontrivial bound

on its length). We choose a parameter d > 3 (which will be set later) and divide H � P into blocks of

width d; that is, each block is of the form H � Q where Q is a subpath of P consisting of d consecutive

vertices. By mapping the blocks through ϕ−1
back toG, we thus divideG into strips, where each strip can

be embedded into H � Q where Q has length d − 1. These strips are separated by borders whose union

is a graph on O(n/d) = O(n2/3) vertices and of constant treewidth. Using the known bounds for graphs

of bounded treewidth [GL07], for this border graph we can compute a labeling λ1 with labels of length

log (n/d). On the other hand, to the union of strips we can apply the auxiliary labeling scheme explained

in the previous paragraph, and thus obtain a labeling λ2 for the strips with labels of length log n+ log d.

At this point, superposing the two schemes λ1 and λ2 would give a labeling scheme of length 2 log n.

This is because vertices appearing at the borders of strips have to inherit labels from both labelings:

log (n/d) from λ1 and log n + log d from λ2, which sums up to 2 log n. So far, this yields no improve-

ment over the previous results. However, by revisiting the scheme for graphs of bounded treewidth we are

able to show that for vertices at the borders — whose number is O(n/d) — the labeling λ2 can use much

shorter labels: only of length log (n/d) instead of log n + log d. Hence, the combined labels of border

vertices are of length at most 2 log (n/d), implying that every vertex receives a label of length bounded by

max { log n+ log d , 2 log (n/d)} .

This expression is minimized for d = n1/3
and then evaluates to

4
3 log n, the desired bound.

Finally, we observe that the only property implied by planarity that we used in our labeling scheme is

the product structure given by the theorem of Dujmović et al. [DJM
+

19]. Precisely, if we assume that we

work with a class of graph C such that every graphG ∈ C admits a polynomial-time computable subgraph

embedding into a graphH�P , whereH has constant treewidth and P is a path, then the whole reasoning

goes through. We call such graph classes e�ciently �at and choose to work throughout the paper with

this abstract property alone, instead of the concrete case of planar graphs. The reason for this is that

following the result of Dujmović et al. [DJM
+

19] for planar graphs, many more general classes of graphs

have been rendered e�ciently �at, for instance graphs embeddable into any �xed surface [DJM
+

19], or

k-planar graphs for any �xed k [DMW19] (see Section 2 for more examples). Consequently, our result

gives a labeling scheme of length
4
3 log n for all these classes.

In all our labeling schemes, given the input graph we can compute the labeling of its vertices in poly-

nomial time, while the adjacency can be determined from the labels in constant time.

Connections with universal graphs. It has been observed in [KNR88] that the design of labeling

schemes with short labels is tightly connected with the construction of small induced-universal graphs.

Recall that a graph U is induced-universal for a given set of graphs S if every graphG ∈ S is isomorphic to

some induced subgraph of U. Then graphs from S admit a labeling scheme with k-bit labels if and only if

S has an induced-universal graph U with at most 2k vertices, see [KNR88]. Thus, our labeling scheme pro-

vides an explicit construction of an induced-universal graph for n-vertex planar graphs that has n4/3+o(1)

vertices, improving upon the previously best known bound of n2+o(1)
, derived from [GL07].
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The search for optimum bounds on the sizes of induced-universal graphs is a well-studied topic,

see for example the recent developments for general n-vertex graphs [Alo17, AKTZ15] and for n-vertex

trees [ADBTK17]. We refer readers interested in this topic to the recent survey of Alstrup et al. [AKTZ19].

Apart from induced-universal graphs, there is also an alternative de�nition: edge-universal graphs.

Here, we say that U is edge-universal for a set of graph S if every graph from S is a subgraph of U (not

necessarily induced). As far as edge-universal graphs for n-vertex planar graphs are concerned, there are

much more concise constructions than in the induced setting. Babai et al. [BCE
+

82] gave a construction

with O(n3/2) edges, while if one restricts the question to n-vertex planar graphs with constant maximum

degree, then the number of edges can be reduced even to O(n) [Cap02]. However, in general it is unclear

how edge-universal graphs can be turned into induced-universal graphs without a signi�cant explosion in

the size, see e.g. the discussion in [Chu90].

Subsequent work. After the publication of the conference version of this work [BGP20], Dujmović et

al. [DEJ
+

20] announced a construction of a labeling scheme of optimum length (1 + o(1)) log n for any

e�ciently �at class of graphs. Their proof is also based on the product structure, but is much more involved.

Moreover, in the scheme of [DEJ
+

20], the adjacency tests take time O(
√

log n log log n), as compared to

constant time for our scheme.

In the conference version of this work [BGP20] we concentrated on the case of planar graphs and,

more generally, graphs embeddable into any �xed surface. Instead of using the product structure ab-

stractly, we relied on a more hands-on combinatorial understanding via BFS layerings and partitions with

bounded-treewidth quotient graphs. In particular, in several places we relied on auxiliary properties of

the considered classes, like being minor-closed. The version presented here relies on the product structure

alone and thus is more general.

Organization. In Section 2 we recall the main de�nitions and results regarding labeling schemes, tree

decompositions, and the product structure theorem of Dujmović et al. [DJM
+

19]. Then in Section 3 we re-

visit and strengthen the labeling scheme for graphs of bounded treewidth of Gavoille and Labourel [GL07].

In Section 4 we give an auxiliary scheme for graphs for which the product structure theorem yields an em-

bedding into the strong product of a bounded treewidth graph and a short path. This result is then used

in Section 5 to treat the general case of graphs from an e�ciently �at class. We conclude in Section 6 by

discussing some further research directions.

2 Preliminaries

We use standard graph notation. For a graph G, the vertex and edge sets of G are denoted by V (G) and

E(G), respectively. For A ⊆ V (G), we write G[A] for the subgraph of G induced by A and G−A for the

subgraph of G induced by V (G) \ A. A subgraph embedding of a graph H into a graph G is an injective

function ϕ : V (H)→ V (G) such that uv ∈ E(H) entails ϕ(u)ϕ(v) ∈ E(G).

Labeling schemes. The following de�nition formalizes the concept of labeling schemes.

De�nition 1. Let C be a class of graphs. An adjacency labeling scheme for C is a pair 〈λ, ξ〉 of functions
such that, for every graph G ∈ C, it holds:

• λ is the Encoder that assigns to every vertex u of G a di�erent binary string λ(u,G); and

4



• ξ is the Decoder that decides adjacency from the labels taken from G. More precisely, for every pair

u, v of vertices of G, ξ(λ(u,G), λ(v,G)) is true if and only if u, v are adjacent in G.

The length of the labeling scheme 〈λ, ξ〉 is the function ` : N→ N that maps every n ∈ N to the maximum

length, expressed in the number of bits, of labels assigned by the Encoder in n-vertex graphs from C.

In the above de�nition we measure the length only in terms of the vertex count n, but we can extend

the de�nition to incorporate auxiliary graph parameters, like diameter or treewidth, in a natural way.

Whenever G is clear from the context, we write λ(u) as a shorthand for shorthand for λ(u,G).

When speaking about the complexity of Encoder and Decoder, we assume RAM model with machine

words of bit length O(log n) and unit cost arithmetic operations.

Tree decompositions. A tree decomposition of a graph G is a pair (T, β), where T is a tree and β
maps every node x of T to its bag β(x) ⊆ V (G) so that: for every edge uv of G there exists a node

x satisfying {u, v} ⊆ β(x), and for every vertex u of G, the set {x ∈ V (T ) : u ∈ β(x)} induces a non-

empty, connected subtree of T . The width of (T, β) is maxx∈V (T ) |β(x)| − 1, while the treewidth of G is

the minimum possible width of a tree decomposition of G.

Flatness. For two graphsG andH , the strong product ofG andH , denotedG�H , is the graph on vertex

set V (G)×V (H) where two di�erent vertices (u, v) and (u′, v′) are adjacent if and only if vertices u and

u′ are equal or adjacent in G, and vertices v and v′ are equal or adjacent in H . The following de�nition

describes the key structural property discovered by Dujmović et al. [DJM
+

19].

De�nition 2. A class of graph C is �at if there exists w ∈ N such that every graph G ∈ C is a subgraph of

some graph of the form H � P , where H has treewidth at most w and P is a path.

Note that in the above de�nition one may assume that |V (H)| 6 |V (G)|, as one can remove every

vertex v ofH such that no element of the �ber {(v, i) : i ∈ V (P )} participates in the subgraph embedding

of G into H � P . Similarly, we may assume that |V (P )| 6 |V (G)|.
As proved by Dujmović et al. [DJM

+
19], planar graphs are �at. However, this property carries over to

more general classes of topologically-constrained graphs, as the following classes are �at as well:

• graphs of Euler genus g, for every �xed g ∈ N [DJM
+

19];

• every apex-minor-free class [DJM
+

19];

• every proper minor-closed class with bounded maximum degree [DJM
+

19];

• (0, g, k, p)-nearly embeddable graphs, for all �xed g, k, p ∈ N [DJM
+

19];

• k-planar graphs, for every �xed k [DMW19].

See also [DMW19] for several other examples of �at classes, and [DHJ
+

20] for a survey of the area.

In our proofs we will need to assume algorithmic aspects of �atness. Precisely, we shall say that a

�at class of graph C is e�ciently �at if given G ∈ C, one can in polynomial time compute a graph H
of treewidth at most w, for a constant w ∈ N, a path P , and a subgraph embedding of G into H � P .

Fortunately, a close inspection of the proofs in [DJM
+

19] shows that all the abovementioned �at classes

are actually e�ciently �at, so our results apply to all of them.

Throughout the paper we will focus on proving the following result, from which all the corollaries

discussed in Section 1 follow.

Theorem 1. Every e�ciently �at class of graphs admits a labeling scheme of length
4
3 log n+O(log log n).

The Encoder runs in polynomial time and the Decoder in constant time.
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3 Bounded Treewidth Graphs

Like the construction of [GL07] for planar graphs, our result relies on the labeling scheme developed for

bounded treewidth graphs.

Theorem 2 ([GL07]). For any �xed k ∈ N, graphs of treewidth at most k admit a labeling scheme of length

log n+O(k log log n). The Encoder runs in O(n log n) time and the Decoder runs in constant time.

In later sections we signi�cantly rely on the combinatorics behind the proof of Theorem 2. We will

need two ingredients:

(1) an understanding of how encoding and decoding works in the labeling scheme; and

(2) a strengthening of the result, where we can assume that a prescribed set of at most q vertices receives

shorter labels, namely of length log q +O(k log log n).

These two properties are formally stated as follows.

Theorem 3. For any �xed k ∈ N, the class of graphs of treewidth at most k admits a labeling scheme 〈λ, ϕ〉
of length log n+O(k log logn) with the following properties:

(P1) From any label a one can extract in timeO(1) an identi�er ι(a), so that the Decodermay be implemented

as follows: given a label a, one may compute in time O(k) a set Γ(a) consisting of at most k identi�ers

so that ϕ(a, b) is true if and only if ι(a) ∈ Γ(b) or ι(b) ∈ Γ(a).
(P2) If the input graphG is given together with a vertex subsetQ, then the scheme can assign to the vertices

of Q labels of length log |Q|+O(k log log n).
The Encoder works in time O(n log n) while the Decoder works in constant time.

The proof of Theorem 3 largely follows the approach of Gavoille and Labourel [GL07]. In particular,

their scheme achieves property (P1) without any modi�cations. However, to achieve property (P2) we

need to replace a crucial combinatorial element of the proof with a new argument.

The remainder of this section is devoted to the presentation of the proof of Theorem 3, which largely

follows the approach of Gavoille and Labourel [GL07]. In Section 3.1 we recall this approach and explain

that property (P1) follows from it without any modi�cations. In Section 3.2 we replace a crucial ingredient

of [GL07] with a new argument in order to achieve property (P2) as well.

3.1 Encoding and decoding

We start with a brief presentation of the approach of Gavoille and Labourel [GL07]. Our presentation is a

bit simpli�ed compared to that of [GL07], because we choose not to optimize the label length as much as

there (e.g. Gavoille and Labourel actually provide an upper bound of log n+O(k log log (n/k)) instead of

log n+O(k log log n) by a more precise analysis).

First, since the input graph G has treewidth at most k, one can obtain a chordal supergraph G+
of G

on the same vertex set such that G+
also has treewidth at most k. This can be done as follows: take a

tree decomposition of G of width at most k and turn every bag into a clique. Since for �xed k such a tree

decomposition can be computed in linear time [Bod96], G+
can be computed in linear time.

Next, it is well-known that since G+
is chordal and of treewidth at most k, in linear time we can

compute an orientation
~G ofG+

such that every vertex u has at most k out-neighbors in
~G, and moreover

u together with those out-neighbors form a clique inG+
. For every u ∈ V (G), letKu be the set consisting

of u and its out-neighbors in
~G.

The key idea of the approach of Gavoille and Labourel is to compute a bidecomposition of the graph

G+
, which is a notion roughly resembling tree decompositions, but actually quite di�erent.
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De�nition 3. A bidecomposition of a graphH is a pair (T, α), where T is a binary rooted tree and αmaps

vertices H to nodes of T , so that for every edge uv of H , α(u) and α(v) are related.

As proved in [GL07], graphs of bounded treewidth admit bidecompositions with small parts. This is

the key combinatorial ingredient of the proof.

Lemma 4 (cf. Lemma 1 in [GL07]). Let G be an n-vertex graph of treewidth at most k. Then there exists

a bidecomposition (T, α) of G satisfying the following:

(A1) |α−1(x)| = O(k log n) for every node x of T ; and
(A2) T has depth at most log n.
Moreover, for every �xed k, given G such a bidecomposition can be constructed in time O(n log n).

We apply Lemma 4 to the graph G+
, thus getting a suitable bidecomposition (T, α). Based on this, a

labeling is constructed as follows.

Consider any u ∈ V (G). Since Ku is a clique in G+
, it follows that nodes {α(v)}v∈Ku

are pairwise

related. Hence, there exists a path Pu in T starting at the root that contains all nodes α(v) for v ∈ Ku.

The second endpoint of Pu is the deepest among nodes {α(v)}v∈Ku
. Let P ′u be the pre�x of Pu from the

root of T to α(u).

For each node x of T �x an arbitrary enumeration of α−1(x) using index taken from [0, |α−1(x)|).

Now, the identi�er of vertex u consists of the following pieces of information:

1. The encoding of the path P ′u as a bit string of length |V (P ′u)| − 1 that encodes, for consecutive

non-root vertices of P ′u, whether they are left or right children.

2. The index of u within α−1(α(u)).

3. The depth of α(u) in T .

Since T has depth at most log n and |α−1(x)| = O(k log n) for every node x of T , we conclude that the

identi�er has total length log n+ log k+O(log log n). In addition to the identi�er, the label of u contains

the following pieces of information:

1. Encoding of the su�x of Pu that is not contained in P ′u; this, together with the information from the

identi�er, adds up to the encoding of Pu.

2. For every v ∈ Ku \ {u}, the depth of α(v) in T , the index of v within α−1(α(v)), and whether the

edge uv belongs to E(G) (it may belong to E(G+) \ E(G)).

As shown in [GL07], the above information, together with the identi�er, can be encoded in log n +
O(k log logn) bits, resulting in the promised upper bound on the label length. Moreover, given the bide-

composition (T, α) the labeling can be computed in linear time, assuming k is �xed.

It is now straightforward to see that from the label of u one can derive the identi�ers of the out-

neighbors of u in G+
. Indeed, for every v ∈ Ku \ {u} the depth of α(v) and the index of v in α−1(α(v))

are directly stored in the label of u, while the encoding of the path P ′v can be obtained by taking the

encoding of Pu and trimming it to the pre�x of length equal to the depth of α(v). With every such out-

neighbor v we have also stored the information whether the edge uv is contained in G, or it was added

when modifying G to G+
. Hence, given the label λ(u) we can compute a set of at most k identi�ers of

neighbors of u, which is a suitable set Γ(λ(u)). This proves property (P1).

3.2 Saving on labels of a small set of vertices

We now explain how the general approach of Gavoille and Labourel [GL07], presented in the previous

section, can be amended to achieve property (P2) as well. The di�erence is that we replace the usage of

Lemma 4 with the following Lemma 5.
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Lemma 5. Let G be an n-vertex graph of treewidth at most k and S ⊆ V (G). Then there exists a bidecom-

position (T, α) of G satisfying the following:

(B1) |α−1(x)| = O(k log n) for every node x of T ;
(B2) T has depth at most log n+O(1); and
(B3) for every u ∈ S, α(u) is at depth at most log |S|+O(1) in T .
Moreover, for every �xed k, given G and S such a decomposition can be constructed in time O(n log n).

Consider the set Q of prescribed vertices as in property (P2), and apply Lemma 5 to G+
with

S =
⋃
u∈Q

Ku.

We have |S| 6 (k+ 1) · |Q|. Hence, in the notation of the previous section, for every u ∈ Q we have that

Pu has at most log |S|+O(1) = log |Q|+O(log k) nodes, while for every other vertex u we have that Pu

has at most log n + O(1) nodes. Plugging this into the analysis of the previous section gives the desired

bounds on the lengths of labels in the constructed labeling. Note that thus, property (P1) still holds, while

property (P2) is achieved.

We are left with proving Lemma 5. We would like to stress that this is not a simple modi�cation of the

proof of Lemma 4 presented in [GL07]. The general idea is to recursively decompose the graph, where at

each step we use a separator of sizeO(k log n) to split the graph into two parts, each containing (roughly)

at most half of the remaining vertices and at most half of the remaining vertices of S. In [GL07] only

the �rst objective — halving the total number of vertices — was necessary, and this was relatively easy to

achieve using a separator of size O(k log n). However, the strategy used in [GL07] does not generalize to

achieving both objectives at the same time. Hence, our splitting step is based on a di�erent argument.

Proof (of Lemma 5). We �rst focus on proving the existential statement. Then, at the end, we discuss the

algorithmic aspects of the proof.

For a graphH and a nonnegative weight functionω : V (H)→ R>0, we writeω(H) =
∑

u∈V (H) ω(u).

We �rst need a robust understanding of balanced separators in graphs of bounded treewidth, which boils

down to a understanding balanced separators in trees. We will use the following well-known claim.

Claim 1. Let ε > 0, let T be a tree, and let ω : V (T )→ R>0 be a nonnegative weight function on the nodes

of T . Then there exists a set of nodes S ⊆ V (T ) of size at most ε−1
such that for every connected componentC

of T − S, we have ω(C) 6 ε · ω(T ).

Proof. The claim is trivial if ω(T ) = 0, so assume that ω(T ) > 0. Root T in any node r; this induces a

natural ancestor/descendant relation. Starting with S = ∅ and all vertices of S unmarked, we apply the

following iterative procedure. As long as the total weight of unmarked vertices is at least ε · ω(T ), �nd

the deepest node x such that the total weight of unmarked descendants of x (including x itself) is at least

ε · ω(T ), add x to S, and mark x together with all its descendants.

As with every node added to S we mark nodes of total weight at least ε · ω(T ), the �nal set S has size

at most ε−1
. The fact that every connected component of T −S has weight at most ε ·ω(T ) follows easily

from always choosing x as the deepest node with the considered property. y

Claim 1 can be generalized to graphs of bounded treewidth as follows.

Claim 2. Let ε > 0, let H be a graph of treewidth at most k, and let ω : V (H) → R>0 be a nonnegative

weight function on the vertices ofH . Then there exists a set Z ⊆ V (H) of size at most ε−1 · (k+ 1) such that
for every connected component C of H − Z we have ω(C) 6 ε · ω(H).
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Proof. Let (T, β) be a tree decomposition of H of width at most k. Let us root T in any node r; this

induces a natural parent/child relation in T . For a node x of T , we de�ne the margin of x as

µ(x) = β(x) \ β(y),

where y is the parent of x in T . For the root r we set µ(r) = β(r). For a node x ∈ T , we de�ne

ω′(x) = ω(µ(x)).

Thus, ω′ : V (T ) → R>0 is a nonnegative weight function de�ned on the nodes of T . By observing that

{µ(x) : x ∈ V (T )} is a partition of V (H), we see that ω′(T ) = ω(H).

By applying Claim 1 to tree T with weight function ω′, we obtain a suitable node subset S ⊆ V (T ) of

size at most ε−1
. LetZ =

⋃
x∈S β(x); then |Z| 6 ε−1 ·(k+1). To see that each connected componentC of

H−Z satis�es ω(C) 6 ε ·ω(H), note that such a component must be entirely contained in

⋃
x∈V (D) µ(x)

for some connected component D of T − S, while ω′(D) 6 ε · ω′(T ) = ε · ω(H) by Claim 1. y

We now use Claim 2 to �nd separators that are suited for constructing a bidecomposition. The idea is

that after removing the separator, we need to be able to group the remaining components into two parts

that are roughly balanced: both in terms of the number of vertices and in terms of the number of vertices

of Q. We prefer to put this condition in an abstract way, using two weight functions. Precisely, we will

use the following auxiliary claim.

Claim 3. Let Ω be a �nite set and ω1, ω2 : Ω→ R>0 be two nonnegative weight functions on Ω such that for

every element x ∈ Ω, we have ω1(x) 6 ε · ω1(Ω) and ω2(x) 6 ε · ω2(Ω), for some ε > 0. Then there exists

a partition of Ω into Y and Z such that ωt(W ) 6 (1/2 + 3ε) · ωt(Ω), for allW ∈ {Y,Z} and t ∈ {1, 2}.

Proof. If ω1(Ω) = 0 then the claim follows easily by packing elements into Y greedily until ω2(Y ) >
ω2(Ω)/2, and de�ning Z = Ω \ Y . A symmetric reasoning can be applied when ω2(Ω) = 0. Therefore,

we are left with the case when ω1(Ω) > 0 and ω2(Ω) > 0, so by rescaling the weights we may assume

that ω1(Ω) = ω2(Ω) = 1.

For x ∈ Ω, let

ξ(x) = ω1(x)− ω2(x).

Note that ∑
x∈Ω

ξ(x) = 0 and |ξ(x)| 6 2ε for every x ∈ Ω.

We now inductively de�ne an ordering x1, . . . , xn of the elements of Ω as follows. Assuming x1, . . . , xi−1

has already been de�ned, we select:

• xi to be an arbitrary non-positive element of Ω \ {x1, . . . , xi−1}, in case

∑i−1
j=0 ξ(xj) > 0; and

• xi to be an arbitrary positive element of Ω \ {x1, . . . , xi−1}, in case

∑i−1
j=0 ξ(xj) < 0.

The existence of an element xi as above is implied by the fact that

∑
x∈Ω ξ(x) = 0. As |ξ(x)| 6 2ε for

every x ∈ Ω, the following assertion can be proved by a straightforward induction:∣∣∣∣∣∣
i∑

j=0

ξ(xj)

∣∣∣∣∣∣ 6 2ε for every i ∈ {0, 1, . . . , n}. (1)
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Let p ∈ {1, . . . , n} be the smallest index such that

∑p
j=0 ω1(xi) > 1

2 . As ω1(xp) 6 ε, we also have∑p
j=0 ω1(xi) 6 1

2 + ε. Thus, if we de�ne

Y := {x1, . . . , xp} and Z := {xp+1, . . . , xn},

then we have 1/2 6 ω1(Y ) 6 1/2 + ε, implying ω1(Z) 6 1/2. Further, from (1) we conclude that

2ε >

∣∣∣∣∣∣
p∑

j=0

ξ(xj)

∣∣∣∣∣∣ = |ω1(Y )− ω2(Y )|,

so 1/2 − 2ε 6 ω2(Y ) 6 1/2 + 3ε. As Z = Ω \ Y , the left inequality implies that ω2(Z) 6 1/2 + 2ε, so

all the required properties are ful�lled. y

The next statement applies Claim 3 in the context of a single step of constructing a bidecomposition.

Claim 4. Let ε > 0, let H be a graph of treewidth at most k, and let ω1, ω2 : V (H) → R>0 be two weight

functions on the vertices ofH . Then there exists a partition (A,X,B) of V (G) with the following properties:

• there is no edge with one endpoint in A and second in B;

• |X| 6 ε−1 · (k + 1); and
• ωt(A) 6 (1/2 + ε) · ωt(H) and ωt(B) 6 (1/2 + ε) · ωt(H), for t ∈ {1, 2}.

Proof. Apply Claim 2 to H with weight functions ω1(·) and ω2(·), yielding suitable separators Z1, Z2 ⊆
V (H). Let X = Z1 ∪ Z2. Then |X| 6 ε−1 · (k + 1) and

ωt(C) 6 ε · ωt(H) for each t ∈ {1, 2} and every connected component C of H −X.

It therefore su�ces to prove that the connected components of H −X can be partitioned into two groups

A and B so that the third condition is satis�ed.

Let Ω be the set of connected components of H −X . By applying Claim 3 to Ω with weight functions

ω1, ω2 (treated as weight functions on Ω), we �nd a partition of Ω into Y and Z such that

ωt(W ) 6 (1/2 + 3ε) · ωt(Ω) 6 (1/2 + 3ε) · ωt(H),

for all W ∈ {Y, Z} and t ∈ {1, 2}. It now remains to de�ne A =
⋃

C∈Y V (C) and B =
⋃

C∈Z V (C), and

rescale ε by a multiplicative factor of 3 throughout the proof. y

We are �nally ready to build the requested bidecomposition. Let n = |V (G)| and �x ε = 1/ log n.

W.l.o.g. assume that ε 6 1/8, for otherwiseG is of constant size. De�ne weight functions on vertices ofG
as follows: ω1(u) = 1 for each vertex u, and ω2(u) = 1 for each u ∈ S and ω2(u) = 0 for each u /∈ S. The

bidecomposition is constructed using the following recursive procedure which for R ⊆ V (G) constructs

a bidecomposition of G[R]; we apply it initially to R = V (G).

1. If R is empty, terminate and return an empty bidecomposition.

2. Otherwise, apply Claim 4 to H = G[R] with weight functions ω1(·) and ω2(·) restricted to R.

This yields a partition (A,X,B) of R. Apply the procedure recursively to A and to B in place of

R, yielding bidecompositions of G[A] and G[B], respectively. Return a bidecomposition of G[R]
obtained by creating a root r, mapping all vertices of X to r, and attaching the bidecompositions of

G[A] and G[B] as children of r.
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Let (T, α) be the bidecomposition ofG obtained in this manner. As ε = 1/ log n, property (B1) is clear

from the construction. Therefore, we focus on proving properties (B2) and (B3).

Consider any root-to-leaf path in T and let

V (G) = R0 ⊇ R1 ⊇ R2 ⊇ · · · ⊇ Rd

be the consecutive sets R considered by the procedure constructing (T, α) along this path. By the con-

struction we have

|Ri| 6 (1/2 + ε)i · n for each i ∈ {0, . . . , d} .

Since the procedure stops when R becomes empty, we have that |Rd| > 1, implying that

(1/2 + ε)d · n > 1

or equivalently

d 6 − log1/2+ε n =
log n

1 + log
(

1
1+2ε

) .
Now observe that

log

(
1

1 + 2ε

)
= log

(
1− 2ε

1 + 2ε

)
> − 4ε

1 + 2ε
> −4ε.

Here, the �rst inequality follows from log(1− x) > −2x for x ∈ [0, 1/2], which in turn follows from the

concavity of function t 7→ log t. Therefore, we conclude that

d 6
log n

1− 4ε
6 log n · (1 + 8ε) = logn+ 8,

where the second inequality follows from 1 6 (1− 4ε)(1 + 8ε) being true for ε 6 1/8. We conclude that

the height of T is at most log n+ 8, so property (B2) is veri�ed.

The proof of property (B3) is analogous: instead of any root-to-leaf path in T , we consider any path

from the root to a node x satisfying α−1(x)∩S 6= ∅. This concludes the proof of the existential statement.

We now discuss the algorithmic aspects. In the following, k is considered a �xed constant.

It is easy to implement the procedure described in the proof of Claim 1 in linear time by processing

the tree T in a bottom-up manner: one keeps track of the total weight of unmarked descendants and when

this count reaches ε · ω(T ), the current node is added to S and the count is zeroed. The proof of Claim 2

essentially boils down to applying Claim 1 to a tree decomposition of width k, with a weight function

that can be computed in linear time directly from the de�nition. As for a �xed k, an optimum-width tree

decomposition of a graph of treewidth at most k can be found in linear time [Bod96], this gives a linear

time algorithm for �nding the set Z promised by Claim 2.

The procedure described in the proof of Claim 3 can be easily implemented in time linear in |Ω|. By

combining this with the discussion of Claim 2 from the previous paragraph, for Claim 4 we obtain an

algorithm that runs in linear time.

Finally, the construction of the �nal bidecomposition amounts to applying (the algorithm of) Claim 4

recursively. It can be easily seen that graphs considered in the subcalls at every level of the recursion are

disjoint, so the total amount of work used in those subcalls is linear in the size of the input graph. Since

the recursion depth is bounded by log n, we conclude that the algorithm runs in time O(n log n). �
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4 Case of a short path

We now move to the �rst step of the proof of Theorem 1. Hence, from now on we �x an e�ciently �at

class C, and we let w ∈ N be the constant given by the e�cient �atness of C. In the following we treat w
as a constant, hence all the constants hidden in the O(·)-notation may depend on w.

We now use our understanding of schemes for graphs of bounded treewidth in order to lift it to graphs

from C that can be embedded into H � P , where H has bounded treewidth and P is a relatively short

path. This intermediate result will be exploited in the next section in the general labeling scheme for C.

Lemma 6. Graphs from C admit a labeling scheme of length log n+ log d+O(log log n), where we assume

that the Encoder is given a graphG ∈ C together with a subgraph embedding ofG into a graphH�P , where
H has treewidth at most w and P is a path of length d. The Encoder runs in polynomial time and the Decoder

in constant time.

Moreover, if the graph G is provided together with a vertex subset Q, then the Encoder may assign to the

vertices of Q labels of length at most log |Q|+ log d+O(log log n).

Proof. We �rst focus on proving the initial statement, without the additional vertex subset Q. At the end

we shall argue how the re�ned statement can be obtained using property (P2) of Theorem 3.

Let G ∈ C be the input graph, where G has n vertices. We assume that we are also given a subgraph

embedding ϕ of G into H � P , where H has treewidth at most w and P has length d. As argued, by

removing vertices not participating in the image of G under ϕ, we may assume that |V (H)| 6 n and

|V (P )| = d+ 1 6 n. We identify the vertices of P with numbers {0, 1, . . . , d}.
Since H has treewidth w = O(1), we may apply Theorem 3 to H . Thus, in polynomial time we can

compute a labeling κ(·) de�ned on vertices of H with labels of length log n+O(log log n), for which we

have a Decoder working in constant time.

Now, we de�ne a labeling λ(·) of G as follows. Take any u ∈ V (G) and let (v, i) = ϕ(u), where

v ∈ V (H) and i ∈ {0, 1, . . . , d}. Then the label λ(u) consists of:

• the label κ(v);

• the number i, written in binary;

• a 3(w + 1)-bit adjacency code, which we de�ne in a moment.

The �rst two pieces of information above are of variable length, so we add to the label a pre�x of (�xed)

length 2 log log n that encodes their lengths, so that they can be extracted from the label in constant time.

Clearly, the total length of any label constructed in this way is bounded by log n+ log d+O(log log n).

It remains to describe the adjacency code and how the decoding is going to be performed based on it.

Recall that, by property (P1), every vertex of v of H is assigned an identi�er ι(κ(v)) so that from κ(v) one

can compute a set Γ(κ(v)) of at most w identi�ers with the following property: v and v′ are adjacent inH
if and only if ι(κ(v)) ∈ Γ(κ(v′)) or ι(κ(v)) ∈ Γ(κ(v′)). By ordering identi�ers lexicographically, we may

assume that sets returned by Γ(·) are organized as lists
3
. Observe that two vertices u and u′ of G may be

adjacent only if the following two assertions hold: denoting ϕ(u) = (v, i) and ϕ(u′) = (v′, i′), we must

have that

• v and v′ are equal or adjacent in H ; and

• |i− i′| 6 1.

Hence, the adjacency code assigned to a vertex u of G stores the following information: denoting (v, i) =
ϕ(u), for each v′ ∈ {v} ∪ Γ(κ(v)) and t ∈ {−1, 0, 1}, we record whether u is adjacent to the unique

3

In the original scheme of [GL07], Γ(·) sets are organized into dictionary so that membership can be tested in constant time,

independently of the size of Γ(·). This re�nement does not matter here since the size is bounded by w = O(1).
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vertex u′ with ϕ(u′) = (v′, i+ t), provided it exists. Note that there is at most one u′ as above, because ϕ
is injective.

Given the above description, the decoding can be performed as follows. Suppose we are given labels

λ(u) and λ(u′) of two vertices u, u′ ∈ V (G). Denoting (v, i) = ϕ(u) and (v′, i′) = ϕ(u′), from these

labels we may consecutively compute:

• numbers i and i′;
• labels κ(v) and κ(v′);

• lists Γ(κ(v)) and Γ(κ(v′)); and

• identi�ers ι(κ(v)) and ι(κ(v′)).

Next, we check whether ι(κ(v)) = ι(κ(v′)), or ι(κ(v)) ∈ Γ(κ(v′)), or ι(κ(v′)) ∈ Γ(κ(v)). If this is not

the case, then u and u′ are not adjacent inG, because v and v′ neither equal nor adjacent inH . Otherwise,

we check whether i − i′ ∈ {−1, 0, 1}. Again, if this is not the case, then u and u′ are not adjacent in G,

because i and i′ are neither equal nor adjacent in P . Otherwise, whether u and u′ are adjacent can be read

from the adjacency code of λ(u) or of λ(u′), depending on which identi�er belongs to which list.

From the above description it is clear that the Encoder for this labeling scheme runs in polynomial

time, while the Decoder runs in constant time. This concludes the proof of the initial statement, without

the additional vertex subset Q. For the additional statement, we simply apply the following modi�cation:

we use property (P2) of Theorem 3 to ensure that in the labeling κ(·), the vertices of H that appear on the

�rst coordinates of ϕ(Q) receive labels of length log |Q| + O(log log n). Thus, in λ(·) the vertices of Q
receive labels of total length at most log |Q|+ log d+O(log log n). �

Remark 1. In the labeling scheme of Lemma 6, we reserve dlog(d+ 1)e bits in the label of each vertex u
to store the P -coordinate of ϕ(u), that is, the number i where ϕ(u) = (v, i). Observe that we may modify

the scheme so that for vertices the P -coordinate i is either 0 or d, this piece of information takesO(1) bits.

Namely, using 3 �rst bits we store i is equal to 0, 1, d− 1, d, or lies between 2 and d− 2. Then the value

of i is recorded using dlog(d+ 1)e additional bits only when it is between 1 and d − 1. It is easy to see

that using this way of storing the P -coordinates, the Decoder can verify whether two given P -coordinates

(decoded from the labels) di�er by at most 1 (and then what is their di�erence), even when the Decoder

does not know the value of d in advance. We will use this optimization in the next section.

Remark 2. The proof of �atness of planar graphs given by Dujmović et al. [DEJ
+

19] actually provides

a subgraph embedding of every planar graph G into a graph of the form H � P , where H is a graph of

treewidth at most 8 and P is a path whose length is bounded by the diameter of G. Hence, from Lemma 6

we can infer that planar graphs admit a labeling scheme of length log n+ log d+O(log log n), where d is

the diameter of the input graph.

5 General case

Finally, we are ready to prove our main result, Theorem 1.

Proof (of Theorem 1). Let G = (V,E) ∈ C be the input graph on n vertices. Let

d =
⌈
n1/3

⌉
.

W.l.o.g. we assume that d > 3 (or n > 8).

By e�cient �atness of C, we may compute in polynomial time a graph H of treewidth at most w, a

path P , and a subgraph embedding ϕ of G into H � P . As before, by removing unnecessary vertices we
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may assume that |V (H)| 6 n and |V (P )| 6 n. Letting ` be the length of P , we again identify the vertices

of P with numbers {0, 1, . . . , `}.
For i ∈ {0, 1, . . . , `} let

Li = ϕ−1({(v, i) : v ∈ V (H)}),

and for a ∈ {0, . . . , d− 1} let

Wa =
⋃

i∈N : i≡a mod d

Li.

Note that {L0, L1, . . . , L`} and {W0,W1, . . . ,Wd−1} are partitions of V .

When speaking about setsWa, we consider indices modulo d. Then one of the setsWa∪Wa+1 is small

in the following sense.

Claim 5. There exists a ∈ {0, . . . , d− 1} such that |Wa ∪Wa+1| 6 2n2/3
.

Proof. Observe that

∑
a∈[0,d) |Wa ∪Wa+1| = 2n because every vertex belongs to exactly two of the sets

Wa ∪Wa+1. Hence, for some a ∈ {0, . . . , d− 1} we have |Wa ∪Wa+1| 6 2n/d 6 2n2/3
. y

Partition the edges of G into E1 and E2 as follows:

• E1 comprises all edges with one endpoint in Wa and the other in Wa+1;

• E2 comprises all the remaining edges.

Next, de�ne subgraphs G1 and G2 of G as follows:

G1 = (Wa ∪Wa+1, E1) and G2 = (V,E2).

We �rst show that G1 is a very simple and small graph.

Claim 6. The graph G1 has at most 2n2/3
vertices and treewidth at most 2w + 1.

Proof. The bound on the number of vertices of G1 is directly implied by Claim 5.

For the treewidth bound, note that every connected component of G1 is a subgraph of the graph

G[Li ∪ Li+1] for some i ∈ N. Next, observe that mapping ϕ restricted to Li ∪ Li+1 witnesses that

G[Li ∪ Li+1] is a subgraph of H � K2, where K2 is the graph consisting of two adjacent vertices. It

is easy to see that if H has treewidth at most w, then H � K2 has treewidth at most 2w + 1: in a tree

decomposition of H of width at most w just replace every vertex v with the two copies of v in H �K2.

Since treewidth does not grow under taking subgraphs, we conclude that G[Li ∪ Li+1] has treewidth at

most 2w+ 1. Hence every connected component of G1 has treewidth at most 2w+ 1, so we can conclude

the same about the whole G1. y

We now analyze the graphG2. The idea is to apply Lemma 6, so we need to �nd a subgraph embedding

of G2 into a graph H ′�P ′, where H ′ has bounded treewidth while P ′ is a short path. We do it as follows.

Claim 7. In polynomial time one can compute a graphH ′ of treewidth at mostw and a subgraph embedding

ϕ′ of G2 into H ′ � P ′, where P ′ is a path of length d− 1. Moreover, we have

Wa = ϕ′−1({(v, d− 1) : v ∈ V (H ′)}) and Wa+1 = ϕ′−1({(v, 0) : v ∈ V (H ′)}).
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Proof. Let H ′ be the graph obtained by taking n disjoint copies of H ; clearly the treewidth of H ′ is

at most w. We assume that every vertex of H ′ is represented as a pair (v, j), where v ∈ V (H) and

j ∈ {0, . . . , n− 1} is the index of the copy of H in H ′. Let P ′ be the path of length d− 1, whose vertices

are indexed with numbers 0, 1, . . . , d− 1. Consider the following mapping ϕ′ from V (G) to V (H ′ � P ′):

for u ∈ V (G), denoting (v, i) = ϕ(u) and j = i+ d− a− 1, we set

ϕ′(u) = ( (v , j div d) , j mod d ),

where j div d = bj/dc. Note that the assertion that Wa = ϕ′−1({(v, d − 1) : v ∈ V (H ′)}) and Wa+1 =
ϕ′−1({(v, 0) : v ∈ V (H ′)}) follows directly from the de�nition.

It is straightforward to verify that ϕ′ is a subgraph embedding from G2 to H ′ � P ′: the subgraph

G2[L0 ∪ . . . ∪ La] is mapped to the �rst copy of H (times P ′), the subgraph G2[La+1 ∪ . . . ∪ La+d] is

mapped to the second copy of H (times P ′), and so on. Note here that in G2 there are no edges between

La and La+1, nor between Ld+a and Ld+a+1, and so on. y

We can now use Claims 6 and 7 to give the promised labeling scheme. First, by Claim 6 and Theorem 2,

for the graph G1 we may compute a labeling λ1 with labels of length at most
2
3 log n + O(log log n).

Second, by Claim 7 and Lemma 6, for G2 we may compute
4

a labeling λ2 with labels of length at most

log n + log d + O(log log n) = 4
3 log n + O(log log n). Moreover, we may construct this labeling so that

all vertices of Wa ∪Wa+1 receive shorter labels, namely of length at most
2
3 log n + O(log log n). Here,

we use Remark 1 together with the second statement of Claim 7 in order to reduce the log d summand to

O(1), and we use Q = Wa ∪Wa+1 as the prescribed set of at most 2n2/3
vertices in order to reduce the

log n summand to
2
3 log n+O(1).

Now, for any vertex u of G, we de�ne its label λ(u) as follows:

• If u /∈Wa ∪Wa+1, then λ(u) = λ2(u).

• If u ∈Wa ∪Wa+1, then λ(u) is the concatenation of λ1(u) and λ2(u).

In the second case, in order to be able to decode λ1(u) and λ2(u) from λ(u), we append log log n bits that

indicate the length of λ1(u). Also, we add one bit indicating the case into which the vertex u falls.

Thus, in the �rst case λ(u) is of length
4
3 log n+O(log log n), while in the second it is of length

2

3
log n+O(log log n) +

2

3
log n+O(log log n) + log log n =

4

3
log n+O(log log n) .

Hence, the length of the labeling scheme is as claimed. For the implementation of the Decoder, given labels

of two vertices u and u′, we simply read labels of u and u′ in λ2 and λ1 (if applicable) and check whether

they are adjacent either in G1 or in G2. This concludes the construction of the labeling scheme.

The above construction can be directly translated to an implementation of the Encoder in polynomial

time and the Decoder in constant time. In case of Claim 5, note that an index a satisfying the claim can be

found in polynomial time by checking all the integers between 0 and d− 1 one by one. �

Remark 3. Note that the statement of Theorem 1 considers the class C �xed, hence the factors hidden in

the O(·) notation depend on the constant w given by the e�cient �atness of C. It is not hard to verify that

the obtained dependence on w is linear, that is, the length of the labeling scheme provided by Theorem 1

is
4
3 log n+ c · w · log log n for some absolute constant c ∈ N.

4

A careful reader might be worried at this point that the graph H ′
produced by Claim 7 may have as many as Ω(n2) vertices.

However, since G has at most n vertices, we may again remove vertices of H ′
that do not participate in the image of G under ϕ′

,

thus bringing |V (H ′)| to at most n. In fact, this is what happens at the beginning of the proof of Lemma 6.
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6 Conclusions

We gave an upper bound of (4
3 + o(1)) log n for the length of labeling schemes for any e�ciently �at class

of graphs. This result applies to the class of planar graphs — which were our main motivation — but also

encompasses more general classes such as graphs embeddable in a �xed surface, or k-planar graphs for any

�xed k. Subsequent to our work, Dujmović et al. [DEJ
+

20] announced a construction of labeling schemes

for any e�ciently �at class of graphs with the optimum length (1 + o(1)) log n. Their approach also relies

on the structure theorem of [DJM
+

19], but is much more involved than the one presented here. Also, it

leads to a non-constant-time implementation of the Decoder.

So far, the extent of these results is delimited by the �atness of the considered classes of graphs. As

discussed in [DJM
+

19], this property is unfortunately not enjoyed by every proper minor-closed graph

class, but holds for every class of nearly embeddable graphs without apices (formally, (0, g, k, p)-nearly

embeddable graphs for �xed g, k, p ∈ N). Such graphs are the basic building blocks in the Structure

Theorem for proper minor-closed classes of Robertson and Seymour [RS04]. This gives hope for extending

the existence of labeling schemes of length (1 + o(1)) log n to all proper minor-closed classes through the

Structure Theorem. In fact, such a line of reasoning was successfully applied in [DJM
+

19] to obtain upper

bounds on the queue number in proper minor-closed classes. In the case of labeling schemes, combining

the labelings along a tree decomposition into nearly-embeddable parts seems to be the main issue.

Acknowledgements. We are grateful to Vida Dujmović for pointing out that our original proof, which

was tailored to the cases of planar graphs and of graphs embeddable in a �xed surface, can be also per-

formed on the level of generality of arbitrary �at classes of graphs. Apart from generalizing the results,

this greatly clari�ed and streamlined the presentation of the reasoning.

A part of this research was completed at the 7th Annual Workshop on Geometry and Graphs held at

Bellairs Research Institute in March 2019.
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