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Part I

Introduction





Chapter 1

Prelude

An algorithm is a generic set of instructions that can be used (by a computer)
to perform some task for any given input. Common tasks that are solved by a
computer are for instance sorting a list of numbers, or computing a shortest
path between two points in a road network. There can be many algorithms for
the same task. The study of algorithms aims to design new algorithms, proving
their correctness, and analyzing the number of steps needed to complete the
task in terms of the size of the input. Other aspects such as computer memory
requirements may be considered too.

This thesis is devoted to the study of algorithms whose input is a graph.
A graph G consists of a set of vertices V (G) and a set of edges E(G) that
connect some pairs of vertices. Figure 1.1a depicts a graph where vertices are
represented by points and edges by lines. Graphs can have many properties,
some of which are based on the absence of certain structures contained in them
such as cycles. A cycle in a graph consists of a list of vertices where the first
and last vertex are the same, such that each consecutive pair of vertices is
connected by an edge. A graph is acyclic if it contains no cycles and a graph is
bipartite if it has no cycles of odd length. Besides these examples, many more
graph properties exist [30].

The tasks we consider are so-called vertex-deletion problems: find the
smallest vertex set whose removal results in a graph with some desirable
property. This graph modification problem is also known as H-deletion, where
H is the class of graphs with the desired property. A deletion set whose
removal results in a graph in H is often called an H-modulator or H-deletion
set. Figure 1.1 shows vertex-deletion sets to an edgeless, an acyclic, and a
bipartite graph. The corresponding vertex-deletion problems are known in the
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(a) (b) (c) (d)

Figure 1.1: A graph (a) with vertex-deletion sets to an edgeless (b), an acyclic
(c), and a bipartite (d) graph. Deleted vertices (and their incident edges) are
displayed in grey.

literature as Vertex Cover (VC), Feedback Vertex Set (FVS), and
Odd Cycle Transversal (OCT) respectively.

Many problems can be stated as graph modification problems, with ap-
plications in for instance data clustering [103] and deadlock prevention [156].
Furthermore, some have been the subject of theoretical study for over half a
century [117], adding to the development of the theory of NP-completeness [88]
and leading to the discovery of new algorithmic design techniques [159]. As an
example, the following murder mystery hides a graph modification problem.1

Who killed the Duke of Densmore?

A while ago the Duke of Densmore was killed by a bomb. The bomb was
placed in the bedroom of the castle to which he moved after divorcing from
his eighth wife. The will of the Duke was lost during the explosion, which
supposedly was very unfavorable for one of his ex-wives. Before the explosion,
the Duke had invited all of his eight ex-wives to his castle. The police suspect
that one of the ex-wives was the culprit, but were unable to prove it. Sherlock
Holmes and Watson are asked to solve this unsolved case. Sherlock remembers
hearing about the case and recalls that the bomb was manufactured to fit
perfectly inside one of the armor statues in the Duke’s bedroom, implying that
the murderer must have visited the castle multiple times. Holmes and Watson
interview all of the eight ex-wives. They cannot remember exactly during what
time they were at the castle, but they do remember which of the other ex-wives
they met at the castle:

• Ann met Betty, Charlotte, Edith, Felicia, and Georgia.

• Betty met Ann, Charlotte, and Helen.

1Adapted from ‘Qui a tué le duc de Densmore?’ by Claude Berge.
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Figure 1.2: Meeting graph of the ex-wives.

• Charlotte met Ann, Betty, Diana, Edith, and Helen.

• Diana met Charlotte and Edith.

• Edith met Ann, Charlotte, Diana, and Felicia.

• Felicia met Ann and Edith.

• Georgia met Ann and Helen.

• Helen met Betty, Charlotte, and Georgia.

All of them swear that they only visited the castle once (they lived at other
estates during their relationship with the Duke). Holmes notices their answers
match, for instance Ann said she met Betty and Betty said she met Ann. The
entrance to the castle is located near the great hall where the wives were sitting,
so it is safe to assume that if two wives were at the castle at the same time then
at least one would have seen the other. Sherlock draws the graph in Figure 1.2
corresponding to their answers and abbreviates the ex-wives by their first letter.
He exclaims: this graph uniquely determines a single murderer!

In order to see see how an understanding of graph modification problems
allowed Sherlock to solve the mystery, notice that each ex-wife (except the
lying murderer) was at the castle once, and their stay can be represented by a
time interval [ta, td] with arrival time ta and departure time td. Two innocent
ex-wives met at the castle if and only if their time intervals overlap.

First consider the part of the graph with vertices A, B, G, and H. Suppose
none of them is the murderer, then since there is no edge between A and H,
their time intervals should not overlap. The time interval of B should overlap
with both intervals of A and H. This situation is shown in Figure 1.3a. But
then the time interval of G should overlap with both intervals of A and H, while
not overlapping with the interval of B. This is impossible, so we can conclude
that either Ann, Betty, Georgia, or Helen is the murderer. The same reasoning
also works for the part of graph with vertices A, C, H, and G. Assuming there
is only one murderer, this rules out Betty as a suspect.
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time
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time
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Figure 1.3: Two partial incorrect interval models in (a) and (b). In the latter
it is impossible to assign an interval for B that overlaps A and C but not E.
A complete interval model of the innocent ex-wives is given in (c).

Finally consider the part of the graph with vertices A, B, C, D, E, and
F , and suppose none of them is the murderer. The intervals of A, C, and
E should be pairwise overlapping, while each remaining interval should only
overlap with two of them. This situation is shown in Figure 1.3b. This time it
is less obvious, but no matter which way you draw the intervals of A, C, and
E, at least one of the remaining intervals cannot be drawn while respecting
the correct adjacencies of the graph. Since neither Georgia nor Helen is part
of this set of vertices, we have found our murderer: it was Ann! Figure 1.3c
shows a valid drawing of the intervals of the seven innocent ex-wives.

A set of time intervals as described above is known as an interval model.
The intersection graph of such a model has a vertex for each interval and an
edge whenever two intervals overlap. Such a graph is known as an interval graph.
Note that after deleting one vertex from the graph in Figure 1.2, namely the
vertex of the murderer, the remaining graph consists of the innocent ex-wives
and therefore there should be an interval model of their visits to the castle. In
other words, after deleting one vertex from the graph, the remaining graph
should be an interval graph. The murder mystery is a graph modification
problem.

Deleting more vertices

In the example above we only required to delete a single vertex from the graph
to obtain a solution. A computer can quickly check for each vertex if deleting
it results in an interval graph (this can be computed efficiently). If however the
deletion set becomes larger, it becomes less clear how a computer can efficiently
find an optimal solution. Suppose the murderer had help and we want to find
the smallest group of liars whose omission results in consistent data.

Now you might think: computers are fast, could we try all options? The
number of vertex subsets of an n-vertex graph is 2n. Naively, for each vertex
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Table 1.1: Indication of the time it takes to enumerate all 2n vertex-subsets of
an n-vertex graph if we could enumerate them at a speed of 5 gigahertz (5 · 109

per second). At the time of writing this is the upper end of the spectrum for
a CPU in a personal computer. As we need at least one clock cycle for each
enumerated item, these times are a very conservative estimate.

n (size) 2n (subsets) 2n/(5 · 109) (time)
25 33554432 7 milliseconds
50 1.1 quadrillion 63 days
75 3.8 · 1022 239434 years
100 1.27 · 1030 8 trillion years

subset, you could try if deleting the vertices results in an interval graph. The
solution would then be the smallest subset whose deletion resulted in an interval
graph. While checking if a graph is interval can be done efficiently, Table 1.1
shows that even for a 100 vertex graph enumerating all vertex subsets would
take longer than the age of planet earth.

Since the naive approach was not feasible, one might hope that there exists
a different algorithm that can solve the problem efficiently. There can be many
algorithms for the same task after all. However, assuming the widely accepted
complexity assumption P ̸= NP, it turns out that no algorithm whose time scales
with a polynomial function of n can solve the problem. Interval Deletion
is not the only hard vertex-deletion problem. Lewis and Yannakakis [127]
showed that vertex-deletion is NP-hard for all non-trivial graph properties
that are closed under deleting vertices. This includes problems like Vertex
Cover, Feedback Vertex Set, and Odd Cycle Transversal that were
mentioned before. There are various ways of dealing with NP-hard problems,
one of which being parameterized complexity.

Parameterized complexity

The complexity assumption P ̸= NP states that for so-called NP-hard problems,
no algorithm is able to efficiently produce an optimal solution for all instances.
Here efficiently means that the running time of the algorithm is bounded by
some polynomial of the input size. In order to deal with these problems, several
approaches exist. A first option is to design exponential-time algorithms (see
textbook [77]). In practice such algorithms are only able to solve very small
instances. An example of such an algorithm is the naive interval deletion
algorithm discussed before that just loops over all possible options. A second
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option is to consider dropping the optimality requirement and to settle for
solutions which may not be optimal, but which are provably not much worse
than an optimal solution. The field of approximation algorithms deals with
these types of algorithms (see textbooks [169, 173]). In this thesis we take
the viewpoint of parameterized complexity, where the aim is to discover which
aspects (besides the total input size) cause an input to be hard to solve. The
goal is to give algorithms that scale well with the total input size, but may
scale exponentially in these other aspects.

In the case of vertex-deletion problems, one could think about input in-
stances where only a small number of vertices (say k) need to be deleted to
obtain the desired property. Can we efficiently find such solutions? For some
graph properties the answer turns out to be yes. For instance, there is an
algorithm for Odd Cycle Transversal whose running time is proportional
to 3k · n(n + m) (here n and m are the number of vertices and edges of the
input graph respectively).2 Note that the exponential part of the running time
only scales with the size k of the solution we are looking for, not with the total
size of the graph. This indicates that, if we are looking for ‘small’ solutions,
we can still find them efficiently even though the problem is NP-hard. The
input to a parameterized problem consists of a problem instance of size n and
a parameter (often denoted by k). One would like to find an algorithm for the
problem that solves it in time f(k) · nc for some constant c. The running time
scales polynomially with the input size n, but may scale arbitrarily badly with
the parameter k depending on the function f(·). If such an algorithm exists,
the parameterized problem is said to be fixed-parameter tractable (FPT). Over
the last few decades the field of parameterized complexity has grown into a
large and active research area. There is a big toolkit of techniques that can
be used to come up with FPT algorithms, overviews of which can be found in
several textbooks [48, 59, 60, 82].

Choice of parameter

Recall that for vertex-deletion problems, the task is to delete a minimum number
of vertices such that the remaining graph has a certain desired property. For
these kinds of problems, the size of a minimum solution is often used as the
parameter and is referred to as the natural parameter. An FPT algorithm with
this parameter restricts the exponential blowup of the running time to the size
of the solution. The problems VC, FVS, OCT, and Interval Deletion that
have been mentioned so far are known to be FPT with respect to this natural

2This is not the best known dependence on k.
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parameter. This is not the only possible choice of a parameter, for instance
for weighted problems we could consider the target weight as a parameter.
Besides parameters that are related to the problem, like the solution size, other
commonly used parameters are related to some graph structure. There is
a plethora of such parameters, like treewidth, treedepth, genus, degeneracy,
pathwidth, and many others [70]. Many NP-hard graph problems become
efficiently solvable on graphs where these structural parameters have small
values [98]. There are a lot of possibilities when it comes to choosing a parameter.
The main question that this thesis is concerned with is the following: can we
restrict the exponential blowup of the running time for vertex-deletion problems
to even smaller parameters? We explore parameterized graph modification
beyond the natural parameter in two directions.

Hybrid parameterization

The first direction consists of so-called hybrid parameters, which we deal with
in Part II. Here the aim is to use parameters that are a hybrid between the
natural parameter (solution size) and some structural graph parameter. We
focus our attention to treedepth and treewidth, the latter of which arguably being
the most well-known structural graph parameter. These hybrid parameters were
recently introduced and Chapter 3 is dedicated to giving relevant background
and formal definitions. Intuitively, but slightly incorrectly, one could think of
these hybrid parameters as being the minimum treedepth or treewidth of any
H-modulator. The aim is then to obtain algorithms that use the structural
measure of a solution as the parameter rather than its size.

The treedepth of a graph is equivalent to the minimum number of rounds
needed to delete all vertices, where in each round you get to delete one vertex
from each connected component of the graph. Instead of stopping at the empty
graph, we can stop this procedure when the graph belongs to some graph
class H. This alteration of treedepth is known as H-elimination distance and is
never larger than either the treedepth or the minimum size of an H-modulator
of the graph. In Chapter 4 we show that computing H-elimination distance is
(non-uniform) FPT for various graph classes H, most notably for the class of
bipartite graphs.

The treewidth of a graph says something about how close the graph is
to being a tree. Similarly to treedepth, this notion can be generalized to
H-treewidth, where ‘leaves of the tree’ can be arbitrarily large parts of the
graph that belong to the graph class H while having only a small neighborhood.
This is an even stronger parameter, meaning that whenever H-elimination
distance is bounded, so is H-treewidth. In Chapter 5 we give FPT algorithms
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for computing decompositions of bounded H-treewidth. We show that whenever
H-Deletion is FPT parameterized by solution size, then we can compute
a decomposition whose width is at most eight times the H-treewidth of the
graph. In Chapter 6 we give FPT algorithms for vertex-deletion problems that
use these decompositions. In particular, for classes of bipartite and planar
graphs, we obtain algorithms whose dependency on the hybrid parameter is
as good as the best-known dependency on the natural parameter, which are
known to be tight under the Exponential Time Hypothesis.

Essential vertices

In the second direction we take a different approach. Existing FPT results
often show that solutions can be found efficiently when they are small. We
wonder: can we still do something for instances whose optimal solution is large?
The hybrid parameterization route from Part II answers the question positively
whenever solutions are large but structured. In Part III instead we try to figure
out under which conditions we can find a part of an optimal solution. If we
succeed in finding part of an optimal solution, then the FPT algorithm that
uses the natural solution size parameterization is sped up as it is looking for a
smaller solution. The complexity assumption P ̸= NP implies that we cannot
always succeed in finding part of an optimal solution in polynomial time. If we
could, then by repeatedly executing this preprocessing step we would find an
optimal solution in polynomial time for NP-hard problems. Therefore our task
description should be slightly more novel. We define the notion of c-essential
vertices, which are vertices that belong to all solutions whose size is at most c
times the optimal solution size. In Chapter 7 we give algorithms for finding
c-essential vertices for various vertex-deletion problems. Our positive results
are mostly based on a special type of packing/covering duality in graphs which
after one vertex deletion belong to the target graph class H. For instance, we
show how to find all 2-essential vertices for the Odd Cycle Transversal
problem. Furthermore we show how to use this subroutine to give an FPT
algorithm for vertex-deletion problems whose parameter is not the total solution
size, but the number of non-essential vertices of a solution.
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Chapter 2

Preliminaries

This chapter introduces several notions and definitions that form the starting
point of this thesis. Section 2.1 introduces some basic notation regarding sets
and functions. Section 2.2 covers relevant background material about graphs,
classes of graphs, and several graph parameters. Section 2.3 deals with notions
from computational complexity, mainly covering parameterized complexity.
Finally Section 2.4 introduces graph problems that are considered in this thesis.

2.1 Sets and functions

We assume basic familiarity with set notation, we mention some important
notions and conventions here. Sets that contain elementary elements (like
vertices or edges) are often denoted by upper case letters (e.g. S, T ), whereas
sets containing more involved objects (like sets of vertices or graphs) are denoted
by calligraphic letters (e.g. Y, H). The set {1, . . . , p} is denoted by [p]. For a
finite set S, we denote by 2S the powerset of S consisting of all its subsets. A
set S with property P is said to be inclusion-minimal if no strict subset of S
satisfies P . A partition of a set S is a collection S1, . . . , Sℓ of subsets of S such
that S =

⋃
i∈[ℓ] Si and Si ∩ Sj = ∅ for each i, j ∈ [ℓ]. Note that this definition

allows Si = ∅ for any i ∈ [ℓ], this is relevant when quantifying over all possible
partitions for a fixed ℓ.

Consider the function f : A → B. For A′ ⊆ A, by f|A′ we denote the
function f whose domain is restricted to A′. For b ∈ B, we denote the set of
elements a ∈ A such that f(a) = b by f−1(b).
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2.2 Graphs

A graph G consists of a set of vertices V (G) (sometimes referred to as nodes)
and a set of edges E(G) between pairs of vertices. Unless specified otherwise,
we consider graphs that are undirected, finite, and simple (no duplicate edges or
self-loops). In this setting, each edge is a set consisting of exactly two distinct
vertices. An edge {u, v} ∈ E(G) may be written as uv for short. We refer to
|V (G)| by n and |E(G)| by m if there can be no confusion about which graph
they are referring to.

For a set of vertices S ⊆ V (G), by G[S] we denote the graph induced by S,
which is the graph on vertex set S and edge set {uv ∈ E(G) | u, v ∈ S}. Any
such graph is an induced subgraph of G. We use shorthand G−v and G−S for
G[V (G) \ {v}] and G[V (G) \S], respectively. The open neighborhood NG(v) of
v ∈ V (G) is defined as {u ∈ V (G) | {u, v} ∈ E(G)}. The closed neighborhood
of v is NG[v] = NG(v)∪{v}. For S ⊆ V (G), we have NG[S] =

⋃
v∈S NG[v] and

NG(S) = NG[S] \ S. We may drop subscripts referring to a graph G whenever
it is clear from context. Two non-adjacent vertices u and v are said to be false
twins if NG(u) = NG(v). True twins are adjacent and satisfy NG[u] = NG[v]
instead.

A walk of length ℓ ≥ 0 in a graph G is a sequence (v1, . . . , vℓ+1) of ℓ + 1
vertices such that vivi+1 ∈ E(G) for each i ∈ [ℓ]. A walk is closed if v1 = vℓ+1,
that is, the first and last vertex of the sequence are the same. A path of
length ℓ ≥ 0 in G is a walk of length ℓ where the sequence consists of distinct
vertices. Observe that a single vertex is a walk/path of length zero. A cycle of
length ℓ ≥ 3 is a sequence (v1, . . . , vℓ) of ℓ distinct vertices with edges between
consecutive pairs and an edge between v1 and vℓ. Note that the length of
a path or cycle is determined by the number of edges. A cycle or path is
induced if no edges other than those defined above are present in the graph.
A chordless cycle (also known as a hole) is an induced cycle of length at least
four. Induced paths are also sometimes referred to as being chordless. A cycle
or path is odd if its length (number of edges) is odd. A uv-path is a path
whose first vertex is u and last vertex is v, the vertices u and v are said to
be the endpoints of the path. Two uv-paths are internally vertex disjoint if
their vertex sets only intersect at u and v. A graph G is connected if there is a
uv-path for all u, v ∈ V (G). An (S, T )-path is a uv-path with u ∈ S and v ∈ T .
A set C ⊆ V (G) is called connected in G if the graph G[C] is connected. A
connected component of a graph is an inclusion maximal induced subgraph
that is connected. We may sometimes refer to the vertex set of a connected
component rather than the subgraph. The set of connected components of G
is denoted cc(G).
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For a graph G and vertex sets S, P ⊆ V (G), we denote by RG(S, P ) the set
of vertices which can be reached (by a path) in G− P from at least one vertex
in the set S \ P .

Separators. For two sets S, T ⊆ V (G) in a graph G, a set P ⊆ V (G) is an
unrestricted (S, T )-separator if no connected component of G− P contains a
vertex from both S \ P and T \ P . Note that such a separator may intersect
S ∪ T . Equivalently, P is an (S, T )-separator if each (S, T )-path contains a
vertex of P . The minimum cardinality of such a separator is denoted λG(S, T ).

A restricted (S, T )-separator is an unrestricted (S, T )-separator P which
satisfies P ∩ (S ∪ T ) = ∅. A left-restricted (S, T )-separator is an unrestricted
(S, T )-separator P which satisfies P ∩S = ∅. Let λL

G(S, T ) denote the minimum
size of a left-restricted (S, T )-separator, or +∞ if no such separator exists
(which happens when S∩T ≠ ∅). Menger’s theorem gives the following relation
between path packings and separators, which can be computed for instance via
the Ford-Fulkerson method.

Theorem 2.1 ([166, §9][44, §26]). For any graph G and S, T ⊆ V (G), the
minimum cardinality of an unrestricted (S, T )-separator is equal to the max-
imum cardinality of a packing of vertex disjoint (S, T )-paths. Similarly, for
any graph G and non-adjacent s, t ∈ V (G), the minimum cardinality of a
restricted ({s}, {t})-separator is equal to the maximum cardinality of a packing
of internally vertex disjoint st-paths. Moreover, these packings and separators
can be computed in polynomial time.

In the field of parameterized complexity a special type of separator, known as
an important separator, is often used. These were pioneered by Marx [140, 143]
and refined by follow-up work by several authors [40, 131]. A (restricted) (S, T )-
separator P is important if it is inclusion-minimal and there is no (restricted)
(S, T )-separator P ′ such that |P ′| ≤ |P | and RG(S, P ) ⊊ RG(S, P ′). In words,
a minimal separator is important if no separator of equal size can leave more
vertices reachable from S. With this definition, they show that the number
of important (restricted, but any set of forbidden vertices can be picked [48,
Definition 8.49]) (S, T )-separators in an n-vertex graph G with vertex sets S
and T can be bounded.

Theorem 2.2 ([48, Theorem 8.51]). Let S, T ⊆ V (G) and k ≥ 0 be an integer.
The set Sk of all important (restricted) (S, T )-separators has size at most 4k

and can be constructed in time O(|Sk| · k2 · (n + m)).

While we do not directly use important separators in our results, we do
discuss them in order to compare to our enumeration algorithm in Chapter 5.
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Contractions and minors. A contraction of an edge uv ∈ E(G) is an
operation that turns a graph G into another graph G′. Given a graph G, it
introduces a new vertex adjacent to all of NG({u, v}), after which both u and
v are deleted. By this definition, doing a contraction in a simple graph results
in a simple graph as no parallel edges are created. The graph obtained by
contracting uv ∈ E(G) is denoted G/uv.

We say that a graph H is a contraction of a graph G, if we can turn G
into H by a series of edge contractions. Furthermore, H is a minor of G, if
we can turn G into H by a series of edge contractions, edge deletions, and
vertex deletions. We can represent the result of such a process with a mapping
ϕ : V (H) → 2V (G), such that subgraphs (G[ϕ(h)])h∈V (H) are connected and
vertex-disjoint, with an edge of G between a vertex in ϕ(u) and a vertex
in ϕ(v) for all uv ∈ E(H). The sets ϕ(h) are called branch sets and the family
(ϕ(h))h∈V (H) is called a minor-model of H in G.

2.2.1 Graph classes and special graphs

So far we have seen several properties and notions pertaining to individual
graphs. This subsection introduces some relevant definitions regarding classes
of graphs.

Two graphs G and H are isomorphic if there is a bijection f : V (G) → V (H)
such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say that a graph G
contains a graph H if there is an induced subgraph of G isomorphic to H. If G
does not contain H, it is said to be H-free. A class of graphs, or graph class, is
a (possibly infinite) set of graphs. For a graph class H, G is said to be H-free
if it is H-free for each H ∈ H. An overview of various graph classes and their
properties is given in [30]. A graph class H is called hereditary if for any G ∈ H,
every induced subgraph of G also belongs to H. For consistency reasons, we say
that each hereditary class contains the null graph (the graph on zero vertices).
A graph class H is hereditary if and only if there exists a (possibly infinite)
collection of graphs FH such that G ∈ H if and only if G is FH-free. Such
a collection FH is known as a forbidden induced subgraph characterization
for H. When referring to such a characterization, we usually mean the set
of vertex-minimal graphs that do not belong to H, that is, the set of graphs
F /∈ H such that F − v ∈ H for each v ∈ V (F ). Each hereditary graph class
is uniquely characterized by such a vertex-minimal collection. The disjoint
union of two graphs G1 and G2 is the graph on vertex set V (G1) ∪ V (G2)
and edge set E(G1) ∪ E(G2), where vertices of G2 are annotated to enforce
V (G1) ∩ V (G2) = ∅. A graph class H is union-closed if for any G1, G2 ∈ H,
the disjoint union of G1 and G2 also belongs to H.
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A graph is complete if each pair of distinct vertices is adjacent, the complete
graph with q vertices is denoted Kq. A set of pairwise adjacent vertices is
referred to as a clique. A graph is empty if it has no edges and a set of
pairwise non-adjacent vertices is called an independent set (in the literature
also commonly referred to as a stable set).

Trees. A tree is a connected graph that is acyclic, that is, it contains no
cycle. Its vertices are typically referred to as nodes, especially when there is
another graph in the current context. A forest is a disjoint union of trees. A
rooted tree is a tuple (T, r), where T is a tree and r ∈ V (T ) is a chosen root
vertex. In a rooted tree T with root r, we say that t ∈ V (T ) is an ancestor of
t′ ∈ V (T ) (equivalently t′ is a descendant of t) if t lies on the (unique) path
from r to t′. We denote the subtree of T rooted at t ∈ V (T ) by Tt. A rooted
tree is binary if each node has at most two children. The depth of a rooted
tree is measured by the number of edges on a longest root-to-leaf path.

Perfect graphs. A graph G admits a proper q-coloring, if there exists a
function c : V (G) → [q] such that c(u) ̸= c(v) for all uv ∈ E(G). The chromatic
number of a graph denotes the smallest q for which it admits a proper q-coloring.
A graph G is perfect if for every induced subgraph H of G, the chromatic
number of H is equal to the size of a largest clique in H. Equivalently, a
graph is perfect if it has no induced cycle of odd length at least five or its
edge complement [43]. Various NP-hard problems, such as computing a largest
clique or largest independent set, turn out to be polynomial time solvable in
perfect graphs [94]. Bipartite, chordal, and interval graphs are subclasses of
perfect graphs. A graph is bipartite if and only if it admits a proper 2-coloring,
or equivalently, a partition into two independent sets. Its forbidden induced
subgraph characterization consists of cycles of odd length. A bipartite graph is
complete if the vertices can be partitioned into two non-empty independent
sets V1 and V2 such that uv ∈ E(G) for every u ∈ V1 and v ∈ V2. The
graph Kp,q denotes the complete bipartite graph that admits a vertex partition
that satisfies |V1| = p and |V2| = q. The graph K1,3 is known as the claw and
more generally, K1,q is known as a star graph. A graph is chordal if it does
not contain any induced cycle of length at least four, that is, it contains no
chordless cycles. Interval graphs form a subclass of chordal graphs and are the
intersection graph of a set of closed intervals on the real line: a graph G with
V (G) = [n] is interval if and only if there exists a collection of closed intervals
I1, . . . , In such that ij ∈ E(G) if and only if Ii and Ij have a non-empty
intersection.
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Minor-closed classes. Minor-closed classes of graphs form a special subset
of hereditary classes. A graph class H is minor-closed if for every G ∈ H, every
minor of G is also contained in H. For a minor-closed class of graphs H, there
exists a finite set of graphs FH (see [48, Corollary 6.11]), such that G ∈ H if
and only if G has no minor isomorphic to a graph in FH. Arguably the most
well-known minor-closed class of graphs are the planar graphs, which are the
graphs that can be embedded in the plane without edge intersections (except
at vertices). A graph is planar if and only if it has no K5 or K3,3 as a minor.
While many NP-hard problems such as Independent Set remain NP-hard
in these graph classes, often faster algorithms [58] or better approximation
algorithms [93] are attainable.

2.2.2 Graph decompositions and parameters

This subsection introduces two well-known graph parameters. Our interest in
these parameters stems from the fact that in graphs where these parameters
are bounded, many computationally hard problems become tractable (see Sec-
tion 2.3). Roughly speaking the first one, treedepth, measures how far the
graph is from being a star. It corresponds to the minimum number of rounds
needed to delete the entire graph, where in each round a vertex can be deleted
from each connected component. Different definitions exist in the literature
that are equivalent to treedepth, for instance the vertex ranking number [22].

Definition 2.3 ([148]). The treedepth of a graph G, denoted td(G), is defined
recursively as follows.

td(G) =


0 if |V (G)| = 0

1 + minv∈V (G)(td(G− v)) if G is connected and |V (G)| > 1

maxd
i=1(td(Gi)) if G is disconnected and

G1, . . . , Gd are its components

Where treedepth measured how far the graph is from being a star, the
next parameter treewidth measures how far the graph is from being a tree. As
was the case with treedepth, the concept of treewidth was rediscovered several
times under different names (see the bibliographic notes at [48, §7]).

Definition 2.4 ([161], cf. [18]). A tree decomposition of a graph G is a pair
(T, χ) where T is a tree, and χ : V (T ) → 2V (G), such that:

1. For each v ∈ V (G) the nodes {t ∈ V (T ) | v ∈ χ(t)} form a non-empty
connected subtree of T .
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2. For each edge uv ∈ E(G) there is a node t ∈ V (T ) with {u, v} ⊆ χ(t).

The width of (T, χ) is defined as maxt∈V (T ) |χ(t)| − 1. The treewidth of a
graph G, denoted by tw(G), is the minimum possible width of a tree decompo-
sition of G.

The treewidth of the null graph is -1. The sets χ(t) are sometimes referred
to as bags of the decomposition. The treewidth of a graph is at most its
treedepth, that is, tw(G) ≤ td(G) for any graph G (see [48, Exercise 7.54]).
One important observation about tree decompositions is that for every clique
there always is a bag that contains it completely.

Observation 2.5 (see [48, Exercise 7.6]). Let (T, χ) be a tree decomposition
of G and suppose A ⊆ V (G) forms a clique. Then there exists a node t ∈ V (T )
such that A ⊆ χ(t).

Recall that for a rooted tree T , the subtree of T rooted at t ∈ V (T ) is
denoted Tt. The vertices represented in this subtree are denoted by χ(Tt) =⋃

t∈V (Tt)
χ(t). The bags of a tree decomposition correspond to separators in

the graph. Even more, the intersection of two bags of adjacent nodes also form
a separator. This is formalized by the following lemma.

Lemma 2.6. [48, Lemma 7.3] Let (T, χ) be a tree decomposition of a graph G.
For an edge e = {t1, t2} ∈ E(T ), let T t1 , T t2 denote the subtrees of T − e con-
taining t1, t2 respectively. Then χ(t1)∩χ(t2) is an unrestricted (χ(T t1), χ(T t2))-
separator.

A lot of the material of Part II is about extensions to treedepth and
treewidth. Since these extensions have only recently been introduced, their
definitions and background are postponed to Chapter 3.

2.3 Computational complexity

We assume the reader is familiar with classical complexity theory, in particular
with asymptotic notation (O, Ω) and the complexity classes P and NP. We
introduce the most important notions from (parameterized) complexity that we
need. More background on parameterized complexity can be found in various
textbooks [48, 59, 74].

Parameterized Complexity. A parameterized problem L is a subset Σ∗×N
for some finite alphabet Σ. Such a problem is called fixed-parameter tractable
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(FPT) if there exists an algorithm A that given (x, k) ∈ Σ∗×N decides whether
(x, k) ∈ L in time f(k) · |x|O(1) for some computable function f : N → N. The
complexity class containing all fixed-parameter tractable problems is called FPT.
As is often done in parameterized complexity literature, we may sometimes refer
to (the running time of) an algorithm that runs in time f(k) · |x|O(1) as being
FPT. Instances (x, k) of L with (x, k) ∈ L are often said to be yes-instances,
while no-instances satisfy (x, k) /∈ L.

There exist a hierarchy of complexity classes ‘above’ FPT, known as the
W-hierarchy, that consists of classes W[t] for t ≥ 1. For our purposes, the
classes W[1] and W[2] are relevant as well as the containment relation FPT ⊆
W[1] ⊆ W[2]. As with P ⊆ NP, the subset relations are believed to be strict.
Parameterized problems that are hard for W[1] (or W[2]) are believed not
to admit FPT algorithms. This hardness notion is based on parameterized
reductions that transform one parameterized problem into another in FPT
time (as opposed to polynomial time reductions in classical complexity). More
formally (see [48, §13.1]) for two parameterized problems A and B, a param-
eterized reduction from A to B takes an instance (x, k) of A, runs in time
f(k) · |x|O(1) for some computable function f , outputs an instance (x′, k′) of B
with k′ ≤ g(k) for some computable function g, such that (x, k) ∈ A if and only
if (x′, k′) ∈ B. If such a reduction exists and B is FPT, then A is also FPT.
The class W[1] corresponds to all parameterized problems for which there is
a parameterized reduction from the k-Clique problem parameterized by k,
which asks whether the graph has a clique of size k. Similarly, the class W[2]
corresponds to all parameterized problems that reduce from k-Dominating
Set parameterized by k, which asks whether the graph has k vertices whose
closed neighborhood is the entire vertex set.

Uniformity. The notion of FPT as mentioned above is more precisely known
as strongly uniform FPT [59, Definition 2.4]. We will not be referring to
it as such, but the distinction is relevant when we talk about non-uniform
algorithms. A parameterized problem L is called non-uniform fixed-parameter
tractable if there exists a constant c, a function f : N → N, and a collection of
algorithms {Ak | k ∈ N} such that for each k ∈ N, Ak correctly decides for a
given instance (x, k) whether (x, k) ∈ L in time f(k) · |x|c. This non-uniform
notion can be seen as a first step towards classifying whether a problem is FPT
or not. Instead of having to design a single algorithm, there is more freedom
by allowing a different algorithm for every value of k. One way to obtain
non-uniform algorithms is through the work on graph minors of Robertson
and Seymour (see [48, §6.3] for an overview). Testing whether H is a minor
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of G can be done in time f(H) · |V (G)|3, while every minor-closed class of
graphs has a finite set of forbidden minors as mentioned before. For instance
graphs of treewidth at most k are minor-closed and therefore for each k there
is an unknown finite number of forbidden minors Fk. This gives a non-uniform
algorithm to determine the treewidth of a graph: a different algorithm for each
k is obtained by hard coding Fk in its description and simply testing whether
the graph has one of the forbidden minors or not. Follow up work can then
focus on obtaining uniform algorithms by computing the forbidden minors,
or as is often the case, by coming up with completely different algorithms
altogether. In Chapter 4 we give non-uniform algorithms.

Exponential Time Hypothesis. For parameterized problems that are FPT,
one may wish to provide lower bounds to show that the algorithm is as fast as it
can be in some sense. For this purpose, the Exponential Time Hypothesis [104]
(ETH) can be used. A nice overview of their definition and consequences
is given in [48, §14.1]. We briefly repeat some parts here. Let δq be the
infimum of the set of constants c for which there exists an algorithm solving
q-SAT (deciding if there is a satisfying assignment for a q-CNF formula with n
variables) in time O(2cn). Then the ETH states that δ3 > 0. The ETH implies
that 3-SAT cannot be solved in 2o(n) time, that is, in time subexponential in
the number of variables. Furthermore it implies FPT ̸= W[1] [48, Thm. 14.21].
For certain parameterized problems with parameter k, ETH can be used to
rule out algorithms with running time 2o(f(k)) · nO(1). An algorithm for such a
parameterized problem with running time 2O(f(k)) · nO(1) is said to be tight
for ETH, if assuming ETH no algorithm can exist with running time of the
form 2o(f(k)) · nO(1).

Memory requirements. The space usage of an (FPT) algorithm refers to
the amount of memory that is needed during its execution. While we mostly
avoid implementation details, for us the following distinction is relevant. An
FPT algorithm for a parameterized problem with parameter k may use space
exponential in k, or use space proportional to a polynomial of the input size.
In other words, the space usage is either bounded by f(k) · nO(1) for some
(computable) function f or by nO(1). An algorithm of the latter type is said
to be polynomial-space. Typically, dynamic programming algorithms over a
tree decomposition of width k use space exponential in k. For enumeration
problems, whose task it is to output a number of say vertex sets satisfying
certain properties, it may be the case that the total output size is not bounded
by nO(1). For such problems it may still be possible to obtain polynomial-space
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algorithms that do not construct the complete output at once, for instance by
outputting vertex sets one by one and removing them from storage.

Monadic Second-Order Logic. Monadic second-order logic (MSO) is a
logic of graphs that can be used to express graph properties. We follow
notation as in [48, Section 7.4.1]. Variables can be used for vertices, edges, sets
of vertices, and sets of edges.1 The syntax consists of Boolean operators such as
¬,∨,∧,⇒,⇔ together with universal (∀) and existential (∃) quantifiers. Finally
there are a couple of binary operators for set containment (∈), vertex-edge
incidence (inc(v, e)), equality (=). Using these operators we can express other
useful constructs like subsets (⊆) and adjacency between vertices (adj(u, v)).

The main reason for using this logic is for the use of Courcelle’s theorem,
which roughly says that for graphs of bounded treewidth we can evaluate MSO
formulas of constant length in linear time. For an MSO formula ϕ, we denote
the length of the encoding of ϕ as a string by ||ϕ||.

Theorem 2.7 (Courcelle’s theorem, see [48, Theorem 7.11]). Let ϕ be an MSO
formula and G be a graph. Suppose a tree decomposition of G of width t is
provided. Then there exists an algorithm that verifies whether ϕ is satisfied in
G in time f(||ϕ||, t) · n, for some computable function f .

Since an optimal tree decomposition for graphs of treewidth t can be
computed in time 2O(t3) · n [17], for the purpose of classification we can even
drop the assumption of a given tree decomposition from the theorem.

Counting monadic second-order logic (CMSO) is the extension of MSO
where for every two constants q and r we can test if the size of a set S is equal
to r modulo q. Courcelle’s theorem also extends to this version of the logic
(see for instance the discussion towards the end of [82, §14.5.2]). While we
use black-box theorems in Chapter 4 that are stated in terms of this extended
logic, we do not strictly need this extension. The formulas we construct are
MSO formulas.

2.4 Graph problems

We mostly focus on the H-Deletion problem, which is defined for each fixed
graph class H. Given a graph G, it asks to find a minimum cardinality vertex
set X ⊆ V (G) such that G − X ∈ H. Such a vertex set X is called an

1In this thesis we use MSO2, the MSO1 variant does not allow for quantification over sets
of edges.
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H-modulator or H-deletion set. The cardinality of such a minimum set is
sometimes referred to as the distance to H. Note that if H is hereditary a
solution always exists since V (G) is a solution. The classical result of Lewis
and Yannakakis [127] shows that H-Deletion is NP-hard for any nontrivial
hereditary graph class H. Here a graph class is nontrivial, if it contains
infinitely many graphs and furthermore excludes infinitely many graphs. For
instantiations of H we drop the hyphen, for instance Chordal Deletion
corresponds to H-Deletion where H is the class of chordal graphs. We focus
our attention to the graph classes introduced in Section 2.2, most notably
bipartite, chordal, and interval graphs as well as graphs with a finite set of
forbidden induced subgraphs or forbidden minors. Certain variants of H-
Deletion are better known under different names. To mention a few, deleting
to the class of edgeless graphs is known as Vertex Cover (or Node Cover),
to bipartite graphs as Odd Cycle Transversal, and to a forest as Feedback
Vertex Set.

When parameterized by the solution size k, a few different formulations
exist in the literature. We consider the one where we are given a graph G
and an integer k, and the task is to either find a minimum-size H-deletion
set or report that no such set of size at most k exists. As already alluded to
in Chapter 1, the H-Deletion problem is FPT for many hereditary graph
classes H [35, 37, 79, 142, 159].

In the literature two other formulations of the parameterized version of
H-Deletion are common. The decision variant asks whether a solution of size
at most k exists. Another variant, the non-minimum one, asks for a solution
of size at most k or to report that no such solution exists, which is equivalent
to ours apart from the requirement of returning a minimum solution. An FPT
algorithm for H-Deletion that uses one of these two formulation implies an
FPT algorithm for our formulation by self-reduction.

Lemma 2.8. Given an algorithm for the non-minimum variant that runs in
f(k, n) time, we can solve H-Deletion in O(k ·f(k, n)) time. Similarly, given
an algorithm for the decision variant that runs in f(k, n) time, we can solve
H-Deletion in (k + nO(1)) · f(k, n) time.

Proof. By running the algorithm for the non-minimum variant for each value k′

from 0 up to k, we can find the smallest value for which there is a solution and
return it. If for all these values no solution is found, then clearly there is no
solution of size at most k which can be reported. For the case we are given an
algorithm for the decision variant, we can do the same procedure to determine
the size k′ of a minimum solution. Then, a vertex v belongs to an optimal
solution precisely when the instance obtained when removing v has a solution
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of size k′ − 1. If so, we continue with the smaller graph and recursively look
for a solution of size k′ − 1 in the smaller graph. If not, then we continue with
the next vertex. This way we can build a minimum solution by calling the
algorithm O(n) times. The time needed to update the graph before each call
depends on how it is stored in memory. As the polynomial factor of the running
time of our results is typically not optimized, we bound it simply by nO(1).

Most of our hardness reductions start from either Dominating Set (which
was mentioned already in Section 2.3) or Hitting Set. In the decision variant
of Dominating Set, we are given a graph G and an integer k, and the task is to
decide if there is a subset S ⊆ V (G) of size at most k such that NG[S] = V (G),
that is, each vertex not in S has a neighbor in S. In the decision variant of the
Hitting Set problem, we are given a universe U , a collection F of subsets
of U , and an integer k. The task is to decide if there is a subset S ⊆ U of
size at most k such that S ∩ F ̸= ∅ for each F ∈ F . Like Dominating Set,
Hitting Set parameterized by k is W[2]-hard [48, Thm. 13.25]. While it is
not really a graph problem, one can interpret the problem as finding a vertex
set that intersects all hyperedges in the hypergraph with vertex set U and
hyperedges F .



Part II

Hybrid Parameters





Chapter 3

Background on Hybrid
Parameters

This chapter contains a concise overview of some background, definitions,
and preliminaries that forms the common thread of Part II regarding hybrid
parameters. See [6] for a recent survey.

3.1 Introduction

The field of parameterized algorithmics [48, 60] develops fixed-parameter
tractable (FPT) algorithms to solve NP-hard problems exactly, which are
provably efficient on inputs whose parameter value is small. A recent line
of work aims to unify two lines of research in parameterized algorithms for
vertex-deletion problems that were previously mostly disjoint. On the one hand,
there are algorithms that work on a structural decomposition of the graph,
whose running time scales exponentially with a graph-complexity measure but
polynomially with the size of the graph. Examples of such algorithms include
dynamic programming over a tree decomposition [21, 25] (which forms a re-
cursive decomposition by small separators), dynamic-programming algorithms
based on cliquewidth [46], rankwidth [102, 151, 152], and Booleanwidth [31]
(which are recursive decompositions of a graph by simply structured although
not necessarily small separations). The second line of algorithms are those
that work with the “solution size” as the parameter, whose running time
scales exponentially with the solution size. Such algorithms take advantage
of the properties of inputs that admit small solutions. Examples of the latter
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include the celebrated iterative compression algorithm to find a minimum
odd cycle transversal [159] and algorithms to compute a minimum vertex-
deletion set whose removal makes the graph chordal [38, 142], interval [37], or
planar [112, 119, 144].

In our study of hybrid parameterizations in Part II, our aim is to combine the
best of both these lines of research in order to obtain fixed-parameter tractable
algorithms for parameterizations which can simultaneously be smaller than
natural parameterizations by solution size and width measures like treewidth.
To achieve this, we use parameters that are a hybrid of these two that have
been recently introduced in the literature. They correspond to relaxed versions
of treedepth (Definition 2.3) and treewidth (Definition 2.4). We give a high-
level description of the hybrid parameters we employ, formal definitions are
postponed to Section 3.2. Each hybrid parameter is targeted at a specific
graph class H. For the purpose of this overview, one should think of H as a
hereditary and union-closed graph class.

The first type of parameter we employ is the H-elimination distance intro-
duced by Bulian and Dawar [32, 33], which admits a recursive definition similar
to treedepth. It corresponds to the minimum number of rounds needed to get
to a graph in H, where in each round a vertex of each connected component
can be deleted. The fact that it is upper bounded by treedepth follows from
the fact that treedepth is equal to the number of rounds to delete all vertices
this way. The process of eliminating vertices explains the name elimination
distance. The elimination process can be represented by a tree structure called
an H-elimination forest, whose depth corresponds to edH(G). Intuitively, as
in standard elimination forests for treedepth (see [148]), each layer of the
tree corresponds to the vertices that are deleted in that round and any two
endpoints of an edge are have an ancestor-descendant relationship. The leaves
of the tree however can be arbitrarily large parts of the graph that induce a
graph belonging to H. These large parts are called base components. These
decompositions can be used to obtain polynomial-space algorithms, similarly
as for treedepth [13, 85, 155].

The second type of parameter we employ is called H-treewidth, which
denotes the minimum width of a tree H-decomposition of the graph. These
decompositions are obtained by relaxing the definition of treewidth and were
recently introduced by Eiben et al. [62], building on similar hybrid parameteri-
zations used in the context of solving SAT [86] and CSPs [87]. The definition
was originally stated in terms of torsos. The torso of a vertex set X is the graph
obtained by turning the neighborhood of every connected component of G−X
into a clique, followed by deleting all of V (G) \X. The H-treewidth then is
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the minimum treewidth of the torso of an H-modulator X of G.1 This also
gives another way to look at H-elimination distance, namely as the minimum
treedepth of the torso of an H-modulator of G (see Lemma 3.5). We can extend
the definition of a tree decomposition to incorporate the components outside
the torso that belong to H. A tree H-decomposition of a graph G is a tree
decomposition of G, together with a set L ⊆ V (G) of base vertices (a formal
definition is postponed to Definition 3.6). Base vertices are not allowed to
occur in more than one bag, and the base vertices in a bag must induce a
subgraph belonging to H. The connected components of G[L] are called the
base components of the decomposition. The width of such a decomposition
is defined as the maximum number of non-base vertices in any bag, minus
one. A tree H-decomposition therefore represents a decomposition of a graph
by small separators, into subgraphs which are either small or belong to H.
The minimum width of such a decomposition for G is the H-treewidth of G,
denoted twH(G). We remark that this parameter is mainly interesting for
the case where graphs from H can have unbounded treewidth, for instance
H ∈ {bipartite, chordal, planar}, as otherwise twH(G) is comparable with tw(G)
(see Lemma 3.11). Therefore we do not study classes such as trees or outerplanar
graphs.

We illustrate the key ideas of the graph decomposition for the case of Odd
Cycle Transversal (OCT), which is the vertex-deletion problem which
aims to obtain a bipartite graph. Here we care about instantiations of the
decompositions defined above for H being the class bip of bipartite graphs.
Observe that if G has an odd cycle transversal of k vertices, then edbip(G) ≤ k.
To see this, observe that whenever a graph G has an odd cycle transversal X
of size k, then in each round we can eliminate (at least) one vertex from X and
reach the bipartite graph G−X after at most |X| = k rounds. In the other
direction, as illustrated in Figure 3.1, the value edbip(G) may be arbitrarily
much smaller than the size of a minimum OCT. At the same time, the value
of edbip(G) may be arbitrarily much smaller than the rankwidth (and hence
treewidth, cliquewidth, and treedepth) of G, since the n × n grid graph is
bipartite but has rankwidth n−1 [116]. Hence a time bound of f(edbip(G))·nO(1)

can be arbitrarily much better than bounds which are fixed-parameter tractable
with respect to the size of an optimal odd cycle transversal or with respect
to pure width measures of G. Working with edbip as the parameter for Odd
Cycle Transversal therefore facilitates algorithms which simultaneously
improve on the solution-size [159] and width-based [132] algorithms for OCT.

1A small technicality, each connected component of G−X should belong to H. If H is
union-closed this is equivalent.
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Figure 3.1: The vertex labels correspond to depth values in a bip-elimination
forest of depth 5. By attaching triangles to vertices of depth at most three,
the minimum size of an odd cycle transversal can increase boundlessly without
increasing edbip. The shaded vertices are the base vertices of the decomposition
and induce a bipartite graph.

Early work in this area focused on whether computing these parameter
values exactly is FPT. For minor-closed graph classes H it can be shown that
graphs of H-elimination distance at most k are minor-closed and therefore
characterized by a finite set of forbidden minors. This leads to non-uniform
algorithms to recognize graphs of H-elimination distance at most k for minor-
closed H using the Graph Minor algorithm [162]. Bulian and Dawar [33] show
that these forbidden minors can be constructed, resulting in a uniform algorithm
with unknown parameter dependence. Morelle et al. [145] give an algorithm
with explicit parameter dependence. Apart from minor-closed families H, some
isolated results are known about FPT algorithms to compute edH and twH
exactly, parameterized by the parameter value. In recent work, Agrawal and
Ramanujan [5] give an FPT algorithm to compute the elimination distance
to a cluster graph, as part of a kernelization result using the corresponding
structural parameterization. Eiben et al. [62] show that when H is the class of
graphs of rankwidth at most c for some constant c, then computing twH is FPT.
Bulian and Dawar [32] considered the elimination distance to graphs of bounded
degree d and gave an FPT approximation algorithm. Lindermayr et al. [129]
showed that the elimination distance of a planar graph to a bounded-degree
graph can be computed in FPT time. Agrawal et al. [4] obtained non-uniform
FPT algorithms for computing the elimination distance to any family H defined
by a finite number of forbidden induced subgraphs. Fomin et al. [76] extend this
to properties expressible by a first order-logic formula, which includes graph
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classes with a finite forbidden subgraph characterization. In Chapter 4 we
show that computing the H-elimination distance and H-treewidth for H being
the class of bipartite graphs is non-uniformly FPT. By now the complexity is
mostly settled, at least in the non-uniform setting. Agrawal et al. [3] showed
that whenever H is definable in counting monadic second order logic (CMSO)
and union-closed, then computing H-treewidth and H-elimination distance is
non-uniform FPT whenever the solution size parameterization of H-Deletion
is non-uniform FPT.

The significance of hybrid graph measures stems from their use as param-
eters, in our case for the H-Deletion problem. It turns out that in many
cases, FPT algorithms for H-Deletion parameterized by solution size and
treewidth/treedepth can be extended to obtain FPT algorithms parameterized
by H-treewidth or H-elimination distance. This generalization significantly
extends the tractability horizon for H-Deletion in terms of which types of
instances can be guaranteed to be solved efficiently, since for classes H of
unbounded treewidth these measures can be much lower than both the solution
size and the treewidth of an input graph. The work of Agrawal et al. [3]
mentioned above also has far-reaching consequences in this paradigm. They
show that when H is a graph class which is (1) hereditary and union-closed,
(2) expressible in CMSO, and (3) admits a (non-uniform) FPT algorithm for H-
Deletion parameterized by the solution size, then there is a non-uniform FPT
algorithm to find a minimum H-modulator parameterized by twH and edH.
The non-uniformity of this method has roots in the technique of recursive
understanding, which relies on non-constructive arguments. This meta-theorem
shows that at least with respect to the existence of non-uniform FPT algorithms,
for the broad class of CSMO-expressible classes H (for which H-Deletion
parameterized by treewidth is always FPT via Courcelle’s theorem), being able
to solve H-Deletion parameterized by solution size automatically implies
tractability of the problem parameterized by twH. While this meta-theorem
settles the complexity almost completely in the non-uniform setting, obtaining
uniform algorithms with decent parameter dependencies remains of interest.
We obtain such algorithms through the results of Chapters 5 and 6. In Chap-
ter 5 we give an algorithm that, for hereditary and union-closed graph classes
H for which H-Deletion parameterized by solution size is FPT, outputs a
tree H-decomposition of width at most 8k + 8 where k = twH(G) in time
that is FPT in k. In Chapter 6 we show that, if additionally a version of
H-Deletion with undeletable vertices is solvable, then we can use this tree
H-decomposition to solve H-Deletion. For instance, we obtain algorithms for
Planar Deletion and OCT parameterized by twH that are tight for ETH.
These algorithms show that for certain problems, the dependence on hybrid
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parameters can be as good as their natural parameterization.

Related work. While the two hybrid parameters above have gained in
popularity in the last few years, they are not the only ones that have a hybrid
flavor. One parameter worth mentioning that is perhaps closest in spirit is
one introduced by Eiben et al [64] called the well-structure number. For a
specific graph class H, it denotes the smallest number k of vertex sets in an
H-modulator X =

⋃
i∈[k] Xi such that (1) each vertex set Xi induces a graph

with rank-width at most k and (2) each vertex set Xi is a so-called split-module,
roughly speaking a subset of Xi forms a complete bipartite graph with a subset
of V (G) \ X . They showed that computing a large clique or small vertex cover
is FPT with this parameter if and only if these problems can be solved in
polynomial time in H. This parameter is both upper bounded by the minimum
size of an H-modulator of G and by the rank-width of G [64, Proposition 1].
However, bounded H-elimination distance does not directly imply bounded
well-structure number. Consider a graph with an H-modulator X such that X
induces an edgeless graph and each connected component of G−X is adjacent
to a single vertex of X. In this case, the H-elimination distance is 1, while the
well-structure number scales with |X|. A variant of the parameter, where each
of the k sets Xi induces a graph of constant rank-width, has also been used to
study kernelization [63].

Organization. In the remainder of this chapter we introduce some formal
definitions and preliminaries that are relevant throughout Part II. The re-
mainder of this part is organized as follows. Chapter 4 contains classification
results regarding the computation of hybrid graph parameters, both positive
results as well as hardness results. In Chapter 5 we show how to compute tree
H-decompositions whose width is a constant factor times twH. In Chapter 6 we
show how to solve H-Deletion on these decompositions, extending standard
techniques regarding dynamic programming over tree decompositions.
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3.2 Preliminaries for hybrid parameters

Definition 3.1 ([33]). For a hereditary graph class H and a graph G, the
H-elimination distance of G, denoted edH(G), is defined recursively as follows.

edH(G) =


0 if G is connected and G ∈ H
1 + minv∈V (G)(edH(G− v)) if G is connected and G ̸∈ H
maxd

i=1(edH(Gi)) if G is disconnected and
G1, . . . , Gd are its components

Note 3.2. Note that the hereditary requirement makes sure that it is well-
defined, as any hereditary class of graphs contains the null graph. Strictly
speaking we could replace the hereditary condition by containment of the null
graph, but since all our applications consider hereditary graph classes we do
not take this route. Whenever we talk about H-elimination distance we simply
assume it to be well-defined.

A tree structure which encodes this recursion (with non-necessarily optimal
depth) is called an H-elimination forest of G, see Figure 3.1 for an example for
the class of bipartite graphs.

Definition 3.3. For a graph class H, an H-elimination forest of graph G is a
pair (T, χ) where T is a rooted forest and χ : V (T ) → 2V (G), such that:

1. For each internal node t of T we have |χ(t)| = 1.

2. The sets (χ(t))t∈V (T ) form a partition of V (G).

3. For each edge uv ∈ E(G), if u ∈ χ(t1) and v ∈ χ(t2) then t1, t2 are in
ancestor-descendant relation in T .

4. For each leaf t of T , the graph G[χ(t)], called a base component, belongs
to H.

The depth of T is the maximum number of edges on a root-to-leaf path. We
refer to the union of base components as the set of base vertices.

A pair (T, χ) is a (standard) elimination forest if it satisfies the above for H
consisting only of the 0-vertex graph, that is, the base components are empty.

It is straight-forward to verify that for any G and hereditary H, the minimum
depth of an H-elimination forest of G is equal to the H-elimination distance as
defined recursively above. This is the reason the depth of an H-elimination
forest is defined in terms of the number of edges, while the traditional definition
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of treedepth counts vertices on root-to-leaf paths. Similarly, the treedepth
of G is the minimum depth of a standard elimination forest. While the
definition above is convenient for coming up with algorithms parameterized
by H-elimination distance and is therefore worth mentioning, in this thesis
we focus on algorithms parameterized by H-treewidth and only cover some
classification results for H-elimination distance. For these classification results
it is more convenient to work with the torso-based definition that is already
mentioned in Section 3.1.

Definition 3.4. [87, Definition 4] Let G be a graph and X ⊆ V (G). The torso
of X, denoted by TG(X), is the graph obtained by turning the neighborhood
of every connected component of G−X into a clique, followed by deleting all
of V (G) \X.

We may drop the subscript G if the graph is clear from context. We show
the equivalence of edH and the minimum treedepth of the torso of a vertex set
whose removal results in connected components belonging to H.

Lemma 3.5. Let H be a hereditary graph class and k a non-negative integer.
The H-elimination distance of G is at most k if and only if there exists X ⊆
V (G) with td(TG(X)) ≤ k such that each connected component of G − X
belongs to H.

Proof. For the first direction, we prove by induction on k that if G has a
set X ⊆ V (G) such that C ∈ H for each connected component C of G −X
and td(TG(X)) ≤ k, then edH(G) ≤ k.

For the base case k = 0, note that td(TG(X)) = 0 implies that X = ∅,
so that each connected component of G−X belongs to H. By Definition 3.1
we have edH(C) = 0 for each connected component C of G and therefore
edH(G) = 0 ≤ k.

For the induction step we have k > 0. To show that edH(G) ≤ k, by
Definition 3.1 it suffices to prove that each C ∈ cc(G) satisfies edH(C) ≤ k.
Let XC := C ∩X. If XC = ∅ then C ∈ H (since C is a connected component
of G−X) so edH(C) = 0 ≤ k. In the remainder assume that XC ̸= ∅. Observe
that TG(X) has TC(XC) as a connected component, and that TC(XC) is
connected since C is connected and XC ⊆ C. By definition of td there exists
a vertex x ∈ XC such that td(TC(XC) − x) = td(TC(XC)) − 1. Let X ′

C :=
XC \{x} and let C ′ := C−x. Note that TC′(X ′

C) = TC(XC)−x: it makes no
difference whether we first turn the neighborhood of each component of C−XC

into a clique, remove C \XC , and then remove x, or whether we start from C ′ =
C − x, turn the neighborhood of each component of C ′ −X ′

C into a clique, and
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then remove C ′\X ′
C . By induction on C ′ and X ′

C with k′ := td(TC′(X ′
C)) < k,

it follows that edH(C ′) ≤ td(TC′(X ′
C)) = td(TC(XC))− 1 ≤ td(TG(X))− 1,

where the last inequality follows since TC(XC) is a connected component
of TG(X). By Definition 3.1, since C is connected we have edH(C) ≤ 1 +
minv∈C edH(C−v) ≤ 1+edH(C−x) ≤ 1+(td(TG(X))−1) = td(TG(X)) ≤ k,
which completes this direction of the proof.

For the converse direction, we prove that if edH(G) ≤ k then G has a
vertex set X such that C ∈ H for each C ∈ cc(G −X) and td(TG(X)) ≤ k.
We use an induction on k + |V (G)|. If edH(G) = 0 then by Definition 3.1 we
have C ∈ H for each C ∈ cc(G) so that X = ∅ suffices. For the induction step
we have edH(G) > 0. We distinguish two cases, depending on the connectivity
of G.

If G is connected, then since edH(G) > 0 we have G /∈ H. Hence by
Definition 3.1 we have edH(G) = 1 + minv∈V (G) edH(G− v). Let x be a vertex
for which equality is attained. Since edH(G−x) = edH(G)−1 < k, by induction
on G′ := G− x there exists a set X ′ ⊆ V (G′) such that td(TG′(X ′)) ≤ k − 1
and each connected component of G′ −X ′ belongs to H. Define X := X ′ ∪{x}
and note that the connected components of G′ − X ′ are the same as those
of G − X and therefore belong to H. Furthermore note that td(TG(X)) ≤
1 + td(TG′(X ′)) ≤ 1 + (k − 1) since the graph TG′(X ′) can be obtained
from TG(X) by removing the vertex x. Hence td(TG(X)) ≤ k, proving the
claim.

Now suppose that G is disconnected, so that edH(G) = maxC∈cc(G) edH(C).
For each C ∈ cc(G) we have that |V (C)| < |V (G)| and edH(C) ≤ edH(G) = k,
so we may apply the induction hypothesis to C to obtain a set XC ⊆ V (C)
such that td(TC(XC)) ≤ edH(C) ≤ k and each connected component of
C − XC belongs to H. Let X :=

⋃
C∈cc(G) XC . Clearly each connected

component of G−X belongs to H. Observe that each connected component
of the graph TG(X) is equal to TC(XC) for some C ∈ cc(G), so that each
connected component H of TG(X) satisfies td(H) ≤ td(TC(XC)) ≤ k for
some C ∈ cc(G). By Definition 3.1, the fact that each component of TG(X) has
treedepth at most k ensures td(TG(X)) ≤ k, which concludes the proof.

We switch our attention to H-treewidth and tree H-decompositions. The
following definition captures the relaxed notion of a tree decomposition.

Definition 3.6. For a hereditary graph class H, a tree H-decomposition of
graph G is a triple (T, χ, L) where L ⊆ V (G), T is a rooted tree, and χ : V (T ) →
2V (G), such that:
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1. For each v ∈ V (G) the nodes {t ∈ V (T ) | v ∈ χ(t)} form a non-empty
connected subtree of T .

2. For each edge uv ∈ E(G) there is a node t ∈ V (T ) with {u, v} ⊆ χ(t).

3. For each vertex v ∈ L, there is a unique t ∈ V (T ) for which v ∈ χ(t),
with t being a leaf of T .

4. For each node t ∈ V (T ), the graph G[χ(t) ∩ L] belongs to H.

The width of a tree H-decomposition is defined as maxt∈V (T ) |χ(t) \ L| − 1.
The H-treewidth of a graph G, denoted twH(G), is the minimum width of a
tree H-decomposition of G. The connected components of G[L] are called base
components and the vertices in L are called base vertices.

In the definition of width, we subtract one from the size of a largest bag to
mimic treewidth. Note 3.2 also applies here, but the hereditary requirement
also allows Item 4 to be strengthened as follows.

Observation 3.7. For a hereditary graph class H and a graph G, there exists a
minimum-width tree H-decomposition (T, χ, L) such that G[χ(t)∩L] is connected
for every t ∈ V (T ).

The following observation allows us to translate properties of tree decompo-
sitions to tree H-decompositions.

Observation 3.8. If (T, χ, L) is a tree H-decomposition of G, then (T, χ) is
a regular tree decomposition of G, albeit of possibly larger width.

Next we show that the definition is equivalent to the torso-based definition,
which more closely represents the original definition of Eiben et al. [62]. We
remark that in our conference version [110], the width was defined to be at
least 0 so that graphs G ∈ H get twH(G) = 0. In order to be consistent with
the original definition based on torso, the above definition gives twH(G) = −1.

Lemma 3.9. Let H be a hereditary class of graphs and k ≥ −1 an integer.
The H-treewidth of G is at most k if and only if there exists X ⊆ V (G) with
tw(TG(X)) ≤ k such that each connected component of G−X belongs to H.

Proof. In the forward direction let (T, χ, L) be an optimal tree H-decomposition
of width at most k. Let X = V (G) \ L. Since each vertex of L appears in a
single leaf t of T , and because t must cover all outgoing edges of said vertex, it
follows that each connected component of G−X = G[L] appears in a single
leaf bag χ(t) for some t ∈ V (T ). Since G[χ(t) ∩ L] belongs to H, and because
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H is hereditary, it follows that each connected component of G[χ(t) ∩ L] is
also contained in H. This shows that each connected component of G − X
is in H. Observe that (T, χ′), where χ′(t) = χ(t) \ L for each t ∈ V (T ) is a
valid tree decomposition of G[X] = G− L of width at most k. Let tC ∈ V (T )
be the vertex such that V (C) ⊆ χ(tC) for each connected component C of
G[L]. As mentioned before, also all the neighbors of C are contained in χ(tC)
since this is the only node that can cover these edges. It follows that (T, χ′) is
also a valid tree decomposition of TG(X) of width at most k, completing this
direction of the proof.

In the other direction, let X ⊆ V (G) be a vertex set such that each
connected component of G−X belongs to H and tw(TG(X)) ≤ k. We argue
that twH(G) ≤ k. Let (T, χ) be a tree decomposition of TG(X) (in the case
that TG(X) is the null graph, let T be a single node r with χ(r) = ∅). We
can create a tree H-decomposition (T ′, χ′, L) of G as follows. Let χ′(t) = χ(t)
for each t ∈ V (T ) and let L = V (G) \X. For each connected component C
of G[L], the neighborhood of C is a clique in TG(X). By Observation 2.5 it
follows that exists a node t ∈ V (T ) such that this neighborhood is contained
in χ(t). Assign an arbitrary such node tC to each connected component C of
G[L]. Attach a new leaf t′C to tC and let χ′(t′C) = NG[V (C)]. By construction
we have that (T ′, χ′, L) is a valid tree H-decomposition of G, completing the
proof.

The following observation easily follows from the torso-based definitions and
the fact that tw(G) ≤ td(G) (see [48, Exercise 7.54]) and the fact that at least
one vertex of an H-modulator can be eliminated per round in Definition 3.1.

Observation 3.10. For any hereditary class of graphs H and graph G, we
have twH(G) ≤ edH(G) ≤ modH(G), where modH(G) denotes the minimum
cardinality of an H-modulator.

We conclude with a lemma that shows that tw(G) and twH(G) are compa-
rable if graphs in H have bounded treewidth, which shows that the parameter
is mainly interesting for classes that can have unbounded treewidth.

Lemma 3.11. Suppose (T, χ, L) is a tree H-decomposition of G of width k and
the maximal treewidth in H is d. Then the treewidth of G is at most d + k + 1.
Moreover, if the corresponding decompositions are given, then the requested tree
decomposition of G can be constructed in polynomial time.

Proof. For a node t ∈ V (T ), the graph G[χ(t) ∩ L] belongs to H, so it admits
a tree decomposition (Tt, χt) of width d. Consider a tree T1 given as a disjoint
union of T and

⋃
t∈V (T ) Tt with additional edges between each t and any
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node from V (Tt). We define χ1(t) = χ(t) \ L for t ∈ V (T ) and χ1(x) =
χt(x) ∪ (χ(t) \ L) for x ∈ V (Tt). The maximum size of a bag in T1 is at most
maxt∈V (T ) |χ(t) \ L| + maxt∈V (T ), x∈V (Tt) |χt(x)| ≤ d + k + 2.

Let us check that (T1, χ1) is a tree decomposition of G, starting from
condition (1). If v ∈ L then it belongs to exactly one set χ(t) ∩ L and
χ−1
1 (v) = χ−1

t (v). If v ̸∈ L, then χ−1
1 (v) = χ−1(v) ∪

⋃
t∈χ−1(v) V (Tt). In both

cases these are connected subtrees of T1.
Now we check condition (2) for uv ∈ E(G). If u, v ∈ L, then both u, v

belong to a single set χ(t) ∩ L and there is a bag χt(x) containing u, v. If
u, v ̸∈ L, then both u, v appear in some bag of T and also in its counterpart in
T1. If u ∈ L, v ̸∈ L, then for some t ∈ V (T ) we have u ∈ χ(t) ∩L, v ∈ χ(t) \L
and u ∈ χt(x) for some x ∈ V (Tt). Hence, u, v ∈ χ1(x). The conditions (3,4)
are not applicable to a standard tree decomposition.



Chapter 4

FPT Classification of
Hybrid Parameters

4.1 Introduction1

In this chapter we study the computation of parameters the H-elimination
distance and H-treewidth for hereditary graph classes H, which are hybrids
between the structural parameters treewidth and treedepth, and the size of an
H-deletion set. Relevant background information can be found in Chapter 3.

Our main results show that for both parameters twH and edH, deciding
if their value is at most k in an input graph is non-uniform fixed-parameter
tractable parameterized by k when H is the class of bipartite graphs. Uniform
versus non-uniform algorithms were discussed in Chapter 2. As a side-product
of our proof, we show that both are non-uniformly FPT when H is characterized
by a finite number of forbidden induced subgraphs, generalizing the results of
Agrawal et al. [4] who showed it for edH. The non-uniformity of our algorithms
stems from the use of a meta-theorem by Lokshtanov et al. [135, Theorem 23]
which encapsulates the technique of recursive understanding. This theorem
essentially states that for any problem expressible in Counting Monadic Second
Order (CMSO) logic, the effort of classifying whether the problem is in FPT
is reduced to inputs that are (s, c)-unbreakable (formally defined later). The
theorem allows us to use the technique of recursive understanding in a black box
manner, leading to a streamlined proof at the expense of obtaining non-uniform
algorithms. We believe that uniform algorithms can be obtained using the

1This chapter is mostly based on [108]. The hardness proof in Section 4.4 stems from [110].
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same approach by implementing the recursive understanding step from scratch
and deriving an explicit bound on the sizes of representatives for the canonical
congruence for edH and twH on t-boundaried graphs. As the running times
would not be practical in any case, we did not pursue this route.

Our proof is independent of that of Agrawal et al. [4], but is based on an
older approach inspired by the earlier work of Ganian et al. [87] that contains
similar ideas. The key ingredient for our work is the insight that the approach
based on recursive understanding used by Ganian et al. [87] to compute a
hybrid parameterization for instances of constraint satisfaction problems, can
be applied more generally to aid in the computation of edH and twH. We can
lift one of their main lemmas to a more general setting, where it roughly shows
that given an (s(k), 2k)-unbreakable graph G and an H-deletion set X in G
that is a subset of some (unknown) structure that witnesses the value of twH
or edH, we can determine in FPT time whether such a witness exists. This
allows edH and twH to be computed in FPT time if we can efficiently find a
deletion set with the stated property. For families H defined by finitely many
forbidden induced subgraphs, a simple bounded-depth branching algorithm
suffices. Our main contribution is for bipartite graphs, where we show that the
relation between odd cycle transversals and graph separators that lies at the
heart of the iterative compression algorithm for OCT [159], can be combined
with the fact that there are only few minimal (u, v)-separators of size at most 2k
in (s(k), 2k)-unbreakable graphs, to obtain an H-deletion set with the crucial
property described above.

It is worth mentioning that the results of this chapter are also mostly
covered by more recent work. Agrawal et al. [3, Thm 1.1], as mentioned
in Chapter 3, show that for any hereditary union-closed graph class H that
is CMSO expressible, computing H-elimination distance and H-treewidth is
non-uniform FPT if and only if computing a minimum H-modulator is non-
uniform FPT parameterized by solution size. This is the case for both bipartite
graphs and graphs with a finite set of forbidden connected induced subgraphs.
The union-closed condition stems from the fact that their theorem also implies
an algorithm for H-Deletion parameterized by hybrid parameters. This
requirement is indeed necessary to get this implication, in Chapter 6 we give an
example of a class H that is not union-closed for which H-Deletion is NP-hard
in graphs with H-elimination distance zero. The case where the finite set of
forbidden induced subgraphs is not necessarily connected is also covered by
the work of Fomin et al. [76], who show that computing elimination distance is
non-uniform FPT for graph properties expressible by a first order-logic formula.

We complement our non-uniform algorithms with a hardness result for
computing hybrid parameters for H being the class of perfect graphs, using
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an existing reduction from Hitting Set to the Perfect Deletion problem
of Heggernes et al. [101]. Assuming FPT ̸= W[1], we show that no FPT-
approximation algorithms are possible for edperfect or twperfect. More formally,
for any computable functions f and g, we show the following. There can be
no algorithm running in time f(k) · nO(1) that, given a graph G and integer k,
either outputs a certificate that shows that these parameters have value at most
g(k) · k, or correctly decides that these parameters are strictly larger than k.

Organization. The remainder of this chapter is organized as follows. In Sec-
tion 4.2 we introduce some preliminaries. In Section 4.3 we show that deciding
if twH(G) ≤ k or edH(G) ≤ k is non-uniform FPT for graph classes H with
a finite set of forbidden induced subgraphs and for bipartite graphs. Finally,
in Section 4.4 we show that unless W[1] = FPT, we cannot expect the same
for the class of perfect graphs.

4.2 Preliminaries for classification

A parameter is a function that assigns an integer to each graph. A parameter
f is minor-closed if f(H) ≤ f(G) for each minor H of G.

4.2.1 H-treewidth and H-elimination distance

As shown in Lemma 3.5, the H-elimination distance is equivalent to the
minimum treedepth of the torso of a set X ⊆ V (G) such that each component
of G−X belongs to H. For such a set X with td(TG(X)) = k, we say that X is
an edH witness of depth k. Similarly, as shown in Lemma 3.9, the H-treewidth
of a graph is equivalent to the minimum treewidth of the torso of such a set
X. If tw(TG(X)) = k, we say that X is an twH witness of width k. Since the
torso operation on X turns the neighborhood of each connected component of
G−X into a clique, by Observation 2.5 we get the following.

Observation 4.1. If X is a twH witness of width k − 1 (respectively edH
witness of depth k) in a graph G, then |NG(C)| ≤ k for every C ∈ cc(G−X).

The main problem we analyze is the following decision problem.

H-treewidth / H-elimination distance Parameter: k
Input: A graph G, an integer k.
Question: Decide whether twH(G) ≤ k − 1 / edH(G) ≤ k.
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Definition 4.2. [135] Let G be a graph and s, c ∈ N. A partition (X,C, Y ) of
V (G) is an (s, c)-separation in G if:

• C is a separator, that is, no edge has one endpoint in X and one in Y ,

• |C| ≤ c, |X| ≥ s, and |Y | ≥ s.

A graph G is (s, c)-unbreakable if there is no (s, c)-separation in G.

The following is similar to Lemma 21 of Ganian et al. [87]. Essentially the
lemma shows that for unbreakable graphs with bounded hybrid parameter,
either the non-hybrid parameter is also bounded, or there is a unique large
connected component in G−X for any witness X.

Lemma 4.3. Let G be an (s, c)-unbreakable graph for s, c ∈ N and H be a
hereditary graph class such that twH(G) ≤ k−1 (resp. edH(G) ≤ k) and c ≥ k.
Then at least one of the following holds:

1. tw(G) ≤ s + k − 1 (resp. td(G) ≤ s + k − 1),

2. each twH (resp. edH) witness X of G satisfies the following:

• G−X has exactly one connected component C of size at least s, and

• |V (G) \N [C]| < s and |X| ≤ s + k − 1.

Proof. Consider an arbitrary witness X. If all connected components of G−X
have size at most s− 1, then we argue that (1) holds. In the twH(G) ≤ k − 1
case, by Observation 3.7 there is a minimum-width tree H-decomposition
(T, χ, L) where each base component is connected. It follows that each leaf bag
(the only bags with a non-empty intersection with L) has size at most k + s− 1
and so that (T, χ) is a tree decomposition of width at most s + k − 2, which
is even stronger than (1). In the edH(G) ≤ k case, the components of G−X
can be eliminated in at most s− 1 rounds so that td(G) ≤ s + k − 1.

In the remaining case let C be some component of G − X of size at
least s. First observe that N(C) ⊆ X and |N(C)| ≤ k by Observation 4.1. If
|V (G)\N [C]| ≥ s, then (C,N(C), V (G)\N [C]) is an (s, c)-separation as k ≤ c.
Since G is (s, c)-unbreakable we must have that |V (G)\N [C]| < s. Since for any
connected component C ′ of G−X besides C it holds that V (C ′) ⊆ V (G)\N [C],
we get |V (C ′)| < s too. Finally note that X ⊆ V (G) \ C, |V (G) \N [C]| < s,
and |N(C)| ≤ k imply that |X| ≤ s + k − 1 for any witness X and hence (2)
holds.
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The following lemma bounds the number of small connected vertex sets
with a small neighborhood and the time needed to enumerate all of them. It
has been referred to as the firefighters lemma [83]. It was originally stated for
connected sets of exactly b vertices with an open neighborhood of exactly f
vertices.

Lemma 4.4. [84, Lemma 3.2] Let G be a graph. For every v ∈ V (G) and
b, f ≥ 0, the number of connected vertex sets B ⊆ V (G) such that:

(a) v ∈ B,

(b) |B| ≤ b + 1, and

(c) |N(B)| ≤ f

is at most b · f ·
(
b+f
b

)
. Furthermore they can be enumerated in O(n2 · b2 · f ·

(b + f) ·
(
b+f
b

)
) time using polynomial space.

4.2.2 Capturing hybrid parameterizations with CMSO

Counting monadic second-order logic (CMSO) was introduced in Chapter 2.
For a more complete introduction we refer to the book of Courcelle and
Engelfriet [45].

Let H be a graph class. We say that containment in H is expressible in
CMSO if there exists a CMSO formula φH such that for any graph G it holds
that G |= φH if and only if G ∈ H.

Lemma 4.5. There exist CMSO-formulas with the following properties:

1. For any graph H, there exists a formula φH−MINOR(X) such that for any
graph G and any X ⊆ V (G) it holds that (G,X) |= φH−MINOR(X) if and
only if H is a minor of G[X].

2. For any graph class H characterized by a finite set of forbidden induced
subgraphs, there exists a formula φH such that for any graph G it holds
that G |= φH if and only if graph G ∈ H.

3. There exists a formula φBIP such that for any graph G it holds that G |=
φBIP if and only if graph G is bipartite.

4. For each k ∈ N, for each graph class H such that containment in H is
CMSO expressible, and for each minor-closed parameter f , there exists a
formula φ(k,H,f)(X) such that for any graph G and any X ⊆ V (G) we
have (G,X) |= φ(k,H,f)(X) if and only if the following holds: f(TG(X)) ≤
k and C ∈ H for each C ∈ cc(G−X).
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Proof. For (1) see for instance Corollary 1.14 [45], we repeat it here as we adapt
it for (4). The formula conn(X) certifies that the graph G[X] is connected
(see [48, page 178]). Using this formula, minor containment can then be
expressed by the existence of the appropriate branch sets (see for instance [48,
Section 6.3]). In the second formula, h denotes |V (H)|.

conn(X) = ∀Y⊆V (G) : ((∃u,v∈X : u ∈ Y ∧ v /∈ Y ) ⇒
(∃u,v∈X : u ∈ Y ∧ v /∈ Y ∧ adj(u, v)))

φH−MINOR(X) = ∃Y1,...,Yh⊆X : (
∧

1≤i≤h

((∃y : y ∈ Yi) ∧ conn(Yi))

∧
∧

1≤i<j≤h

¬∃y(y ∈ Yi ∧ y ∈ Yj) ∧
∧

(i,j)∈E(H)

∃u,v(u ∈ Yi ∧ v ∈ Yj ∧ adj(u, v)))

For (2), let FH be the forbidden induced subgraph characterization of H,
where H ∈ FH is a graph on vertex set [h]. A formula φH is given below and
is similar to that of checking for a minor.

φH =
∧

H∈FH

¬∃v1,...,vh∈V (G) : (
∧

1≤i<j≤h

vi ̸= vj

∧
∧

(i,j)∈E(H)

adj(vi, vj) ∧
∧

(i,j)/∈E(H)

¬adj(vi, vj))

Since a graph is bipartite if and only if it has a proper 2-coloring (which
effectively is a partition into two independent sets), the following formula
shows (3).

part(X1, X2) =∀v∈V (G) : (v ∈ X1 ∧ v /∈ X2) ∨ (v /∈ X1 ∧ v ∈ X2)

indp(X) =∀u,v∈X : ¬adj(u, v)

φBIP =∃X1,X2⊆V (G) : part(X1, X2) ∧ indp(X1) ∧ indp(X2)

Finally for (4) note that since f is minor-closed, the set of graphs F with
f(F ) ≤ k has a finite set of forbidden minors by the Graph Minor Theorem
of Robertson and Seymour. Using formula (1), we can check whether TG(X)
contains a forbidden minor. The only thing we need to change is the use of
adj: an edge uv is in TG(X) if either u and v are adjacent, or if there is a
path whose internal vertices are not in X.

Tadj(u, v,X) = adj(u, v) ∨ ∃P⊆V (G) : (u, v ∈ P ∧ conn(P )

∧∀w∈P : (w = u ∨ w = v ∨ w /∈ X))
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Finally we can check if each connected component C of cc(G−X) is in H
by going over every vertex subset and verifying that if it is connected, disjoint
from X, and maximal, then it induces a graph in H. The latter is CMSO
expressible by the precondition of (4).

Since both treewidth and treedepth are minor-closed parameters, we note
the following from the lemma above.

Note 4.6. For each k ∈ N and graph class H such that containment in H is
CMSO-expressible, there exists a formula φ(k,H,tw) (respectively φ(k,H,td)) such
that (G, k) is a yes-instance of H-treewidth (respectively H-elimination
distance) if and only if G |= φ(k,H,tw) (respectively G |= φ(k,H,td)).

CMSO formulas can have free variables. A graph together with an evaluation
of free variables is called a structure. We denote the problem of evaluating a
CMSO formula φ on a structure by CMSO[φ]. The following theorem is the
main tool used to achieve our algorithms, we apply it only to formulas without
free variables.

Theorem 4.7. [135, Theorem 22] Let φ be a CMSO formula. For all c ∈ N,
there exists s ∈ N such that if there exists an algorithm that solves CMSO[φ]
on (s, c)-unbreakable structures in time O(nd) for some d > 4, then there exists
an algorithm that solves CMSO[φ] on general structures in time O(nd).

Using the theorem above one can also derive a meta-algorithmic result for
obtaining non-uniform FPT algorithms. As our formulation differs slightly
from its original form, we provide a short proof which roughly follows the proof
from the arXiv version [136, Theorem 3].

Theorem 4.8. [135, Theorem 23] Let φ̂ be a CMSO formula. For all
ĉ : N0 → N0, there exists ŝ : N0 → N0 such that if CMSO[φ̂] parameterized by
k is non-uniform FPT on (ŝ(k), ĉ(k))-unbreakable structures, then CMSO[φ̂]
parameterized by k is non-uniform FPT on general structures.

Proof. Let ĉ : N0 → N0 and define ŝ : N0 → N0 as follows. For all k ∈ N0, let
ŝ(k) be the constant s in Theorem 4.7 and c = ĉ(k). Suppose that CMSO[φ̂]
is FPT on (ŝ(k), ĉ(k))-unbreakable structures. Then for every fixed k we can
solve it in O(nd) time for some fixed d > 4. By Theorem 4.7 it follows that
we can solve CMSO[φ̂] in O(nd) time for every fixed k on general structures.
Therefore the problem is non-uniform FPT on general structures.
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4.3 Computing hybrid parameters

In this section we present our algorithms. In Section 4.3.1 we present a
key lemma. In Section 4.3.2 we use it to deal with graph classes that are
characterized by a finite number of forbidden induced subgraphs, and in
Section 4.3.3 we deal with bipartite graphs.

4.3.1 Extracting witnesses from deletion sets contained
in them

Our strategy for solving H-treewidth and H-elimination distance is similar
to that of Lemmas 9 and 10 of Ganian et al. [87] and is based on Lemma 4.3.
Given an (s(k), c(k))-unbreakable graph, either the treewidth of the graph is
bounded (1) and we can solve the problem directly using Courcelle’s Theorem,
or each witness is of bounded size and introduces some structure (2).

In the following lemma we assume we are in the latter case (hence the
tw(G) > s(k) + k condition) and are given some H-deletion set Y . We show
that given an (s(k), c(k))-unbreakable graph, in FPT time we can find a witness
X such that Y ⊆ X if such a witness exists. The algorithm is non-uniform,
since in general it may not be known how to obtain s(k).

Lemma 4.9. Consider functions c, s : N → N such that c(x) ≥ x for each
x ∈ N. Let H be a hereditary graph class such that containment in H is solvable
in polynomial time. There is a function f : N → N and a constant d such that
the following holds: for each k there is an algorithm that runs in time f(k) · nd

that, given an (s(k), c(k))-unbreakable graph with tw(G) > s(k) + k and an
H-deletion set Y of size at most s(k) + k, decides whether there is an twH(G)
witness X of width at most k − 1 (respectively edH(G) witness X of depth at
most k) such that Y ⊆ X.

Proof. We refer to a witness as either being an twH witness of width at
most k − 1 or an edH witness of depth at most k. Given a set X ⊆ V (G),
we can verify that it is a witness by testing whether tw(TG(X)) ≤ k − 1
(respectively td(TG(X)) ≤ k) in FPT time [17, 160] and verifying that each
connected component C ∈ cc(G−X) is contained in H, which can be done in
polynomial time by assumption.

We show that we can find a witness if it exists, by doing the above verification
for FPT many vertex subsets D ⊆ V (G), as follows.

1. For each y ∈ Y , let Cy be the set of connected vertex sets S with y ∈ S,
|S| ≤ s(k) and |N(S)| ≤ k. For each B ⊆ Y with |B| ≤ k, a choice tuple
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tB contains an entry for each y ∈ Y \ B, where entry tB[y] is some set
Cy ∈ Cy.

2. For each B ⊆ Y with |B| ≤ k and each choice tuple tB, if G − (Y ∪⋃
y∈Y \B N(tB[y])) has exactly one connected component C of size at

least s(k) and |V (G) \N [C]| < s(k), apply the witness verification test
to D = Y ∪

⋃
y∈Y \B N(tB [y]) ∪Q for each Q ⊆ V (G) \N [C].

3. Return the logical or of all witness verification tests.

We argue that the algorithm runs in FPT time. Note that as |Y | ≤ s(k) + k,

there are at most
(
s(k)+k

k

)
choices for B. Furthermore Cy can be computed in

FPT time using Lemma 4.4, hence the number of choice tuples is also FPT
many. For each choice for B and each choice tuple tB , there are at most 2s(k)

choices for Q. Since each vertex set can be verified to be a witness in FPT
time, the running time claim follows.

Finally we argue correctness of the algorithm. Since tw(G) > s(k) + k (and
also td(G) > s(k) + k as tw(G) ≤ td(G)− 1), by Lemma 4.3 any witness X is
of size at most s(k) + k − 1, the graph G−X has exactly one large connected
component C of size at least s(k), and |V (G) \N [C]| < s(k).

Suppose G has a witness that is a superset of Y . Fix some witness X of
minimal cardinality with Y ⊆ X and let C be the unique component of size
at least s(k) of G−X. Note that since C ∩X = ∅, we have C ∩ Y = ∅. The
situation is sketched in Figure 4.1.

Let B = N(C) ∩ Y . By Observation 4.1 we have |N(C)| ≤ k, hence
the branching algorithm makes this choice for B at some point. For each
y ∈ Y \ B, let Cy be the connected component of G − N [C] containing y.
Since |V (G) \N [C]| < s(k) and |N(C)| ≤ k, we have that |V (Cy)| < s(k) and
|N(Cy)| ≤ k. Note that N(Cy) ⊆ N(C) ⊆ X. The branching algorithm at
some point tries the choice tuple tB where tB[y] = Cy for each y ∈ Y \ B.
Consider the set A = Y ∪

⋃
y∈Y \B N(tB [y]). Note that A ⊆ X by construction.

If N(C) ⊆ A, then the single large component of G−A of size at least s(k)
is exactly C. Since |V (G) \N [C]| < s(k), it follows that X = A ∪Q for some
Q ⊆ V (G) \N [C]. It follows that the algorithm correctly identifies X in this
case.

The only remaining case is N(C) ̸⊆ A. We argue that this cannot happen
when witness X is of minimal cardinality. Suppose N(C) ̸⊆ A and let v ∈
N(C) \ A. Let Z = Y ∪

⋃
y∈Y \B N [Cy] and note that we take the closed

neighborhoods of the components, instead of the open neighborhoods as in the
definition of A. Let C∗

v be the connected component of G−(C∪Z) that contains
v. We argue that X \ C∗

v is a witness. Note that C∗
v ∩ Y = ∅ by construction
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X

N(C) Y
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C

y
Cy

v

C∗
v

Figure 4.1: Situation sketch of Lemma 4.9. The set X in grey denotes a witness
and the set C is the single large component of G−X.

as Y ⊆ Z. Because Y is an H-deletion set and H is hereditary, it follows
that for each connected component C ′ in G− (X \ C∗

v ) we have C ′ ∈ H. We
argue that N(C∗

v ) ⊆ N [C]. Since C∗
v is a connected component of G− (C ∪ Z)

we have N(C∗
v ) ⊆ C ∪ Z, so it suffices to show that N(C∗

v ) ∩ Z ⊆ N(C).
Assume for a contradiction that C∗

v contains a vertex v′ adjacent to some
z ∈ Z \N(C); note that v′ /∈ Z. If z ∈ Y , then z ∈ Y \N(C) = Y \B and the
connected component Cz of G−N [C] is adjacent to v′, implying v′ ∈ N [Cz]
and therefore v′ ∈ Z; a contradiction. If z /∈ Y , then by definition of Z we
have z ∈ N [Cy] for some y ∈ Y \B. Since N(Cy) ⊆ N(C) this implies z ∈ Cy.
But then v′ /∈ C ∪ Z is adjacent to a vertex of the component Cy of G−N [C],
so v′ ∈ Z by definition of Z; a contradiction.

Since N(C∗
v ) ⊆ N [C] and v is adjacent to at least one vertex in C as

v ∈ N(C), it follows that C ∪ C∗
v is a connected component of G− (X \ C∗

v )
with N(C ∪ C∗

v ) ⊆ N(C). Therefore TG(X \ C∗
v ) is an induced subgraph of

TG(X). We conclude that X \C∗
v ⊇ Y is a witness. Since X was assumed to be

of minimal cardinality, we arrive at a contradiction and hence A ⊇ N(C).
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4.3.2 Classes H with finitely many forbidden induced
subgraphs

We give a first simple application of Lemma 4.9 for classes H with finitely many
forbidden induced subgraphs, that results from the fact that all H-modulators
of bounded size can be enumerated [35].

Theorem 4.10. Let H be a graph class characterized by a finite set of forbidden
induced subgraphs. Then H-treewidth and H-elimination distance are
non-uniformly fixed-parameter tractable.

Proof. By Lemma 4.5 containment in H is CMSO expressible, therefore by
Note 4.6 there exists a formula φ(k,H,f) for each f ∈ {tw, td} such that an
instance (G, k) of H-treewidth (respectively H-elimination distance) is a
yes-instance if and only if G |= φ(k,H,f). Furthermore, containment in H is
polynomial time solvable, as we can verify that a graph does not contain any
of the finitely many forbidden induced subgraphs.

We argue that both problems are in FPT when the input graph G is
(s(k), k)-unbreakable for any s : N → N. If tw(G) ≤ s(k) + k, we solve the
problems directly using Courcelle’s Theorem (Theorem 2.7) using φ(k,H,f).
Otherwise by Lemma 4.3 each witness X is of size at most s(k) + k − 1. We
can enumerate all minimal H-deletion sets Y of size at most s(k) + k − 1 in
FPT time by finding a forbidden induced subgraph and branching in all finitely
many ways of deleting its vertices [35]. Since any witness X is an H-deletion
set, for some Y ∈ Y we have Y ⊆ X. Hence we solve the problem by calling
Lemma 4.9 for each Y ∈ Y with c(k) = k. Applying Theorem 4.8 concludes
the proof.

Using known characterizations by a finite number of forbidden induced
subgraphs (cf. [30]) we obtain the following corollary to Theorem 4.10.

Corollary 4.11. Let H be set of graphs that are either (1) cliques, (2) claw-
free, (3) of degree at most d for fixed d, (4) cographs, or (5) split graphs. H-
treewidth and H-elimination distance are non-uniformly fixed-parameter
tractable.

4.3.3 Bipartite graphs

We use shorthand bip to denote the class of bipartite graphs. The problem
of deleting k vertices to obtain a bipartite graph is better known as the Odd
Cycle Transversal (OCT) problem. The following lemma encapsulates
the connection between odd cycle transversals and separators that forms the
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key of the iterative-compression algorithm for OCT due to Reed, Smith, and
Vetta [159]. A partitioned odd cycle transversal (OCT) W is simply an odd
cycle transversal with a partition (WL,WI) of W .

Lemma 4.12. For each partitioned OCT W = (WL,WI) of G, for each
partition (WL,1,WL,2) of WL into two independent sets, for each proper 2-
coloring c : V (G) \W → [2] of G−W , we have the following equivalence for
each X ⊆ V (G)\W : the graph (G−WI)−X has a proper 2-coloring with WL,1

color 1 and WL,2 color 2 if and only if the set X separates A from R in the
graph G−W , with:

A = (NG−WI
(WL,1) ∩ c−1(1)) ∪ (NG−WI

(WL,2) ∩ c−1(2))

R = (NG−WI
(WL,1) ∩ c−1(2)) ∪ (NG−WI

(WL,2) ∩ c−1(1)).

Observe that c−1(i) ⊆ V (G−W ) for each i ∈ [2], so that A ∪R ⊆ V (G−W ),
and that the separator X is unrestricted, it is allowed to intersect A ∪R.

Proof. (⇒) Suppose that (G − WI) − X has a proper 2-coloring with WL,1

color 1 and WL,2 color 2. Suppose for a contradiction that X is not an (A,R)-
separator in G−W , that is, in (G−W )−X there is a connected component H
simultaneously containing a vertex a ∈ A and a vertex r ∈ R. Note that H is
also a connected subgraph of G−W and therefore bipartite, which means that
if |V (H)| ≥ 2 there is a unique partition of H into two independent sets, so
that H has exactly two proper 2-colorings depending on which independent set
is called color 1 and which is called color 2. Note that if |V (H)| = 1, the fact
that H has exactly two proper 2-colorings is trivial. It follows that any proper
2-coloring of H either coincides with the 2-coloring c of G−W , or is such that
every vertex gets the opposite of its current color under c.

The fact that a ∈ A means by definition that either we have c(a) = 1 and a
is adjacent to a vertex of WL,1, or c(a) = 2 and a is adjacent to a vertex
of WL,2. In either case, it shows that in any proper 2-coloring of (G−WI)−X
in which WL,1 gets color 1 and WL,2 gets color 2, the color of a must be different
from its color under c. By an analogous argument, the fact that r ∈ R means
that in any proper 2-coloring of (G − WI) − X in which WL,1 gets color 1
and WL,2 gets color 2, the color of r must be identical to its color under c.

Since a and r belong to the same connected subgraph H of (G−WI) −X,
in any proper 2-coloring they either both change their color compared to c, or
both keep their color compared to c. This is a contradiction to the fact that a
changed color and r remained of the same color.

(⇐) For the converse, consider a set X that separates A from R in G−W .
We construct a proper 2-coloring c′ of (G−WI)−X in which WL,1 gets color 1
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and WL,2 gets color 2, as follows. Let c′(v ∈ WL,1) = 1 and c′(v ∈ WL,2) = 2.
For each connected component of (G−W ) −X that contains a vertex from R,
let its coloring under c′ be identical to its coloring under c. For each connected
component of (G −W ) −X that contains no vertex from R, let its coloring
under c′ be the opposite of its coloring under c. Since c was a proper coloring,
there are no color conflicts among vertices of (G−W ) −X. Since both WL,1

and WL,2 are independent sets, there are no color conflicts among WL,1 or
among WL,2. It remains to verify that each edge connecting WL to a vertex
of (G−W )−X is properly colored. But this follows from our construction: all
neighbors of WL,1 with color 1 under c belong to A and therefore have their
coloring swapped to 2 in c′. Similarly all neighbors of WL,2 with color 2 under c
belong to A and have their coloring swapped to 1 in c′. Finally, neighbors
of WL,1 with color 2 in c belong to R and therefore have the same color 2 in c′,
and neighbors of WL,2 with color 1 in c belong to R and have the same color 1
in c′, ensuring these edges are properly colored as well.

With the above lemma at hand we are now ready to show the main re-
sult of this section, namely non-uniform FPT algorithms for computing bip-
treewidth and bip-elimination distance. These are obtained by enumerat-
ing a list of odd cycle transversals with the guarantee that at least one of them
is contained in a witness. The result then follows by Lemma 4.9.

Lemma 4.13. The bip-treewidth and bip-elimination distance problems
are non-uniformly fixed-parameter tractable.

Proof. By Lemma 4.5 containment in the class of bipartite graphs is CMSO
expressible, therefore by Note 4.6 there exists a formula φ(k,bip,f) for each
f ∈ {tw, td} such that an instance (G, k) of bip-treewidth (respectively
bip-elimination distance) is a yes-instance if and only if G |= φ(k,bip,f). We
argue that both problems are FPT in (s(k), 2k)-unbreakable graphs for any
s : N → N. Note that the theorem then follows by Theorem 4.8.

Let G be an (s(k), 2k)-unbreakable graph. As before, we use the term
witness to either refer to an twH witness of width at most k − 1 or an edH
witness of depth at most k, depending on the problem being solved. We first
test whether tw(G) ≤ s(k) + k, in FPT time [17]. If so, then we can solve
the problems directly using Courcelle’s Theorem (Theorem 2.7) using φ(k,bip,f).
Otherwise by Lemma 4.3 the size of each witness in G is at most s(k) + k − 1,
and for each witness X there is a unique connected component of G−X of at
least s(k) vertices, henceforth called the large component. We use a two-step
process to find an odd cycle transversal that is a subset of some witness (if a
witness exists), so that we may invoke Lemma 4.9 to find a witness.
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For a witness X∗ in G and an odd cycle transversal W of G, we say that a
partition (WL,WI) of W is weakly consistent with X∗ if for the unique large
component C of G−X∗ we have that W ∩C = WL, |WL| ≤ k, and W ⊆ C∪X∗.
An odd cycle transversal W is strongly consistent with X∗ if W ⊆ X∗.

The next two claims show that these types of OCTs can be computed
efficiently in the (s(k), 2k)-unbreakable input graph G. We assume we are
in the tw(G) > s(k) + k case so that there is a unique large component
by Lemma 4.3 and so that a weakly consistent partition is well defined.

Claim 4.14. There is an FPT algorithm that outputs a list of partitioned OCTs
in G with the guarantee that for each witness X, there is a partitioned OCT
on the list that is weakly consistent with X.

Proof. The algorithm proceeds as follows.

1. Initialize an empty list W. Compute a minimum cardinality odd cycle
transversal W ⊆ V (G) of size at most s(k) + k − 1. If no such OCT
exists, return the empty list.

2. For each y ∈ V (G), let Cy be the set of connected vertex sets S with
y ∈ S, |S| ≤ s(k) and |N(S)| ≤ k. For each partition P = (WL,WI ,WR)
of W , a choice tuple tP contains an entry for each y ∈ WR, where entry
tP [y] is some set Cy ∈ Cy. (Each partition corresponds to a guess of
how W intersects a witness: vertices in WL correspond to those in the
large component, WI corresponds to vertices inside the witness, and WR

corresponds to vertices in the remaining small components.)

3. For each partition P = (WL,WI ,WR) of W and each choice tuple
tP , if (W \ WR) ∪

⋃
y∈WR

N(tP [y]) is an OCT, then add (WL,WI ∪⋃
y∈WR

N(tP [y])) to W.

4. Return the list W.

We argue the running time of the steps described above. The first step can
be done in time 3s(k)+k · nO(1) [159, 48]. For each y ∈ V (G), computing
Cy is in FPT by Lemma 4.4. Since there are 3s(k)+k−1 possible partitions
P and FPT many choice tuples tP , the running time follows. To see the
correctness of the algorithm, first note that each partition in the output is
an OCT by construction. All that is left to show is the output guarantee.
Consider some witness X and C be the unique large component of G−X. Let
P = (WL,WI ,WR) be the partition such that W ∩C = WL, W ∩X = WI , and
WR ⊆ V (G) \ (X ∪ C). To see that |WL| ≤ k, observe that if this was not the
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case we would obtain a smaller OCT by taking (W \WL)∪N(C), contradicting
W has minimum cardinality. For each y ∈ WR, let Cy be the connected
component of G−X containing y. Note that |Cy| ≤ s(k) by Lemma 4.3 and
|N(Cy)| ≤ k by Observation 4.1. Therefore for some choice tuple tP we have
tP [y] = Cy for each y ∈ WR. It follows that (WL,WI ∪

⋃
y∈WR

N(tP [y])) that
is contained in the list satisfies the output requirement for witness X. ■

Claim 4.15. There is an FPT algorithm that, given a partitioned OCT that
is weakly consistent with some (unknown) witness X in G, outputs a list of
OCTs in G such that at least one is strongly consistent with X.

Proof. Let W = (WL,WI) be the given partitioned OCT. If |W | > s(k)+k−1,
then no witness is strongly consistent with W by Lemma 4.3, hence we may
assume |W | ≤ s(k) + k − 1.

1. Initialize an empty list W. For each y ∈ V (G), let Cy be the set of
connected vertex sets S with y ∈ S, |S| ≤ s(k) and |N(S)| ≤ 2k. Let c∗

be an arbitrary proper 2-coloring of G−W and let B∗
i = (c∗)−1(i) for

each i ∈ [2].

2. For each partition (W1,W2) of WL, let B1 = N(W2) \ W and B2 =
N(W1)\W . Let A = (B1∩B∗

2)∪(B2∩B∗
1) and R = (B1∩B∗

1)∪(B2∩B∗
2).

(a) For each choice Q ∈ {A,R} with |Q| ≤ s(k) + k, for each D ⊆ Q
with |D| ≤ k, choice tuple tQ,D has an entry for each y ∈ Q \ D,
where entry tQ,D[y] is some vertex set Cy ∈ Cy.

(b) For each choice Q ∈ {A,R} with |Q| ≤ s(k) + k, for each D ⊆
Q with |D| ≤ k, and for each choice tuple tQ,D, add (W ∪ D ∪⋃

y∈Q\D N(tQ,D[y])) \WL to W in case it is an OCT.

The resulting list W is given as the output of the algorithm. The running time
follows from Lemma 4.4 and the fact that there are FPT many choices for
(W1,W2), D, and tuple tQ,D.

We argue the correctness of the algorithm. Note that each set in the output
list is an OCT by construction. Consider some witness X with (WL,WI)
weakly consistent with X and let C be the unique large component of G−X,
which is bipartite by definition of witness. Let Y = (W \WL) ∪N(C) ⊆ X,
note that Y is an OCT of G. Let c : V (G) \ Y → [2] be a proper 2-coloring
of G− Y . For some partition (W1,W2) of WL we have Wi ⊆ c−1(i) for each
i ∈ [2]. Note that since Y \WI ⊆ N(C), we have that |Y \WI | ≤ k.

By Lemma 4.12, it follows that Y \WI ⊆ N(C) separates A and R in G−W .
Note that Bi ⊆ N [C] for each i ∈ [2] since WL ⊆ C, therefore A ⊆ N [C] and
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R ⊆ N [C]. Observe that WL ∪N(C) is an (A,R)-separator of size at most 2k
in G. Therefore, since G is (s(k), 2k)-unbreakable, for at least one Q ∈ {A,R}
the vertex set reachable from Q \ (WL ∪N(C)) in G− (WL ∪N(C)) has size
at most s(k). Since A and R are disjoint from W ⊇ WL by definition, this
implies |Q| ≤ s(k) + k. Hence the algorithm tries this choice as |Q| ≤ s(k) + k
is satisfied. Let D = N(C) ∩Q. For each y ∈ Q \D, let Cy be the connected
component of G − (N(C) ∪ WL) containing y. Note that |Cy| ≤ s(k) and
|N(Cy)| ≤ 2k. Let the choice tuple tQ,D be such that tQ,D[y] = Cy for each
y ∈ Q \D. Observe that (D ∪

⋃
y∈Q\D N(tQ,D[y])) \WL ⊆ N(C) is an (A,R)-

separator in G−W . Therefore (WI ∪D∪
⋃

y∈Q\D N(tQ,D[y]))\WL is an OCT
by Lemma 4.12 contained in X, concluding the proof. ■

With the two claims above, we can solve the problem as follows. Compute
a list of partitions W using Claim 4.14 and use each W ∈ W as input to
Claim 4.15. Using the output U of Claim 4.15, call Lemma 4.9 for each U ∈ U .
By the output guarantee of the claims, for each witness X we call the lemma
with U ⊆ X at some point, thus solving the problem.

4.4 No FPT-approximation for finding perfect
witnesses

In this section we show that for H being the class of perfect graphs, no FPT-
approximation algorithms exist for computing twH or edH unless W[1] = FPT.

For a function g : N → N, a fixed-parameter tractable g(k)-approximation
algorithm for a parameterized minimization problem is an algorithm that, given
an instance of size n with parameter value k, runs in time f(k) · nO(1) for
some computable function f , and has the guarantee that whenever the instance
has a solution of size at most k it outputs a solution of size at most g(k) · k.
Equivalently, given an instance (G, k), there is an algorithm that either returns
a solution of size at most g(k) · k or reports there is no solution of size at
most k.

In the k-Hitting Set problem, we are given a universe U , a set system F
over U , and a parameter k, and the task is to find a smallest cardinality set
S ⊆ U such that F ∩ S ̸= ∅ for all F ∈ F . As shown by Karthik et al. [118],
we have the following inapproximability result for k-Hitting Set.2

2The result is originally stated for Dominating Set, but directly carries over to Hitting
Set as stated in the paper [118].
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Theorem 4.16 ([118]). There is no FPT g(k)-approximation for k-Hitting
Set for any computable function g assuming W[1] ̸= FPT.

The decision variant of the k-Hitting Set problem, which asks if a solution
of size at most k exists, is known to be W[2]-hard. In the k-Perfect Deletion
problem, we are given a graph G and an integer k, and ask for a smallest
cardinality set S ⊆ V (G) such that G− S is a perfect graph. By the Strong
Perfect Graph Theorem [43], this amounts to deleting odd induced cycles of
length at least 5 (odd holes) and their edge complements (odd anti-holes) from
the graph. Heggernes et al. [101] show that the decision variant of k-Perfect
Deletion is W[2]-hard, reducing from k-Hitting Set.

We show that their reduction also rules out good approximations for
edperfect and twperfect, where perfect denotes the class of perfect graphs. Since
H-treewidth and H-elimination distance are decision problems rather
than minimization problem, we say that a fixed-parameter tractable g(k)-
approximation for these problems either certifies that these parameters have
value at most g(k) · k through returning an appropriate witness X, or correctly
reports that the respective parameter is strictly greater than k. We show
that we cannot g(k)-approximate perfect-treewidth and perfect-elimination
distance in FPT time. Towards that goal, we first show the following inter-
mediate lemma. For convenience we use a tree perfect-decomposition rather
than a witness here, however one can easily be transformed into the other.

Lemma 4.17. Let g : N → N be a computable function. Assuming W[1]
̸= FPT, there is no algorithm that, given a graph G and integer k, runs in
time f(k) · nO(1) for some computable function f and either determines that
the minimum size of a perfect deletion set in G is larger than k, or outputs a
tree perfect-decomposition of G of width g(k) · k.

Proof. Suppose that an algorithm A as described in the lemma statement does
exist. We will use it to build an FPT-time 2 ·g(k)-approximation for k-Hitting
Set, thereby showing W[1] = FPT by Theorem 4.16. By contraposition, this
will prove the lemma.

We use the construction of [101] to reduce an instance of k-Hitting Set
to k-Perfect Deletion. Let (U,F , k) be an instance of k-Hitting set.
Assume |F | ≥ 2 for all F ∈ F . Build an instance (G, k) for k-Perfect
Deletion as follows.

• Create an independent set X on |U | vertices, let X = {vu | u ∈ U}.

• For each set F = {u1, . . . , ut} ∈ F , add |F |+ 1 new vertices h1, . . . , ht+1.
The set GF = {h1, . . . , ht+1} is the set gadget for F . Furthermore let
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XF = {vu1
, . . . , vut

} be the universe vertices corresponding to F . Add
edges h1vu1

, vu1
h2, h2vu2

,. . . ,vut
ht+1, ht+1h1. Note that G[GF ∪ XF ]

induces an odd hole of length at least 5.

• Take the pairwise join of the set gadgets, that is, make all vertices of GF

adjacent to all vertices of GF ′ for distinct F, F ′ ∈ F .

The following series of claims are proven by Heggernes et al. [101, Claim
1–4, Thm. 1].

1. The graph G−X is a cograph and therefore perfect.

2. Any hole in G intersects X and exactly one set gadget GF .

3. Any anti-hole in G has length 5 and is therefore a hole of length 5.

4. If S ⊆ V (G) such that G − S is perfect, then there is S′ ⊆ X with
|S′| ≤ |S| such that G− S′ is perfect.

5. For each ℓ ≥ 0, the instance (U,F) has a solution of size at most ℓ if and
only if G has a perfect-deletion set of size at most ℓ.

We note that the construction above is independent of k and approximation
preserving due to Property 5. The reduction can easily be computed in
polynomial time.

The FPT approximation algorithm for k-Hitting Set constructs the
instance (G, k) from (U,F , k), and then applies A to (G, k). If A concludes
that the minimum size of a perfect deletion set in G is larger than k, then by
Property 5 we can conclude that a minimum hitting set is larger than k, and
reject the instance.

Otherwise, let (T, χ, L) be the resulting tree perfect-decomposition of width
d ≤ g(k) · k output by the algorithm. To transform the decomposition of G
into a hitting set, we distinguish two cases.

First, suppose not a single gadget vertex h is contained in a base component,
that is, GF ∩L = ∅ for each set gadget GF . Let S ⊆ V (G) be a set that contains
a single arbitrary vertex from each set gadget GF . Then G[S] induces a clique
by construction, and therefore there is a single bag χ(t) for some t ∈ V (T )
which contains all vertices of S. Since no gadget vertex is in a base component
and so S ∩L = ∅, we have |χ(t) \L| ≥ |S|. It follows that d ≥ |S|− 1 ≥ |F|− 1.
Hence we can simply take an arbitrary universe element from every set, and
get a hitting set of size at most d + 1 ≤ 2 · g(k) · k.

If the previous case does not apply, then there exists F ∗ ∈ F such that
some h ∈ GF∗ is contained in χ(t) ∩ L for a leaf t ∈ V (T ). Fix such a leaf t
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and h ∈ GF∗ ∩ (χ(t) \ L), we construct a hitting set S for (U,F) based on t
as follows. For each v ∈ χ(t) \ L, if v = vu ∈ X then add u to S. Otherwise
v ∈ GF is a gadget vertex and we add u to S for an arbitrary u ∈ F . Clearly
|S| ≤ |χ(t)\L| ≤ d+1. To see that S is a valid hitting set, consider an arbitrary
F ′ ∈ F . Then either h ∈ GF ′ or h is adjacent to every vertex of GF ′ by the
join step in the construction of G. Since G[GF ′ ∪XF ′ ] induces an odd hole, at
least one of its vertices u is outside the base component as the base component
is perfect. Consider a shortest path P from h to u in G[GF ′ ∪XF ′ ∪{h}]. Note
that such a path must exist by the previous observation. Let w be the first
vertex of P such that w /∈ L. Note that w ∈ χ(t) \ L by Observation 6.3. Now
since w is either a universe vertex or a gadget vertex, it follows that S contains
an element that hits F ′.

In both cases we have constructed a hitting set of size at most d + 1 ≤
2 ·g(k) ·k. But now we have an algorithm that either concludes that a minimum
hitting set has size larger than k, or gives a hitting set of size at most 2 · g(k) ·k
in FPT time. Using Theorem 4.16, this implies W[1] = FPT.

Lemma 4.17 leads to FPT-inapproximability results for perfect-treewidth
and perfect-elimination distance, using the fact that a small perfect deletion
set trivially results in witnesses of small treewidth and treedepth.

Theorem 4.18. Assuming W[1] ̸= FPT, there is no FPT g(k)-approximation
for perfect-treewidth or perfect-elimination distance for any computable
function g.

Proof. We show that an FPT-approximation for either problem would give
an algorithm satisfying the conditions of Lemma 4.17 and therefore imply
W[1] = FPT.

Suppose there is an FPT g(k)-approximation for perfect-treewidth for
some computable function g. If, on input (G, k), the algorithm decides that
twperfect(G) > k, then we can also conclude that the minimum size of a
perfect deletion set of G is larger than k by Observation 3.10. Otherwise, it
provides a witness X so that each connected component of G−X is perfect
and that tw(TG(X)) ≤ g(k) · k. By constructing a tree decomposition of
TG(X) (following the proof of Lemma 3.9), we can construct a tree perfect-
decomposition in FPT time.

Now suppose there is an FPT g(k)-approximation for perfect-elimination
distance for some computable function g. If, on input (G, k), the algorithm
decides that edperfect(G) > k, then we can also conclude that the minimum
size of a perfect deletion set of the input graph is larger than k. Otherwise, it
provides a witness X so that each connected component of G−X is perfect
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and that td(TG(X)) ≤ g(k) · k. By Observation 3.10, X also witnesses that
tw(TG(X)) ≤ g(k) · k and so we can proceed as in the previous case.

In the above FPT-inapproximability results for perfect-treewidth and
perfect-elimination distance, we strongly rely on the fact that instances
constructed in the W[2]-hardness reduction from k-Hitting Set to k-Perfect
Deletion are very dense. While k-Wheel-free Deletion is also W[2]-
hard [130], which is shown via an approximation-preserving reduction, this
does not directly lead to FPT-inapproximability of wheel-free-treewidth
and wheel-free-elimination distance, as the instances produced by that
reduction are much less dense. In particular, in such instances there is no
direct way to translate a graph decomposition into a wheel-free deletion set.
We therefore do not know whether wheel-free-treewidth and wheel-free-
elimination distance admit FPT-approximations.

4.5 Conclusion

We have shown that H-elimination distance and H-treewidth are non-uniformly
fixed-parameter tractable for H being the class of bipartite graphs, and when-
ever H is defined by a finite set of forbidden induced subgraphs. While the
algorithms presented here solve the decision variant of the problem, by self-
reduction they can be used to identify a witness if one exists [71]. The main
observation driving such a self-reduction is the following: if twH(G) ≤ k, then
for an arbitrary v ∈ V (G) there exists a twH(G)-witness that contains v if
and only the graph G′ obtained from G by inserting a minimal forbidden
induced subgraph into H and identifying one of its vertices with v, still satis-
fies twH(G′) ≤ k. An iterative process, where we continue with G′ in case the
answer remains yes and continue with G otherwise, can identify all vertices of
a witness in this way.

While we have focused on the established notions of twH and edH, the
ideas presented here can be generalized using minor-closed graph parameters f
other than treewidth and treedepth. As long as f can attain arbitrarily large
values, implying its value on a clique grows with the size of the clique, and H
is characterized by a finite set of forbidden induced subgraphs, we believe our
approach can be generalized to answer questions of the form: does G have an
H-deletion set X for which f(TG(X)) ≤ k?

Finally we have seen hardness results regarding the computation of hybrid
parameters for the class of perfect graphs. Unless FPT = W[1], not only is
there no FPT algorithm that computes them exactly, there is even no FPT-
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approximation for it. It would be interesting to see if there is a dichotomy to
be found here. Are there classes for which computing these hybrid parameters
exactly is hard, but approximations can be achieved?





Chapter 5

Constructing Tree
H-Decompositions

5.1 Introduction

As mentioned in Chapter 3, if H-Deletion is FPT parameterized by solution
size, then in many cases the same is true for the parameterization by twH (at
least in the non-uniform setting). We aim to understand this connection on
a fine-grained level. If the parameterizations by solution size and treewidth
can be solved in single-exponential time, does it imply the same for the hybrid
parameterization? The main difficulty in resolving this question for concrete
cases of H-Deletion such as Odd Cycle Transversal lies in understanding
the time needed to compute a suitable tree H-decomposition. The mentioned
meta-theorem [3] shows that this can be done in time f(k) · nO(1) for some un-
specified function f . In earlier work, FPT approximations were developed [110]
for computing the hybrid measures for graph classes satisfying certain condi-
tions. More precisely, when the H-treewidth/H-elimination distance of the
input graph G is at most k then the algorithms run in time f(k) · nO(1) and
output a corresponding decomposition of width/depth kO(1). In most cases,

the dependence on the parameter can be described as f(k) = 2k
O(1)

, which is
a significant improvement compared to the non-uniform bounds of the meta-
theorem, but is in many cases worse than the parameter dependence of the
best-known algorithm parameterized by solution size. In this chapter we give
FPT algorithms to compute tree H-decompositions of approximately optimal
width. We state our main result, where we assume oracle access to an algorithm
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for H-Deletion which, given a graph G and parameter k, either outputs a
minimum H-modulator or concludes that no such set of size at most k exists.
In the complexity analysis we do not count the resources spent within the
oracle calls. Instead, we specify the number of calls to the oracle to simplify
applications of Theorem 5.1 for concrete graph classes H.

Theorem 5.1. Let H be a hereditary and union-closed class of graphs. There
exists an algorithm that, using oracle-access to an algorithm A for H-Deletion,
takes as input an n-vertex m-edge graph G and integer k, runs in time O(33k ·
kn2(n+m)) and polynomial space, makes at most 33k+1·n2 calls to A on induced
subgraphs of G and parameter k + 1, and either concludes that twH(G) > k or
outputs a tree H-decomposition of width at most 8k + 8 with O(n) nodes.

This significantly improves upon both the approximation guarantees and
running times of the best known uniform algorithms for the problem of ap-
proximating H-treewidth [110]. In particular, we obtain a single-exponential
O(1)-approximation for computing H-treewidth for every class H for which H-
Deletion admits a single-exponential algorithm parameterized by the solution
size. This applies to H ∈ {bipartite, interval}, or any graph class H specified by
a finite family of forbidden induced subgraphs. For H ∈ {planar, chordal} the
running time becomes 2O(k log k) · nO(1).

The presented improvement is of special importance for the classes of
bipartite and planar graphs. In both cases the parameter dependence for solving
H-Deletion when given a tree H-decomposition of width t, as we will see in
Chapter 6, is essentially the same as for parameterization by treewidth [111]:
respectively 2O(t) ·nO(1) and 2O(t log t) ·nO(1). The latter running times are tight
under ETH [48, 153]. Due to Theorem 5.1, these running times can also be
achieved under parameterization by H-treewidth even when no decomposition
is provided in the input. These constitute the first natural problems with tight
running times under a hybrid parameterization, and show that parameterized
algorithms for hybrid parameterizations can be as fast as for their solution-size
counterparts. The techniques we use to obtain Theorem 5.1 mainly consists of
two parts, namely secluded samples and locally optimal solutions, which we
introduce next.

Secluded sample. To discuss our work, the following terminology will be
useful. A vertex set S ⊆ V (G) or induced subgraph G[S] of a graph G is
said to be k-secluded if |NG(S)| ≤ k, that is, the number of vertices outside S
which are adjacent to a vertex of S is bounded by k. The connection between
H-treewidth and k-secluded connected subgraphs lies in the following fact:
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for a tree H-decomposition (T, χ, L) of width k − 1 of a graph G, each base
component C (connected component of G[L]) is k-secluded.

In order to obtain our result, we introduce a notion which generalizes
the algorithmic enumeration primitive that has been called the firefighters
lemma [83]. In its original formulation [84, Lemma 3.1] it states that in an
undirected graph G, the number of size-(p + 1) connected vertex sets C that
contain a prescribed vertex r and for which |NG(C)| = q is bounded by

(
p+q
q

)
and is therefore independent of the total size of the graph (recall Lemma 4.4).
For us and many applications, the setting that p ≈ q will be the main interest.
In that regime, the lemma has a simple proof by bounded-depth branching and
says that the number of connected k-secluded subgraphs on k vertices containing
a prescribed vertex is O(4k). The firefighters lemma has been frequently applied
in parameterized algorithms, often combined with the technique of recursive
understanding to analyze so-called unbreakable graphs [3, 4, 78, 87, 91, 108, 135],
but also in other settings [16, 83, 92] such as the study of Secluded Path
problems [75].

Our generalization of the firefighters lemma deals with graphs in which a
subset X ⊆ V (G) of terminal vertices is chosen. Rather than enumerating
k-secluded connected subgraphs containing r which consist of (at most) k
vertices, we will be interested in k-secluded connected subgraphs of arbitrary
size, but which contain at most k terminals. For k-secluded connected subgraphs
containing r and more than k terminals, it will be useful to have a sample of k
terminal vertices contained in them. We introduce a notion called k-secluded
sample to formalize these ideas (see Figure 5.1 for an illustration) and prove
that the size of such a sample can be bounded by 2O(k).

Definition 5.2. For a graph G, sets X,S ⊆ V (G), and integers k, s, we say
that a family Y ⊆ 2X is an s-secluded k-sample of (X,S) if the following
conditions hold.

1. Each set Y ∈ Y has at most k elements.

2. For every non-empty connected s-secluded set C ⊆ V (G) satisfying
S ⊆ C:

(a) if |C ∩X| ≤ k, then C ∩X ∈ Y,

(b) if |C ∩X| > k, then there exists Y ∈ Y such that Y ⊆ C ∩X and
|Y | = k.

An s-secluded k-sample of (X, ∅) is abbreviated as an s-secluded k-sample
of X. A related algorithm of Telle and Villanger [167] enumerates all minimal
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Figure 5.1: Illustration of the notion of s-secluded k-sample for s = 3 and k = 2.
Left: a graph with vertex subset X drawn as squares. Middle: some 3-
secluded connected subgraphs C1, C2, C3, intersecting X in different subsets.
To cover these subgraphs, it suffices for a sample to contain (respectively)
sets {x1, x2}, {x1, x4}, and {x3, x5}. Right: For any s-secluded connected
subgraph C containing S, the set C ∪S′ is also connected and s-secluded while
having the same intersection with X. Hence s-secluded k-samples of (X,S)
and (X,S′) are identical notions.

subsets connecting a set of terminals, however their bound crucially is expo-
nential in the number of vertices. We present an algorithm for enumerating a
secluded sample which is single-exponential in s + k. Its analysis entails an
upper bound on the size of such a family. The definition of s-secluded k-sample
is chosen to facilitate this single-exponential bound, and this is the reason we
work with a sample of up to k terminals contained in s-secluded subgraphs,
rather than asking to enumerate all possible intersections of the terminal set
with a connected s-secluded subgraph. If G is a clique and all its vertices
are terminals, each way of omitting s vertices yields a maximal connected
s-secluded subgraph spanning a distinct subset of terminals, of which there
are

(
n
s

)
≈ ns. The current formulation allows for an FPT-type bound, while

still being sufficient for a range of applications. The following theorem captures
our result for computing an s-secluded k-sample.

Theorem 5.3. For an n-vertex m-edge graph G, set X ⊆ V (G), and integers
k, s, there exists an s-secluded k-sample Y of X of size at most 3k+2s · n.
Furthermore, there is an algorithm that, given G, X, S, k, and s, runs in time
O(3k+2s · s · n(n + m)) and enumerates such a sample Y in polynomial space.
For a non-empty set S ⊆ V (G), there exists an s-secluded k-sample Y of (X,S)
of size at most 3k+2s; in this case the running time becomes O(3k+2s ·s(n+m)).

This theorem can be seen as a far-reaching generalization of the O(2k+s)
upper bound on the number s-secluded subgraphs of size at most k which contain
a fixed vertex given by the firefighters lemma. While this is a special case of
Theorem 5.3 for X = V (G), we show that secluded samples for arbitrary X have
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to be larger, by providing an Ω(5.03k) lower bound for k = s (Theorem 5.24).
This also gives a separation between secluded samples and important separators.

The opening step of our algorithm for Theorem 5.3 is to consider a more
general problem in which we search for secluded sets containing all of S and
none of T . We can initialize T to be the empty set, which means it does not
restrict the choice of secluded set. By adding vertices to S or T in branching
steps of the enumeration algorithm, the sets grow and the size of a minimum
(S, T )-separator increases accordingly. The size of a minimum (S, T )-separator
disjoint from S is an important progress measure for the algorithm: if it ever
exceeds s, there can be no s-secluded set containing all of S and none of T and
therefore the enumeration is finished.

The branching steps are informed by the farthest minimum (S, T )-separator,
similarly as the enumeration algorithm for important separators [140, 40], but
are significantly more involved because we have to keep track of terminals. A
further distinctive feature of our algorithm is that the decision made by branch-
ing can be to add certain vertices to the set T , while the important-separator
enumeration only branches by enriching S. A key step is to use submodularity
to infer that a certain vertex set is contained in all (inclusion-maximal) secluded
subgraphs under consideration when other branching steps are inapplicable.
This branching scheme results in a single-exponential, polynomial-space algo-
rithm. Using secluded samples we can obtain the main object we need to attain
Theorem 5.1, namely k-locally irredundant solutions.

Locally optimal solutions. The parameterized complexity of local search
has been investigated by several authors [14, 28, 49, 69, 96, 97, 141]. Un-
fortunately, this line of research has shown that parameterized local search
is typically W[1]-hard in general graphs. For example, given a graph G, a
vertex cover X ⊆ V (G), and a parameter k that governs the size of the local
search neighborhood, it is W[1]-hard [69, Theorem 8] to determine whether
there is a vertex cover which is smaller than X and has Hamming distance
at most k from X. Similarly, it is known that checking whether a TSP tour
in a weighted undirected graph G can be improved by replacing at most k
edges is W[1]-hard [141]. The complexity decreases on graphs of bounded local
treewidth, where local search for Vertex Cover and several other problems
becomes fixed-parameter tractable [69, §5]. However, using our generalization
of the firefighters lemma, we obtain FPT algorithms for a type of local search
in general graphs for H-Deletion problems. In the end we use such a locally
optimal H-deletion set to guide the approximation of H-treewidth.

Suppose that H is hereditary and closed under taking disjoint unions, and
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suppose that G has a connected induced subgraph C such that C ∈ H. In this
case, an optimal H-modulator contains at most |NG(C)| vertices from NG[C],
as otherwise it could be improved by replacing X ∩NG[C] by NG(C) to obtain
another H-modulator X ′: the resulting component C of G−X ′ belongs to H by
assumption, while the remaining components of G−X ′ are induced subgraphs
of those in G−X and therefore belong to H since it is hereditary. Hence any
H-modulator X that contains more than |NG(C)| vertices from the set NG[C] is
redundant. Conversely, we say that an H-modulator X is k-locally irredundant
if for every k-secluded connected induced subgraph C that belongs to H we
have |NG[C] ∩X| ≤ |NG(C)|.

Using our extension of the firefighters lemma we can show that, whenever H-
Deletion is FPT parameterized by solution size, one can compute a k-locally
irredundant H-modulator in FPT time.

Theorem 5.4. Let H be a hereditary and union-closed class of graphs. There
exists an algorithm that, using oracle-access to an algorithm A for H-Deletion,
takes as input an n-vertex m-edge graph G, integer k, and computes a k-locally
irredundant H-modulator in G in time O(33k · kn2(n + m)) and polynomial
space, making at most 33k+1 · n2 calls to A on induced subgraphs of G and
parameter k.

Previously computing H-treewidth was considered to be conceptually diffi-
cult because the particular structure of the graph class has to be taken into
account when deciding which parts of the graph are allowed as base compo-
nents. Once you have a k-locally irredundant solution X for H-Deletion
however, a related subproblem can be solved that finds a tree decomposi-
tion that only ‘pays’ for the vertices in X. Any set of vertices disjoint from
X can be part of a base component, meaning the resulting decomposition
can be turned into a tree H-decomposition. An optimal solution for this
subproblem is a 2-approximation for H-treewidth, which together with the
adapted 4-approximation for treewidth ([157] cf. [48, Thm 7.18]) gives the
factor 8-approximation of Theorem 5.1.

Organization. The remainder of this chapter is organized as follows. We
present formal preliminaries in Section 5.2. In Section 5.3 we present the
algorithm for computing a secluded sample and the simple application to
k-locally irredundant modulators. The main application to hybrid graph
decompositions is given in Section 5.4. We conclude in Section 5.5.
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5.2 Preliminaries for constructing decomposi-
tions

In a graph G, a vertex set C ⊆ V (G) is called k-secluded if |NG(C)| ≤ k. For
future reference, we record the formal definition of a k-locally irredundant
solution to H-Deletion.

Definition 5.5. For a hereditary and union-closed graph class H, an H-
modulator X ⊆ V (G) is called k-locally irredundant if for every k-secluded
connected set C ⊆ V (G) for which G[C] ∈ H it holds that |NG[C] ∩ X| ≤
|NG(C)|.

The next observation, which follows from a simple exchange argument as
described in Section 5.1, will be useful when arguing about k-locally irredundant
solutions to H-Deletion.

Observation 5.6. Consider a hereditary and union-closed graph class H. Let
X ⊆ V (G) be an H-modulator in G and C ⊆ V (G) satisfy G[C] ∈ H. Then
(X \ C) ∪NG(C) is also an H-modulator in G.

Observation 5.6 implies that any minimum-size H-modulator must be k-
locally irredundant for every value of k.

5.2.1 Graph decompositions

Instead of working with tree H-decompositions directly, we introduce a slightly
more general concept of a based tree decomposition. It is effectively equivalent
to a tree H-decomposition where H is the class of all graphs, so that one of the
conditions is vacuously true. This definition will be convenient for presenting
our proofs.

Definition 5.7. A based tree decomposition of graph G is a triple (T, χ, L)
where L ⊆ V (G), T is a rooted tree, and χ : V (T ) → 2V (G), such that:

1. For each v ∈ V (G) the nodes {t ∈ V (T ) | v ∈ χ(t)} form a non-empty
connected subtree of T .

2. For each edge uv ∈ E(G) there is a node t ∈ V (T ) with {u, v} ⊆ χ(t).

3. For each vertex v ∈ L, there is a unique t ∈ V (T ) for which v ∈ χ(t),
with t being a leaf of T .
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The based width of (T, χ, L) is defined as maxt∈V (T ) |χ(t) \ L| − 1. The
connected components of G[L] are called base components and the vertices in
L are called base vertices.

When working with based tree decompositions, it will often be convenient
to assume that the subgraphs G[χ(t)∩L] are connected. A based tree decompo-
sition which does not satisfy this condition can easily be transformed into one
that does: create multiple copies of t, one for every connected component of
G[χ(t) ∩ L], and make them children to a common parent with a bag χ(t) \ L.

Observation 5.8. Let (T, χ, L) be a based tree decomposition of a graph G.
There exists a based tree decomposition (T ′, χ′, L) of the same based width such
that for every node t ∈ V (T ′) the graph G[χ(t) ∩ L] is connected.

Since the vertices in L are not counted towards the based width, the
following notion allows is to identify vertices which must be accounted for in
the width.

Definition 5.9. For a graph G and a set X ⊆ V (G), the based treewidth
of (G,X), denoted btw(G,X), is the minimum based width of a based tree
decomposition (T, χ, L) of G for which L ∩X = ∅. The treewidth of G equals
the based treewidth of (G,V (G)).

Similarly as treewidth, based treewidth is a monotone parameter with
respect to taking induced subgraphs.

Observation 5.10. Let G be a graph and X,W ⊆ V (G). Then btw(G[W ], X∩
W ) ≤ btw(G,X).

We can define H-treewidth in the language of based tree decompositions,
obtaining a definition equivalent to the one given in Definition 3.6.

Definition 5.11. For a hereditary graph class H, a tree H-decomposition
of a graph G is a based tree decomposition (T, χ, L), for which every node
t ∈ V (T ) satisfies G[χ(t) ∩ L] ∈ H. The H-treewidth of G, denoted twH(G),
is the minimum based width of a tree H-decomposition of G.

For nodes t1, t2 of based tree decomposition, when t1 is a leaf and t2 is its
parent, then the set χ(t1) ∩ χ(t2) is contained in the set of non-base vertices of
t1, that is, χ(t1) \ L. We make note of several simple, yet useful, corollaries
that follow from Lemma 2.6 and Definition 5.7.

Observation 5.12. Let (T, χ, L) be a based tree decomposition of a graph G.
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1. For each node t ∈ V (T ) the set χ(t) \ L is an unrestricted (χ(t), V (G) \
χ(t))-separator.

2. For each node t ∈ V (T ) we have NG(χ(t) ∩ L) ⊆ χ(t) \ L. Consequently,
the set χ(t) ∩ L is (k + 1)-secluded, where k denotes the based width of
(T, χ, L).

3. For each set L∗ ⊆ L for which G[L∗] is connected there is a unique
node t ∈ V (T ) such that L∗ ⊆ χ(t) while no vertex of L∗ occurs in χ(t′)
for t′ ̸= t.

5.2.2 Extremal separators and submodularity

Unrestricted, restricted, and left-restricted vertex separators were introduced
in Chapter 2. Recall that the minimum size of a left-restricted (S, T )-separator
is denoted by λL

G(S, T ), which equals +∞ if no such separator exists (which
happens when S ∩ T ̸= ∅). Vertex separators can be computed by applying the
Ford-Fulkerson method on vertex-capacitated flow networks. An introduction
to the method is given in [44, Section 26.2].

Theorem 5.13 (cf. [48, Theorem 8.2]). There is an algorithm that, given an
n-vertex m-edge graph G = (V,E), disjoint sets S, T ⊆ V (G), and an integer
k, runs in time O(k(n + m)) and determines whether there exists a restricted
(S, T )-separator of size at most k. If so, then the algorithm returns a separator
of minimum size.

By the following observation we can translate properties of restricted sepa-
rators into properties of unrestricted or left-restricted separators.

Observation 5.14. Let G be a graph and S, T ⊆ V (G). Consider the graph
G′ obtained from G by adding a new vertex t adjacent to each v ∈ T . Then
P ⊆ V (G) is a left-restricted (S, T )-separator in G if and only if P is a
restricted (S, t)-separator in G′.

Furthermore, consider the graph G′′ obtained from G′ by adding a new vertex
s adjacent to each v ∈ S. Then P ⊆ V (G) is an unrestricted (S, T )-separator
in G if and only if P is a restricted (s, t)-separator in G′′.

The following submodularity property of the cardinality of the open neigh-
borhood is well-known, see [166, §44.12] and [125, Footnote 3].

Lemma 5.15 (Submodularity). Let G be a graph and A,B ⊆ V (G). Then the
following holds:

|NG(A)| + |NG(B)| ≥ |NG(A ∩B)| + |NG(A ∪B)|.
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Recall that RG(S, P ) denotes the set of vertices which can be reached
in G− P from at least one vertex in the set S \ P .

Lemma 5.16. Let G be a graph and S, T ⊆ V (G) be two disjoint non-adjacent
vertex sets. There exist minimum restricted (S, T )-separators P− (closest)
and P+ (farthest), such that for each minimum restricted (S, T )-separator P ,
it holds that RG(S, P−) ⊆ RG(S, P ) ⊆ RG(S, P+). Moreover, if a minimum
restricted (S, T )-separator has size k, then P− and P+ can be identified in
O(k(n + m)) time.

Proof. It is well-known (cf. [48, Thm. 8.5] for the edge-based variant of this
statement, or [125, §3.2] for the same concept with slightly different terminology)
that the existence of these separators follows from submodularity (Lemma 5.15),
while they can be computed by analyzing the residual network when applying
the Ford-Fulkerson algorithm to compute a minimum separator. We sketch
the main ideas for completeness.

By merging S into a single vertex s+ and merging T into a single vertex t−,
which is harmless because a restricted separator is disjoint from S ∪ T , we may
assume that S and T are singletons. Transform G into an edge-capacitated
directed flow network D in which s+ is the source and t− is the sink. All
remaining vertices v ∈ V (G) \ (S ∪ T ) are split into two representatives v−, v+

connected by an arc (v−, v+) of capacity 1. For each edge uv ∈ E(G) with
u, v ∈ V (G) \ {s+, t−} we add arcs (u+, v−), (u−, v+) of capacity 2. For edges
of the form s+v we add an arc (s+, v−) of capacity 2 to D. Similarly, for edges
of the form t−v we add an arc (v+, t−) of capacity 2. Then the minimum size k
of a restricted (S, T )-separator in G equals the maximum flow value in the
constructed network, which can be computed by k rounds of the Ford-Fulkerson
algorithm. Each round can be implemented to run in time O(n+m). From the
state of the residual network when Ford-Fulkerson terminates we can extract P−

and P+ as follows: the set P− contains all vertices v ∈ V (G)\(S∪T ) for which
the source can reach v− but not v+ in the final residual network. Similarly, P+

contains all vertices v ∈ V (G) \ (S ∪T ) for which v+ can reach the sink but v−

cannot.

By Observation 5.14, we can apply the lemma above for left-restricted
separators too: when the sets S, T are disjoint, then S is non-adjacent to t in
the graph obtained by adding a vertex t adjacent to every vertex in T .

We use the extremal separators identified in Lemma 5.16 to argue when
adding a vertex to S or T increases the separator size. The following statement
is not symmetric because we work with the non-symmetric notion of a left-
restricted separator.
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Lemma 5.17. Let G be a graph, let S, T be disjoint vertex sets, and let P−

and P+ be the closest and farthest minimum left-restricted (S, T )-separators.
Then for any vertex v ∈ V (G), the following holds:

1. λL
G(S ∪ {v}, T ) > λL

G(S, T ) if and only if v ∈ RG(T, P+) ∪ P+.

2. λL
G(S, T ∪ {v}) > λL

G(S, T ) if and only if v ∈ RG(S, P−).

Proof. Adding a vertex to S or T can never decrease the separator size, so for
both cases, the left-hand side is either equal to or strictly greater than the
right-hand side.

(1). Observe that if v /∈ RG(T, P+)∪P+, then P+ is also a left-restricted (S∪
{v}, T )-separator which implies λL

G(S ∪ {v}, T ) = λL
G(S, T ). If v ∈ T , then

(1) holds as λL
G(S ∪ {v}, T ) = +∞. Consider now v ∈ (RG(T, P+) ∪ P+) \ T .

We argue that adding it to S increases the separator size. Assume for a
contradiction that there exists a minimum left-restricted (S ∪{v}, T )-separator
P of size at most λL

G(S, T ) = |P+|. Note that since P is left-restricted, we have
v /∈ P . Observe that P is also a left-restricted (S, T )-separator. By Lemma 5.16
we have RG(S, P ) ⊆ RG(S, P+). Since v ∈ (RG(T, P+) ∪ P+) \ T , it follows
that v /∈ RG(S, P ). We do a case distinction on v to construct a path Q from
v to T .

• In the case that v ∈ P+ \ T , then since P+ is a minimum separator it
must be inclusion-minimal. Therefore, since P+ \ {v} is not an (S, T )-
separator, it follows that v has a neighbor in RG(T, P+) and so there is a
path Q from v to T in the graph induced by RG(T, P+) ∪ {v} such that
V (Q) ∩ P+ = {v}.

• In the case that v ∈ RG(T, P+) \ T , then by definition there is a path
from v to T in the graph induced by RG(T, P+).

Since P is a left-restricted (S ∪ {v}, T )-separator and therefore v /∈ P , it
follows that P contains at least one vertex u ∈ V (Q) that is not in RG(S, P+)∪
P+. Let P ′ be the set of vertices adjacent to RG(S, P ). Since all vertices of P ′

belong to P while u /∈ P ′, it follows that P ′ is a left-restricted (S, T )-separator
that is strictly smaller than P , a contradiction to |P | ≤ λL

G(S, T ).

(2). If v /∈ RG(S, P−), then P− is a left-restricted (S, T ∪ {v})-separator as
well which implies λL

G(S, T ∪ {v}) = λL
G(S, T ). If v ∈ RG(S, P−), suppose that

there exists a minimum left-restricted (S, T∪{v})-separator P of size |P−|. Note
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that v /∈ S, as otherwise no such separator exists. Furthermore P is also a left-
restricted (S, T )-separator. By Lemma 5.16 we have RG(S, P−) ⊆ RG(S, P ).
But since v ̸∈ RG(S, P ) we reach a contradiction as RG(S, P ) ̸⊇ RG(S, P−).

The following lemma captures the idea that if λL
G(S, T ∪ Z) > λL

G(S, T ),
then there is a single vertex from Z whose addition to T already increases the
size of a minimum left-restricted (S, T )-separator.

Lemma 5.18. Let G be a graph, S ⊆ V (G), and T,Z ⊆ V (G)\S. If there is no
vertex v ∈ Z such that λL

G(S, T∪{v}) > λL
G(S, T ), then λL

G(S, T ) = λL
G(S, T∪Z).

Furthermore if λL
G(S, T ) ≤ s, then in O(s(n+m)) time we can either find such

a vertex v or determine that λL
G(S, T ) = λL

G(S, T ∪ Z).

Proof. Let P− be the minimum left-restricted (S, T )-separator which is closest
to S. If for every v ∈ Z the value of λL

G(S, T ∪ {v}) equals λL
G(S, T ) then

Lemma 5.17 implies that each v ∈ Z lies outside RG(S, P−) so Z∩RG(S, P−) =
∅. Then P− is a left-restricted (S, T ∪ Z)-separator of size λL

G(S, T ).
On the other hand, if there is a vertex v ∈ Z for which λL

G(S, T ∪ {v}) >
λL
G(S, T ) then v ∈ RG(S, P−). Hence, in order to detect such a vertex it suffices

to compute the closest minimum left-restricted (S, T )-separator P−, which can
be done in time O(s(n + m)) via Lemma 5.16.

Finally, the last lemma of this section uses submodularity to argue that
the neighborhood size of a vertex set C with S ⊆ C ⊆ V (G) \ T does not
increase when taking its union with the reachable set RG(S, P ) with respect to
a minimum left-restricted (S, T )-separator P .

Lemma 5.19. If P ⊆ V (G) is a minimum left-restricted (S, T )-separator in a
graph G and S′ = RG(S, P ), then for any set C with S ⊆ C ⊆ V (G) \ T we
have |NG(C ∪ S′)| ≤ |NG(C)|.

Proof. Observe that since P is a minimum left-restricted (S, T )-separator, we
have |P | = λL

G(S, T ) and P = NG(S′). We apply the submodular inequality to
the sets C and S′.

|NG(C)|+ |NG(S′)| ≥ |NG(C ∪S′)|+ |NG(C ∩S′)| ≥ |NG(C ∪S′)|+λL
G(S, T ).

Here the last step comes from the fact that S ⊆ S′ ⊆ V (G) \ T since it is
the set reachable from S with respect to a left-restricted (S, T )-separator, so
that C∩S′ contains all of S and is disjoint from T . This implies that NG(C∩S′)
is a left-restricted (S, T )-separator, so that |NG(C ∩ S′)| ≥ λL

G(S, T ).
As |NG(S′)| = |P | = λL

G(S, T ), cancelling these terms from both sides
proves |NG(C)| ≥ |NG(C ∪ S′)| which completes the proof.
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5.3 Secluded samples

In this section we present our generalization of the firefighters lemma, together
with a simple application to k-locally irredundant solutions. Before presenting
our enumeration algorithm, we briefly explain how one can obtain a simpler
version of Theorem 5.3 with worse guarantees on the size of a secluded sample
and the running time.1 A related algorithm has been given for the purpose
of designing an FPT approximation for k-Subset Edge Separator [100,
Lemma 4.3]. It can be adapted to compute an s-secluded k-sample of (X,S)
for non-empty S.

First, let us focus only on Condition (2a) in Definition 5.2. To obtain a
graph G′ from G, add a new vertex x. For each vertex v ∈ X, insert a copy
uv in G′ adjacent to v and x. Then for any s-secluded connected set C in G
containing S and at most k vertices from X, observe that NG(C) together with
{uv | v ∈ C ∩X} forms a restricted (S, x)-separator of size at most k + s in G′.
We can detect C ∩X via important (restricted) separators (see Theorem 2.2):
there is an important (S, x) separator P with C ′ = RG(S, P ) of size at most k+s
such that C ⊆ C ′. Note that by construction |C ′∩X| ≤ k+s. We can add each
subset of C ′ ∩X of size at most k to the secluded sample, which ensures that
C ∩X is contained in it and therefore satisfies (2a). To also satisfy (2b) one
can do the following: let X = {v1, . . . , v|X|} and Xi = {v1, . . . vi}. Iterate the
above procedure for each Xi (i ∈ [|X|]) instead of for X only. This construction
yields an s-secluded k-sample of (X,S) of size 2O(k+s) · n for non-empty S.

While the algorithm described above would be sufficient for our purpose,
we give an algorithm whose running time has a better dependency on s, k, and
n. Furthermore our algorithm results in a better size bound on the secluded
sample, which is independent of n for the case of non-empty S.

5.3.1 Enumeration algorithm

We formulate a lemma which is slightly stronger than the statement of Theo-
rem 5.3, with an additional set T ⊆ X \S to be provided in the input. Initially
T will be set to ∅. The task is to compute an s-secluded k-sample of (X,S)
with the relaxation that we only require Property 2 to hold for connected
s-secluded sets C ⊇ S satisfying C ∩ T = ∅. This allows us to consider a
recursive algorithm which might repeatedly add vertices from X to T , as long
as this increases the size of a minimum left-restricted (S, T )-separator. This
provides us with a convenient progress measure.

1We thank an anonymous reviewer for pointing out an improvement here.
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Figure 5.2: Illustration of the branching steps in Enum for k = 2 and s = 3 on
three graphs with λL(S, T ) = 2. Vertices in X are drawn as squares. The set T is
a clique of four vertices with identical closed neighborhoods. Left: Step 3 applies
for v = x2, since λL(S, T ) = 2 while λL(S, T ∪ {x2}) = 3. Middle: Case 4(c)i
applies for the chosen u ∈ P , since λL(S′ ∪ {u}, T ) = λL(S′ ∪ {u}, X \ S′) = 3.
Right: Case 4(c)ii applies since λL(S′∪{u}, T∪{x4}) = 3 > λL(S′∪{u}, T ) = 2;
the former holds since a left-restricted separator is allowed to contain x4 but
not u.

Lemma 5.20. Let G be an n-vertex m-edge graph and sets X, S, T ⊆ V (G)
satisfy S ̸= ∅ and T ⊆ X \ S. For any integers k, s, there exists a family
Y ⊆ 2X of size at most 3k+2s with the following properties.

1. Each set Y ∈ Y has at most k elements.

2. For every connected s-secluded set C ⊆ V (G) with S ⊆ C ⊆ V (G) \ T :

(a) if |C ∩X| ≤ k, then C ∩X ∈ Y,

(b) if |C ∩X| > k, then there exists Y ∈ Y such that Y ⊆ C ∩X and
|Y | = k.

Furthermore, there is an algorithm that, given G, X, S, T , k, and s, runs in
time O(3k+2s · s(n + m)) and enumerates such a family Y in polynomial space.

Proof. We begin by describing the algorithm. Algorithm Enum(G,X, S, T, k, s)
solves the enumeration task as follows.

1. Stop the algorithm if one of the following holds:

(a) λL
G(S, T ) > s, or

(b) the vertices of S are not contained in a single connected component
of G,

No connected s-secluded set C satisfying the conditions imposed by S
and T exists.
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2. If one of the following holds:

(a) the connected component of G containing S contains no vertex
of X \ (S ∪ T ), or

(b) |S ∩X| ≥ k,

then output the set S∩X (or an arbitrary size-k subset of it, if |S∩X| > k)
and stop the algorithm.

The given output always suffices. Note that if the algorithm continues,
then λL

G(S,X \ S) > 0 since S is non-empty.

3. If there is a vertex v ∈ X \ (S ∪ T ) so that λL
G(S, T ∪ {v}) > λL

G(S, T ):

• Call Enum(G,X, S, T ∪ {v}, k, s).
• Call Enum(G,X, S ∪ {v}, T, k, s).

We exhaustively try both options: v either belongs to C or does not. Both
recursive calls make progress since λL or |S ∩X| increases.

4. Otherwise (λL
G(S, T ) = λL

G(S,X \ S) > 0 by Lemma 5.18 for Z =
X \ (S ∪ T )) let P be the farthest minimum left-restricted (S,X \ S)-
separator in G, pick an arbitrary u ∈ P and let S′ = RG(S, P ):

(a) Call Enum(G− u,X \ {u}, S′, T \ {u}, k, s− 1).

(b) If u ∈ X \ T , then call Enum(G,X, S′ ∪ {u}, T, k, s).
(c) If u /∈ X and λL

G(S′ ∪ {u}, T ) ≤ s:

i. If λL
G(S′ ∪ {u}, T ) = λL

G(S′ ∪ {u}, X \ S′):

• Call Enum(G,X, S′ ∪ {u}, T, k, s).
ii. Otherwise, let v ∈ X \ (S ∪ T ) be such that λL

G(S′ ∪ {u}, T ∪
{v}) > λL

G(S′ ∪ {u}, T ):

• Call Enum(G,X, S′ ∪ {u}, T ∪ {v}, k, s).
• Call Enum(G,X, S′ ∪ {u, v}, T, k, s).

Below we show that we can consider all of S′ to be part of C, implying
that either u ∈ C or u ∈ NG(C) and so we do not branch on adding u to
T . In the case that u /∈ X, we need to do more careful branching to make
sure the progress measure improves. In Steps 4a and 4b we make progress
because s decreases or S ∩X grows. Observe that λL(S, T ) = λL(S′, T )
and X ∩ S = X ∩ S′. In Step 4c, adding u to S′ increases λL

G(S′, X \ S)
as P ∋ u is the farthest minimum separator. If λL

G(S′ ∪ {u}, T ) grows
with it, we make progress in Step 4(c)i. Otherwise, there is a vertex to
make progress on in Step 4(c)ii identically to Step 3.
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This concludes the description of the algorithm. The remainder of the proof
is devoted to its analysis. We first establish some claims to justify that the
sets output by the algorithm indeed satisfy the stated conditions. Afterwards
we analyze the running time of the algorithm, which will also lead to an
upper-bound on the number of sets given in the output.

The following claim effectively shows that when the algorithm reaches
Step 4, replacing S by S′ makes no difference for the sets to be enumerated.

Claim 5.21. Let (G,X, S, T, k, s) be an instance such that the algorithm
reaches Step 4, with corresponding definitions for P , u, and S′. Let C be an
s-secluded set with S ⊆ C ⊆ V (G) \ T . Then (C ∪ S′) ∩ X = C ∩ X and
|NG(C ∪ S′)| ≤ |NG(C)|.

Proof. Observe that since P is a left-restricted (S,X \ S)-separator, we have
that P ∩ S = ∅ and so S ⊆ S′ = RG(S, P ). Furthermore S′ ∩ X = S ∩ X
and so (C ∪ S′) ∩ X = C ∩ X, giving the first point. For the second point,
we argue that P is a minimum left-restricted (S, T ) separator. Since Step 3 is
not applicable, this follows from Lemma 5.18 with Z = X \ (S ∪ T ). Hence
we have that λL

G(S, T ) = λL
G(S,X \ S) = |P |. Consequently, Lemma 5.19

implies |NG(C ∪ S′)| ≤ |NG(C)| since S′ = RG(S, P ). ■

From the claim above, in Step 4 of the algorithm when trying to find
the intersection C ∩X to add on to the family, we may as well look for the
intersection (C ∪ S′) ∩ X. Since P ⊆ NG[C ∪ S′], this allows us to branch
in only two directions for a vertex u ∈ P : one where we consider u to be in
the neighborhood of the secluded component, and one where u is part of the
secluded component. We move on to the full correctness proof.

Claim 5.22. Let C∗ be a connected s-secluded set in G with S ⊆ C∗ ⊆ V (G)\T .
The output of Enum includes C∗ ∩X if its size is at most k. Otherwise, the
output includes a size-k subset of C∗ ∩X.

Proof. Let C with S ⊆ C ⊆ V (G) \T be a set which is inclusion-maximal with
respect to being connected, s-secluded, and having C ∩X = C∗ ∩X. To prove
the claim, it suffices to argue that the algorithm outputs a sufficiently large
subset of C ∩X.

We prove the claim by induction on (k− |S ∩X|) + s + (s− λL
G(S, T )). In

the induction step we will argue that at least one of the three summands drops.
Consider an instance (G,X, S, T, k, s).

Observe that since C is s-secluded, we must have λL
G(S, T ) ≤ s and so the

algorithm can safely stop in Step 1a if λL
G(S, T ) > s. Since C is connected, we

have that S (and C) are part of the same connected component in G. The
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algorithm therefore correctly stops in Step 1b. In the case that the connected
component of G containing S has no vertex of X \ (S∪T ), then C ∩X = S∩X
and the algorithm gives the correct output in Step 2 and can safely stop. Finally
in the case that |S ∩X| ≥ k, then the output in Step 2 already suffices for the
desired output for C ∩X, again it can safely stop.

This covers the correctness of the base case, that is, all cases where either
|S ∩X| ≥ k or λL

G(S, T ) > s. Observe that s < 0 implies the latter. Therefore,
the base case includes all instances with induction measure up to and including
zero. In the remainder, suppose that |S ∩X| < k and λL

G(S, T ) ≤ s. Note that
this implies that s ≥ 0 and therefore the induction measure is positive.

Suppose that the algorithm is correct for smaller values of the induction
variable and continues past Step 2. Suppose Step 3 applies and consider the
chosen vertex v ∈ X \ (S ∪ T ) for which λL

G(S, T ∪ {v}) > λL
G(S, T ). Observe

that either v ∈ C or v /∈ C. In Step 3 we branch on these two cases by adding
v to either S or to T . We argue that in both cases, the induction measure
drops. In the case that we add v to S, then |(S ∪ {v}) ∩X| > |S ∩X|, while
λL
G(S ∪ {v}, T ) ≥ λL

G(S, T ) and so the measure drops. In the case that we add
v to T , then the measure drops since the precondition of Step 3 states that
λL
G(S, T ∪ {v}) > λL

G(S, T ). The correctness then follows by induction.
Now suppose that no such vertex v exists and the algorithm reaches Step 4.

Due to Claim 5.21, we have (C ∪S′)∩X = C ∩X and |NG(C ∪S′)| ≤ |NG(C)|,
where S′ = RG(S, P ). Since C was picked inclusion-maximal with respect to
being s-secluded and having a fixed intersection with X, it holds that S′ ⊆ C.
Observe that P is non-empty since the algorithm did not terminate in Step 2a.
Since P = NG(S′) and therefore P ⊆ NG[C], for any vertex u ∈ P , we must
have that either u belongs to the secluded component C that we try to sample
from, or to the at most s vertices in NG(C). If u ∈ NG(C), then C is (s− 1)-
secluded in G− u, which we find in Step 4a. We argue that the measure drops.
Clearly λL

G(S, T ) drops by at most one, while s decreases by one and S stays
the same, which implies that the measure drops by at least one.

If u ∈ C, then we have that u /∈ T . We do a case distinction on whether
u ∈ X \ T or u /∈ X. First suppose that u ∈ X \ T . Then we sample
from C ∩ X in Step 4b since S′ ∪ {u} ⊆ C, and the measure drops since
|(S′ ∪ {u}) ∩X| > |S′ ∩X| ≥ |S ∩X|, while any left-restricted (S′ ∪ {u}, T )-
separator is also a left-restricted (S, T )-separator.

Next suppose that u /∈ X. We essentially do the same, we add u to S′.
Since S′ ∪ {u} ⊆ C we get that λL

G(S′ ∪ {u}, T ) ≤ s and so the precondition
of Step 4c is satisfied (this condition is there to keep the running time in
check). Note that since P was a farthest minimum (S,X \ S)-separator and
S∩X = S′∩X, we get that λL

G(S′∪{u}, X \S′) > λL
G(S,X \S) by Lemma 5.17.
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If λL
G(S′ ∪ {u}, X \ S′) = λL

G(S′ ∪ {u}, T ), then the algorithm in Step 4c
solves the instance (G,X, S′ ∪ {u}, T, k, s) as in Step 4b, whose measure drops
as λL

G(S′ ∪ {u}, T ) > λL
G(S, T ). This last inequality follows as λL

G(S, T ) =
λL
G(S,X \ S) > 0 by Lemma 5.18 for Z = X \ (S ∪ T ). Otherwise, the

contrapositive of the first point of Lemma 5.18 with Z = X\(S∪T ) implies there
is a vertex v ∈ X \(S′∪{u}∪T ) = X \(S∪T ) such that λL

G(S′∪{u}, T ∪{v}) >
λL
G(S′ ∪ {u}, T ) (essentially showing that Step 3 would have implied in the

next iteration, we unfold it for a tighter analysis). We find a valid output for
C ∩X by branching on both options for v: either v ∈ C or not. The measure
drops in both calls compared to the original instance. ■

Claim 5.23. Algorithm Enum runs in time O(3k+2s ·s(n+m)) using polynomial
space. It outputs at most 3k+2s sets.

Proof. First we analyze the running time without considering the time spent
on recursive calls. Deciding if λL

G(S, T ) > s, as required in Step 1a, can be
done in O(s(n + m)) time by Theorem 5.13 and Observation 5.14.

Assuming we have direct access to vertices, with an overhead of O(n) we
can assume each vertex has an attribute regarding its containment in X, S,
and T . For Steps 1b and 2a, using BFS or DFS, in O(n + m) time we can
find the connected components of G and check if only one component contains
vertices from S and if so, if it contains vertices from X \ (S ∪ T ). Finally for
Step 2b and the output of Step 2, the set intersection can be computed and
outputted in O(n) time.

If we reach Step 3, then we have λL
G(S, T ) ≤ s. Therefore, according to

Lemma 5.18 with Z = X \ (S ∪ T ) in O(s(n + m)) time we can decide if there
exists a vertex v ∈ X \ (S ∪ T ) such that λL

G(S, T ∪ {v}) > λL
G(S, T ). For

Step 4 we can compute the farthest left-restricted (S,X \ S)-separator in time
O(s(n+m)) by Lemma 5.16. Deciding if λL

G(S′∪{u}, T ) ≤ s and subsequently if
λL
G(S′∪{u}, T ) = λL

G(S′∪{u}, X \S′) can be done in O(s(n+m)) time. Finally
finding a vertex v ∈ X\(S∪T ) such that λL

G(S′∪{u}, T∪{v}) > λL
G(S′∪{u}, T )

can be done in O(s(n + m)) time by Lemma 5.18 with Z = X \ (S ∪ T ) as
before. In total this gives a running time of O(s(n + m)) per node in the
recursion tree.

For every recursive call, the measure (k − |S ∩X|) + s + (s − λL
G(S, T ))

drops by at least one as shown in the correctness proof in Claim 5.22. Since
there are no more recursive calls when the measure hits zero (see Claim 5.22),
and for each instance at most three recursive calls are made, it follows that the
recursion tree is a ternary tree of depth at most k+2s. The number of leaves in
such a tree is at most 3k+2s, which yields an upper bound on the size of family
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Y as the output is only generated in the leaf nodes. The total number of nodes
in the recursion tree is at most the number of nodes in a perfect ternary tree
of depth k + 2s, that is, 3

2 · 3k+2s. The claimed running time follows. As the
recursion depth is polynomial and the work in one iteration takes polynomial
space, the bound on space usage also follows. ■

This concludes the proof of Lemma 5.20.

The lemma above gives the second claim of Theorem 5.3 by setting T = ∅.
In order to obtain the first claim, it suffices to apply Lemma 5.20 multiple
times, with T = ∅ and S = {v} for each vertex v ∈ V (G).

5.3.2 Lower bound

We complement Theorem 5.3 with a lower bound showing that for k = s the
number of elements in a k-secluded k-sample can be Ω(5.03k). A motivation
for this is to provide a separation between the necessary size of a k-secluded
k-sample and an upper bound of 4k feasible for (a) the number of important
(s, t)-separators of size ≤ k and (b) the number of k-secluded subgraphs on at
most k vertices in the firefighters lemma. We therefore do not optimize this
construction further. The lower bound applies to any family that just meets
Condition (2a) in Definition 5.2: such a family must contain all subsets X ′ ⊆ X
of size ≤ k for which there exists a k-secluded connected set C containing a
specified vertex r and satisfying C ∩X = X ′.

Theorem 5.24. For each sufficiently large k divisible by 3, there exists a
graph G with a vertex r and a vertex set X ⊆ V (G) such that any k-secluded
k-sample of (X, {r}) contains at Ω(5.03k) elements.

Proof. Recall that in a binary tree each node has at most two children. A
binary tree is said to be full if each node has zero or two children and perfect
if, additionally, it has a maximum number of nodes in all layers. Let k = 3ℓ
and T be a perfect binary tree of depth 2ℓ− 1 rooted at vertex r (recall that
the depth of a tree is measured in the number of edges in a longest root-to-leaf
path). We obtain G from T by attaching to every vertex v ∈ V (T ) two degree-1
vertices v̄0, v̄1. Let X = V (G) \ V (T ). We construct a family C ⊆ 2V (G) as
follows. An example of the construction is given in Figure 5.3.

1. Choose a full binary subtree T ′ of T rooted at r with exactly 2ℓ leaves.

2. Choose a size-ℓ subset F of internal vertices of T ′.

3. Choose a function ϕ : F → {0, 1}.
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4. Let S consist of the leaves of T ′ and all vertices of the form v̄ϕ(v) for
v ∈ F .

5. Add RG({r}, S) to C.

We shall prove that every C ∈ C is k-secluded, the set |C ∩ X| has at most
k elements, and the sets C ∩X differ for different C. This implies that any
k-secluded k-sample of (X, {r}) must contain at least |C| elements.

Let C = RG({r}, S) for some S constructed as above. The set S contains
2ℓ elements which are the leaves of T ′ and ℓ elements of the form v̄ϕ(v) for
v ∈ F . Hence, C is (3ℓ)-secluded. A full binary tree with 2ℓ leaves has exactly
2ℓ− 1 internal nodes. This gives 4ℓ− 2 vertices from X adjacent in G to the
internal vertices of T ′. Since |F | = ℓ, we obtain exactly 3ℓ− 2 < k elements
from X in C.

Now we show that for different sets C1, C2 ∈ C it holds that C1∩X ̸= C2∩X.
Suppose that C1, C2 originate from different subtrees T ′

1, T
′
2 chosen at step (1).

These subtrees have the same size so there exists a vertex v ∈ V (T ) which is
an internal vertex in T ′

1 but not in T ′
2. At least one of the vertices v̄0, v̄1 is

present in C1 while both are missing in C2, hence C1 ∩X ≠ C2 ∩X. If both
C1, C2 originate from the same subtree T ′ then they differ in the choice of F
or ϕ. This means that different size-ℓ sets of the form {v̄ϕ(v)}v∈F are missing
in C1, C2.

Finally, we estimate the size of C. It is known that the number of (rooted
and ordered) full binary trees with 2ℓ leaves equals the (2ℓ − 1)-th Catalan
number, that is, 1

2ℓ

(
4ℓ−2
2ℓ−1

)
.

In order to argue that this equals the number of choices for T ′, observe that
every such tree has depth at most 2ℓ− 1 and so it appears as a rooted subtree
of T . To see this, note that for any root-to-leaf path with h edges, each of the
h internal vertices must have a second child and the subtree rooted at this
child has at least one leaf. This implies that a full binary tree of depth h has
at least h + 1 leaves. The number of choices for F is

(
2ℓ−1

ℓ

)
and the number of

choices for ϕ is 2ℓ.
Using the binomial theorem, for any integer x > 0 we have the following.

22x = (1 + 1)2x =

2x∑
i=0

(
2x

i

)
≤ (2x + 1) ·

(
2x

x

)
Here the inequality is due to the term

(
2x
i

)
being maximized for i = x. This

shows that
(
2x
x

)
≥ 22x

2x+1 . Similarly,
(
2x−1

x

)
≥ 22x−1

2x . Using these bounds we can
give a lower bound on the size of C, which follows by multiplying the number
of different choices for T ′, F , and ϕ.
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r

r̄0 r̄1
v

u

Figure 5.3: Illustration of the construction of Theorem 5.24 for ℓ = 2. The black
vertices denote the terminal set X. A choice for a full binary tree T ′ indicated
in orange, and a choice for F ⊆ {u, v, r} is indicated with blue squares. The
dashed line indicates a set added to C from some choice of ϕ.

1

2ℓ

(
4ℓ− 2

2ℓ− 1

)
·
(

2ℓ− 1

ℓ

)
· 2ℓ ≥ 1

2ℓ
· 24ℓ−2

4ℓ− 1
· 22ℓ−1

2ℓ
· 2ℓ

=
27ℓ−3

16ℓ3 − 4ℓ2

=
27(k/3)

8(16(k/3)3 − 4(k/3)2)
(ℓ = k/3)

≥ 5.039k

128(k/3)3 − 32(k/3)2
(27/3 ≥ 5.039)

For sufficiently large k, the denominator is clearly seen to be positive and
upper bounded by ck for any c > 1. It follows that C contains Ω(5.03k) elements
for sufficiently large k.

5.3.3 Locally irredundant solutions

We apply the machinery of secluded samples to prove Theorem 5.4. To this
end, we give an algorithm that performs a local improvement as long as the
given solution is not k-locally irredundant.

In the following statement we assume oracle access to an algorithm A which
outputs a minimum solution to H-Deletion, if there is such a solution of size
at most k. In the complexity analysis we do not count the resources spent
within the oracle calls and only count time and space linear to the input and
output of the oracle. As we are interested in a proper complexity analysis for
concrete graph classes H, we specify the number of calls to the oracle.
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Lemma 5.25. Let H be a hereditary and union-closed class of graphs. There
exists an algorithm that, using oracle-access to an algorithm A for H-Deletion,
takes as input an n-vertex m-edge graph G, an H-modulator X, and integer k,
runs in time O(33k · kn(n+m)) and polynomial space, makes at most 33k+1 · n
calls to A on induced subgraphs of G and parameter k, and either correctly
concludes that X is k-locally irredundant or outputs an H-modulator strictly
smaller than X.

Proof. We invoke the algorithm from Theorem 5.3 to enumerate a k-secluded
(k + 1)-sample Y of X of size at most 33k+1 · n. For each Y ∈ Y we execute
the algorithm A on the graph G − (X \ Y ) with parameter |Y | − 1 ≤ k. If
it returns some H-modulator Y ′ in G − (X \ Y ) of size less than |Y |, then
X ′ = (X \ Y ) ∪ Y ′ is an H-modulator in G smaller than X and we can then
return X ′. If we do not detect any such improvement while checking all Y ∈ Y ,
we report that X is k-locally irredundant.

Suppose that X is not k-locally irredundant. We claim that then the
algorithm above must return some smaller H-modulator. By definition, there
exists a k-secluded connected set C ⊆ V (G) such that G[C] ∈ H and |NG[C] ∩
X| > |NG(C)|. The last inequality is equivalent to |C ∩ X| > |NG(C) \ X|.
A k-secluded (k + 1)-sample of X must contain some set Y ⊆ C ∩X of size
min(|C∩X|, k+1). From Observation 5.6 we know that (X \Y )∪NG(C) is also
an H-modulator. We argue that |NG(C)\X| < |Y |. In the case that Y = C∩Y ,
then this follows from the inequality above. Otherwise, if Y is a size-k + 1
subset of C ∩X, then this follows from the fact that C is k-secluded and so
|NG(C)| ≤ k. From |NG(C) \X| < |Y | we infer that the graph G − (X \ Y )
has an H-modulator of size at most |Y | − 1 and the algorithm A invoked for
G− (X \Y ) returns some solution Y ′ smaller than Y . This concludes the proof
of correctness.

The algorithm from Theorem 5.3 runs in time 33k ·kn(n+m) and polynomial
space. We do not store the family Y but rather process each element of Y once
it is revealed, leading to only polynomial space usage. For each of the 33k+1 · n
sets in the family Y we invoke the algorithm A on an induced subgraph of G
with parameter at most k.

Starting from the trivial solution X = V (G), this process converges to a
k-locally irredundant H-modulator after at most n reduction steps. This proves
Theorem 5.4.



5.4. Approximating H-treewidth 83

5.4 Approximating H-treewidth

This section is devoted to proving Theorem 5.1. First we show that once one is
equipped with a locally irredundant solution X for H-Deletion, the task of
approximating H-treewidth of G reduces to approximating the based treewidth
of (G,X).

Lemma 5.26. Consider a graph class H which is hereditary and union-closed, a
graph G of H-treewidth at most k, and a (k+1)-locally irredundant H-modulator
X ⊆ V (G). Then btw(G,X) ≤ 2k + 1.

Proof. Let (T, χ, L) be a tree H-decomposition of G of based width at most k.
Hence for every node t ∈ V (T ) we have G[χ(t) ∩L] ∈ H and |χ(t) \L| ≤ k + 1.
By Observation 5.8, we can assume that for every node t ∈ V (T ) the graph
G[χ(t) ∩ L] is connected. Let Lt = χ(t) ∩ L. By Observation 5.12, we have
NG(Lt) ⊆ χ(t) \ L, and so |NG(Lt)| ≤ k + 1. Since X is (k + 1)-locally
irredundant, it must hold that |Lt ∩ X| ≤ k + 1. Consider a new based
tree decomposition: (T, χ, L \ X). Changing the last parameter might only
affect Condition (3) in Definition 5.7 but since L \ X ⊆ L this condition is
preserved and (T, χ, L \X) is indeed a valid based tree decomposition. For
every node t we can bound the size of χ(t) \ (L \X) by |χ(t) \ L| ≤ k + 1 plus
|(χ(t) ∩ L) ∩X| ≤ k + 1, which gives 2k + 2 in total. The claim follows.

Next, we are going to adapt the single-exponential approximation algorithm
for treewidth [157] [48, Theorem 7.18] to work with a based tree decomposition.

Theorem 5.27. There is an algorithm that, given an n-vertex m-edge graph G,
set X ⊆ V (G), and integer k, runs in time O(8k · kn(n + m)) and polynomial
space, and either outputs a based tree decomposition (T, χ, L) of G of width at
most 4k + 4, with O(n) nodes, and such that L ∩X = ∅ or correctly reports
that btw(G,X) > k.

Before proving the theorem, we collect several properties of graph sepa-
rations. A pair (A,B) of subsets from V (G) is called a separation in G if
A ∪ B = V (G) and G has no edges between A \ B and B \ A. Recall that
λG(X,Y ) stands for the size of a minimum unrestricted (X,Y )-separator in G.

Observation 5.28. For two sets X,Y ⊆ V (G), it holds that λG(X,Y ) ≤ k if
and only if there exists a corresponding separation (A,B) in V (G) such that
X ⊆ A, Y ⊆ B, and |A ∩B| ≤ k.

The following fact follows from Theorem 5.13 and Observation 5.14.
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Corollary 5.29. There is an algorithm that, given an n-vertex m-edge graph
G, sets X,Y ⊆ V (G), and integer k, runs in time O(k(n+m)) and determines
whether λG(X,Y ) ≤ k. If so, the algorithm also returns a corresponding
separation in G.

In a graph G of treewidth ≤ k, for any set S of 3k+ 4 vertices we can find a
separation (A,B) of G with |A∩B| ≤ k + 1 such that the sets A \B and B \A
both contain at most 2k+ 2 elements of S (see [48, Corollary 7.21]). This is not
necessarily true if we only have a bound on based treewidth btw(G,X) ≤ k
because a large fraction of the set S might lie in a single base component in
any optimal-width decomposition. But then the large fraction of S can be
separated from X by the neighborhood of such a base component. We show
that this is in fact the only scenario in which we cannot split S in a balanced
way.

Lemma 5.30. Let G be a graph, X ⊆ V (G), and k ≥ 0 be an integer. Suppose
that btw(G,X) ≤ k. Let S ⊆ V (G) be of size 3k+ 4. Then one of the following
holds:

1. there is a partition (SA, SB) of S such that k + 2 ≤ |SA| ≤ |SB | ≤ 2k + 2
and λG(SA, SB) ≤ k + 1, or

2. there is a set S′ ⊆ S such that k + 2 ≤ |S′| and λG(S′, X) ≤ k + 1.

Proof. Let (T, χ, L) be a based tree decomposition of G with L ∩ X = ∅ of
based width at most k. We consider two cases. First suppose that there
exists a node t ∈ V (T ) for which |χ(t) ∩ S| ≥ k + 2. By Definition 5.7 each
non-leaf bag of (T, χ, L) contains at most k + 1 vertices, so t is a leaf in T and
|χ(t) \ L| ≤ k + 1. Note that χ(t) ∩X ⊆ χ(t) \ L. Let S′ = χ(t) ∩ S. Then by
Observation 5.12, χ(t) \ L is an unrestricted (S′, X)-separator of size at most
k + 1 and so we have outcome (2).

In the rest of the proof we assume that for each t ∈ V (T ) we have |S∩χ(t)| ≤
k + 1, we show that we get outcome (1). Let y ∈ V (T ) be a node satisfying
the following two conditions: (a) |S ∩ χ(Ty)| ≥ k + 2, (b) no child of y satisfies
the first condition. Note that such a node exists because the root satisfies the
condition (a). Next observe that, since the first case does not hold, y is not a
leaf and therefore |χ(y)| ≤ k + 1. As |S| = 3k + 4, we have |S \χ(Ty)| ≤ 2k + 2.

If |S \ χ(Ty)| ≥ k + 2, then by Lemma 2.6, the set χ(y) is an unrestricted
(S ∩ χ(Ty), S \ χ(Ty))-separator and we obtain outcome (1) by setting SA =
S ∩ χ(Ty) and SB = S \ χ(Ty). In the remainder, we have |S \ χ(Ty)| < k + 2.
Let D1, . . . , Dp denote the vertex sets of the connected components of G−χ(y)
and let ai = |S∩Di| for i ∈ [p]. Since |S \χ(Ty)| ≤ k+1 and |S∩χ(Tt)| ≤ k+1
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for every child t of y by (b), we have ai ≤ k + 1 for each i ∈ [p]. Let

j ∈ [p] be the smallest index for which
∑j

i=1 ai ≥ k + 2. Such an index
exists because

∑p
i=1 ai ≥ 3k + 4 − |χ(y)| ≥ 2k + 3. The upper bound on aj

implies that
∑j

i=1 ai ≤ 2k + 2. We define a separation (A,B) of G as follows:

A =
⋃j

i=1 Di ∪χ(y), B =
⋃p

i=j+1 Di ∪χ(y). It is clearly a valid separation and
A ∩B = χ(y). We have |S \A|, |S \B| ≤ 2k + 2. We turn the separation into
the desired partition of S, as follows. Start from the sets SA = (S ∩A) \ χ(y)
and SB = (S ∩B) \ χ(y). Since 3k + 4 ≤ 2 · (2k + 2), we can greedily allocate
vertices from S ∩ χ(y) to the two sides of the partition so that each contains at
most 2k + 2 vertices from S. Since the partition (SA, SB) of S is consistent
with the separation (A,B) of order k + 1, we have λG(SA, SB) ≤ k + 1 by
Observation 5.28.

We follow the proof of [48, Theorem 7.18] which gives a classic algorithm
for approximating (standard) treewidth. The main difference is that due to
scenario (2) in Lemma 5.30 we need to handle the basic instances differently
whereas the recursive scheme stays the same. In this scenario we are able to
separate at least k + 2 vertices in S from the set X with a small separator.
This allows us to create a base component which contains at least k+ 2 vertices
from S and is disjoint from X, and then focus on the subproblem where S is
significantly smaller.

Proof of Theorem 5.27. We shall provide an algorithm that recursively solves
the following more general task in the time and space specified by the theorem.
The theorem then follows by calling Decompose(G, k, ∅, X).

Decompose(G, k, S,X)
Input: Graph G, integer k, sets S,X ⊆ V (G) such that |S| ≤ 3k + 3.
Task: Output a set L ⊆ V (G) \ (S ∪X) and a based tree decomposition
(T, χ, L) of G of based width at most 4k + 4 such that S is contained in the
root bag of the decomposition, or correctly report that btw(G,X) > k.

First, if |S ∪X| ≤ 4k + 5 we simply set L = V (G) \ (S ∪X) and return a
tree decomposition consisting of a single node with a bag V (G). We call such
instances basic. Assume from now on that |S ∪X| > 4k + 5, so in particular

|V (G)| > 4k + 5 > 3k + 3. This allows us to choose a set Ŝ ⊋ S of size

exactly 3k + 4 (the choice of Ŝ \ S is arbitrary, this step is important only
for the running time analysis). Now we can apply Lemma 5.30 with respect

to graph G and sets X, Ŝ. We enumerate all subsets of Ŝ to either find a
partition (SA, SB) of Ŝ satisfying condition (1) or a subset S′ ⊆ Ŝ satisfying
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condition (2). In order to certify these conditions, for each such partition
(SA, SB) and for each such S′ we run Ford-Fulkerson (Corollary 5.29) to find
an unrestricted (SA, SB)-separator of size at most k + 1 if it exists, or an
unrestricted (S′, X)-separator if it exists. In both cases Corollary 5.29 also
gives a corresponding separation in G. If we cannot find any such structure, we
report that btw(G,X) > k. We handle the two possible outcomes separately.

Balanced separation of Ŝ. Suppose that we have found a partition (SA, SB)

of Ŝ such that k + 2 ≤ |SA|, |SB | ≤ 2k + 2 and λG(SA, SB) ≤ k + 1. Let (A,B)
be a corresponding separation of G with SA ⊆ A, SB ⊆ B, and |A∩B| ≤ k+ 1.

Let ŜA = SA ∪ (A ∩B) and ŜB = SB ∪ (A ∩B). We have |ŜA|, |ŜB | ≤ 3k + 3.

We create instances (G[A], k, ŜA, X ∩A) and (G[B], k, ŜB , X ∩B). Note that
if the based treewidth of (G,X) is bounded by k then by Observation 5.10
so are btw(G[A], X ∩A) and btw(G[B], X ∩B). If any recursive call fails to
build a decomposition we can report that btw(G,X) > k. Suppose now that
we have obtained the corresponding based tree decompositions (TA, χA, LA),
(TB , χB , LB) of based width at most 4k + 4. Let us refer to their root nodes

as respectively rA, rB. We have Ŝi ⊆ χi(ri) for i ∈ {A,B}. Note that both

LA, LB are disjoint from Ŝ ∪X. Let T be obtained by taking a disjoint union
of TA and TB followed by creating a new root r with children rA, rB and χ be
defined as follows: χ|TA

= χA, χ|TB
= χB and χ(r) = Ŝ ∪ (A ∩B) = ŜA ∪ ŜB .

We have |χ(r)| ≤ 4k + 5 so the width upper bound is preserved.

Claim 5.31. The triple (T, χ, LA ∪LB) forms a valid based tree decomposition
of G.

Proof. We need to check the conditions of Definition 5.7. Let v ∈ V (G):
we show that Yv = {t ∈ V (T ) | t ∈ χ(t)} is non-empty and connected. If

v ∈ A \ ŜA, then v ̸∈ B and Yv is a non-empty connected subtree of TA. If

v ∈ ŜA \B, then Yv ∩V (TA) is connected and contains rA, so adding r does not
affect connectivity. After considering the symmetric cases, it remains to check
v ∈ ŜA ∩ ŜB = A ∩ B. The set Yv is then a union of {r} and two connected
subtrees, each containing a child of r, so it is connected in T .

Now consider an edge uv ∈ E(G). Since (A,B) is a separation of G, it
must be either {u, v} ⊆ A or {u, v} ⊆ B (or both). Hence, there exists a node
t ∈ V (TA) ∪ V (TB) so that {u, v} ⊆ χ(t).

Finally, let v ∈ LA. There is a unique leaf node tv ∈ V (TA) for which

v ∈ χ(tv). By the specification of the subproblem, LA ⊆ A \ (ŜA ∪X). Hence,
v ̸∈ χ(r) and v ̸∈ χ(t) for any t ∈ V (TB), so tv is the unique node in T whose



5.4. Approximating H-treewidth 87

bag contains v; it remains a leaf after insertion of r. The case v ∈ LB is
analogous. ■

Small (S′, X)-separator. Now suppose that we have found a set S′ ⊆ Ŝ
such that k + 2 ≤ |S′| and λG(S′, X) ≤ k + 1. Let (A,B) be a corresponding

separation of G satisfying S′ ⊆ A, X ⊆ B, |A ∩ B| ≤ k + 1. Let ŜA =

(Ŝ ∩ A) ∪ (A ∩ B) and ŜB = (Ŝ \ A) ∪ (A ∩ B). We have |ŜA| ≤ 4k + 5 and

|ŜB | ≤ 3k+3. We create instances (G[A], k, ŜA, X∩A) and (G[B], k, ŜB , X∩B).

The first instance does not obey the upper bound on ŜA but since X ∩A ⊆ ŜA,
the instance (G[A], k, ŜA, X ∩A) is basic and therefore can be solved trivially.
The second instance obeys the specification and can be solved recursively. The
merging of the computed tree decompositions and its analysis is the same as in
the previous case.

A single recursive call takes time O(8k · k(n + m)) due to 23k+4 calls to
the Ford-Fulkerson algorithm (Corollary 5.29). This requires only polynomial
space. It remains to show that the number of recursive calls is O(n). For an
instance (G, k, S,X) we argue that the total number of non-basic nodes in its
recursion tree is at most |V (G)\S| by induction on the number of vertices in the
graph. This holds trivially if the instance is basic. Otherwise we recurse into
two instances (G[A], k, ŜA, X ∩A), (G[B], k, B, ŜB , X ∩B) for some separation

(A,B) of G so that Ŝ ∩A ⊆ ŜA and Ŝ ∩B ⊆ ŜB .

We first argue that both instances have strictly fewer vertices. In the
case that (A,B) was obtained through a balanced separation of Ŝ, then since
k + 2 ≤ |SA|, |SB | ≤ 2k + 2 while |A ∩ B| ≤ k + 1, we get that both A
and B contain a vertex that is not in A ∩ B. It follows that G[A] and G[B]
contain strictly fewer vertices. In the case that (A,B) was obtained through
a small (S′, X)-separator, we have |S′| ≥ k + 2, S′ ⊆ A, and X ⊆ B with
|A ∩ B| ≤ k + 1. It follows that A contains at least one vertex not in A ∩ B.
Since |X ∪S| > 4k+ 5 while |S| ≤ 3k+ 3, we get |X| > k+ 2 and so B contains
at least one vertex not in A ∩B. Again it follows that G[A] and G[B] contain
strictly fewer vertices. By induction on the number of vertices in the graph, the
recursion trees of the two created instances have at most |A \ ŜA| and |B \ ŜB |
non-basic nodes respectively.

Note that (A \ ŜA, B \ ŜB) is a partition of a proper subset of V (G) \ S
because Ŝ ⊋ S. It follows that the number of non-basic nodes in the recursion
tree is at most |A \ ŜA| + |B \ ŜB | + 1 ≤ |V (G) \ S|. Finally, either the root
instance is basic or the number of basic nodes is at most twice the number of
non-basic ones. The claim follows.
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Putting together the 2-approximation argument from Lemma 5.26 and the
4-approximation algorithm for based treewidth yields the main result of this
section.

Theorem 5.1. Let H be a hereditary and union-closed class of graphs. There
exists an algorithm that, using oracle-access to an algorithm A for H-Deletion,
takes as input an n-vertex m-edge graph G and integer k, runs in time O(33k ·
kn2(n+m)) and polynomial space, makes at most 33k+1·n2 calls to A on induced
subgraphs of G and parameter k + 1, and either concludes that twH(G) > k or
outputs a tree H-decomposition of width at most 8k + 8 with O(n) nodes.

Proof. We begin with Theorem 5.4 to construct some (k + 1)-locally irredun-
dant H-modulator X ⊆ V (G) within the claimed complexity bounds. By
Lemma 5.26 we know that if twH(G) ≤ k then btw(G,X) ≤ 2k + 1. We
execute the algorithm from Theorem 5.27 to find a based tree decomposition
(T, χ, L) of G of based width at most 4 · (2k + 1) + 4 = 8k + 8, such that
L ∩ X = ∅. This step takes time 8k · kn(n + m). If the algorithm returns
no decomposition and reports that btw(G,X) > 2k + 1 then we can also
report that twH(G) > k. Otherwise, for every node t ∈ V (T ) it holds that
G[χ(t) ∩ L] is an induced subgraph of G−X and, since X is an H-modulator
and H is hereditary, G[χ(t)∩L] belongs to H. Hence, (T, χ, L) is indeed a tree
H-decomposition.

5.5 Conclusion

We have introduced a new algorithmic enumeration primitive based on secluded
connected subgraphs generalizing the firefighters lemma. The high-level idea
behind the algorithm is enumeration via separation: by introducing an artificial
set T and considering the more general problem of enumerating secluded
subgraphs containing S but disjoint from T , we can analyze the progress of the
recursion in terms of the size of a minimum (left-restricted) (S, T )-separator.
We expect this idea to be useful in scenarios beyond the ones studied here.

Our main application of the notion of secluded sample was the efficient
computation of an 8-approximation to H-treewidth, using an algorithm for the
solution-size parameterization of H-Deletion as a black box. To understand
the relative power of the parameterizations by solution size, treewidth, and H-
treewidth, the remaining bottleneck consists of using the tree H-decomposition
to compute a minimum H-modulator. Can the latter be done as efficiently when
using a tree H-decomposition as when using a standard tree decomposition? For
some problems like Odd Cycle Transversal and Vertex Planarization,
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this is indeed the case as we will see in Chapter 6. But when the current-best
dynamic-programming algorithm over a tree decomposition uses advanced
techniques such as cut and count [52] or the rank-based approach [21, 50, 146],
it is currently not clear how to lift such an algorithm to work on a tree
H-decomposition.

We conclude with some directions for future research. The first concerns an
extension of our techniques to directed graphs. We expect the branching step of
our enumeration algorithms in terms of left-restricted minimum separators to
be applicable in directed graphs. However, there are multiple ways to generalize
the notion of a connected secluded induced subgraph to the directed setting: one
can consider weak connectivity, strong connectivity, or a rooted variant where
we consider all vertices reachable from a source vertex s. Similarly, one can
define seclusion in terms of the number of in-neighbors, out-neighbors, or both.
A thorough exploration of the design space and its algorithmic consequences is
left for future work.

One aspect we have not considered here is that of above-guarantee param-
eterizations. For Multiway Cut, the problem remains single-exponential
FPT [53, 95, 105, 106] when parameterized above the value of a fractional
solution to the linear program (which forms a lower bound on solution size).
Similarly, the bound on the number of important (S, T )-separators of size at
most k can be refined from 4k to 22k−λ(S,T ), where λ(S, T ) is the size of a
minimum (unrestricted) (S, T )-separator (cf. [48, Exercise 8.9], [131, Lemma 6]).
Using similar ideas, we expect that the output guarantees of our enumeration
algorithm concerning s-secluded subgraphs containing S but disjoint from T
can be refined in terms of the difference k + 2s− λL

G(S, T ). Since T starts as
empty in our applications, we did not pursue this direction here.

A final direction concerns the optimization of the polynomial part of the
running time. For standard treewidth, a 2-approximation can be computed in
time 2O(k) · n [123], which was obtained after a long series of improvements
(cf. [23, Table 1]) on both the approximation factor and dependence on n. Can
a constant-factor approximation to H-treewidth be computed in time 2O(k) ·
(n + m) for graph classes H like bipartite graphs?





Chapter 6

Solving Vertex-Deletion
Problems with Tree
H-Decompositions

6.1 Introduction

The field of parameterized algorithmics [48, 60] develops fixed-parameter
tractable (FPT) algorithms to solve NP-hard problems exactly, which are
provably efficient on inputs whose parameter value is small. In order to extend
the class of instances that remain tractable, it is worthwhile to find the smallest
parameter for which these problems remain FPT. This chapter adds to this
direction by giving algorithms for solving H-Deletion problems under hybrid
parameterizations, which are never larger than either the natural parame-
ter (the smallest size of an H-modulator) or structural graph measures like
treewidth or treedepth. These vertex-deletion problems are among the most
prominent problems studied in parameterized algorithmics [41, 81, 128, 137].
We extend or develop new algorithms for Odd Cycle Transversal, Ver-
tex Planarization, Chordal Deletion, and H-free Deletion for fixed
connected H, among others. The hybrid parameter we consider is H-treewidth,
background to which is given in Chapter 3. We obtain our algorithms by doing
dynamic programming over tree H-decompositions.

The content of this chapter is based on [110], which originally contained ap-
proximation algorithms for computing tree H-decompositions and H-elimination
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H fH(k) reference

bipartite 2O(k) Corollary 6.14

minors (1) 2k
O(1)

Corollary 6.32
planar 2O(k log k) Corollary 6.32

subgraphs (2) 2O(k2c) Corollary 6.39

chordal 2O(k2) Corollary 6.53

interval 2O(k96) Corollary 6.72

Table 6.1: Parameter dependence on k = twH for solving H-Deletion for
various classes H. For (1), H is characterized by a finite set of connected
forbidden minors (constants depending on these minors are hidden). For (2),
H is characterized by a finite set of connected forbidden induced subgraphs on
at most c vertices each.

forests, as well as algorithms using both of these decompositions to solve H-
Deletion problems. This chapter focuses on the latter, and uses the (better)
approximation algorithms from Chapter 5 for computing tree H-decompositions
instead. Since twH(G) ≤ edH(G) (Observation 3.10), we restrict our attention
to using tree H-decompositions for solving H-Deletion problems. This allows
for a more concise and coherent overview of the techniques and results that
are part of this line of work.

We present the main result of this chapter. By applying problem-specific
insights to various problem-specific graph decompositions, we obtain FPT
algorithms for vertex-deletion to H parameterized by twH.

Theorem 6.1. Given a graph G and a tree H-decomposition of G of width k,
we can solve H-Deletion in time fH(k) · nO(1) as specified in Table 6.1.

While Theorem 5.1 yields decompositions for any hereditary and union-
closed H for which H-Deletion is FPT parameterized by solution size, the
problem-specific adaptations needed to exploit the decompositions require
significant technical work. We chose to focus on a number of key applications.
We purposely restrict to the case where the forbidden induced subgraphs or
minors are connected. With good reason, in Section 6.5 we show that H-
Deletion is NP-hard for some H that is not union-closed already in graphs
with H-elimination distance zero.

The requirement of Theorem 6.1 that a tree H-decomposition needs to be
part of the input can be overcome through the results of Chapter 5. By Theo-
rem 5.1, it turns out that we can construct a tree H-decomposition of width
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O(k) with the same parameter dependence as in Theorem 6.1 (or even faster),
resulting in the following corollary.

Corollary 6.2. For all graph classes mentioned in Table 6.1, the H-Deletion
problem can be solved in time fH(k) · nO(1) when parameterized by k = twH.

All our algorithms are uniform: a single algorithm works for all values of the
parameter. As already mentioned in Chapter 3, due to the results of Agrawal et
al. [3], for any hereditary union-closed graph class that is expressible in CMSO,
H-Deletion is non-uniform FPT parameterized by H-treewidth whenever it
is non-uniform FPT parameterized by solution-size. These conditions hold
for all the classes mentioned in Table 6.1. Our contribution in Theorem 6.1
therefore lies in the development of uniform algorithms with concrete bounds
on the running times. The parameter dependency for the classes of bipartite
and planar graphs for solving H-Deletion is even tight under SETH [48, Thm.
14.41] and ETH [153] respectively.

We consider the results an important step in the quest to identify the
smallest problem parameters that can explain the tractability of inputs to
NP-hard problems [70, 98, 150] (cf. [149, §6]). The corollary explains how, for
example, classes of inputs for Odd Cycle Transversal whose solution size
and rankwidth are both large, can nevertheless be solved efficiently and exactly.

Techniques. Intuitively, the use of decompositions in our algorithms is a
strong generalization of the ubiquitous idea of splitting a computation on a
graph into independent computations on its connected components. Even if the
components are not fully independent but admit limited interaction between
them, via small vertex sets, Theorem 6.1 exploits this algorithmically. We
borrow from known techniques regarding dynamic programming over regular
tree decompositions (see [48, §7.3] for an introduction). One common twist to
our algorithms is that while base components may be arbitrarily large, we know
that an optimal solution contains at most k + 1 vertices from such components
(Observation 6.5), so a subroutine based on the solution-size parameterization
can be used to populate the entries of the dynamic programming table for
the leaf bags. For the case of Odd Cycle Transversal, a straightforward
extension of the known treewidth algorithm is sufficient. For the other graph
classes, more elaborate ideas are needed.

Deferring technical details, these ideas are based on analyzing equivalence
relations among t-boundaried graphs which can be glued along their bound-
ary [10, 24, 26, 67]. For such graphs a subset of t vertices is labeled 1 through t
and designated as the boundary of the graph. Given two t-boundaried graphs,
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Figure 6.1: Top row shows two 2-boundaried graphs G1 and G3 and the
graph G1 ⊕G3 obtained by gluing G1 with G3. The bottom row shows two
2-boundaried graphs G2 and G3 and the graph G2 ⊕G3 obtained from gluing
G2 with G3. As Lemma 6.47 will show, the graphs G1 and G2 are equivalent
with respect to membership to the class of chordal graphs.

a gluing operation identifies vertices with the same label of the boundaries
to create a single graph. Two boundaried graphs G1 and G2 are equivalent
with respect to membership in H, if for each boundaried graph H the graph
obtained from gluing G1 and H is contained in H if and only if the same holds
for G2 glued with H. These notions are illustrated in Figure 6.1.

By bounding the number of equivalence classes resulting from this equiva-
lence relation, and bounding the size of the smallest graph from each class, we
can greatly reduce the number of states in the dynamic programming table.
Most of the technical work lies in obtaining bounds on the size of a smallest
representative of each equivalence class. Especially for chordal and interval
graphs this requires new ideas. One important insight worth mentioning is the
fact that our equivalence relation is based on ‘membership in H’ rather than
‘vertex deletion to H’. While a definition of the latter type has finite integer
index [24], which says something about the boundedness of a more involved
equivalence relation that takes solution sizes into account, these equivalence
classes would be more difficult to analyze [115]. Moreover, our bounds may be
of interest beyond the analysis of vertex-deletion problems.

Organization. In Section 6.2 we give some additional preliminaries that are
needed for this chapter. In Section 6.3 we show how an existing algorithm can
be adapted to work with the parameterizations twH, leading to an algorithm
solving Odd Cycle Transversal. In Section 6.4 we present a meta-algorithm
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and apply it to several problems using new or known bounds on the sizes of
minimal representatives of suitable equivalence classes. In Section 6.5 we briefly
argue why the restriction to union-closed graph classes is necessary in our
results. We conclude with a range of open problems and research directions in
Section 6.6.

6.2 Preliminaries for solving vertex-deletion

When working with tree H-decompositions, we will often exploit the following
structure of base components that follows straight-forwardly from the definition.
It is essentially equivalent to Observation 5.12.

Observation 6.3. Let H be a graph class and let (T, χ, L) be a tree H-
decomposition of a graph G.

• For each set L∗ ⊆ L for which G[L∗] is connected there is a unique
node t ∈ V (T ) such that L∗ ⊆ χ(t) while no vertex of L∗ occurs in χ(t′)
for t′ ̸= t, and such that NG(L∗) \ L ⊆ χ(t) \ L.

• For each node t ∈ V (T ) we have NG(χ(t) ∩ L) ⊆ χ(t) \ L.

The following easily follows from Observation 5.6.

Observation 6.4. Suppose H is a hereditary and union-closed class of graphs,
X ⊆ V (G) is a minimum H-deletion set in a graph G, and Z ⊆ V (G) satisfies
G[Z] ∈ H. Then |X ∩ Z| ≤ |NG(Z)|.

It is particularly useful when we are guaranteed that Z has a small neighbor-
hood. This is exactly the case for the base components of tree H-decompositions:
the base components of a tree H-decomposition of width k − 1 have a neigh-
borhood of size at most k.

Observation 6.5. Suppose H is a hereditary and union-closed class of graphs,
X ⊆ V (G) is a minimum H-deletion set in G, and Z ⊆ V (G) is a base
component of a tree H-decomposition of width k − 1. Then |X ∩ Z| ≤ k.

Nice decompositions. We now introduce a standardized form of tree H-
decompositions which is useful to streamline dynamic-programming algorithms.
It generalizes the nice (standard) tree decompositions which are often used in
the literature and were introduced by Kloks [122, Definition 13.1.4]. A similar
construction has been introduced by Eiben et al. [62, Definition 8], however we
treat the leaves in a slightly different way for our convenience.
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Definition 6.6. Let H be a graph class. A tree H-decomposition (T, χ, L)
is nice if the tree T is rooted at a vertex r such that χ(r) ∩ L = ∅ and the
following properties hold in addition to those of Definition 3.6:

1. Each node of T has at most two children.

2. If t ∈ V (T ) has two distinct children c1, c2, then χ(t) = χ(c1) = χ(c2).
(This implies that χ(t) ∩ L = χ(c1) ∩ L = χ(c2) ∩ L = ∅.)

3. If node t has a single child c, then one of the following holds:

(a) There is a vertex v ∈ V (G) \ L such that χ(t) = χ(c) ∪ {v}.

(b) There is a vertex v ∈ V (G) \ L such that χ(t) = χ(c) \ {v}.

(c) The node c is a leaf and χ(t) = χ(c) \ L.

We say that a standard tree decomposition (T, χ) is nice if (T, χ, ∅)
satisfies all conditions above, and furthermore, for each node t with a
single child we either have 3a or 3b.

As our approach to dynamic programming over a nice tree H-decomposition
handles all nodes with a single child in the same way, regardless of whether a
vertex is being introduced or forgotten compared to its child, we do not use
the commonly used terminology of introduce or forget nodes in this work. We
also do not require the leaf nodes (and root) to be empty, which is typically
the case for nice tree decompositions.

We are going to show that any tree H-decomposition can efficiently be
transformed into a nice one without increasing its width. The analogous
construction for standard tree decompositions is well-known. The original
algorithm of Kloks [122, Lemma 13.1.3] is an iterative algorithm based on a
perfect elimination ordering of an appropriate chordal completion of the graph.
Instead we use the algorithm as presented by Fomin et al. [82]. Their first
step (Lemma 14.18) is to make the given tree decomposition simple, that is,
for any two distinct nodes t1 and t2, neither χ(t1) ⊆ χ(t2) nor χ(t2) ⊆ χ(t1).
This is achieved by iteratively contracting edges of the tree for which such a
subset relation holds. Their next step (Lemma 14.23) is to make the simple
tree decomposition nice by adding and reordering certain nodes, which is also
hinted towards in the book of Cygan et al. [48, Hint 7.2].

Lemma 6.7. Let H be a graph class. There is an algorithm that, given an
n-vertex graph G and a tree H-decomposition (T, χ, L) of G of width k, runs
in time (n + |V (T )|) · kO(1) and outputs a nice tree H-decomposition (T ′, χ′, L)
of G of width at most k satisfying |V (T ′)| = O(kn).
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Proof. Let G0 = G−L be the graph G without the base components. The tree
H-decomposition (T, χ, L) induces a (standard) tree decomposition (T0, χ0) of
G0 of the same width (take T0 = T and set χ0(t) = χ(t)\L for each t ∈ V (T0)).
By going over the vertices of L we can assume each vertex has an attribute
regarding its containment in L. Then obtaining (T0, χ0) takes O(n + k|V (T )|)
time. We would like to turn (T0, χ0) into a nice decomposition and then append
the base components back. However, we would like to remember the bags to
which the base components are connected in order to reattach them later. For
each node t ∈ V (T0) we keep a linked list of vertex sets corresponding to leaves
of the original decomposition. Initially, for each leaf t ∈ V (T ) with χ(t)∩L ̸= ∅
this linked list contains a copy of χ(t) and each internal node gets an empty
linked list. The total volume of these copies is O(n + k|V (T )|) and the linked
lists can be initialized in time bounded by this volume.

Apply [82, Lemma 14.18] to make (T0, χ0) simple in O(n + |V (T0)|k2)
time, which keeps contracting an edge t1t2 for which either χ0(t1) ⊆ χ0(t2)
or χ0(t2) ⊆ χ0(t1). The only additional step we need to take is that for
every contraction, we merge the corresponding linked lists. Note that for each
contraction of t1t2 into t12, for every set χ(t′) (which corresponds to a leaf bag
in the original tree H-decomposition) in the merged linked list of t12, it holds
that χ(t′) \L ⊆ χ(t12). Let (T ′

0, χ
′
0) be the resulting simple tree decomposition.

By [82, Lemma 14.19], we have that |V (T ′
0)| ≤ |V (G0)| ≤ n.

Next we add back the base components to create a tree H-decomposition
(T ′

1, χ
′
1, L). Initially, let T ′

1 = T ′
0 and χ′

1(t) = χ′
0(t) for each t ∈ V (T ′

0). For
each node t ∈ V (T ′

0), for each set χ(t′) in its linked list, add two nodes ta and
tb. Make ta a child of t and set χ′

1(ta) = χ(t′) \L. Make tb a child of ta and set
χ′
1(tb) = χ(t′). Note that since each node in L is in a single bag of the original

tree, we add O(n) nodes this way.
Finally, apply the procedure of [82, Lemma 14.23] to make T ′ nice, first

making the tree binary and adding duplicate bags to ensure that (1) and (2)
hold. For nodes with a single child, note that we do not need to do anything
for the edge between the newly added ta and tb, since these already satisfy (3c).
For each remaining edge t1t2 with t2 the single child of t1, add nodes that
forget one by one the vertices in χ′

1(t1) \ χ′
1(t2), and then add nodes that one

by one introduce nodes in χ′
1(t2) \ χ′

1(t1). For each of these nodes, either (3a)
or (3b) holds. This takes n · kO(1) time and results in a tree T ′ with O(kn)
nodes.

To exploit the separators which are encoded in a tree H-decomposition, the
following definition is useful.
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Figure 6.2: Sketch of a (nice) tree H-decomposition (T, χ, ∅) of a graph with T
rooted at r and the sets χ(v) displayed inside the nodes. We have π(t) = {a}
and κ(t) = {b, c, d}.

Definition 6.8. A tri-separation in a graph G is a partition (A,X,B) of V (G)
such that no vertex in A is adjacent to any vertex of B. The set X is the
separator corresponding to the tri-separation. The order of the tri-separation
is defined as |X|.

The following notions will be used to extract tri-separations from rooted
tree decompositions, they are sketched in Figure 6.2. Recall that Tt denotes
the subtree of T rooted at t.

Definition 6.9. Let H be a graph class and let (T, χ, L) be a (nice) tree
H-decomposition of a graph G, rooted at some node r. For each node t ∈ V (T )
of the decomposition, we define the functions πT,χ, κT,χ : V (T ) → 2V (G):

1. For a non-root node t with parent s, we define πT,χ(t) := χ(s). For r we
set πT,χ(r) = ∅.

2. For an arbitrary node t, we define κT,χ(t) := (
⋃

t′∈Tt
χ(t′)) \ π(t).

We omit the subscripts T, χ when they are clear from context.

Intuitively, π(t) is the bag of the parent of t (if there is one) and κ(t) consists
of those vertices that occur in bags in the subtree Tt but not in the parent bag
of t. In other words, the subtree χ−1(v) of T associated with v ∈ κ(t) is fully
contained in Tt. The following observations about κ will be useful later on.

Observation 6.10. If (T, χ, L) is a nice tree H-decomposition of a graph G,
then the following holds.

1. For the root r of the decomposition tree, κ(r) = V (G).

2. If node t′ is a child of node t, then κ(t′) ⊆ κ(t).

3. If c1, c2 are distinct children of a node t, then κ(c1) ∩ κ(c2) = ∅.
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Tri-separations can be deduced from tree decompositions using κ and π,
the following observation follows from Lemma 2.6.

Observation 6.11. Let H be a graph class and let (T, χ, L) be a nice tree
H-decomposition of graph G, where T is rooted at some node r. Let t ∈ V (T ),
let A := κ(t) and let X := χ(t) ∩ π(t). Then (A,X, V (G) \ (A ∪ X)) is a
tri-separation in G.

6.3 Extending existing algorithms

In some cases one can extend existing algorithms for H-Deletion that do
dynamic programming on tree decompositions to use tree H-decompositions
instead. In most classical dynamic programming algorithms on tree decom-
positions, some trivial constant time computation is done in the leaves. In
our setting we do more work in the leaves, without changing the dependency
on the parameter. As an example, in this section we show how to obtain
an FPT algorithm for the Bipartite Deletion problem when given a tree
bip-decomposition. Here bip is the class of bipartite graphs. This problem is
better known as the Odd Cycle Transversal (OCT) problem. Here we are
given a graph G, and ask for the (size of a) minimum vertex set S ⊆ V (G) such
that G − S is bipartite. Such a set S is called an odd cycle transversal. We
introduce some more terminology. Recall that a graph is bipartite if and only
if it admits a proper 2-coloring, this 2-coloring is referred to as a bipartition.
For a bipartite graph G we say that A,B ⊆ V (G) occur in opposite sides of
a bipartition of G, if there is a proper 2-coloring c : V (G) → {1, 2} of G such
that A ⊆ c−1(1) and B ⊆ c−1(2). Another characterization is that a graph is
bipartite if and only if it does not contain an odd length cycle, explaining the
name Odd Cycle Transversal. The following problem will be useful, it
occurs as part of the iterative compression algorithm for OCT parameterized
by solution size [48, Section 4.4].

Annotated Bipartite Coloring (ABC)
Input: A bipartite graph G, two sets B1, B2 ⊆ V (G), and an integer k.
Task: Return a minimum-cardinality set X ⊆ V (G) such that G−X has
a bipartition with B1 \X and B2 \X on opposite sides, or return ⊥ if no
such X exists of size at most k.

The sets B1 and B2 can be seen as precolored vertices that any coloring
after deletion of some vertices should respect. The problem is solvable in
polynomial time.
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Lemma 6.12 ([48, Lemma 4.15]). Annotated Bipartite Coloring can be
solved in O(k(n + m)) time.

Fiorini et al. [72] give an explicit algorithm for computing the size of a
minimum odd cycle transversal in a tree decomposition of width tw in time
O(33tw ·tw ·n). We follow their algorithm to show that a similar strategy works
when given a tree bip-decomposition. While the algorithm can be improved by
making use of more properties of nice tree decompositions (see the discussion
after the proof), we chose to only adjust the computation in the leaf bags for
ease of presentation. For this reason most of the reasoning overlaps with [72],
we include some of it for completeness.

Theorem 6.13. Odd Cycle Transversal can be solved in time 33k · nO(1)

when given a tree bip-decomposition of width k − 1 consisting of nO(1) nodes.

Proof. First, we apply Lemma 6.7 to turn the given tree bip-decomposition
(T, χ, L) into a nice one. This takes time O(n + |V (T )| · k2) and generates a
nice tree bip-decomposition of the same width with O(kn) nodes. In particular,
we can assume that T is a binary tree.

Let t∗ ∈ V (T ) be the root of T . Recall that Tt denotes the subtree of
T rooted at t. For each e = uv ∈ E(G), assign a specific node t(e) ∈ V (T ),
such that u, v ∈ χ(t). Such a node exists by Definition 2.4. Let Et be the
set of edges assigned to t ∈ V (T ). Let us define graph G(t) with vertex set
χ(t) and edge set Et, and the graph G(Tt) with vertex set

⋃
t′∈Tt

χ(t′) and
edge set

⋃
t′∈Tt

Et′ . We associate with t ∈ V (T ) a set At of ordered triples
Πt = (Lt, Rt,Wt), each of which forming a partition of χ(t) \ L into exactly
three parts (some of which may be empty). The set Lt should not be confused
with L (it is in fact disjoint from L), the notation is chosen to be consistent
with previous work. The sets Lt and Rt should be seen as parts of the bag
that end up in the ‘left’ and ‘right’ side of the bipartition. Note that |At| is at
most 3k.

The algorithm works from the leaves up, and for each partition Πt stores
the size of a minimum odd cycle transversal Ŵt in G(Tt) such that Wt ⊆ Ŵt

and Lt and Rt are in opposite color classes of G(Tt) − Ŵt. This value is stored
in f(Π), and is infinity if no such transversal exists. If Lt or Rt is not an
independent set in G(t), set f(Πt) = ∞. Now suppose that both Lt and Rt

are independent sets in G(t). For a non-leaf t with a child r, a partition of
Πr is said to be consistent with Πt, denoted Πr ∼ Πt, if Wt ∩ V (Tr) ⊆ Wr,
Lt ∩ V (Tr) ⊆ Lr, and Rt ∩ V (Tr) ⊆ Rr. Let r, s be children of t; if there is
only one child, we omit the terms for s. We have

f(Πt) = min
Πr∼Πt,Πs∼Πt

f(Πr) + f(Πs) + |Wt − (Wr ∪Ws)| − |Wr ∩Ws|
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Since χ(t)∩L = ∅ for non-leaf nodes t ∈ V (T ), the correctness follows as in [72].
For a leaf t ∈ V (T ), we set

f(Πt) = |Wt| + abc(G[χ(t) ∩ L], N(Lt) ∩ χ(t) ∩ L,N(Rt) ∩ χ(t) ∩ L, n)

Here abc() denotes the result of an Annotated Bipartite Coloring in-
stance, which can be solved in polynomial time by Lemma 6.12. The correctness
in the leaves follows as in the iterative compression based algorithm for Odd
Cycle Transversal (see [48, Section 4.4]).

The total work in the internal nodes remains O(k · 33k · n) as in [72]. The
total work in the leaves takes 3k · nO(1) time.

We note that the algorithm of Fiorini et al. [72] we adapted above does
not have the best possible dependency on treewidth. The dependency on twbip

of our algorithm can be improved by exploiting more properties of nice tree
H-decompositions, to improve the exponential factor to 3k. Similarly, the
polynomial in the running time can be improved to kO(1) · (n + m). Two
additional ideas are needed to achieve this speed-up. First of all, the computa-
tions for Annotated Bipartite Coloring in the leaf nodes can be cut off.
By Observation 6.5, an optimal solution contains at most k + 1 vertices from
any base component of a bip-decomposition of width k. Hence it suffices to set
the budget for the ABC instance to k+ 1, and assign a table cell the value ∞ if
no solution was found. While this causes some entries in the table to become ∞,
the optimal solution and final answer are preserved. The second additional idea
that is needed is an efficient data structure for testing adjacencies in graphs of
bounded bip-treewidth, similarly as explained in [20]. We chose to present a
simpler yet slower algorithm for ease of readability.

Since we can compute tree bip-decompositions approximately, we conclude
with the following.

Corollary 6.14. The Odd Cycle Transversal problem can be solved in
time 2O(k) · nO(1) when parameterized by k = twbip(G).

Proof. Since OCT can be solved in time 2O(k) · nO(1) [159], by Theorem 5.1
it follows that we can compute a tree bip-decomposition of width O(k) in
2O(k) · nO(1) time. The result follows by supplying this decomposition to
Theorem 6.13. The algorithm that computes the minimum size of an odd
cycle transversal can be turned into an algorithm that constructs a minimum
solution by standard techniques or self-reduction (see Lemma 2.8), in the same
asymptotic time bounds.
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The parameter dependence is the same as the treewidth dependence in the
result of Fiorini et al. [72]. Furthermore it is ETH-tight due to [48, Thm. 14.6]
by observing that there is a reduction from Vertex Cover to Odd Cycle
Transversal that starting from a graph G creates a graph G′, with O(|V (G)|)
vertices and O(|E(G)|) edges, by adding for each uv ∈ E(G) a vertex x and
edges ux and vx to G′.

6.4 Generic algorithms via A-exhaustive fami-
lies

6.4.1 A-exhaustive families and boundaried graphs

In this section we introduce the main tools needed to present our most general
framework for dynamic programming on tree H-decompositions. We follow the
ideas of gluing graphs and finite state property (also known as finite index)
dating back to the results of Fellows and Langston [67] (cf. [10, 26]).

The following definition formalizes a key idea for the dynamic programming
routine: to compute a restricted set of partial solutions out of which an optimal
solution can always be built.

Definition 6.15. Let H be a graph class, let G be a graph, and let A ⊆ V (G).
Then we say that a family S ⊆ 2A of subsets of A is A-exhaustive for H-
Deletion on G if for every minimum-size set S ⊆ V (G) for which G− S ∈ H,
there exists SA ∈ S such that for S′ := (S \ A) ∪ SA we have |S′| ≤ |S|
and G− S′ ∈ H.

As a consequence of this definition, if S is A-exhaustive for H-Deletion
then there exists an optimal solution S to H-Deletion with S ∩A ∈ S.

The notion of A-exhaustive families is similar in spirit to that of q-represen-
tative families for matroids, which have been used in recent algorithms working
on graph decompositions [80, 125] (cf. [48, §12.3]) to trim the set of partial
solutions stored by a dynamic program while preserving the existence of an
optimal solution. As the desired outcome of the replacement process in our case
is not defined in terms of independence in a matroid and there is no particular
importance of a given integer q, we use different terminology for our concept of
exhaustive families. We reserve the name of a representative family to refer to
a set of representatives for each equivalence class in the relation introduced in
Definition 6.18.

The following observation shows how A-exhaustive families can be extended
to supersets A′ ⊇ A by brute force. If |A′ \A| is bounded, the increase in the
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size of the exhaustive family can be controlled.

Observation 6.16. Let H be a graph class, let G be a graph, let A ⊆ V (G) and
let S ⊆ 2A be A-exhaustive for H-Deletion on G. Then for any set A′ ⊇ A,
the family S ′ ⊆ 2A′

defined as follows has size at most |S| · 2|A′\A| and is
A′-exhaustive for H-Deletion on G:

S ′ := {S1 ∪ S∗ | S1 ∈ S ∧ S∗ ⊆ (A′ \A)}.

A similar brute-force extension can be done when merging exhaustive
families for disjoint subsets A1, A2 into an A-exhaustive family for a common
superset A ⊇ A1 ∪A2. We will use this step to handle a variation of standard
join bags in a tree decomposition.

Lemma 6.17. Let H be a graph class and let G be a graph. Let A1, A2 ⊆ V (G)
be disjoint sets and let S1,S2 be A1-exhaustive (respectively, A2-exhaustive)
for H-Deletion on G. Then for any set A′ ⊇ A1 ∪A2, the family S ′ ⊆ 2A′

defined as follows has size at most |S1| · |S2| · 2|A
′\(A1∪A2)| and is A′-exhaustive

for H-Deletion on G:

S ′ := {S1 ∪ S2 ∪ S∗ | S1 ∈ S1 ∧ S2 ∈ S2 ∧ S∗ ⊆ (A′ \ (A1 ∪A2))}.

Proof. The bound on |S ′| is clear from the definition. Consider an arbitrary

optimal solution S ⊆ V (G) to H-Deletion on G. We will show there exists Ŝ ∈
S ′ such that (S \A′) ∪ Ŝ is an optimal solution. We use a two-step argument.

Since S1 is A1-exhaustive, there exists S1 ∈ S1 such that S′ := (S \A1)∪S1

is again an optimal solution.
Applying a similar step to S′, as S2 is A2-exhaustive there exists S2 ∈ S2

such that S′′ := (S′ \A2) ∪ S2 is an optimal solution.
Since A1 and A2 are disjoint, we have S′′ ∩ A1 = S1 and S′′ ∩ A2 = S2.

Let S∗ := S′′∩ (A′ \ (A1∪A2)). It follows that the set Ŝ = S1∪S2∪S∗ belongs
to S ′. Now note that S \ A′ = S′′ \ A′ as we have only replaced parts of the

solution within A1 and A2, while A′ ⊇ A1 ∪A2. Hence (S \A′) ∪ Ŝ = S′′ is an
optimal solution, which concludes the proof.

Note that Lemma 6.17 implies Observation 6.16 by letting A2 = ∅, S2 = {∅}.

Boundaried graphs. For a function f : A → B and a set A′ ⊆ A, we
denote by f|A′ : A′ → B the restriction of f to A′. A k-boundaried graph is

a triple Ĝ = (G,X, λ), where G is a graph, X ⊆ V (G), and λ : [k] → X is a

bijection. We define V (Ĝ) = V (G). Two k-boundaried graphs (G1, X1, λ1),



104 6. Solving Vertex-Deletion Problems

(G2, X2, λ2) are compatible if λ2 ◦ λ−1
1 is a graph isomorphism between G1[X1]

and G2[X2], that is, for each i, j ∈ [k] it holds that λ1(i)λ1(j) ∈ E(G1[X1]) if
and only if λ2(i)λ2(j) ∈ E(G2[X2]). Two k-boundaried graphs (G1, X1, λ1),
(G2, X2, λ2) are isomorphic if there is a graph isomorphism π : V (G1) → V (G2),
such that π|X1

= λ2 ◦ λ−1
1 . The gluing operation ⊕ takes two compatible k-

boundaried graphs (G1, X1, λ1), (G2, X2, λ2), creates their disjoint union, and
then identifies the vertices λ1[i], λ2[i] for each i ∈ [k]. Any tri-separation
(A,X,B) of order k in a graph G allows G to be decomposed as the sum of
two k-boundaried graphs (G[A ∪X], X, λ) ⊕ (G[B ∪X], X, λ) for an arbitrary
bijection λ : [|X|] → X.

Definition 6.18. Two k-boundaried graphs (G1, X1, λ1) and (G2, X2, λ2)
are (H, k)-equivalent if they are compatible and for every compatible k-
boundaried graph (G3, X3, λ3), it holds that (G1, X1, λ1) ⊕ (G3, X3, λ3) ∈
H ⇐⇒ (G2, X2, λ2) ⊕ (G3, X3, λ3) ∈ H.

Observe that if (G1, X1, λ1) and (G2, X2, λ2) are compatible and G1, G2 do
not belong to H, they are (H, k)-equivalent because we only consider hereditary
classes of graphs. Therefore in each equivalence class of compatibility there can
be only one (H, k)-equivalence class that is comprised of k-boundaried graphs
which do not belong to H. The relevance of the (H, k)-equivalence relation for
solving H-Deletion can be seen from the observation below.

Observation 6.19. Consider k-boundaried graphs (G1, X1, λ1), (G2, X2, λ2),
(H,X3, λ3), such that (G1, X1, λ1), (G2, X2, λ2) are (H, k)-equivalent and com-
patible with (H,X3, λ3). Let S ⊆ V (H) \ X3. Then (H − S,X3, λ3) ⊕
(G1, X1, λ1) ∈ H if and only if (H − S,X3, λ3) ⊕ (G2, X2, λ2) ∈ H.

The H-Membership problem is the problem of deciding whether a given
graph belongs to H. We say that the H-Membership problem is finite state
if the relation of (H, k)-equivalence has finitely many equivalence classes for
each k. A k-boundaried graph (G,X, λ) is called a minimal representative in
the relation of (H, k)-equivalence if G ∈ H and there is no other k-boundaried
graph which is (H, k)-equivalent to (G,X, λ) and has a smaller number of
vertices. We restrict our definition of a representative only to graphs in H as
it will allow us to (a) avoid non-interesting corner cases and (b) exploit the
properties of some classes H to bound the number of minimal representatives.

A family RH
k of k-boundaried graphs is called (H, k)-representative if it

contains a minimal representative from each (H, k)-equivalence class where the
underlying graphs belong H. It will not matter how the ties are broken. A family
RH

≤k is called (H,≤ k)-representative if it is a union of (H, t)-representative
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families for all t ∈ [k]. We define vol(RH
≤k) =

∑
R∈RH

≤k
|V (R)|. Note that even

though there may be many ways to construct such a family, the sum above is
well-defined, as well as the size of the family. Let us note that we can effectively
test (H, k)-equivalence as long as some (H, k)-representative family is provided.

Observation 6.20. Let RH
k be an (H, k)-representative family. Suppose that

k-boundaried graphs (G1, X1, λ1), (G2, X2, λ2) are compatible and for every
compatible k-boundaried graph (G3, X3, λ3) from RH

k it holds that (G1, X1, λ1)⊕
(G3, X3, λ3) ∈ H ⇐⇒ (G2, X2, λ2) ⊕ (G3, X3, λ3) ∈ H. Then (G1, X1, λ1),
(G2, X2, λ2) are (H, k)-equivalent.

We will be interested in upper bounding the maximal number of vertices of
a graph in an (H,≤ k)-representative family RH

≤k; we will denote this quantity

by rH(k). Since there are 2O((rH(k))2) different graphs on rH(k) vertices, this
gives an immediate bound on |RH

≤k| and vol(RH
≤k). What is more, we can

construct an (H,≤ k)-representative family within the same running time.

Lemma 6.21. Let H be a graph class recognizable in polynomial time such
that H-Membership is finite state and there is a time-constructible1 function
r(k) ≥ k, such that for every integer k and for every t-boundaried graph, where
t ∈ [k], there exists an (H, t)-equivalent t-boundaried graph on at most r(k)
vertices. Then there exists an algorithm that, given an integer k, runs in time
2O((r(k))2) and returns an (H,≤ k)-representative family.

Proof. Consider a process in which we begin from an edgeless graph on at
most r(k) vertices, fix t boundary vertices, and choose an adjacency matrix
determining which pairs of vertices share an edge. By iterating over all possible
adjacency matrices for graphs on r(k) vertices and considering the first t rows

to be the boundary vertices, we can generate all 2O((r(k))2) t-boundaried graphs
on at most r(k) vertices, for all t ∈ [k], in time 2O((r(k))2).

Let Gt be the constructed set of graphs for each t ∈ [k]. We separate
them into equivalence classes. For each pair of graphs in Gt, test if they are
compatible in O(t2) time and, if so, test in 2O((r(k))2) time if they are (H, t)-
equivalent by gluing all other graphs in Gt and testing if containment in H
is the same for both glued graphs. The latter can be done in r(k)O(1) time
by assumption as H is recognizable in polynomial time. If the two are indeed

1A function r : N → N is time-constructible if there exists a Turing machine that, given a
string 1k, outputs the binary representation of r(k) in time O(r(k)). We add this condition
so we can assume that the value of r(k) is known to the algorithm. All functions of the form
r(k) = α · kc, where α, c are positive integers, are time-constructible.



106 6. Solving Vertex-Deletion Problems

equivalent, then the larger of the two can be removed from Gt (if their size is
the same, it does not matter how ties are broken). Correctness is preserved due

to Observation 6.20. In total this takes
(|Gt|

2

)
· O(t2) · |Gt| · r(k)O(1) time, which

is bounded by 2O((r(k))2). In the end Gt has a single graph for each equivalence
class. By joining the results for each t ∈ [k], we get the claimed result.

6.4.2 Dynamic programming with A-exhaustive families

We move on to designing a meta-algorithm for solving H-Deletion param-
eterized by H-treewidth. Let S be an optimal solution and t be a node in a
tree H-decomposition. We will associate some tri-separation (A,X,B) with
t, where A stands for the set of vertices introduced below t and |X| ≤ k for
k − 1 being the width of the decomposition. The main idea is to consider all
potential tri-separations (AS , XS , BS) that may be obtained after removing S.
For each XS ⊆ X we do the following. We enumerate all the k-boundaried
graphs from an (H,≤ k)-representative family and in each iteration glue the
k-boundaried graph to G[A ∪XS ] and seek for a minimal deletion set within
A so that the resulting graph belongs to H. Correctness will follow from the
fact that one of the representatives is (H, k)-equivalent to (G[BS ∪XS ], XS).
We will show that it suffices to consider all the representatives in the relation
of (H, k)-equivalence to construct an A-exhaustive family of partial solutions.
We shall use the following problem to describe a subroutine for finding such
deletion sets in the leaves of the decomposition.

Disjoint H-Deletion Parameter: s, ℓ
Input: A graph G, integers s, ℓ, and a subset U ⊆ V (G) of size at most ℓ
that is an H-deletion set in G.
Task: Either return a minimum-size H-deletion set S ⊆ V (G) \ U or
conclude that no such set of size at most s exists.

We introduce two parameters s, ℓ that control the solution size and the
size of the set U . In the majority of cases we can adapt known algorithms for
H-Deletion to solve Disjoint H-Deletion even without the assumptions
on the size and structure of U . It is however convenient to impose such
requirements on U because (1) this captures the subproblem we need to solve in
Lemma 6.22 and (2) this allows us to adapt the known algorithm for H = planar
(Theorem 6.31).

Recall that vertices u, v ∈ V (G) are true-twins if NG[u] = NG[v]. The
following lemma shows that the requirement of having undeletable vertices
is easy to overcome if H is closed under the addition of true twins. More
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formally, if G ∈ H and G′ is obtained from G by adding a new vertex v /∈ V (G)
such that v is a true twin of some vertex u ∈ V (G), then G′ ∈ H. Note
that in the following lemma the value of parameter ℓ is insignificant. We do
not optimize the construction of G′ as in our applications (Chordal- and
Interval Deletion) we already get an unspecified polynomial dependency
on n.

Lemma 6.22. Let H be a hereditary graph class closed under the addition of
true twins and such that H-Deletion parameterized by the solution size s can
be solved in f(n, s) time. Then the problem Disjoint H-Deletion can be
solved in f(s · n, s) + nO(1) time.

Proof. Let G′ be the graph obtained from G by making s new true-twin copies
of every vertex in the undeletable set U (so including the original vertices, there
are s + 1 true-twins of every vertex in U). The graph G′ can be constructed in
nO(1) time. Then for every set S ⊆ V (G) \ U for which G− S is a member of
H, the graph G′ − S is also in H since it can be obtained from a graph in H
by repeatedly adding true twins. Conversely, any minimum-size set S ⊆ V (G′)
of size at most s for which G′ − S ∈ H does not contain any copies of vertices
in U , as the budget of s vertices is insufficient to contain all copies of a vertex,
while a solution that avoids one copy of a vertex can avoid all copies, since
members of H are closed under the addition of true twins. Consequently, an
optimal solution in G′ of size at most s is disjoint from U , and is also a solution
in the induced subgraph G of G′ since H is hereditary. Hence to compute a
set S as desired, it suffices to compute an optimal H-deletion set in G′ if there
is one of size at most s, which can be done by assumption.

The following lemma describes the construction of an A-exhaustive family
for H-Deletion when given a tri-separation (A,X,B) of a graph for which
G[A] ∈ H. It will be applied to the leaves of a tree H-decomposition; the
tri-separation for these nodes as described in Observation 6.11 satisfy G[A] ∈ H
as A will consist of base components of the decomposition.

Lemma 6.23. Suppose that H-Membership is finite state, H is heredi-
tary and union-closed, and Disjoint H-Deletion admits an algorithm with
running time f(s, ℓ) · nO(1). Then there is an algorithm that, given a tri-
separation (A,X,B) of order k in a graph G such that G[A] ∈ H, and an (H,≤
k)-representative family RH

≤k, runs in time 2k ·f(k, rH(k))·vol(RH
≤k)O(1) ·nO(1)

and outputs a family S of size at most 2k · |RH
≤k| that is A-exhaustive for H-

Deletion on G.
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Proof. Initialize S = ∅. For each subset X ′ ⊆ X, fix an arbitrary bijec-
tion λ : [|X ′|] → X ′ and consider the graph G − (X \ X ′). It admits a tri-
separation (A,X ′, B). For each representative R ∈ RH

t , where t = |X ′|,
which is compatible with (G[B ∪ X ′], X ′, λ), we perform the gluing opera-
tion GR = (G[A ∪ X ′], X ′, λ) ⊕ R and execute the algorithm for Disjoint
H-Deletion on GR with the set of undeletable vertices U = V (GR) \A and
parameters (k, rH(k)). In other words, we seek a minimum-size deletion set
A′ ⊆ A of size at most k. If such a set is found, we add it to S. Note that U is
indeed an H-deletion set in GR because GR − U = G[A] which belongs to H
by assumption. By the definition of an (H,≤ k)-representative family we have
that |U | ≤ |V (R)| ≤ rH(k), so the created instance meets the specification of
Disjoint H-Deletion.

The constructed family clearly has size at most 2k · |RH
≤k|. The running

time can be upper bounded by 2k ·
∑

R∈RH
≤k

f(k, rH(k))(n + |V (R)|)O(1) =

2k · f(k, rH(k)) · vol(RH
≤k)O(1) · nO(1). It remains to show that S is indeed

A-exhaustive.
Consider a minimum-size solution S to H-Deletion on G. Define SA, SX ,

SB as S ∩ A,S ∩X,S ∩ B, respectively, and let X ′ := X \ SX , |X ′| = t. Fix
an arbitrary bijection λ : [t] → X ′. Since H is union-closed and G[A] ∈ H,
by Observation 6.4 we know that |SA| ≤ k. The graph G[B ∪ X ′] − SB is
an induced subgraph of G − S so it belongs to H. The set RH

t contains a
t-boundaried graph R that is (H, t)-equivalent to (G[B ∪ X ′] − SB , X

′, λ).
By Observation 6.19, SA is an H-deletion set for (G[A ∪X ′], X ′, λ) ⊕ R. As
(G[A ∪X ′], X ′, λ) ⊕R contains an H-deletion set within A of size at most k,
some set S′

A with this property has been added to S. Furthermore, S′
A is a

minimum-size solution, so |S′
A| ≤ |SA|. Again by Observation 6.19, S′

A is an
H-deletion set for (G[A ∪X ′], X ′, λ) ⊕ (G[B ∪X ′] − SB , X

′, λ). It means that
S′ = (S \ A) ∪ S′

A = SB ∪ SX ∪ S′
A is an H-deletion set in G and |S′| ≤ |S|,

which finishes the proof.

The next step is to propagate the partial solutions along the decompo-
sition in a bottom-up manner. As we want to grow the sets A for which
A-exhaustive families are computed, we can take advantage of Observation 6.16
and Lemma 6.17. However, after processing several nodes, the size of A-
exhaustive families computed this way can become arbitrarily large. In order
to circumvent this, we shall prune the A-exhaustive families after each step.

Lemma 6.24. Suppose that H-Membership is finite state and graphs in the
class H can be recognized in polynomial time. There is an algorithm that, given
a tri-separation (A,X,B) of order k in a graph G, a family S ′ ⊆ 2A that is
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A-exhaustive for H-Deletion on G, and an (H,≤ k)-representative family
RH

≤k, runs in time 2k · |S ′| · vol(RH
≤k)O(1) · nO(1) and outputs a family S ⊆ S ′

of size at most 2k · |RH
≤k| that is A-exhaustive for H-Deletion on G.

Proof. Initialize S = ∅. For each subset X ′ ⊆ X, fix an arbitrary bijection
λ : [|X ′|] → X ′ and consider the graph G− (X \X ′). It admits a tri-separation
(A,X ′, B). For each graph R ∈ RH

t , where t = |X ′|, which is compatible with
(G[B∪X ′], X ′, λ), we perform the gluing operation GR = (G[A∪X ′], X ′, λ)⊕R.
Using the polynomial-time recognition algorithm we choose a minimum-size
set SA ∈ S ′ which is an H-deletion set for GR, if one exists, and add it to S.

We construct at most 2k · |RH
≤k| graphs GR. For each graph GR we add at

most one set to S and spend |S ′| · (n + |R|)O(1) time. In total, we perform at
most 2k · |RH

≤k| · |S ′| ·
∑

R∈RH
≤k

(n+ |V (R)|)O(1) = 2k · |S ′| ·vol(RH
≤k)O(1) ·nO(1)

operations. It remains to show that S is indeed A-exhaustive.
Consider a minimum-size solution S to H-Deletion on G. Define SA, SX ,

SB as S ∩A,S ∩X,S ∩B, respectively, and let X ′ := X \ SX , |X ′| = t. Since

S ′ is A-exhaustive on G, there exists ŜA ∈ S ′ such that Ŝ = (S \ A) ∪ ŜA is

also a minimum-size solution to G, implying that |ŜA| ≤ |SA|. Fix an arbitrary
bijection λ : [t] → X ′. The set RH

t contains a t-boundaried graph R that is
(H, t)-equivalent to (G[B∪X ′]−SB , X

′, λ). By Observation 6.19, a set A′ ⊆ A is
an H-deletion set for G′ = (G[A∪X ′], X ′, λ)⊕(G[B∪X ′]−SB , X

′, λ) if and only

if A′ is an H-deletion set for (G[A∪X ′], X ′, λ)⊕R. Since G′− ŜA = G− Ŝ ∈ H,

we know that ŜA ∈ S ′ is such a set. Hence by the construction above, there
exists some (possibly different) S′

A ∈ S with this property and minimum size;

hence |S′
A| ≤ |ŜA| ≤ |SA| and S′ = (S\A)∪S′

A = SB∪SX∪S′
A is an H-deletion

set in G and |S′| ≤ |S|. The claim follows.

We are ready to combine the presented subroutines in a general meta-
algorithm to process tree H-decompositions for every class H which satisfies
three simple conditions.

Theorem 6.25. Suppose that the class H satisfies the following:

1. H is hereditary and union-closed,

2. Disjoint H-Deletion admits an algorithm with running time f(s, ℓ) ·
nO(1),

3. H-Membership is finite state and there is an algorithm computing an
(H,≤ t)-representative family with running time v(t).
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Then H-Deletion can be solved in time 2O(k) · f(k, rH(k)) · v(k)O(1) · nO(1)

when given a tree H-decomposition of width k − 1 consisting of nO(1) nodes.

Proof. First, we construct an (H,≤ k)-representative family RH
≤k in time v(k).

Since the output size of the algorithm cannot exceed its running time, we have
|RH

≤k| ≤ vol(RH
≤k) ≤ v(k).

The algorithm is based on a variant of dynamic programming in which
bounded-size sets of partial solutions are computed, with the guarantee that
at least one of the partial solutions which are stored can be completed to
an optimal solution. More formally, for each node t ∈ V (T ) we are going to
compute (recall κ, π from Definition 6.9) a set of partial solutions St ⊆ 2κ(t)

of size at most 2k · |RH
≤k| which is κ(t)-exhaustive for H-Deletion in G.

As κ(r) = V (G) for the root node r by Observation 6.10, any minimum-size
set S ∈ Sr for which G − S ∈ H is an optimal solution to the problem, and
the property of κ(r)-exhaustive families guarantees that one exists. We do the
computation bottom-up in the tree decomposition, using Lemma 6.24 to prune
sets of partial solutions at intermediate steps to prevent them from becoming
too large.

Let (T, χ, L) be the given tree H-decomposition of width k − 1. By
Lemma 6.7 we may assume that the decomposition is nice and is rooted
at some node r. For t ∈ V (T ), define Lt := L ∩ χ(t). Process the nodes of T
from bottom to top. We process a node t after having computed exhaustive
families for all its children, as follows. Let Xt := χ(t)∩ π(t), let At := κ(t) and
let Bt := V (G) \ (At ∪Xt). By Observation 6.11, the partition (At, Xt, Bt) is a
tri-separation of G. The way in which we continue processing t depends on the
number of children it has. As T is a nice decomposition, node t has at most
two children.

Leaf nodes. For a leaf node t ∈ V (T ), we construct an exhaustive family
of partial solutions St ⊆ 2κ(t) as follows. By Definition 3.6, vertices of Lt do
not occur in other bags than χ(t). Because the decomposition is nice, we have
χ(t) \ Lt = π(t). Therefore κ(t) = Lt and we have (At, Xt, Bt) = (Lt, χ(t) \
Lt, V (G) \ χ(t)). Furthermore, |Xt| ≤ k since the width of the decomposition
is k − 1. As G[Lt] ∈ H, we can process the tri-separation (At, Xt, Bt) with
Lemma 6.23 within running time 2k · f(k, rH(k)) · v(k)O(1) · nO(1). We obtain
a κ(t)-exhaustive family of size at most 2k · |RH

≤k|.
Nodes with a unique child. Let t be a node that has a unique child c,

for which a κ(c)-exhaustive family Sc of size 2k · |RH
≤k| has already been

computed. Recall that vertices of L only occur in leaf bags, so that Lt = ∅ and
therefore |χ(t)| ≤ k. Observe that κ(t) \ κ(c) ⊆ χ(t), so that |κ(t) \ κ(c)| ≤ k.
(A tighter bound for most nodes is possible by exploiting the niceness property,
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which we avoid for ease of presentation.) Compute the following set of partial
solutions:

S ′
t := {Sc ∪ S∗ | Sc ∈ Sc, S

∗ ⊆ κ(t) \ κ(c)}.

Since the number of choices for Sc is 2k · |RH
≤k|, while the number of choices

for S∗ is 2k, the set S ′
t has size at most 22k · |RH

≤k| and can be computed in

time 22k · |RH
≤k| · nO(1). Since κ(c) ⊆ κ(t) due to Observation 6.10, we can

invoke Observation 6.16 to deduce that the family S ′
t is κ(t)-exhaustive for H-

Deletion on G. As the last step for the computation of this node, we compute
the desired exhaustive family St as the result of applying Lemma 6.24 to S ′

t and
the tri-separation (At, Xt, Bt) of G, which is done in time 23k · v(k)O(1) · nO(1)

because |RH
≤k| ≤ v(k). As At = κ(t), the lemma guarantees that St is κ(t)-

exhaustive and it is sufficiently small.
Nodes with two children. The last type of nodes to handle are those

with exactly two children. So let t ∈ V (T ) have two children c1, c2. Since t
is not a leaf we have Lt = ∅. Let K := κ(t) \ (κ(c1) ∪ κ(c2)) and observe
that K ⊆ χ(t) \ L. Therefore |K| ≤ k.

Using the κ(c1)-exhaustive set Sc1 and the κ(c2)-exhaustive set Sc2 com-
puted earlier in the bottom-up process, we define a set S ′

t as follows:

S ′
t := {S1 ∪ S2 ∪ S∗ | S1 ∈ Sc1 , S2 ∈ Sc2 , S

∗ ⊆ K}.

As Sc1 and Sc2 both have size 2k · |RH
≤k|, while |K| ≤ 2k, we have |S ′

t| =

23k · |RH
≤k|2. By Observation 6.10 we have that κ(c1) ∩ κ(c2) = ∅ and κ(c1) ∪

κ(c2) ⊆ κ(t), so we can apply Lemma 6.17 to obtain that the family S ′
t is

κ(t)-exhaustive for H-Deletion on G. The desired exhaustive family St is
obtained by applying Lemma 6.24 to S ′

t and the tri-separation (At, Xt, Bt)
of G, which is done in time 24k · v(k)O(1) · nO(1).

Wrapping up. Using the steps described above we can compute, for
each node of t ∈ V (T ) in a bottom-up fashion, a κ(t)-exhaustive family St of
size 2k · |RH

≤k|. Since the number of nodes of t is nO(1) the overall running
time follows. As discussed in the beginning of the proof, an optimal solution
can be found by taking any minimum-size solution from the family Sr for the
root r.

6.4.3 Hitting forbidden connected minors

As a first application of the meta-theorem, we consider classes defined by a
finite set of forbidden connected minors. The seminal results of Robertson
and Seymour [163] state that every minor-closed family H can be defined by
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a finite set of forbidden minors. The H-Deletion problem is FPT for such
classes when parameterized by the solution size [2, 165] or by treewidth [12].
The requirement that all the forbidden minors are connected holds whenever
H is union-closed.

Unlike the next sections, here we do not need to prove any claims about the
structure of minor-closed classes and we can just take advantage of known results
in a black-box manner. In order to apply Theorem 6.25, we first need to bound
the sizes of representatives in RH

k . To this end, we shall take advantage of the
recent result of Baste, Sau, and Thilikos [11], who have studied optimal running
times for H-Deletion parameterized by treewidth. They define a relation
of (≤ h, k)-equivalence: two k-boundaried graphs (G1, X1, λ1), (G2, X2, λ2)
are (≤ h, k)-equivalent if they are compatible and for every graph F on at
most h vertices and for every compatible k-boundaried graph (G3, X3, λ3),
F is a minor of (G1, X1, λ1) ⊕ (G3, X3, λ3) if and only if F is a minor of
(G2, X2, λ2) ⊕ (G3, X3, λ3).

Theorem 6.26 ([11, Thm. 6.2]). There is a computable function f , so that
if (R,X, λ) is a k-boundaried graph and R is Kq-minor-free, then there exists
a k-boundaried graph (R′, X ′, λ′) which is (≤ h, k)-equivalent to (R,X, λ) and
|V (R′)| ≤ f(q, h) · k.

Let H be a class defined by a family of forbidden minors, which are all
connected and have at most h vertices. Then whenever two k-boundaried
graphs are (≤ h, k)-equivalent, they are also (H, k)-equivalent. As we consider
only representatives whose underlying graphs belong to H, they must exclude
Kh as a minor. This leads to the following corollary.

Corollary 6.27. Let H be a class defined by a finite family of forbidden minors.
There exists a constant dH such that for every minimal representative R in

the relation of (H, k)-equivalence we have |V (R)| ≤ dH · k.

Lemma 6.28. Let H be a class defined by a finite non-empty family of
forbidden minors. There exists an algorithm that, given an integer k, runs in
time 2O(k log k) and returns an (H,≤ k)-representative family.

Proof. We take advantage of the fact that graphs in H are sparse, that is, there
exists a constant cH such that if G ∈ H then |E(G)| ≤ cH · |V (G)| [138]. Any
graph G ∈ H on n vertices can be represented by a set of at most cH · n pairs
of vertices which share an edge. Therefore the number of such graphs is at
most (n + 1)2cH·n = 2O(n logn) (for each of the 2cH · n edge endpoints there
are n + 1 possibilities, where the plus one allows the graph to have fewer than
cH · n edges).
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We proceed similarly as in Lemma 6.21, with a slight change in how t-
boundaried graphs are generated. Since a representative family only consists
of graphs that belong to H, we generate only those t-boundaried graphs that
have sufficiently few vertices to be potentially in H. For each t ∈ [k] we do
the following. We generate all graphs on at most dH · k vertices and at most
cH · dH · k edges as described above (see Corollary 6.27), there are 2O(k log k)

such graphs. For each generated graph, verify that it is contained in H in
time O(k3) by the algorithm of Robertson and Seymour (see [48, Thm. 6.12]).
Proceed by picking all

(
dH·k

t

)
ways of picking the t boundary vertices. In total

this results in generation of 2O(k log k) t-boundaried graphs. The construction of
the equivalence classes and representative family follows as in Lemma 6.21.

Furthermore, it turns out that the known algorithms for H-Deletion
parameterized by the solution size can be adapted to work with undeletable
vertices [165, §7.2].

Theorem 6.29 ([165]). Let H be a class defined by a finite family of forbidden
minors. Then Disjoint H-Deletion admits an algorithm with running time

2s
O(1) · n3, where s is the solution size.

In order to obtain a better final guarantee for the most important case
H = planar, we need a concrete bound on the exponent in the running time for
Disjoint Planar Deletion. An algorithm with this property was proposed
by Jansen, Lokshtanov, and Saurabh [112] as a subroutine in the iterative
compression step for solving Planar Deletion. This is the only place where
we rely on the assumption that that the undeletable set U is an H-deletion set
of bounded size.

Theorem 6.30 ([112]). Disjoint Planar Deletion admits an algorithm
with running time 2O((ℓ+s) log(ℓ+s)) · n, where s is the solution size and ℓ is the
size of the undeletable set.

We are ready to combine all the ingredients and apply the meta-theorem.

Theorem 6.31. Let H be a class defined by a finite family of forbidden

connected minors. Then H-Deletion can be solved in time 2k
O(1) ·nO(1) when

given a tree H-decomposition of width k − 1 consisting of nO(1) nodes. In the
special case of H = planar the running time is 2O(k log k) · nO(1).

Proof. We check the conditions of Theorem 6.25. The class H is hereditary and
union-closed because the forbidden minors are connected. By Theorem 6.29,

Disjoint H-Deletion can be solved in time 2s
O(1) · n3 and, by Lemma 6.28,
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there is an algorithm computing an (H,≤ k)-representative family in time
v(k) = 2O(k log k).

For the case H = planar we additionally take advantage of Theorem 6.30
to solve Disjoint Planar Deletion in time f(s, ℓ) · n where f(s, ℓ) =
2O((ℓ+s) log(ℓ+s)). By Corollary 6.27 we can bound rH(k) by O(k). Hence, the
running time in Theorem 6.25 becomes 2O(k) · f(k, rH(k)) · 2O(k log k) · nO(1) =
2O(k log k) · nO(1).

Finally, we invoke the algorithm for computing a tree H-decomposition of
approximate width to infer the general tractability result.

Corollary 6.32. Let H be a class defined by a finite family of forbidden

connected minors. Then H-Deletion can be solved in time 2kO(1) · nO(1)

where k = twH(G). In the special case of H = planar the running time is
2O(k log k) · nO(1).

Proof. Due to Theorem 6.29, a tree H-decomposition of width O(k) can be

obtained in time 2k
O(1) · nO(1) by Theorem 5.1. For the case H = planar, due

to Theorem 6.30 we can obtain a tree H-decomposition of width O(k) in time
2O(k log k) · nO(1) instead. We obtain the result by plugging the decompositions
into Theorem 6.31.

The running time for H-Deletion where H is the class of planar graphs is
ETH-tight due to [153].

6.4.4 Hitting forbidden connected induced subgraphs

In this section we deal with graph classes H characterized by a finite family F
of forbidden induced subgraphs. The problem of hitting finite forbidden
(induced) subgraphs, parameterized by treewidth, has been studied by several
authors [51, 154, 164].

We introduce some terminology for working with induced subgraphs and
isomorphisms. For graphs G and H, a function f : V (H) → V (G) is an induced
subgraph isomorphism from H to G if f is injective and satisfies xy ∈ E(H) ⇔
f(x)f(y) ∈ E(G) for all x, y ∈ V (H). A function f ′ : A → B is an extension
of a function f : A′ → B if f ′

|A′ = f .

Definition 6.33. Let F be a finite family of graphs. The operation of F-
pruning a k-boundaried graph (G,X, λ) is defined as follows:

• Initialize all vertices of V (G) \X as unmarked.
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• For each F ∈ F , for each tri-separation (AF , XF , BF ) of F with BF ≠ ∅,
for each induced subgraph isomorphism f from F [XF ] to G[X], if there
exists an induced subgraph isomorphism from F [XF ∪BF ] to G that is
an extension of f , then mark the vertex set {f ′(b) | b ∈ BF } for one such
extension f ′, chosen arbitrarily.

• Remove all vertices of V (G) \X which are not marked at the end of the
process.

Observe that graph resulting from the operation of F-pruning depends on
the choices made for f ′. Our statements and algorithms are valid regardless
how these ties are broken. We remark that there is no need to consider
implementation aspects of F -pruning because we only use it for an existential
bound on the sizes of representatives.

Lemma 6.34. Let H be a class defined by a finite family F of forbidden induced
subgraphs. Let (G1, X, λ) be a k-boundaried graph and suppose that (G2, X, λ)
was obtained by F-pruning (G1, X, λ). Then (G1, X, λ) and (G2, X, λ) are
(H, k)-equivalent.

Proof. First observe that these graphs are compatible because F-pruning
removes a subset of vertices from V (G1) \X. As G2 is an induced subgraph
of G1, the forward implication of Definition 6.18 is trivial. We prove that
for any compatible k-boundaried graph Ĥ it holds that if Ĥ ⊕ (G2, X, λ) is

induced-F-free, then also Ĥ ⊕ (G1, X, λ) is induced-F-free.

Assume for a contradiction that G = Ĥ ⊕ (G1, X, λ) contains an induced
subgraph isomorphic to F for some F ∈ F . Let (A,X,B) be the tri-separation

of G, so that (G[A ∪X], X, λ) is isomorphic with Ĥ and (G[B ∪X], X, λ) is
isomorphic with (G1, X, λ). Let B′ ⊆ B be the set of vertices marked during
F -pruning (G[B∪X], X, λ). Let f be an induced subgraph isomorphism from F
to G. We define a tri-separation of F based on f : let AF := {v ∈ V (F ) | f(v) ∈
A}, let XF := {v ∈ V (F ) | f(v) ∈ X}, and let BF := {v ∈ V (F ) | f(v) ∈ B}.
Observe that if BF = ∅, then the image of F is fully contained in A ∪X, and
so G[A ∪X ∪B′] = Ĥ ⊕ (G2, X, λ) contains F as an induced subgraph, which
gives a contradiction. Assume from now on that BF ̸= ∅.

Note that f|XF
is an induced subgraph isomorphism from F [XF ] to G[X]

(if XF = ∅ this is an empty isomorphism, which is also considered during
F-pruning), and that f|XF∪BF

is an extension of f|XF
that forms an induced

subgraph isomorphism from F [XF ∪BF ] to G[X ∪B]. Consequently, in the
process of F -pruning (G[B ∪X], X, λ) we considered F , the function f|XF

, and
an extension f ′ of f|XF

that is an induced subgraph isomorphism from F [XF ∪
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BF ] to G[X ∪B]. Hence the vertices {f ′(b) | b ∈ BF } were marked during the
pruning process and are preserved in B′. It follows that f ′ is also an induced
subgraph isomorphism from F [XF ∪ BF ] to G[X ∪ B′]. Now consider the
function f∗ : V (F ) → V (G) such that f∗

|AF∪XF
= f and f∗

|BF
= f ′, and recall

that f|XF
= f ′

|XF
. As the tri-separation of G ensures that f(x)f(y) /∈ E(G)

for any x ∈ AF and y ∈ BF , it can easily be verified that f∗ is an induced
subgraph isomorphism from F to G[A ∪ X ∪ B′]. This graph is isomorphic

with Ĥ ⊕ (G2, X, λ), so it also contains an induced subgraph isomorphic to F :

a contradiction to the assumption that Ĥ ⊕ (G2, X, λ) is induced-F-free.

Since F -pruning preserves the (H, k)-equivalence class, we can assume that
the minimal representatives cannot be reduced by F-pruning. It then suffices
to estimate the maximal number of vertices left after F -pruning. For a graph F
on c vertices, there are at most 3c tri-separations of F as each vertex either
belongs to AF , XF , or BF . The number of induced subgraph isomorphisms
from XF to XG is bounded by kc, where k = |X|, as for each of the at most c
vertices in XF there are at most k options for their image. For each such
induced subgraph isomorphism we mark at most c vertices.

Observation 6.35. Let F be a finite family of graphs on at most c vertices
each. The operation of F-pruning a k-boundaried graph (G,X, λ) removes all
but |F| · 3c · kc · c vertices from V (G) \X.

Corollary 6.36. Let H be a graph class defined by a finite set F of forbid-
den induced subgraphs on at most c vertices each. If (R,X, λ) is a minimal
representative in the relation of (H, k)-equivalence, then |V (R)| = O(kc).

As the next step, we need to provide an algorithm for H-Deletion param-
eterized by the solution size, which works with undeletable vertices. This can
be done via a straightforward application of the technique of bounded-depth
search trees.

Lemma 6.37 (cf. [35]). Let H be a graph class defined by a finite set F
of forbidden induced subgraphs on at most c vertices each. Then Disjoint
H-Deletion admits an algorithm with running time cs · nO(1), where s is the
solution size.

Proof. Given an input (G, s, ℓ, U) (the parameter ℓ is unused here), we start
by finding an induced subgraph isomorphism f from some H ∈ F to G, if one
exists. As c is constant, this can be done in time nO(1) by brute force. If no
such f exists, then output the empty set as the optimal solution. Otherwise,
let T := {f(v) | v ∈ V (H)} denote the vertices in the range of f . Any valid
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solution has to include a vertex of T \ U . If s = 0 or T ⊆ U , then clearly no
solution of size at most s exists and we report failure. Otherwise, for each of
the at most c vertices v ∈ T \ U we recurse on the instance (G− v, s− 1, ℓ, U).
If all recursive calls report failure, then we report failure for this call as well. If
at least one branch succeeds, then we take a minimum-size solution S′ returned
by a recursive call and add v to it to form the output.

Since the branching is exhaustive, it is easy to see that the algorithm is
correct. As the depth of the recursion tree is at most s, while the algorithm
branches on |T \ U | ≤ c vertices at every step, the claimed running time
follows.

We can now combine all the ingredients and plug them into the meta-
theorem. Even though c is constant, we can keep track of how it affects the
exponent at k, as it follows easily from the claims above. Observe that so far
we never had to assume that the graphs in the family F are connected, but
this requirement is crucial for the tractability.

Theorem 6.38. Let H be a graph class defined by a finite set F of forbid-
den induced subgraphs on at most c vertices each, which are all connected.
Then H-Deletion can be solved in time 2O(k2c) · nO(1) when given a tree
H-decomposition of width k − 1 consisting of nO(1) nodes.

Proof. We check the conditions of Theorem 6.25. The class H is hereditary
and closed under disjoint union of graphs because the forbidden subgraphs
are connected. By Lemma 6.37, Disjoint H-Deletion can be solved in time
cs·nO(1). Finally, by Corollary 6.36 and Lemma 6.21, an (H,≤ k)-representative

family can be computed in time v(k) = 2O(k2c).

Corollary 6.39. For any graph class H which is defined by a finite set F of
connected forbidden induced subgraphs on at most c vertices each, H-Deletion
can be solved in time 2O(k2c) · nO(1) when parameterized by k = twH(G).

Proof. By Lemma 6.37 without any undeletable vertices, H-Deletion pa-
rameterized by solution size s can be solved in time O(cs · nc+1). Note that
H is hereditary and union-closed. By Theorem 5.1, we can construct a tree
H-decomposition of width O(k) in time cO(k) · nO(1) (dropping the constant c
in the polynomial part of the running time). By plugging the decomposition
into Theorem 6.38, we obtain the result.
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6.4.5 Chordal deletion

In this section we develop a dynamic-programming algorithm that solves
Chordal Deletion using a tree chordal-decomposition. We again want to
use the meta-algorithm presented in Theorem 6.25. To this end, we need to
bound the sizes of representatives in the relation of (chordal, k)-equivalence.
We obtain it through a new criterion that tests whether a graph G is chordal
based on several properties of a tri-separation (A,X,B) in G. We therefore
first develop some theory of chordal graphs.

Recall that a hole in a graph G is an induced cycle of length at least four
and that a graph is chordal if it does not contain any holes. We need the
following observation, which follows easily from the alternative characterization
of chordal graphs as intersection graphs of the vertex sets of subtrees of a
tree [89].

Observation 6.40. Chordal graphs are closed under edge contractions.

A vertex v in a graph G is simplicial if the set NG(v) forms a clique in G,
that is, G[NG(v)] induces a complete graph. This includes isolated vertices
(vertices without any neighbors) and vertices with a single neighbor. Since a
hole does not contain any simplicial vertices, we have the following.

Observation 6.41. If v is a simplicial vertex in G, then G is chordal if and
only if G− v is chordal. Consequently, if a graph G′ is obtained from a chordal
graph G by inserting a new vertex whose neighborhood is a clique in G, then G′

is chordal.

Lemma 6.42 ([30, Thm. 5.1.1]). Every chordal graph contains a simplicial
vertex.

The following structural property of chordal graphs will be used to bound
the sizes of representatives, once their structure is revealed.

Lemma 6.43. If G is a chordal graph and A ∪ B is a partition of V (G)
such that B is an independent set in G and no vertex of B is simplicial in G,
then |B| < |A|.

Proof. Proof by induction on |A|. If |A| = 1 then B = ∅, as vertices in the
independent set B can either be isolated or adjacent to the unique vertex in A,
which would make them simplicial.

For the induction step, let |A| > 1 and let v ∈ V (G) be a simplicial vertex,
which exists by Lemma 6.42. By the precondition to the lemma, v ∈ A.
Let Bv := NG(v) ∩B. Since Bv is a clique as v is simplicial, while B ⊇ Bv is
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an independent set by assumption, we have |Bv| ≤ 1. Let G′ := G− ({v}∪Bv).
Then the vertices of B \Bv are not simplicial in G′, as the non-edges in their
neighborhood do not involve v. By inductive assumption the graph G′ with
its partition into A′ := A \ {v} and B′ := B \ Bv satisfies |B′| = |B \ Bv| <
|A′| = |A| − 1. As |Bv| ≤ 1, this implies the lemma.

Recall that a walk from a vertex u to a vertex v in a graph G is a sequence of
(not necessarily distinct) vertices, starting with u and ending with v, such that
consecutive vertices are adjacent in G. The vertices u and v are the endpoints
of the walk, all other vertices occurring on the walk are internal vertices. The
following observation gives an easy way to certify that a graph is not chordal.

Observation 6.44 ([142, Proposition 3]). If a graph G contains a vertex v
with two nonadjacent neighbors u1, u2 ∈ NG(v), and a walk from u1 to u2 with
all internal vertices in V (G) \NG[v], then G contains a hole passing through v.

We are ready to formulate an operation used to produce representatives of
bounded size.

Definition 6.45. Let (G,X, λ) be a k-boundaried graph. The operation of
condensing (G,X, λ) is defined as follows.

• For each connected component Bi of G −X for which G[NG(Bi)] is a
clique, called a simplicial component, remove all vertices of Bi.

• For each connected component Bi of G − X for which G[NG(Bi))] is
not a clique, called a non-simplicial component, contract Bi to a single
vertex.

We want to show that condensing boundaried graphs preserves its equiva-
lence class. To this end, we show that we can harmlessly contract any edge
which is not incident with the separator X. Recall that the graph obtained by
contracting an edge uv is denoted G/uv.

Lemma 6.46. Let G be a graph, (A,X,B) be a tri-separation in G, and let
u, v ∈ B, uv ∈ E(G). Then G is chordal if and only if the following conditions
hold:

1. The graphs G[A ∪X] and G[B ∪X] are chordal.

2. The graph G/uv is chordal.
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Proof. If G is chordal, then since chordal graphs are hereditary and closed
under edge contractions by Observation 6.40, both conditions are satisfied.

We prove the reverse implication. Suppose that G[A ∪X], G[B ∪X], and
G/uv are chordal but G is not, that is, it contains a hole H. As both G[A∪X]
and G[B ∪X] are chordal, hole H contains some a ∈ A and some b ∈ B.

Consider a vertex a ∈ A that lies on hole H, and let p, q be the predecessor
and successor of a on the hole. Then p, q ∈ NG(a) and therefore p, q /∈ B by the
properties of a tri-separation. Furthermore, pq /∈ E(G) since a hole is chordless.
The subgraph P := H − {a} forms an induced path between p and q in G.
Since u, v ∈ B and a ∈ A, we have u, v /∈ NG(a). As contractions preserve
the connectivity of subgraphs, when contracting edge uv the path P turns
into a (possibly non-simple) walk between nonadjacent p, q ∈ NG(a) in G/uv,
whose internal vertices avoid NG[a] since neither of the contracted vertices
is adjacent to a. By Observation 6.44, this implies G/uv contains a hole; a
contradiction.

Lemma 6.47. Let (G1, X, λ) be a k-boundaried graph, so that G1 is chordal,
and let (G2, X, λ) be obtained by condensing (G1, X, λ). Then (G1, X, λ) and
(G2, X, λ) are (chordal, k)-equivalent.

Proof. The condensing operation does not affect the boundary X so these
graphs are compatible. Since G1 is chordal, the same holds for G2 because
chordal graphs are closed under contracting edges and removing vertices.
Consider a k-boundaried graph Ĥ compatible with (G1, X, λ). By the same

argument as above, if Ĥ ⊕ (G1, X, λ) is chordal, then Ĥ ⊕ (G2, X, λ) is as well.

We now prove the second implication. Suppose that Ĥ ⊕ (G2, X, λ) is

chordal, so the underlying graph in Ĥ is chordal as well. Let (A,X,B) be a

tri-separation of G = Ĥ ⊕ (G1, X, λ), so that (G[A ∪X], X, λ) is isomorphic

with Ĥ and (G[B ∪X], X, λ) is isomorphic with (G1, X, λ). By the definition

of condensing, Ĥ ⊕ (G2, X, λ) can be obtained from G by contracting each
connected component of G[B] to a single vertex – let us refer to this graph
as G′ – and then removing some simplicial vertices. Since G′ can be obtained
from the chordal graph Ĥ ⊕ (G2, X, λ) by inserting simplicial vertices, then G′

is chordal by Observation 6.41. Let G = G1, G2, . . . , Gm = G′ be the graphs
given by the series of edge contractions that transforms G into G′. We prove
that if Gi+1 is chordal, then Gi is as well. The graph Gi admits a tri-separation
(A,X,Bi), so that Gi[Bi ∪X] is obtained from G[B ∪X] via edge contractions,
therefore Gi[Bi ∪X] is chordal. Moreover, Gi[A ∪X] is isomorphic with the

underlying graph in Ĥ, so it is also chordal, and Gi+1 is obtained from Gi by
contracting an edge in Bi. We can thus apply Lemma 6.46 to infer that Gi
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is chordal. It follows that G = Ĥ ⊕ (G1, X, λ) is chordal, which finishes the
proof.

Corollary 6.48. If (R,X, λ) is a minimal representative in the relation of
(chordal, k)-equivalence, k > 0, then |V (R)| ≤ 2k − 1.

Proof. By Lemma 6.47 it follows that (chordal, k)-equivalence is preserved by
condensing. If (R,X, λ) is a minimal representative (so R is chordal), it must
be condensed. Therefore V (R) \X is an independent set and no v ∈ V (R) \X
is simplicial. From Lemma 6.43 we get that |V (R) \X| < |X| and therefore
|V (R)| ≤ 2k − 1.

The machinery developed so far is sufficient to obtain an FPT algorithm
for Chordal Deletion on a standard tree decomposition. To be able to
accommodate tree chordal-decompositions, which can contain leaf bags with
arbitrarily large chordal base components, we need to be able to efficiently
compute exhaustive families for such base components. Towards this end,
we will use the algorithm by Cao and Marx for the parameterization by the
solution size as a subroutine.

Theorem 6.49 ([38, Thm. 1.1]). There is an algorithm that runs in 2O(k log k) ·
nO(1) time which decides, given a graph G and integer k, whether or not G has
a chordal deletion set of size at most k.

By self-reduction and some simple graph transformations, the above algo-
rithm can be adapted to our setting (see Lemma 2.8).

Lemma 6.50. There is an algorithm with running time 2O(k log k) · nO(1) that
solves Chordal Deletion parameterized by the solution size k.

In order to enforce the requirement that some vertices are not allowed to
be part of a solution, we use the following consequence of the fact that holes
do not contain vertices sharing the same closed neighborhood.

Observation 6.51. Let G be a chordal graph and let v ∈ V (G). If G′ is
obtained from G by making a true-twin copy of v, that is, by inserting a new
vertex v′ which becomes adjacent to NG[v], then G′ is chordal.

Theorem 6.52. The Chordal Deletion problem can be solved in 2O(k2) ·
nO(1) time when given a tree chordal-decomposition of width k − 1 consisting
of nO(1) nodes.
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Proof. We check the conditions of Theorem 6.25. The class of chordal graphs
is clearly closed under vertex deletion and disjoint union of graphs. Because
of Lemma 6.50 and Observation 6.51, we can apply Lemma 6.22 to solve
Disjoint Chordal Deletion in time 2O(s log s) · nO(1) by introducing s true
twins for each undeletable vertex. Next, by Corollary 6.48 and Lemma 6.21, a
(chordal,≤ k)-representative family can be computed in time v(k) = 2O(k2).

Corollary 6.53. The Chordal Deletion problem can be solved in 2O(k2) ·
nO(1) time when parameterized by k = twchordal(G).

Proof. The Chordal Deletion problem parameterized by solution size s
can be solved in time 2O(s log s) · nO(1) by Lemma 6.50. By Theorem 5.1
it follows that we can compute a tree chordal-decomposition of width O(k)
in time 2O(k log k) · nO(1). We obtain the claimed result by plugging it into
Theorem 6.52.

6.4.6 Interval deletion

An interval graph is the intersection graph of intervals of the real line, we
have already seen them in Chapter 1. In an interval model IG = {I(v) |
v ∈ V (G)} of a graph G, each vertex v ∈ V (G) corresponds to a closed
interval I(v) = [lp(v), rp(v)], with left and right endpoints lp(v) and rp(v)
such that lp(v) < rp(v); there is an edge between vertices u and v if and only
if I(v) ∩ I(u) ̸= ∅, that is, their corresponding intervals have a non-empty
intersection. The goal of this section is to show that Interval Deletion
is FPT parameterized by k = twinterval(G). In order to apply Theorem 6.25
(with Lemma 6.21), we aim to bound the size of a minimal representative for the
(interval, k)-equivalence classes. We introduce some notation and definitions.
Since an edge contraction can be seen as merging two overlapping intervals, we
have the following observation.

Observation 6.54. Interval graphs are closed under edge contractions.

For u, v ∈ V (G), we say that I(u) is strictly right of I(v) (equivalently
I(v) is strictly left of I(u)) if lp(u) > rp(v). We denote this by I(u) > I(v)
(equivalently I(v) < I(u)) for short. An interval model is called normalized if
no pair of distinct intervals shares an endpoint. Every interval graph has a
normalized interval model that can be produced in linear time (see [36]). We
use the following well known characterization of interval graphs. Three distinct
vertices u, v, w ∈ V (G) form an asteroidal triple (AT) in G if for any two of
them there is a path between them avoiding the closed neighborhood of the
third.
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Theorem 6.55 ([126], see also [30]). A graph G is an interval graph if and
only if G is chordal and contains no AT.

A vertex set M ⊆ V (G) is a module of G if NG(u) \M = NG(v) \M for all
u, v ∈ M . A module M is trivial if |M | ≤ 1 or |M | = |V (G)|, and non-trivial
otherwise. Throughout the section, we use the following terminology. An
obstruction in a graph G is an inclusion-minimal vertex set X such that G[X]
is not interval.

Lemma 6.56 ([37, Proposition 4.4]). Let G be a graph and M ⊆ V (G) be a
module. If X ⊆ V (G) is an obstruction and |X| > 4, then either X ⊆ M or
|M ∩X| ≤ 1.

Theorem 6.55 implies that all obstructions induce connected graphs, as the
obstructions to chordality—chordless cycles and minimal subgraphs containing
an AT—are easily seen to be connected. The only obstruction of no more than
four vertices induces a C4 (see [37]). We use the following consequence.

Lemma 6.57. Let (A,X,B) be a tri-separation of G, and let M ⊆ B be a
module in G. If G[X ∪ B] is interval, then any obstruction in G contains at
most one vertex of M . Furthermore, for each obstruction S intersecting M ,
for each v ∈ M , the set (S \M) ∪ {v} is also an obstruction.

Proof. We first derive the first part of the statement. For any obstruction
S larger than four vertices, the statement follows from Lemma 6.56 since no
obstruction can be fully contained in M ⊆ B as G[X∪B] is interval. For the case
of G[S] isomorphic to C4, at least one of its vertices must be in A as G[X ∪B]
is interval. Since X is a separator, it follows that |M ∩ S| ≤ |B ∩ S| ≤ 1.

For the second part, consider some obstruction S intersecting M . By the
arguments above, this intersection is a single vertex, say, u. The statement
for u = v is clear as then (S \M) ∪ {v} = S. In all other cases, since none of
S \ {u} is part of M , by definition of a module it follows that v has the exact
same neighborhood to S \ {u} as u. Hence, the graph induced by (S \M)∪{v}
is isomorphic to G[S].

We arrive at the first useful observation about the structure of minimal
representatives.

Lemma 6.58. If the k-boundaried graph (G,X, λ) is a minimal representative
in the relation of (interval, k)-equivalence and G is interval, then G has no
non-trivial module M ⊆ V (G) \X.
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Proof. For the sake of contradiction, suppose that G has a non-trivial module
M ⊆ V (G) \ X. Pick an arbitrary vertex v ∈ M . We argue that (G′ =
G − (M \ {v}), X, λ) is (interval, k)-equivalent to (G,X, λ). Consider a k-
boundaried graph H compatible with (G,X, λ). Note that H is compatible
with (G′, X, λ) too.

First suppose that H⊕ (G,X, λ) is not interval. Consider the tri-separation
(V (H)\X,X, V (G)\X) of F = H⊕(G,X, λ). Let S ⊆ V (F ) be an obstruction.
By Lemma 6.57 we have that |S ∩M | ≤ 1 and furthermore that S′ = (S \M)∪
{v} is an obstruction. It follows that H ⊕ (G′, X, λ) contains the obstruction
S′ and hence is not interval. Now suppose that H ⊕ (G,X, λ) is interval. Since
interval graphs are hereditary, it follows that H ⊕ (G′, X, λ) is also an interval
graph.

Marking scheme. For a k-boundaried graph (G,X, λ) we proceed by mark-
ing a set of |X|O(1) vertices Q ⊆ V (G) such that for any compatible k-
boundaried graph H, the following holds: if H⊕(G,X, λ) contains an asteroidal
triple, then it contains an AT (v1, v2, v3) such that {v1, v2, v3}∩V (G) ⊆ X ∪Q.
Our bound on the size of the minimal representative is then obtained by an-
alyzing the size of G − (X ∪ Q). Before getting to the marking scheme, we
introduce some definitions and notation.

For a path P and x, y ∈ V (P ) let P [x, y] be the subpath of P from x to
y. For a set U ⊆ V (G) let P(P,U) be the family of maximal subpaths of P
contained in U .

Observation 6.59. Consider a vertex set U ⊆ V (G). Let P be a path whose
endpoints are contained in N(V (G) \ U). Then for each Q ∈ P(P,U), the
endpoints of Q are contained in N(V (G) \ U).

For a k-boundaried graph (G,X, λ) such that G is interval, and a normalized
interval model I = {I(v) | v ∈ V (G)}, we shortly say that (G,X, λ, I) is a
k-boundaried interval graph with a model. Given a k-boundaried graph with a
model (G,X, λ, I) and connected vertex set A ⊆ V (G), let I(A) =

⋃
a∈A I(a)

denote the union of intervals of the vertices in A. Since A is connected, I(A)
is itself an interval [lp(A), rp(A)] with lp(A) = mina∈A lp(a) and rp(A) =
maxa∈A rp(a).

Lemma 6.60. Let (G,X, λ, I) be a k-boundaried interval graph with a model
and H be a k-boundaried graph compatible with (G,X, λ). For a chordless path
P in H ⊕ (G,X, λ), let I(P ) = {I(V (Q)) | Q ∈ P(P, V (G))}. Then I(P ) is a
set of pairwise disjoint intervals. Furthermore, if P is disjoint from NG[u] for
some u ∈ V (G), then these intervals are disjoint from I(u).
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Proof. First observe that for each Q ∈ P(P, V (G)) we have that V (Q) is a
connected vertex set, namely a chordless path, and therefore I(V (Q)) is well-
defined. If for any two distinct Q,Q′ ∈ P(P, V (G)), the intervals I(V (Q)) and
I(V (Q′)) would overlap, then either the paths were not maximal subpaths of
P , or P would not be chordless.

To see the second part, note that any overlap between I(V (Q)) and I(u)
would imply that u is adjacent (or equal) to some vertex of V (Q) ⊆ V (P ).

We would like to encode all the relevant information about a path that
connects two vertices (v1, v2) and avoids the neighborhood of a vertex u, so later
we could argue that some vertex in an AT can be replaced with another one.
Since the boundaried graph H is unknown, we want to encode the subpaths
that might appear within G, in particular their starting and ending points in
X. However there might be Ω(|X|) such subpaths and exponentially-many
combinations of starting/ending points. We shall show that only the two
subpaths including the vertices v1, v2 and the (at most) two subpaths closest to
u in the interval model are relevant. This means we only need to encode O(1)
subpaths which gives only |X|O(1) combinations. We begin with formalizing
the concept of encoding a path.

Definition 6.61. Let (G,X, λ, I) be a k-boundaried interval graph with a
model and H be a k-boundaried graph compatible with (G,X, λ). Furthermore,
let F = H ⊕ (G,X, λ), v1, v2, u ∈ V (F ), and P be a chordless (v1, v2)-path in
F −NF [u]. The signature S of (P, u) with respect to (G,X, λ, I) is defined as
follows.

If V (P ) ∩X = ∅ then S is trivial. Otherwise S is a triple (x1, x2,X ) where
x1, x2 ∈ X and X is a set of ordered pairs from X. Let x1 be the first vertex
of P starting from v1 with x1 ∈ X. Similarly let x2 be the first vertex of
P in X starting from v2. If u ̸∈ V (G), then X = ∅. Otherwise, if there
exists Q ∈ P(P [x1, x2], V (G)) such that I(V (Q)) < I(u), choose such Qℓ =
(w1, . . . , w|V (Qℓ)|) with maximal rp(V (Qℓ)) and add the pair (w1, w|V (Qℓ)|) to
X . Similarly add a pair for a path Qr with minimal lp(V (Qr)) such that
I(u) < I(V (Qr)) if such Qr exists.

Note that the definition above is well-defined due to Lemma 6.60. An
example is shown in Figure 6.3. In a signature we may have x1 = x2 and for
any ordered pair (x, y) ∈ X , possibly x = y. By Observation 6.59 it follows
that the pairs in X consist of elements of X. Since a non-trivial signature
S with respect to (G,X, λ) can be represented as a sequence of at most six
vertices of X, we observe the following.
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V (H) \X

X

V (G) \X
v1 u v2

x1 x2x y x′ y′

Figure 6.3: Schematic illustration of a graph F = (G,X, λ) ⊕ H, where
(G,X, λ, I) is a k-boundaried interval graph with a model. A (v1, v2)-path P
in F − NF [u] is shown. The signature of (P, u) is the triple (x1, x2,X =
{(x, y), (x′, y′)}).

Observation 6.62. Let S(G,X, λ, I) be the family of all possible signatures
with respect to (G,X, λ, I). Then |S(G,X, λ, I)| = O(|X|6).

We now define the obedience relation between a signature and a triple of
vertices. We want to ensure the following properties: (1) if P is an (v1, v2)-
path in H ⊕ (G,X, λ) avoiding the closed neighborhood of a vertex u, then
(v1, v2, u) obeys the signature of (P, u), and (2) if two “similar” triples obey
some signature, then for any choice of H the desired path exists either for both
triples or for none of them.

A technical issue occurs when we want to consider triples of vertices not
only from G but from H ⊕ (G,X, λ). Since our framework should be oblivious
to the choice of H, we introduce the symbol ⊥ as a placeholder for a vertex
from H −X. In the definition below we assume NG[⊥] = ∅.

Definition 6.63. Let (G,X, λ, I) be a k-boundaried interval graph with a
model and v1, v2, u ∈ V (G) ∪ {⊥}. We say that (v1, v2, u) obeys the trivial
signature if v1 = v2 = ⊥ or G−X −NG[u] contains a (v1, v2)-path (the latter
implies that v1, v2 ∈ V (G) \ X). We say that (v1, v2, u) obeys a non-trivial
signature S = (x1, x2,X ) ∈ S(G,X, λ, I) if all the following conditions hold.

1. v1 = ⊥ or there is a (v1, x1)-path contained in G− (X \ {x1}) −NG[u],

2. v2 = ⊥ or there is a (v2, x2)-path contained in G− (X \ {x2}) −NG[u],

3. u = ⊥ or for each (x, y) ∈ X there is an (x, y)-path in G−NG[u].
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We give some intuition behind the obedience definition above. Consider
some k-boundaried graph H compatible with (G,X, λ). Let (v1, v2, u) be an
AT in F = H ⊕ (G,X, λ), so there is a (v1, v2)-path P in F −NF [u]. Suppose
we want to replace some vertex from (v1, v2, u) with another vertex from F ,
so that the new triple would still obey the signature of (P, u), and certify
that an analogous path exists. If we replace v1 or v2 we will need to update
the (v1, x1)-subpath (resp. (v2, x2)-subpath) of P . The first (resp. second)
condition certifies that such an update is possible: if u ∈ V (G) then it directly
states that the new subpath avoids NF [u] ∩ V (G) = NG[u] and if u ̸∈ V (G)
(this translates to u = ⊥) then NF [u] ∩ V (G) ⊆ X and we do not introduce
any new vertices from X. If we aim at replacing u, then the third condition
states that we can update the two subpaths of P which are closest to u in the
interval model I—we will show that this is sufficient.

Let (G,X, λ, I) be a k-boundaried interval graph with a model. We set
v⊥ = v if v ∈ V (G) or ⊥ otherwise, assuming that G is clear from the context.
We now show that the obedience relation satisfies the intuitive property that
whenever a (v1, v2)-path P avoids the closed neighborhood of u then (v⊥1 , v

⊥
2 , u

⊥)
obeys the signature of (P, u).

Lemma 6.64. Let (G,X, λ, I) be a k-boundaried interval graph with a model
and H be a k-boundaried graph compatible with (G,X, λ). Furthermore, let
F = H⊕(G,X, λ), v1, v2, u ∈ V (F ), P be a chordless (v1, v2)-path in F−NF [u],
and S be the signature of (P, u) with respect to (G,X, λ, I). Then (v⊥1 , v

⊥
2 , u

⊥)
obeys S.

Proof. We do a case distinction on V (P )∩X. First suppose that V (P )∩X = ∅.
By Definition 6.61 we have that S is trivial. In the case that V (P ) ⊆ V (H)\X,
then v⊥1 = v⊥2 = ⊥ and therefore (v⊥1 , v

⊥
2 , u

⊥) obeys S. In the case that
V (P ) ⊆ V (G) \ X, then P is a (v1, v2)-path in G − X − NG[u] and again
(v⊥1 , v

⊥
2 , u

⊥) obeys S.
Next, suppose that V (P ) ∩ X ̸= ∅. Then by Definition 6.61 we have

S = (x1, x2,X ). We check the obedience conditions of Definition 6.63 for
(v⊥1 , v

⊥
2 , u

⊥).

1. If v1 /∈ V (G), then v⊥1 = ⊥ and the first condition clearly holds. Oth-
erwise, v1 ∈ V (G), and x1 is the first vertex of P starting from v1 with
x1 ∈ X. If u /∈ V (G), then u⊥ = ⊥ and by construction there is a (v1, x1)-
path contained in G− (X \ {x1}) = G− (X \ {x1})−NG[u⊥]. Otherwise,
u⊥ = u ∈ V (G) and NG[u] ⊆ NF [u]. Since P is disjoint from NF [u], it
follows that there is a (v1, x1)-path contained in G− (X \{x1})−NG[u⊥].

2. The argument for the second condition is symmetric to the first condition.
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3. If u /∈ V (G), then u⊥ = ⊥ and the third condition clearly holds. Other-
wise, u⊥ = u ∈ V (G). By definition of X , for each pair (x, y) ∈ X , there
is a subpath of P in G−NG[u] starting at x and ending at y. It follows
that the third condition holds.

In order to introduce the concept of replacing vertices in a triple, we
formalize what we mean by saying that two triples are “similar”. Simply
speaking, we consider the endpoints of intervals of the boundary vertices
and treat two vertices as equivalent if their intervals contain the same set of
“boundary endpoints”. We give the definition for a non-necessarily boundaried
graph as later we will use it in a more general context.

Definition 6.65. Let G be an interval graph with a normalized interval model
I = {I(v) | v ∈ V (G)} and U ⊆ V (G). The endpoints of intervals of U
partition the real line into z = 2 · |U | + 1 regions. Let (x1, . . . , xz−1) be an
increasing order of these endpoints and let x0 = −∞ and xz = ∞. We define
the set of subsets J I

U = {Ji,j ⊆ V (G) \ U | i ≤ j ∈ [z]}, where u ∈ V (G) \ U is
in Ji,j if and only if i is the smallest index such that the intervals [lp(u), rp(u)]
and [xi−1, xi] have a non-empty intersection, and j is the largest index such
that [lp(u), rp(u)] and [xj−1, xj ] have a non-empty intersection.

The family J I
U clearly forms a partition of V (G) \ U . For a superset

A of V (G) and x, y ∈ A we say x, y are (G,X, I)-equivalent if x = y or
x, y ∈ V (G) \ X and x, y belong to the same set in the partition J I

X with
respect to X. Two ℓ-tuples over A are (G,X, I)-equivalent if they are pointwise
(G,X, I)-equivalent.

We now prove the main technical lemma which states that whenever two
(G,X, I)-equivalent triples obey some signature, then the desired path exists
either for both triples of vertices or for none of them.

Lemma 6.66. Let (G,X, λ, I) be a k-boundaried interval graph with a model
and H be a k-boundaried graph compatible with (G,X, λ). Furthermore, let
F = H ⊕ (G,X, λ), v1, v2, u, w1, w2, z ∈ V (F ), and P be a chordless (v1, v2)-
path in F −NF [u]. Suppose that triples (v1, v2, u) and (w1, w2, z) are (G,X, I)-
equivalent and (w⊥

1 , w
⊥
2 , z

⊥) obeys the signature of (P, u) in (G,X, λ, I). Then
there exists a (w1, w2)-path in F −NF [z].

Proof. Let S be the signature of (P, u). We do a case distinction on V (P )∩X.
First suppose that V (P ) ∩X = ∅. By Definition 6.61 we have that S is trivial.

• In the case that V (P ) ⊆ V (H) \ X, we have v⊥1 = v⊥2 = ⊥. By the
(G,X, I)-equivalence we have that v1 = w1 and v2 = w2. If u /∈ V (G)\X,
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then by the (G,X, I)-equivalence we have u = z and the path P satisfies
the lemma. Otherwise u ∈ V (G) \X and by the (G,X, I)-equivalence we
have z ∈ V (G)\X and therefore NF [z] ⊆ V (G). Since V (P ) ⊆ V (H)\X,
again the path P satisfies the lemma.

• Next consider the case that V (P ) ⊆ V (G) \X. Since v1, v2 ∈ V (G) \X,
by the (G,X, I)-equivalence we have that w1, w2 ∈ V (G) \ X. Since
(w⊥

1 , w
⊥
2 , z

⊥) obeys S, it follows that there is a (w1, w2)-path in G−X −
NG[z⊥].

Next, suppose that V (P ) ∩ X ̸= ∅. By Definition 6.61 we have S =
(x1, x2,X ). We transform P into the required path. We do a case distinction
on the location of u ∈ V (F ).

• Suppose u ∈ X, then u = z by the (G,X, I)-equivalence and therefore P
is a (v1, v2)-path in F−NF [z]. We first argue that there is a (w1, x1)-path
in F −NF [z]. This is trivially true if w⊥

1 = ⊥, since then w1 = v1 by the
(G,X, I) equivalence and P [v1, x1] is such a path. Otherwise, because
of the first obedience condition it follows that there is a (w1, x1)-path
P ′ contained in G − (X \ {x1}) − NG[z⊥ = z]. Analogously, there is
a (x2, w2)-path P ′′ contained in F − NF [z]. Then the concatenation
of P ′, P [x1, x2], and P ′′ is a (w1, w2)-path in F −NF [z], as desired.

• Suppose u ∈ V (H) \X, then again u = z by the (G,X, I)-equivalence
and therefore P is a (v1, v2)-path in F −NF [z]. The construction of the
required path is identical to the previous case, but the argument requires
one more observation here to show that V (P ′) avoids NF [z] as z⊥ = ⊥.
Consider the case that w⊥

1 ̸= ⊥, then by the first obedience condition it
follows that there is a (w1, x1)-path P ′ contained in G − (X \ {x1}) −
NG[z⊥ = ⊥] (recall that NG[⊥] = ∅). Observe that V (P ′) ∩X = {x1}.
Since NF [z] ∩ V (G) ⊆ X as z ∈ V (H) \X, and u = z is not adjacent to
x1 as x1 ∈ V (P ) and P is a path that avoids NF [u], it follows that P ′

is a (w1, x1)-path in F −NF [z]. A symmetric argument shows that P ′′

avoids NF [z]. Concatenating these with P [x1, x2] yields a (w1, w2)-path
in F −NF [z].

• Finally suppose u ∈ V (G) \X. By the (G,X, I)-equivalence, we have
z ∈ V (G) \ X and u = u⊥ and z = z⊥ belong to the same set in the
partition J I

X . Obtain a (w1, x1)-path P ′ in F as in the previous case,
possibly identical to P [v1, x1], and a (x2, w2)-path P ′′ in F . By the
obedience conditions of Definition 6.64, these can be taken disjoint from
NG[z] = NF [z].
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Now it suffices to argue that there is a (x1, x2)-path disjoint from NF [z] =
NG[z]. We transform P [x1, x2] to the desired path, only modifying
P(P [x1, x2], V (G)). By Observation 6.59 it follows that q1, qr ∈ X
for each path Q = (q1, . . . , qr) ∈ P(P [x1, x2], V (G)). To complete the
argument, we show that there is a (q1, qr)-path in G−NG[z] for each Q =
(q1, . . . , qr) ∈ P(P [x1, x2], V (G)). Consider I(P [x1, x2]) = {I(V (Q)) |
Q ∈ P(P [x1, x2], V (G))}. By Lemma 6.60 it follows that I(P [x1, x2])
is a set of pairwise disjoint intervals. Consider the position of I(u)
with respect to the intervals in I(P [x1, x2]). Since P is disjoint from
NF [u] = NG[u], it follows that I(u) does not intersect I(V (Q)) for any
Q ∈ P(P [x1, x2], V (G)). Suppose there is a path Q ∈ P(P [x1, x2], V (G))
with I(V (Q)) < I(u). Let Qℓ = (ℓ1, . . . , ℓr) with r = |V (Qℓ)| be such
that I(V (Qℓ)) < I(u) and rp(V (Qℓ)) is maximal. By Definition 6.61
we have that (ℓ1, ℓr) ∈ X . By the third obedience condition, there is a
(ℓ1, ℓr)-path in G−NG[z]. Note that I(ℓ1) < I(z) and I(ℓr) < I(z) since u
and z are in the same set in the partition J I

X . We argue that for any Q =
(q1, . . . , qr) ∈ P(P [x1, x2], V (G)) with I(V (Q)) < I(V (Qℓ)), the path Q
is disjoint from NG[z]. Suppose not, then there is some s ∈ V (Q) such
that s is adjacent to z. But since I(s) < I(ℓr) < I(z), this is not possible
(refer to Figure 6.4 for an intuition). A symmetric argument shows the
existence of a (q1, qr)-path for any Q = (q1, . . . , qr) ∈ P(P [x1, x2], V (G))
with I(u) < I(V (Q)). As each path of P(P [x1, x2], V (G)) can be replaced
by a path with the same endpoints that avoids NF [z], this yields the
desired (x1, x2)-path avoiding NF [z] since the subpaths outside P [x1, x2]
are trivially disjoint from NF [z] = NG[z] ⊆ V (G).

We are ready to define the marking scheme and prove that we can always
assume that a potential AT uses only the marked vertices. Since there are only
kO(1) signatures in a k-boundaried graph G, and every AT can be represented
by three signatures, the replacement property from Lemma 6.66 allows us to
use the same vertices in G for each of kO(1) “types” of an AT.

Lemma 6.67. Let (G,X, λ, I) be a k-boundaried interval graph with a model.
There exists a set Q ⊆ V (G)\X of O(k24) vertices so that for any k-boundaried
graph H compatible with (G,X, λ), if F = H ⊕ (G,X, λ) contains some AT,
then F contains an AT (w1, w2, w3) such that {w1, w2, w3} ∩ V (G) ⊆ X ∪Q.

Proof. For each triple (S1, S2, S3) of signatures from S(G,X, λ, I), let the set
O(S1, S2, S3) consist of triples (v1, v2, v3) from V (G) ∪ {⊥} such that:

1. (v2, v3, v1) obeys S1,
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V (H) \X

X

V (G) \X
w1 u w2

`1 `r

z

s

Figure 6.4: Illustration of the last case in Lemma 6.66. By replacing the
interval u by z, we can only introduce adjacencies to the (ℓ1, ℓr)-subpath
of P ; any potential neighbor s ∈ NF (z) in a path P ′ ∈ P(P [x1, x2], V (G))
with I(P ′) < I(P [ℓ1, ℓr]) would create a chord such as sℓ1, which is impossible
as the path P is assumed to be chordless.

2. (v3, v1, v2) obeys S2,

3. (v1, v2, v3) obeys S3.

Partition the triples O(S1, S2, S3) into equivalence classes based on the relation
of (G,X, I)-equivalence among triples. Let Q(S1, S2, S3) contain an arbitrary
triple from each class of (G,X, I)-equivalence within O(S1, S2, S3), as long
as at least one such triple exists. We add to Q every vertex from V (G) \X
that appears in any triple in Q(S1, S2, S3) for any (S1, S2, S3). Observe that
|Q| = O(k24) as there are O(k18) choices of (S1, S2, S3) and O(k6) equivalency
classes.

We now argue that Q has the claimed property. So consider a k-boundaried
graph H compatible with (G,X, λ) such that F = H ⊕ (G,X, λ) contains an
AT (v1, v2, v3). Let P1 be a shortest (v2, v3)-path in F − NF [v1]. Note that
P1 is chordless. By Lemma 6.64 the triple (v⊥2 , v

⊥
3 , v

⊥
1 ) obeys the signature

S1 of (P1, v1). The same holds for analogously defined P2, P3 and signatures
S2, S3. The marking scheme picks some triple (b1, b2, b3) with bi ∈ V (G)∪ {⊥}
for each i ∈ [3], which is (G,X, I)-equivalent to (v⊥1 , v

⊥
2 , v

⊥
3 ) and such that

(b2, b3, b1) obeys S1, (b3, b1, b2) obeys S2 and (b1, b2, b3) obeys S3.

Let (w1, w2, w3) be defined as follows: for each i ∈ [3], if bi = ⊥ then wi = vi,
otherwise wi = bi. Note that wi ∈ V (F ) for each i ∈ [3]. Then (w1, w2, w3)
is (G,X, I)-equivalent to (v1, v2, v3) and (w⊥

1 , w
⊥
2 , w

⊥
3 ) = (b1, b2, b3), so these

triples behave the same for any signature. It follows that (w⊥
2 , w

⊥
3 , w

⊥
1 ) obeys
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the signature S1 so by Lemma 6.66 there exists a (w2, w3)-path in F −NF [w1].
By applying Lemma 6.66 to each of the above orderings of (w1, w2, w3), it
follows that (w1, w2, w3) is an AT in F . By the definition of the marked set of
vertices Q, {w1, w2, w3} ∩ V (G) ⊆ X ∪Q.

Wrapping up. The last step of the proof is to give a bound on the size of a
minimal representative (G,X, λ) in the relation of (interval, k)-equivalence, by
arguing that in such a graph only few vertices exist outside the set Q of bounded
size. We achieve this by combining the module-free property (Lemma 6.58)
and the former contraction property for chordal graphs (Lemma 6.46).

Lemma 6.68. If the k-boundaried graph (G,X, λ) is a minimal representative
in the relation of (interval, k)-equivalence, then G has O(k48) vertices.

Proof. By the definition, G is interval. Let I be a normalized interval model
of G. Let Q ⊆ V (G) be provided by Lemma 6.67. Obtain the partition
J I
X∪Q = {Ji,j ⊆ V (G) \ (X ∪ Q) | i ≤ j ∈ [z]} of V (G) \ (X ∪ Q) via

Definition 6.65.
First consider the case that Ji,j is an independent set for all i ≤ j ∈ [z].

We show that G satisfies the lemma. For each i ̸= j ∈ [z], G[Ji,j ] induces a
clique as the intervals intersect at some region border between the ith and
jth region. Therefore G[Ji,j ] consists of a single vertex for each i ̸= j ∈ [z].
We argue that Ji,i has size O(|X ∪Q|) for each i ∈ [z]. If any two vertices in
Ji,i have the same open neighborhood, then they form a non-trivial module in
V (G) \X, which by Lemma 6.58 would contradict that (G,X, λ) is a minimal
representative. It follows that each pair of vertices in Ji,i must have different
neighborhoods in V (G) \ (X ∪ Q) as they have the same neighborhoods in
X ∪Q by Definition 6.65. Since every vertex in Ji,i is adjacent to every vertex
in Jp,q for each p < i and i < q, they can only have neighborhood differences
by adjacencies to Jp,i or Ji,q, each of which consists of a single vertex as argued
above. Since there are only O(|X ∪Q|) such vertices as z = O(|X ∪Q|), we
have that Ji,i has size O(|X ∪ Q|). Since |Q| = O(|X|24) by Lemma 6.67,
it follows that G at most |X| + |Q| +

∑
i∈[z] |Ji,i| +

∑
i<j∈[z] |Ji,j | = O(k48)

vertices and the lemma holds.
In the remaining case suppose there is some edge uv for {u, v} ⊆ Ji,j for

some i ≤ j ∈ [z]. We argue that (G,X, λ) is not a minimal representative. Let
H be a k-boundaried graph compatible with (G,X, λ). Let F = H ⊕ (G,X, λ)
with tri-separation (A = V (H) \ X,X,B = V (G) \ X). We argue that F
is interval if and only if F/uv is interval. Since interval graphs are closed
under edge contractions by Observation 6.54, we have that if F is interval
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then so is F/uv. In the other direction suppose that F is not interval. By
Theorem 6.55 it follows that F contains a chordless cycle of length at least
four or an asteroidal triple. Suppose F contains a chordless cycle of length
at least four and F ′ = F/uv does not. Since F ′[A ∪ X] = F [A ∪ X] = H
we have that F [A ∪X] is chordal. Since F [B ∪X] = G and G is an interval
graph we have that F [B ∪X] is chordal. But then by Lemma 6.46 we have
that F is chordal, contradicting that it contains a chordless cycle. It follows
that F/uv also contains a chordless cycle and therefore F/uv is not interval.
Finally suppose that F is chordal but contains an asteroidal triple (a, b, c). By
Lemma 6.67 we can assume that {a, b, c} ∩ V (G) ⊆ X ∪ Q. Since u, v ∈ Ji,j
have the same neighborhood in X ∪ Q, it follows that they are adjacent to
the same vertices in {a, b, c}. Therefore any path in F that avoids the closed
neighborhood of any vertex of the triple translates to a path in F/uv that
avoids the closed neighborhood. It follows that (a, b, c) is an asteroidal triple
in F/uv and therefore F/uv is not interval. Since F/uv = H ⊕ (G/uv,X, λ),
we have shown that (G/uv,X, λ) is in the same (interval, k)-equivalence class,
contradicting that (G,X, λ) is a minimal representative.

As with Chordal Deletion in the previous section, we proceed by showing
that we can solve Interval Deletion where some vertices become undeletable.
As a first step, we observe that interval graphs are closed under addition of
true twins, which follows from the fact that the added vertex can get the same
interval in an interval model.

Observation 6.69. Let G be an interval graph an let v ∈ V (G). If G′ is
obtained from G by making a true-twin copy v′ of v, then G′ is an interval
graph.

Interval Deletion was shown to be FPT parameterized by solution
size k by Cao and Marx. Their algorithm either returns a minimum cardinality
solution, or decides that no solution of size at most k exists.

Theorem 6.70 ([37]). Interval Deletion parameterized by the solution size
k can be solved in time 10k · nO(1).

Theorem 6.71. The Interval Deletion problem can be solved in time
2O(k96) ·nO(1) when given a tree interval-decomposition of width k−1 consisting
of nO(1) nodes.

Proof. We check the conditions of Theorem 6.25. The class of interval graphs
is clearly closed under vertex deletion and disjoint union of graphs. Because of
Theorem 6.70 and Observation 6.69, we can apply Lemma 6.22 to solve Disjoint
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Interval Deletion in time 10s · nO(1) by introducing s true twins for each
undeletable vertex. Next, by Lemma 6.68 and Lemma 6.21, an (interval,≤ k)-

representative family can be computed in time v(k) = 2O(k96).

Corollary 6.72. The Interval Deletion problem can be solved in time
2O(k96) · nO(1) when parameterized by k = twinterval(G).

Proof. The Interval Deletion problem parameterized by the solution size
can be solved in single-exponential time by Theorem 6.70. Since interval graphs
are hereditary and union-closed, by Theorem 5.1 it follows that we can compute
a tree interval-decomposition of width O(k) in 2O(k) · nO(1) time. We obtain
the result by plugging it in to Theorem 6.71.

6.5 Hardness for non-union-closed classes

In this section we show why the restriction of Theorem 6.25 to graph classes
which are closed under disjoint unions is necessary. To this end, we show that
for H not closed under disjoint union, H-Deletion can be NP-complete even
for graphs of elimination distance 0 to a member of H. Recall that K5 is a
clique on five vertices and K1,3 is the claw. Let H5+1,3 := K5 +K1,3 denote the
disjoint union of these two graphs. Let H5+1,3 denote the (hereditary) family
of graphs which do not contain H5+1,3 as an induced subgraph.

For our hardness proof, we will use the following result of Lewis and
Yannakakis. Here a graph property is nontrivial in the class of planar graphs if
there are infinitely many planar graphs that have the property, and infinitely
many planar graphs which do not.

Theorem 6.73 ([127, Cor. 5]). The node-deletion problem restricted to pla-
nar graphs for graph-properties that are hereditary on induced subgraphs and
nontrivial on planar graphs is NP-complete.

In particular, their result shows that Induced-K1,3-free Deletion is
NP-complete when restricted to planar graphs.

Theorem 6.74. H5+1,3 Deletion is NP-complete when restricted to graphs
whose elimination distance to H5+1,3 is 0.

Proof. We give a reduction from an instance (G, k) of Induced-K1,3-free
Deletion on planar graphs, which asks whether the planar graph G can be
made (induced) claw-free by removing at most k vertices.

Let G′ be the disjoint union of G with k + 1 copies of K5. Observe that the
elimination distance of G′ to H5+1,3 is 0: each connected component of G′ is
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either isomorphic to K5 (and does not contain K1,3) or consists of the planar
graph G and therefore does not contain K5. Hence each connected component
of G′ belongs to H5+1,3.

We claim that the instance (G′, k) of H5+1,3-Deletion is equivalent to
the instance (G, k) of claw-free deletion. In one direction, any vertex set S ⊆
V (G) for which G − S is claw-free also ensures that G′ − S is claw-free (as
the components isomorphic to K5 do not contain any claws) and therefore
implies G′ − S ∈ H5+1,3. For the reverse direction, suppose S′ ⊆ V (G′) is
a set of size at most k such that G′ − S′ ∈ H5+1,3. Then G′ − S′ must be
claw-free, because if G′ − S′ contains a claw, then this claw forms an induced
copy of H5+1,3 in G′ − S′ together with one of the k + 1 copies of K5 that
contains no vertex of S′. So G′ − S′ is claw-free, and therefore the induced
subgraph G− S′ is claw-free as well, showing that (G, k) is a yes-instance.

As the transformation can easily be performed in polynomial time, this
completes the proof.

We remark that similar hardness proofs can be obtained for graph classes
defined by a disconnected forbidden minor rather than a disconnected forbidden
induced subgraph. For example, when H ′ is the disjoint union of the cycle C9

on nine vertices and the graph K5, one can show that Induced H ′-Minor-
free Deletion is NP-complete on graphs whose elimination distance to
an H ′-minor-free graph is 0. This can be seen from the fact that Feedback
Vertex Set remains NP-complete on planar graphs of girth at least nine
since subdividing edges does not change the answer, that planar graphs do
not contain K5 as a minor, while K5 does not contain C9 as a minor. As the
purpose of these lower bounds is merely to justify our restriction to graph
classes closed under disjoint union, we omit further details.

6.6 Conclusion

We presented a meta-theorem that can be used to solve H-Deletion when
given a tree H-decomposition. Our results show that we can obtain ETH-tight
parameter dependencies for H-treewidth for H being the class of bipartite or
planar graphs. Our work opens up a multitude of directions for future work.
An obvious first one is to extend this list of graph classes for which we can give
tight algorithms for H-Deletion with hybrid parameters.

Beyond undirected graphs. On a conceptual level, the idea of solving
a deletion problem parameterized by H-treewidth (or H-elimination distance)
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is not restricted to undirected graphs. By developing notions of elimination
distance for directed graphs, hypergraphs, or other discrete structures, similar
questions could be pursued in those contexts. One could also consider undirected
graphs with a distinguished set of terminal vertices, for example in an attempt
to develop (uniform, single-exponential) FPT algorithms for Multiway Cut
parameterized by the elimination distance to a graph where each component
has at most one terminal.

Cross-parameterizations. Our main focus was on solving H-Deletion
parameterized by twH. However, H-treewidth (or H-elimination distance)
can also be used as a parameterization away from triviality for solving other
parameterized problems Π, for instance when using classes H in which Π is
polynomial-time solvable. This can lead to interesting challenges of exploiting
graph structure. For problems which are FPT parameterized by deletion
distance to H, does the tractability extend to elimination distance to H? For
example, is Undirected Feedback Vertex Set FPT when parameterized
by the elimination distance to a subcubic graph or to a chordal graph? The
problem is known to be FPT parameterized by the deletion distance to a
chordal graph [114] or the edge-deletion distance to a subcubic graph [139].

As a step in this direction, Eiben et al. [62, Thm. 11] present a meta-
theorem that yields non-uniform FPT algorithms when Π satisfies several
conditions, which require a technical generalization of an FPT algorithm for Π
parameterized by deletion distance to H.

Capturing more vertex-deletion problems. There are some graph
classes for which Theorem 5.1 provides a decomposition, but for which we
currently have no follow-up algorithm to solve H-Deletion on a given decom-
position. A natural target for future work is to see whether the decompositions
can be turned into vertex-deletion algorithms. For example, if H is character-
ized by a finite set of connected forbidden topological minors, is H-Deletion
FPT parameterized by twH?
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Chapter 7

Search-Space Reduction via
Essential Vertices

7.1 Introduction

Due to the enormous potential of preprocessing to speed up the algorithmic
solution to combinatorial problems [1, 7, 8, 170, 171], a large body of work
in theoretical computer science is devoted to understanding its power and
limitations. Using the notion of kernelization [19, 68, 82, 99, 124, 133] from
parameterized complexity [48, 60] it is possible to formulate a guarantee on the
size of the instance after preprocessing based on the parameter of the original
instance. Under this model, a good preprocessing algorithm is a kernelization
algorithm: given a parameterized instance (x, k), it outputs an equivalent
instance (x′, k′) of the same decision problem such that |x′| + k′ ≤ f(k) for
some function f that bounds the size of the kernel. Research into kernelization
led to deep algorithmic insights, including connections to protrusions and finite-
state properties [24], well-quasi ordering [79], and matroids [125]. These positive
results were complemented by impossibility results [54, 61, 125] delineating the
boundaries of tractability.

Results on kernelization led to profound insights into the limitations of
polynomial-time data compression for NP-hard problems. However, as recently
advocated [56], the definition of kernelization only gives guarantees on the
size of the instance after preprocessing, which does not directly correspond
to the running time of subsequently applied algorithms. If the preprocessed
instance is not solved by brute force, but via a fixed-parameter tractable
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algorithm whose running time is of the form f(k) · nO(1), then the exponential
dependence in the running time is on the value of the parameter k, which
is not guaranteed to decrease via kernelization. In fact, if P ̸= NP then no
polynomial-time preprocessing algorithm can guarantee to always decrease
the parameter of an NP-hard fixed-parameter tractable problem, as iterating
the preprocessing algorithm would lead to its solution in polynomial time. In
this chapter, we develop a new analysis of preprocessing aimed at reducing
the search space of the follow-up algorithm. We apply this framework to
combinatorial optimization problems on graphs, whose goal it is to find a
minimum cardinality subset of vertices satisfying certain properties. The main
idea behind the framework is to define formally what it means for a vertex to
be essential for making reasonable solutions to the problem, and to prove that
an efficient preprocessing algorithm can detect a subset of an optimal solution
that contains all such essential vertices.

Before stating our results, we introduce and motivate the model. We
consider vertex-subset minimization problems on (possibly directed) graphs, in
which the goal is to find a minimum vertex subset having a certain property.
Examples of the problems we study include Vertex Cover, Odd Cycle
Transversal, and Dominating Set. The analysis of such minimization
problems, parameterized by the size of the solution, has played an important
role in the literature (cf. [39, 62, 110, 118, 159]). Our starting point is the
idea that a good preprocessing algorithm should reduce the search space.
Since many graph problems are known to be fixed-parameter tractable when
parameterized by the size of the solution, we can reduce the search space of
these FPT algorithms by finding one or more vertices which are part of an
optimal solution, thereby decreasing the size of the solution still to be found in
the reduced instance (i.e. the parameter value).

Since in general no polynomial-time algorithm can guarantee to identify
at least one vertex that belongs to an optimal solution, the guarantee of
the effectiveness of the preprocessing algorithm should be stated in a more
subtle way. When solving problems by hand, one sometimes finds that certain
vertices v are easily identified to belong to an optimal solution, as avoiding them
would force the solution to contain a prohibitively large number of alternative
vertices and therefore be suboptimal. Can an efficient preprocessing algorithm
identify those vertices that cannot be avoided when making an optimal solution?

Since many NP-hard problems remain hard even when there is a unique
solution [168], this turns out to be too much to ask as it would allow instances
with unique solutions to be solved in polynomial time, which leads to NP = RP.
We therefore have to relax the requirements on the preprocessing guarantee
slightly, as follows. For an instance of a vertex-subset minimization problem Π
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on a graph G, we denote the minimum size of a solution on G by OPTΠ(G). For
a fixed c ∈ R≥1, we say a vertex v ∈ V (G) is c-essential for Π on G if all feasible
solutions S ⊆ V (G) for Π whose total size is at most c ·OPTΠ(G) contain v.
Based on this notion, we can ask ourselves: can an efficient preprocessing
algorithm identify part of an optimal solution if there is at least one c-essential
vertex?

Phrased in this way, the algorithmic task becomes more tractable. For
example, for the Vertex Cover problem, selecting all vertices that receive
the value 1 in an optimal half-integral solution to the standard LP-relaxation
(see [48, Equation 2.1]) results in a set S which is contained in some optimal
solution (by the Nemhauser-Trotter theorem [147], cf [48, §2.5]), and at the
same time includes all 2-essential vertices: any vertex v /∈ S only has neighbors
of value 1

2 and 1, which implies that the set X of vertices other than v whose
value in the LP relaxation is at least 1

2 , forms a feasible solution which avoids v.
Its cardinality is at most twice the cost of the LP relaxation and therefore X
is a 2-approximation. Hence S contains all 2-essential vertices.

This example shows that a preprocessing step that detects c-essential
vertices without any additional information is sometimes possible. However,
to be able to extend the scope of our results also to problems which do not
have polynomial-time constant-factor approximations, we slightly relax the
requirements on the preprocessing algorithm as follows. Let Π be a minimization
problem on graphs whose solutions are vertex subsets and let c ∈ R≥1.

c-Essential detection for Π
Input: A graph G and integer k.
Task: Find a vertex set S ⊆ V (G) such that:

G1 if OPTΠ(G) ≤ k, then there is an optimal solution in G containing
all of S, and

G2 if OPTΠ(G) = k, then S contains all c-essential vertices.

In this model, the preprocessing task is facilitated by supplying an additional
integer k in the input. The correctness properties of the output S are formulated
in terms of k. If OPTΠ(G) ≤ k, then the set S is required to be part of an
optimal solution. The upper bound on OPTΠ(G) is useful to the algorithm:
whenever the algorithm establishes that avoiding v would incur a cost of
more than k, it is safe to add v to S. If OPTΠ(G) = k, then the algorithm
should guarantee that S contains all c-essential vertices. Knowing a lower
bound on OPTΠ(G) is useful to the algorithm in case it can establish that any
optimal solution containing v can be transformed into one avoiding v whose cost
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is (c−1)·k larger, which yields a c-approximation if (c−1)·k ≤ (c−1)OPTΠ(G).
Hence vertices for which such a replacement exists are not c-essential and may
safely be left out of S.

Results. We present polynomial-time algorithms for c-Essential de-
tection for Π for a range of vertex-deletion problems Π and small values
of c, typically c ∈ {2, 3}. Example applications include Vertex Cover and
Feedback Vertex Set, and also Chordal Vertex Deletion (for which no
O(1)-approximation is known), Odd Cycle Transversal (for which no O(1)-
approximation exists, assuming the Unique Games Conjecture [121, 172]), and
even Directed Odd Cycle Transversal (which is W[1]-hard parameterized
by solution size [137]).

The model of c-Essential detection for Π is chosen such that the
detection algorithms whose correctness is formulated with respect to the value
of k, can be used as a preprocessing step to optimally solve vertex-subset
problems without any knowledge of the optimum. Let EΠ

c (G) denote the set
of c-essential vertices in G, which is well-defined since all optimal solutions
contain all c-essential vertices. By using a preprocessing step that detects a
superset of the c-essential vertices in the solution, we can effectively improve
the running-time guarantee for FPT algorithms parameterized by solution size
from f(OPTΠ(G)) · |V (G)|O(1), to f(OPTΠ(G) − |EΠ

c (G)|) · |V (G)|O(1). This
leads to the following results.

Theorem 7.1. For each problem Π with coefficient c and parameter de-
pendence f listed in Table 7.1 that is not W [1]-hard, there is an algorithm
that, given a graph G, outputs an optimal solution in time f(ℓ) · |V (G)|O(1),
where ℓ := OPTΠ(G)−|EΠ

c (G)| is the number of vertices in an optimal solution
which are not c-essential.

Hence the running time for solving these problems does not depend on the
total size of an optimal solution, only on the part of the solution that does not
consist of c-essential vertices. The theorem effectively shows that by employing
c-Essential detection for Π as a preprocessing step, the size of the search
space no longer depends on the total solution size but only on its non-essential
vertices.

We also prove limitations to this approach. Assuming FPT ≠ W[1], for
Dominating Set, Perfect Deletion (in which the goal is to obtain a
perfect graph by vertex deletions), and Wheel-Free Deletion, there is no
polynomial-time algorithm for c-Essential detection for any c ∈ R≥1. In
fact, we can even rule out such algorithms running in time f(k) · |V (G)|O(1).
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Table 7.1: For each problem Π, there is a polynomial-time algorithm for c-
Essential detection for the stated value of c. Combined with the state of
the art algorithm for the natural parameterization, this leads to an algorithm
solving the problem in time f(ℓ) · |V (G)|O(1) where ℓ = OPTΠ(G) − |EΠ

c (G)|.

Problem c f(ℓ) Reference

Vertex Cover 2 1.2738ℓ [39]
Feedback Vertex Set 2 2.7ℓ [128]
Directed Feedback Vertex Set 2 4ℓ · ℓ! [41]
Odd Cycle Transversal 2 2.3146ℓ [134]
Directed Odd Cycle Transversal 3 W[1]-hard [137]
Chordal Vertex Deletion 13 2O(ℓ log ℓ) [38]

These results are based on FPT-inapproximability results for Dominating
Set [118] and existing reductions [101, 130] to the mentioned vertex-deletion
problems.

Techniques. The main work lies in the algorithms for c-Essential de-
tection, which are all based on covering/packing duality for forbidden induced
subgraphs to certain graph classes, or variations thereof in terms of (integer)
solutions to certain linear programs and their (integer) duals. To understand
the relation between detecting essential vertices and covering/packing dual-
ity, consider the Odd Cycle Transversal problem (OCT). Following the
argumentation for the classic Erdős-Pósa theorem [65], in general there is no
constant c such that any graph either has an odd cycle transversal of size c · k,
or a packing of k vertex-disjoint odd cycles (certified by Escher walls [158]).
However, we show that a linear packing/covering relation holds in the following
slightly different setting. If G−v is bipartite (so all odd cycles of G intersect v),
then the minimum size of an OCT avoiding v equals the maximum cardinality
of a packing of odd cycles which pairwise intersect only at v. We can leverage
this statement to prove that any vertex v which is not at the center of a flower
(see Definition 7.3) of more than OPToct(G) odd cycles, is not 2-essential: for
any optimal solution X containing v, the graph G′ := G− (X \{v}) becomes bi-
partite after removal of v and by assumption does not contain a packing of more
than OPToct(G) odd cycles pairwise intersecting at v. So by covering/packing
duality on G′, it has an OCT X ′ of size at most OPToct(G) avoiding v, so
that (X \ {v}) ∪X ′ is a 2-approximation in G which avoids v, showing that v
is not 2-essential. Since v is clearly contained in an optimal solution whenever
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there is a flower of more than OPToct(G) odd cycles centered at v, this yields
a method for c-Essential detection when using a known reduction [90] to
Maximum Matching to test for a flower of odd cycles.

Organization. After presenting preliminaries in Section 7.2, we give
algorithms to detect essential vertices based on covering/packing duality in
Section 7.3 and based on integrality gaps in Section 7.4. In Section 7.5 we
show how these detection subroutines can be used to improve the parameter
dependence of FPT algorithms parameterized by solution size. The lower
bounds are presented in Section 7.6. We conclude in Section 7.7.

7.2 Preliminaries for essential vertices

In this chapter we consider finite simple graphs, some of which are directed.
The minimum size of an H-modulator in G is denoted OPTH(G), that is, the
size of an optimal solution for H-Deletion.

Throughout this chapter we consider hereditary graph classes H. Recall
that these can be characterized by a (possibly infinite) set of forbidden induced
subgraphs, we will denote them by forb(H). The H-Deletion problem is
equivalent to finding a minimum set S ⊆ V (G) such that no induced subgraph
of G− S is isomorphic to a graph in forb(H). We say that such a set S hits all
induced copies of forb(H) in G.

For a graph G and a set T ⊆ V (G), a T -path is a path P in G of length at
least one (so at least one edge), such that both endpoints of P are contained in T .
A T -path is odd if it has an odd number of edges. There is a polynomial-time
algorithm due to a theorem of Gallai that computes a maximum cardinality
packing of pairwise vertex-disjoint T -paths.

Theorem 7.2 ([48, Theorem 9.2]). Given a graph G, a set T ⊆ V (G), and an
integer s, one can in polynomial time either

1. find a family of s + 1 pairwise vertex-disjoint T -paths, or

2. conclude that no such family exists and, moreover, find a set B of at most
2s vertices, such that in G−B no connected component contains more
than one vertex of T .

The maximum cardinality k of such a packing of pairwise vertex-disjoint
T -paths is the largest integer k such that the theorem above applied with
integer k − 1 results in the first outcome.
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Whenever we refer to a (u, v)-separator, we mean a restricted ({u}, {v})-
separator, that is, a set S ⊆ V (G) \ {u, v} whose removal disconnects u from v.

Directed graphs. This chapter also covers some variants of H-Deletion
problems where the input graph is directed. Here the task is to find a minimum
cardinality set of vertices whose removal results in a directed graph contained
in H, where H is a class of directed graphs. A directed graph G consists of
a set of vertices V (G) and a set of edges (or arcs) E(G) ⊆ V (G) × V (G).
Here an edge (u, v) ∈ E is an ordered pair indicating that the edge is directed
from u to v. The main notions we need are those of walks, paths, cycles,
and separators. Their definitions are similar to their undirected counterparts
(see Chapter 2), but with directed arcs between consecutive pairs of vertices
instead. For instance, a directed walk of length ℓ ≥ 0 in a graph G is a
sequence (v1, . . . , vℓ+1) of ℓ + 1 vertices such that (vi, vi+1) ∈ E(G) for each
i ∈ [ℓ]. Directed closed walks, directed paths, and directed cycles are defined
analogously, with the slight alteration that directed graphs can have cycles
of length one and two. Again these are called odd if their length (number of
edges) is odd. Every directed graph that contains an odd directed closed walk
contains an odd directed cycle. Finally a (u, v)-separator in a directed graph
G is a set S ⊆ V (G) \ {u, v} such that in G− S there is no directed path from
u to v. Menger’s theorem also applies to directed graphs: Theorem 2.1 holds
where ‘graph’ is replaced by ‘directed graph’ and ‘path’ by ‘directed path’.

We consider the Directed Feedback Vertex Set and Directed Odd
Cycle Transversal problem, that correspond to finding a minimum cardi-
nality vertex set that intersects every directed cycle and every odd directed
cycle respectively. Since a cycle of length one (a self-loop) is part of every
optimal solution for both problems, without loss of generality we assume these
are already removed from the graph.

7.3 Positive results via packing covering

In this section we provide polynomial-time algorithms for c-Essential de-
tection for Π for various problems Π. The case for the Vertex Cover
problem was given in Section 7.1. The results in this section are all based on
packing/covering duality (cf. [42], [166, §73]). Towards this end, we generalize
the notion of flowers, which played a key role in kernelization for Feedback
Vertex Set [27]. While flowers were originally formulated as systems of cycles
(forbidden structures for Feedback Vertex Set) pairwise intersecting in a
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single common vertex, we generalize the notion to near-packings of arbitrary
structures here.

Definition 7.3. Let F be a set of graphs. For a graph G and v ∈ V (G), a
(v,F)-flower with p petals in G is a set {C1, C2, . . . , Cp} of induced subgraphs
of G such that each Ci (with i ∈ [p]) is isomorphic to some member of F and
such that V (Ci) ∩ V (Cj) = {v} for all distinct i, j ∈ [p]. The F-flower number
of a vertex v ∈ V (G), denoted ΓF (G, v), is the largest integer p for which there
is a (v,F)-flower in G with p petals.

We show a general theorem for finding 2-essential vertices for H-Deletion
if a maximum (v,forb(H))-flower can be computed in polynomial-time. It
applies to those classes H where graphs with G − v ∈ H obey a min-max
relation between H-modulators avoiding v and packings of forbidden induced
subgraphs intersecting only at v.

Theorem 7.4. Let H be a hereditary graph class such that, for any graph G
and vertex v ∈ V (G) with G − v ∈ H, the minimum size of an H-modulator
avoiding v in G equals Γforb(H)(G, v). Suppose there exists a polynomial-time
algorithm A that, given a graph G and vertex v ∈ V (G), computes Γforb(H)(G, v).
Then there is a polynomial-time algorithm that solves 2-Essential detection
for H-Deletion.

Proof. Apply algorithm A to each vertex v ∈ V (G) and output the set S of
vertices for which it finds that Γforb(H)(G, v) > k. We argue that Properties G1
and G2 are satisfied. If OPTH(G) ≤ k, then every vertex in S is contained in
every optimal solution for G since a size-k solution cannot hit a flower of k + 1
petals from forb(H) without using v. Therefore Property G1 is satisfied. Next
suppose that OPTH(G) = k and let X be an optimal solution. We argue that
each vertex v /∈ S is not 2-essential. Clearly this holds for any vertex v /∈ X, so
suppose that v ∈ X. Note that for every vertex v /∈ S we have Γforb(H)(G, v) ≤ k,
which implies that Γforb(H)(G

′, v) ≤ k where G′ := G− (X \ {v}). Note that
since G′−v ∈ H, by assumption there exists an H-modulator X ′ ⊆ V (G′)\{v}
in G′ of size Γforb(H)(G

′, v) ≤ k. Observe that (X \{v})∪X ′ is an H-modulator
in G of size at most 2k that avoids v and therefore v is not 2-essential.

We give two straightforward applications of Theorem 7.4, namely for the
Feedback Vertex Set (FVS) problem and its directed variant. The FVS
problem corresponds to H-Deletion where H is the class of acyclic graphs
and forb(H) is the set of cycles.

Lemma 7.5. There is a polynomial-time algorithm for 2-Essential detec-
tion for FVS.
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Proof. We argue that the preconditions of Theorem 7.4 hold. The existence of
a polynomial-time algorithm that computes Γforb(H)(G, v) follows from Theo-
rem 7.2, since a flower of cycles through v corresponds to a collection of paths
connecting pairs of distinct vertices of NG(v) to each other in the graph G− v.
By applying Theorem 7.2 to G− v with T = NG(v), we get that Γforb(H)(G, v)
is the largest integer k such that the outcome of the theorem applied with the
integer k − 1 is a family of k pairwise vertex-disjoint T -paths in G − v. For
the first precondition of Theorem 7.4, we argue that when G − v is acyclic,
the maximum number of petals in a (v,forb(H))-flower is equivalent to the
minimum cardinality of a set S that hits all cycles through v.

Claim 7.6 ([15, page 67]). Let T be a tree and let F be a collection of connected
subgraphs of T . The maximum size of a packing of vertex-disjoint members of
F equals the minimum size of a vertex set intersecting all of F .

By noting that any cycle through v in G corresponds to a path between
two neighbors in a connected component of G− v which is a tree, the claim
above directly implies the desired result. It follows there is a polynomial-time
algorithm for 2-Essential detection for FVS by Theorem 7.4.

The DFVS problem corresponds to a directed version of H-Deletion
where H is the set of directed acyclic graphs and forb(H) is the set of directed
cycles. An algorithm for finding 2-essential vertices for this problem follows by
a simple application of Menger’s theorem.

Lemma 7.7. There is a polynomial-time algorithms for 2-Essential detec-
tion for DFVS.

Proof. The preconditions of Theorem 7.4 follow from known results, see for
instance the work of Fleischer et al. [73], we repeat the argument for com-
pleteness. Consider any directed graph D and vertex v ∈ V (D). Obtain
a graph D′ by splitting v into vi and vo. Attach every incoming arc of v
to vi and every outgoing arc to vo. Compute a minimum (vi, vo)-separator
S ⊆ V (D′) \ {vi, vo} in D′. By Menger’s theorem, its size is equivalent to the
maximum number of internally vertex-disjoint paths from vi to vo. Since any
(vi, vo)-path in D′ corresponds to a directed cycle containing v in D, it follows
that Γforb(H)(D, v) can be computed in polynomial time. Finally, suppose that
D − v is a directed acyclic graph. Note that then the separator S constructed
above is an H-modulator avoiding v of size Γforb(H)(D, v). By Theorem 7.4 it
follows that there is a polynomial-time algorithm for 2-Essential detection
for DFVS.
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7.3.1 Odd cycle transversal

Next, we consider Odd Cycle Transversal (OCT), which corresponds to
H-Deletion where H is the class of bipartite graphs and forb(H) consists of
all odd cycles. In order to apply Theorem 7.4 to OCT, we first argue that the
class of bipartite graphs satisfies the preconditions. The proof is similar to that
of Geelen et al. [90, Lemma 11] who reduce the problem of packing odd cycles
containing v to a matching problem. We note that, although their result can
be used to obtain a 3-essential detection algorithm, we will show (Lemma 7.11)
how to efficiently detect 2-essential vertices as well. If the graph resulting from
their construction has a large matching, then there is a large (v,forb(H))-flower.
If on the other hand there is no large matching, then the Tutte-Berge formula
is used to obtain a set of size 2k that hits all the odd cycles passing through v.
We show that if the graph G− v is bipartite instead, then this second argument
can be improved to obtain a hitting set of size k by noting that a T -path is
odd if and only if its endpoints are in different parts of a 2-coloring of G− v.
We can then obtain the desired hitting set using Menger’s theorem.

Lemma 7.8. For any undirected graph G and set T ⊆ V (G), a maximum
packing of odd T -paths can be computed in polynomial time. Moreover, if G is
bipartite then the cardinality of a maximum packing of odd T -paths is equal to
the minimum size of a vertex set which intersects all odd T -paths.

Proof. We reduce to matching as in [90, Lemma 11]. Construct a graph
H as follows. For each v ∈ V (G) \ T , let v′ /∈ V (G) be a copy of v. Let
V (H) = V (G) ∪ {v′ | v ∈ V (G) \ T} and E(H) = E(G) ∪ {u′v′ | uv ∈
E(G − T )} ∪ {vv′ | v ∈ V (G) \ T}. Note that the graph H consists of
the disjoint union of G and a copy of G − T , with an added edge between
v ∈ V (G) \ T and its copy v′. Geelen et al. [90] mention that there is a 1-1
correspondence between odd T -paths in G and certain augmenting paths in H.
For completeness we give a self-contained argument.

Claim 7.9. Graph G contains k vertex-disjoint odd T -paths if and only if H
has a matching M of size |V (G) \T |+ k. Furthermore, given a matching M in
H of size |V (G) \ T | + k we can compute a set of k vertex-disjoint odd T -paths
in polynomial time.

Proof. (⇒) Let P = (P1, . . . , Pk) be a set of k vertex-disjoint odd T -paths
in G. Consider a path P = (v1, . . . , v2ℓ) ∈ P, where ℓ ≥ 1. First note
that we can assume that V (P ) ∩ T = {v1, v2ℓ}, since if vi ∈ T for some
1 < i < 2ℓ, then either (v1, . . . , vi) or (vi, . . . , v2ℓ) is an odd T -path and we
can update P accordingly. Construct a matching M in H as follows. For any
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path P = (v1, . . . , v2ℓ) ∈ P, add the edges v1v2, v
′
2v

′
3, . . . , v2ℓ−1v2ℓ, alternating

between original vertices and copy vertices. This is possible as P is of odd
length. For any vertex in u ∈ V (G) \ T that is not contained in an odd T -path,
we add uu′ to M . Observe that at least 2|V (G) \ T | + 2k vertices are matched,
therefore |M | ≥ |V (G) \ T | + k as desired.

(⇐) Let M be a matching of size |V (G)\T |+k in H. If M contains both uv
and u′v′ for u, v ∈ V (G) \ T , then update M by removing them and inserting
uu′ and vv′ instead. If for v ∈ V (G) \ T only one of v and v′ is matched, and
it is not matched to its copy, then match it to its copy instead. Afterwards let
E′ := {uv ∈ E(G) | uv ∈ M ∨ u′v′ ∈ M}. Observe that in G[E′], each vertex
in V (G) \ T has degree 0 or 2. For each v ∈ V (G) \ T such that v has degree 0
in G[E′], add vv′ to M if it is not in already. Note that all vertices of H − T
are matched. It follows that at least 2k vertices in T are matched by M and
they have degree 1 in G[E′]. Observe that G[E′] is a collection of paths and
cycles with all degree-1 vertices in T . We get that there are k T -paths in G
that are of odd length by construction (every even numbered edge in G[E′]
originated from the copy part of H). Note that we can find them in polynomial
time. ■

Since a maximum matching can be computed in polynomial time, by the
claim above we get that a maximum packing of vertex-disjoint odd T -paths
can be computed in polynomial time. Next we prove the second part of the
statement.

Claim 7.10. For a bipartite graph G and T ⊆ V (G), the maximum cardinality
of a packing of odd T -paths is equal to the minimum size of a vertex set which
intersects all odd T -paths.

Proof. Observe that any T -path is contained in a single connected component
of G. Furthermore since G is bipartite, each connected component has a unique
2-coloring (up to reversal of colors). Consider a 2-coloring c : V (G) → {1, 2}
of G and let A = c−1(1) and B = c−1(2). A T -path is odd if and only if
one of its endpoints is in A and the other is contained in B. The claim then
follows from Menger’s theorem (Theorem 2.1): the maximum cardinality of
a packing of odd T -paths is equivalent to a maximum cardinality packing
of (A ∩ T,B ∩ T )-paths, which in turn is equal to the minimum size of a
(A ∩ T,B ∩ T )-separator. ■

This concludes the proof of Lemma 7.8.



150 7. Search-Space Reduction via Essential Vertices

By observing that odd T -paths in G− v directly correspond to flowers with
of cycles pairwise intersecting at v in G, Lemma 7.8 and Theorem 7.4 imply
the following.

Lemma 7.11. There is a polynomial-time algorithm for 2-Essential detec-
tion for OCT.

7.3.2 Directed odd cycle transversal

The DOCT problem corresponds to H-Deletion where forb(H) consists of all
directed cycles of odd length. Using Menger’s theorem on an auxiliary graph,
we can detect 3-essential vertices for this problem.

Lemma 7.12. There is a polynomial-time algorithm for 3-Essential detec-
tion for DOCT.

Proof. Consider an instance (D, k) of 3-Essential detection for DOCT.
Construct the so called label-extended graph (cf. [9, Section 3.1]) D′ (initially
empty) as follows.

1. For each v ∈ V (D), add v′ and v′′ to V (D′).

2. For each directed arc (u, v) ∈ E(D), add the arcs (u′, v′′) and (u′′, v′) to
E(D′).

We can now solve the problem using D′. For each vertex v ∈ V (D), compute
a minimum (v′, v′′)-separator Sv in D′. Observe that v′ and v′′ are not adjacent
in D′ since D had no self-loops (see Section 7.2), and therefore these restricted
(v′, v′′)-separators exist. Let Q = {v ∈ V (D) | |Sv| ≥ 2k + 1}. We argue that
Q satisfies the output requirements G1 and G2.

First, suppose that OPTDOCT(G) ≤ k. Consider a vertex v ∈ Q. Since
|Sv| ≥ 2k+1, by Menger’s theorem there is a collection P ′

1, . . . , P
′
|Sv| of internally

vertex-disjoint (v′, v′′)-paths in D′. Let Pi = {u | {u′, u′′} ∩ V (P ′
i ) ̸= ∅} and

P =
⋃

i{Pi}.

Claim 7.13. D[Pi] contains an odd directed cycle for each i ∈ [|Sv|]. Further-
more, each u ∈ V (D) \ {v} intersects at most two vertex sets of P.

Proof. Each (v′, v′′)-path P ′
i in D′ corresponds to a directed closed walk Pi

in D. Since P ′
i starts at v′ and ends at v′′, while every edge in D′ switches

between parities, it follows that Pi is an odd closed walk in D. This in turn
implies that D[V (Pi)] contains a directed odd cycle. To see the second point,
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note that the paths in D′ are vertex-disjoint and since we created two copies
of each vertex, it follows that each vertex of V (D) \ {v} intersects at most two
vertex sets of P. ■

By the claim above, any solution to DOCT avoiding v ∈ Q has size at least
k + 1. It follows that each vertex in Q belongs to every optimal solution and
therefore Property G1 is satisfied. Next, suppose that OPTDOCT(G) = k. We
argue that Q contains all 3-essential vertices. Consider an optimal solution
X and a vertex v /∈ Q. If v /∈ X, then clearly v is not 3-essential and there is
nothing to show, so suppose that v ∈ X. Let X ′ = {u ∈ V (D) | {u′, u′′}∩Sv ≠
∅}. Note that |X ′| ≤ |Sv| ≤ 2k. Since any odd cycle containing v corresponds
to a (v′, v′′)-path in D′, and since Sv is a (v′, v′′)-separator in D′, it follows
that (X \ {v}) ∪X ′ is a solution of size at most k − 1 + 2k < 3k that avoids v.
It follows that v is not 3-essential, therefore Q contains all 3-essential vertices
and Property G2 is satisfied.

We cannot use the approach based on computing a maximum (v,F)-flower
for the Chordal Deletion problem. Below we give a simple reduction
from Disjoint Paths [162] that shows that it is NP-hard to compute a
maximum (v,F)-flower where F is the set of chordless cycles of length at least
four. In the next section, we will therefore use a different approach based on
linear-programming relaxations to deal with Chordal Deletion.

Lemma 7.14. Computing a maximum (v,F)-flower where F is the set of
chordless cycles of length at least four is NP-hard.

Proof. Consider the NP-hard Disjoint Paths problem. Here we are given a
graph G and pairs (s1, t1), . . . , (sℓ, tℓ) of vertices of G. The task is to decide if
there exist paths P1, . . . , Pℓ that are pairwise vertex disjoint such that Pi is a
siti-path in G. Starting from an instance (G, (s1, t1), . . . , (sℓ, tℓ)) of Disjoint
Paths satisfying siti /∈ E(G) for all i ∈ [ℓ] (which is without loss of generality),

obtain a graph G′ by inserting a vertex v∗ adjacent to A =
⋃ℓ

i=1{si, ti} and
inserting all edges between vertices in A except siti for each i ∈ [ℓ]. Then the
Disjoint Paths instance is a yes-instance if and only if G′ has a (v∗,F)-flower
of size ℓ.

7.4 Positive results via linear programming

Consider the following natural linear program for H-Deletion for hereditary
graph classes H. The LP corresponding to an input graph G is defined on the
variables (xu)u∈V (G), as follows.
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H-Deletion LP
Objective: minimize

∑
u∈V (G) xu.

Subject to:

•
∑

u∈V (H) xu ≥ 1 for each induced subgraph H of G isomorphic to a

graph in forb(H), and

• 0 ≤ xu ≤ 1 for each u ∈ V (G).

In the corresponding integer program, the constraint 0 ≤ xu ≤ 1 is replaced
by xu ∈ {0, 1}. We say that a minimization LP has integrality gap at most c
for some c ∈ R if the cost of an integer optimum is at most c times the cost
of a fractional optimum. In general, the number of constraints in the H-
Deletion LP can be exponential in the size of the graph. Using the ellipsoid
method (cf. [166]), this can be handled using a separation oracle: a polynomial-
time algorithm that, given an assignment to the variables, outputs a violated
constraint if one exists. It is well-known (cf. [166, Thm. 5.10]) that linear
programs with an exponential number of constraints can be solved in polynomial
time using a polynomial-time separation oracle. To detect essential vertices,
the integrality gap of a slightly extended LP will be crucial. We define the
v-Avoiding H-Deletion LP for a graph G and distinguished vertex v ∈ V (G)
as the H-Deletion LP with the additional constraint that xv = 0. Hence its
integral solutions correspond to H-modulators avoiding v.

Theorem 7.15. Let H be a hereditary graph class such that for each graph G
and v ∈ V (G) satisfying G − v ∈ H, the integrality gap of v-Avoiding H-
Deletion on G is at most c ∈ R≥1. If there is a polynomial-time separation
oracle for the H-Deletion LP, then there is a polynomial-time algorithm for
(c + 1)-Essential detection for H-Deletion.

Proof. Given G and k, the detection algorithm initializes an empty vertex
set S and proceeds as follows. For each v ∈ V (G), it solves the v-Avoiding
H-Deletion LP on G in polynomial time using the ellipsoid method via the
polynomial-time separation oracle. If the linear program has cost more than k,
we add v to S. After having considered all vertices v ∈ V (G), the resulting
set S is given as the output.

To see that the output satisfies Property G1, assume that OPTH(G) ≤ k
and consider some optimal H-modulator X of size at most k. If v /∈ X then X
induces an integer feasible solution to the H-Deletion LP that satisfies the
additional constraint xv = 0, so that the cost of the v-Avoiding H-Deletion
LP is at most k and therefore v /∈ S. By contraposition, all vertices of S are
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indeed contained in some minimum H-modulator, namely X.
To see that the algorithm also satisfies Property G2, assume OPTH(G) = k

and let X be a minimum H-modulator of size k. We prove that S contains
all (c + 1)-essential vertices. Consider an arbitrary v /∈ S; we will argue it is
not (c + 1)-essential by exhibiting a (c + 1)-approximate modulator avoiding v.
Since v /∈ S, the v-Avoiding H-Deletion LP has a (fractional) solution x =
(xu)u∈V (G) of cost at most k. If v /∈ X then v was not (c + 1)-essential, and
there is nothing to show. So assume v ∈ X.

Restricting the assignment x to the vertices of the graph G′ := G−(X \{v})
yields a feasible solution x′ for the v-Avoiding H-Deletion LP on G′, whose
cost is at most that of x and therefore at most k. Note that G′−v equals G−X
and therefore belongs to H. By the precondition to the theorem, the integrality
gap for v-Avoiding H-Deletion on G′ is at most c. Hence the solution x′ can
be rounded to an integral solution X ′ on G′ of cost at most c ·k and v /∈ X ′ due
to the constraint xv = 0. Since G− ((X \ {v})∪X ′) = G′ −X ′ ∈ H, it follows
that (X\{v})∪X ′ is an H-modulator of size at most c·k+k = (c+1)k avoiding v,
which is therefore a (c + 1)-approximation. Hence v is not (c + 1)-essential
whenever v /∈ S.

Using known results on covering versus packing for chordless cycles in near-
chordal graphs, the approach above can be used to detect essential vertices
for Chordal Deletion. For the class of chordal graphs, the corresponding
set of forbidden induced subgraphs is the class hole of all holes, i.e., induced
chordless cycles of length at least four.

Lemma 7.16 ([113, Lemma 1.3]). There is a polynomial-time algorithm that,
given a graph G and a vertex v such that G− v is chordal, outputs a (v,hole)-
flower with p-petals and a set S ⊆ V (G) \ {v} of size at most 12p such that
G− S is chordal.

Using this covering/packing statement, we can bound the relevant integrality
gap and thereby detect essential vertices for Chordal Deletion.

Lemma 7.17. There is a polynomial-time algorithm for 13-Essential de-
tection for Chordal Deletion.

Proof. We first argue that the integrality gap for v-Avoiding Chordal Dele-
tion is bounded by 12 when G − v is chordal. By Lemma 7.16, there is
a value of p such that G contains both a (v, hole)-flower {C1, . . . , Cp} with
p-petals and a v-avoiding chordal modulator S of size at most 12p. Due to the
constraint xv = 0, any fractional solution to the linear program has a cost of at
least p, since

∑
u∈Ci

xu ≥ 1 while xv = 0 and the holes only intersect at v. At
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the same time, an integral solution has cost at most 12p as S is such a solution.
Hence the integrality gap is at most 12.

To invoke Theorem 7.15, it suffices to argue that there is a polynomial-
time separation oracle for the linear program. Such a separation oracle is
known (cf. [113, §10.1]), we repeat it here for completeness. To test whether
an assignment x = (xu)u∈V (G) satisfies all constraints, it suffices to do the
following. For each u ∈ V (G) we find the minimum total weight of any hole
involving u, as follows. For each pair of distinct non-adjacent p, q ∈ NG(u) we
use Dijkstra’s algorithm to find the minimum weight W of a path P from p
to q in the graph G − (NG[u] \ {p, q}) where the values of x are used as the
vertex weights. There is a hole of weight less than 1 through (p, u, q) if and
only if W + xu < 1. Moreover, if W + xu < 1 then by extending path P with
the vertex u we find a hole whose total weight is less than 1 and therefore a
violated constraint. The fact that we remove all vertices of NG[u] other than p
and q ensures that the cycle we get in this way is induced, while the non-
adjacency of p and q ensures it has at least four vertices. Hence after iterating
over all choices of u, p, q we either find a violated constraint or conclude that
the assignment is feasible. This shows that Theorem 7.15 is applicable and
concludes the proof.

7.5 Consequences for parameterized algorithms

In this section we show how the algorithms for c-Essential detection from
the previous section can be used to solve H-Deletion for various classes H,
despite the fact that the detection algorithms only work when certain guarantees
on k are met. The main theorem connecting the detection problem to solving
H-Deletion is the following.

Theorem 7.18. Let A be an algorithm that, given a graph G and an integer k,
runs in time f(k) · |V (G)|O(1) for some non-decreasing function f and returns
a minimum-size H-modulator if there is one of size at most k. Let B be a
polynomial-time algorithm for c-Essential detection for H-Deletion.
Then there is an algorithm that, given a graph G, outputs a minimum-size
H-modulator in time f(ℓ) · |V (G)|O(1), where ℓ = OPTH(G) − |Ec(G)| is the
c-non-essentiality.

Proof. First we describe the algorithm as follows. For each 0 ≤ k ≤ |V (G)|,
let Sk be the result of running B on (G, k), let Gk := G − Sk, and let bk :=
k − |Sk|.



7.5. Consequences for parameterized algorithms 155

Letting L be the list of all triples (Gk, Sk, bk) sorted in increasing order by
their third component bk, proceed as follows. For each (Gk, Sk, bk) ∈ L, run A
on (Gk, bk) to find a minimum H-modulator SA of size at most bk, if one exists.
If |SA| = bk, then output SA ∪ Sk as a minimum H-modulator in G.

To analyze the algorithm, we first argue it always outputs a solution. For
the call with k∗ = OPTH(G), both conditions of the detection problem are
met. Hence by Property G1 the set Sk∗ is contained in a minimum modulator
in G, so that OPTH(G− Sk∗) = OPTH(G) − |Sk∗ | = k∗ − |Sk∗ |. Therefore
graph Gk∗ = G− Sk∗ has a modulator of size at most bk∗ = OPTH(G− Sk∗)
and none which are smaller, so that A correctly outputs a modulator of size bk∗ .
In turn, this causes the overall algorithm to terminate with a solution.

Having established that the algorithm outputs a solution, we proceed to
show that it outputs a minimum-size modulator whenever it outputs a solution
(which may be in an earlier iteration than for k∗ = OPTH(G)). Let k′ be
the value of k that is reached when the algorithm outputs a solution SA ∪ Sk′ .
Then we know:

1. algorithm A found a minimum-size modulator SA in Gk′ of size at
most bk′ , and

2. the set SA ∪ Sk′ is a modulator in G, since SA is a modulator in Gk′ =
G− Sk′ , and therefore OPTH(G) ≤ bk′ + |Sk′ | = k′.

To see that the algorithm is correct, notice that, since OPTH(G) ≤ k′, the
set Sk′ is contained in some minimum-size modulator for G (Property G1 of
B). Hence OPTH(Gk′) = OPTH(G)− |Sk′ |. Since A outputs a minimum-size
modulator if there is one of size at most bk′ , we have |SA| = OPTH(G)− |Sk′ |,
so that SA∪Sk′ is a feasible modulator of size OPTH(G) and therefore optimal.

Now we prove the desired running-time bound. First of all, notice that we
can determine the list L in polynomial time by running B once for each value
of k (which is at most |V (G)|). By how we sorted L, we compute A(Gk, bk)
only when bk ≤ bk∗ , as we argued above that if the algorithm has not already
terminated, it does so after reaching k∗ = OPTH(G). Hence the calls to
algorithm A are for values of the budget bk which satisfy bk ≤ bk∗ . We bound
the latter, as follows.

Since k∗ = OPTH(G), the set Sk∗ found by B is a superset of the set Ec(G)
of all of the c-essential vertices in G (Property G2). This means that we have

bk∗ = OPTH(G) − |Sk∗ | ≤ OPTH(G) − |Ec(G)| = ℓ,

so the parameter of each call to A is at most ℓ, giving the total time bound
f(ℓ) · |V (G)|O(1).
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Theorem 7.1 now follows from Theorem 7.18 via the algorithms for c-
Essential detection given in the previous sections and the state-of-the-art
algorithms for the natural parameterizations listed in Table 7.1. Although the
latter may originally be stated for the decision version, using self-reduction
they can easily be adapted to output a minimum solution if there is one of size
at most k.

7.6 Hardness results

Given the positive results we saw in Sections 7.3 and 7.4, it is natural to seek
problems Π for which c-Essential detection for Π is intractable. Here we
show that c-Essential detection for Dominating Set is intractable for
any c ∈ O(1) and then use this as a starting point to prove similar results for
Hitting Set, Perfect Deletion, and Wheel-free Deletion.

A dominating set is a vertex set whose closed neighborhood is the entire
graph. The domination number of a graph is the size of a minimum dominating
set. The starting point for our reductions is the following result which states
that it is W[1]-hard to solve Dominating set parameterized by solution size
even on instances which have ‘solution-size gaps’.

Lemma 7.19 ([118], cf. [66, Thm. 4]). Let F, f : N → N be any computable
functions with F (x) > 1 for any x ∈ N. Assuming FPT ̸= W[1], there does not
exist an algorithm that, given a graph G and non-negative integer k, runs in
time f(k) · |V (G)|O(1) and distinguishes between the following two cases:

• Completeness: G has a dominating set of size k.

• Soundness: Every dominating set of G is of size at least k · F (k).

All of our reductions in this section share a leitmotif. We start with
a gap instance (G, k) of Dominating Set and map it to an instance G′

of c-Essential detection for Π (for appropriate Π) equipped with a
distinguished vertex v∗ with the following property: (1) if G has domination
number at most k, then no optimal solution for Π in G′ contains v∗; (2) if G
has domination number strictly greater than c · F (k) (for some appropriate
F ), then v∗ is contained in every solution for Π of size at most c · F (k) in G′.
Thus our hardness results will follow by combining reductions of this kind with
Lemma 7.19.

Lemma 7.20. There is a polynomial-time algorithm R that, given a graph G
and integer k, outputs a graph R(G, k) containing a distinguished vertex v∗

such that:
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G G1G0 G2 Gk

v∗

∼ ∼ · · ·∼ ∼

a1 a2 ak· · ·

R

Figure 7.1: Reduction of Dominating Set to c-Essential detection for
Dominating Set. For each x ∈ V (G) and any two distinct copies xi and xj

of x in Gi and Gj , xi and xj are true twins in R(G, k)[V (Gi) ∪ V (Gj)]. Each
ai is an apex vertex to Gi (i.e. N(ai) = V (Gi)) and v∗ is an apex to the whole
graph except a1, . . . , ak.

• if G has domination number at most k, then the domination number of
R(G, k) is exactly k and every optimal dominating set avoids v∗;

• if G has domination number strictly greater than c · (k + 1) for some c ∈
R≥1, then R(G, k) has domination number k + 1 and the distinguished
vertex v∗ is contained in all R(G, k)-dominating sets of size at most
c · (k + 1).

Proof. The graph R(G, k) (see Figure 7.1) is defined formally as follows:

• Initialize R(G, k) as the graph on vertex set {vi | v ∈ V (G), 0 ≤ i ≤ k}
with edges {viuj | uv ∈ E(G), 0 ≤ i, j ≤ k} ∪ {vivj | v ∈ V (G), 0 ≤ i <
j ≤ k}.

• For each i ∈ {1, . . . , k} insert an apex ai which is adjacent to {vi | v ∈
V (G)}.

• Insert a vertex v∗ which is adjacent to {vi | v ∈ V (G), 0 ≤ i ≤ k}.

For our notational convenience, notice that the graph R(G, k) contains k + 1
isomorphic copies of G denoted as G0, . . . , Gk where each Gi is defined as the
induced subgraph R(G, k)[{vi | v ∈ V (G)}] of R(G, k).

Notice that R(G, k) has domination number at least k: since {a1, . . . , ak}
is an independent set and the neighborhoods of each ai are disjoint in R(G, k),
we have that any dominating set of R(G, k) is forced to pick at least one vertex
from V (Gi) ∪ {ai} for each 1 ≤ i ≤ k. In particular, this means that every
dominating set that contains v∗ must have cardinality at least k + 1 (since v∗

does not dominate a1, . . . , ak).
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Now, to prove that R(G, k) has the desired properties, start by supposing
that G has a dominating set {s1, . . . , sℓ} with ℓ at most k. We claim that,
by ‘spreading-out’ this dominating set over G1, . . . , Gℓ (i.e. pick the copy of
si in Gi for each i) we obtain a vertex-subset S′ of R(G, k) which dominates
v∗, {a1, . . . , aℓ} and every vertex of G0, . . . , Gk. The first two observations
are immediate and the last follows since each Gi is a ‘twin’ of Gj in R(G, k):
any vertex y in G is dominated by at least one vertex, si of S and, by the
construction of R(G, k), the copy of si in Gi dominates all of the copies
y0, . . . , yk of y in G0, . . . , Gk. It follows immediately from the definition of
R(G, k) that S′ ∪ {ai : ℓ < i ≤ k} is a dominating set of R(G, k) of size k
(which is smallest-possible by our previous arguments). Thus, by our previous
discussion, all minimum-size dominating sets of R(G, k) avoid v∗.

Now suppose there exists a constant c ≥ 1 such that G has domination
number greater than c · (k + 1). Take any dominating set S of R(G, k) not
containing v∗. Since G0 is not adjacent to any one of the vertices a1, . . . , ak and
v∗ ̸∈ S, every vertex of G0 must be dominated by some vertex of G0 ⊎ · · · ⊎Gk

in R(G, k). Thus the obvious projection of S \ {a1, . . . , ak, v∗} onto G is a
dominating set for G. Hence, if S avoids v∗, then |S| > c · (k + 1) by our
assumption on the domination number of G. In other words, every dominating
set of size at most c · (k + 1) must contain v∗. This, combined with the
fact that any dominating set of R(G, k) is forced to pick at least one vertex
from V (Gi) ∪ {ai} for each 1 ≤ i ≤ k (as we observe earlier), implies that
{v∗, a1, . . . , ak} is a minimum-size dominating set of R(G, k) (where each ai
dominates itself and v∗ dominates everything else) which has size k + 1.

Lemma 7.19 combined with the reduction provided by Lemma 7.20 yields
the following.

Theorem 7.21. Unless FPT = W [1], there is no FPT-time algorithm for
c-Essential detection for Dominating Set parameterized by k for any
c ∈ R≥1.

Proof. Suppose such an algorithm A exists for c; we will use it with Lemma 7.19
to show FPT = W[1] for the function F (k) = c(k + 1).

Given an input instance (G, k) of Dominating Set in which the goal is
to distinguish between the completeness and soundness cases, the algorithm
proceeds as follows. Using the reduction R of Lemma 7.20, consider the graph
R(G, k) and let S be the output of an algorithm for c-Essential detection
for Dominating Set on the pair (R(G, k), k + 1); note that the solution size
for which we ask is k + 1 rather than k. Without loss of generality we may
assume k ≥ 2, as the distinction can trivially be made otherwise. We will show
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that in the completeness case we have v∗ /∈ S, while in the soundness case we
have v∗ ∈ S, which allows us to distinguish between these cases by checking
whether v∗ belongs to the output of A(R(G, k), k + 1).

For the completeness case, suppose G has domination number at most k.
Then, by Lemma 7.20, so does R(G, k). This means that Property G1 holds
for the call to A(R(G, k), k + 1), so that there is some optimal solution S′ of
size k which contains S and hence we have v∗ ̸∈ S by Lemma 7.20.

For the soundness case, suppose G has domination number at least k·F (k) =
c(k + 1)k > c(k + 1) (we use k ≥ 2 here). Then by Lemma 7.20, graph R(G, k)
has domination number k + 1 and v∗ is contained in all its dominating sets of
size at most c(k+1). In other words: v∗ is c-essential in R(G, k). Consequently,
v∗ ∈ S by Property G2 since the argument k + 1 we supplied to A coincides
with the optimum in R(G, k) in this case.

If A runs in FPT-time, then the overall procedure runs in FPT-time which
implies FPT = W[1] by Lemma 7.19.

In order to keep using the language of graphs, we view Hitting Set
instances with universe U and collection of sets F as a hypergraph where U is
the vertex set and F is the set of hyperedges. Consider the closed-neighborhood
mapping S, that is, the standard polynomial-time reduction from Dominating
Set to Hitting Set which maps each graph G to the hypergraph S(G) that
is defined as follows.

Definition 7.22. For a graph G, the hypergraph S(G) has vertex set V (G)
and hyperedges {NG[x] | x ∈ V (G)}.

The following observation captures the relation between dominating sets
of G and hitting sets of S(G).

Observation 7.23. Let G be a graph and X ⊆ V (G). Then X is a dominating
set of G if and only if X is a hitting set of S(G).

Note that, given the reduction R of Lemma 7.20, the composite mapping
S ◦R relates c-essentiality to gaps in solution quality in much the same way as
R did.

Now consider the parameter-preserving polynomial-time parameterized
reduction P (due to Heggernes et al. [101, Thm. 1]) taking instances of Hitting
Set with hyperedges of size at least two to Perfect Deletion. The reduction
was also covered in Lemma 4.17, we repeat it for completeness.

Definition 7.24. Let H be a hypergraph with hyperedges of size at least two.
Then P (H) is the graph defined as follows:
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• Initialize P (H) as an edgeless graph on vertex set V (H).

• For each hyperedge e = {x1, . . . , xℓ} in H, create ℓ + 1 new set gadget
vertices Ge = {e1, . . . , eℓ+1} and add edges {e1eℓ+1} ∪ {xiej | xi ∈ e, j ∈
{i, i + 1}} to P (H). Note that Ge ∪ e induces an odd hole in P (H) of
length at least five.

• Take the pairwise join of the set gadgets, that is, make all vertices of Ge

adjacent to all vertices of Ge′ for each distinct e, e′ ∈ E(H).

The following properties of P (H) are important for our hardness proof.

Lemma 7.25 ([101, Thm. 1 and Claims 1–3]). Given any Hitting Set
instance (H, k) with each hyperedge of size at least 2, the graph P (H) defined
in Definition 7.24 satisfies the following properties:

P1 given any vertex-subset X of P (H) such that P (H) − X is perfect; if
there is an x ∈ X such that x ̸∈ V (P (H)) ∩ V (H), then x lies on exactly
one odd hole Ce, and, for any vertex y ∈ V (Ce) ∩ V (H) we have that
P (H) − (X ∪ {y}) \ {x} is perfect,

P2 for any X ⊆ V (H), the set X is a hitting set in H if and only if P (H)−X
is perfect.

Lemma 7.25 ensures that we can chain the reductions R, S and P (found
respectively in Lemma 7.20, Definition 7.22, and Definition 7.24) to obtain a
polynomial-time reduction from Dominating Set to the detection problem
c-Essential detection for PerfDel with sufficient guarantees to be able
to then infer the intractability of the latter problem using Lemma 7.19. Here
we use shorthand PerfDel for Perfect Deletion.

Theorem 7.26. Unless FPT = W [1], there is no FPT-time algorithm for
c-Essential detection for PerfDel parameterized by k for any c ≥ 1.

Proof. Fix any gap instance (G, k) with k ≥ 2 of Dominating Set which has
domination number at most k or at least ck(k + 1) > c(k + 1). Then, by Obser-
vation 7.23 and Lemma 7.20, the hypergraph S(R(G, k)) has a distinguished
vertex v∗ such that following properties are satisfied:

C1 if G has domination number at most k, then S(R(G, k)) has hitting set
number k and all of its minimum hitting sets avoid v∗;

C2 if G has domination number strictly greater than c(k+1), then S(R(G, k))
has hitting set number k + 1 and its distinguished vertex v∗ is contained
in every solution of size at most c(k + 1).
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Let Q be the set returned by any algorithm for c-Essential detection for
PerfDel on input

(
(P ◦ S ◦ R)(G, k), k + 1

)
. Notice that, by Lemma 7.25,

in both Case C1 and Case C2 we have that the optimum for PerfDel on
(P ◦ S ◦R)(G, k) coincides with the optimum for HittingSet on S(R(G, k)).

With this observation in mind, consider Case C1. Here we have that Q is
contained in an optimum solution Q′ of size k (by Property G1). However, by
the second point in Lemma 7.25 (and since all size-k hitting sets of S(R(G, k))
avoid v∗) we deduce that any such Q′ (and hence Q) cannot contain v∗ (which
is a vertex of S(R(G, k)) and hence also a vertex of (P ◦ S ◦R)(G, k)).

For Case C2, consider any perfect deletion set X in (P ◦ S ◦ R)(G, k) of
size at most c(k + 1). If we can show that X must always contain v∗, then
we are done since it would imply that v∗ is c-essential which, by Property G2
would allow us to decide whether G has domination number either k or greater
than c(k + 1) simply by checking whether v∗ is in Q or not. So, seeking a
contradiction, suppose v∗ ̸∈ X. By Property P1 of Lemma 7.25 and since
each hyperedge in S(R(G, k)) has size at least 2, we can find a subset Y of the
vertices of S(R(G, k))−v∗ of size at most |X| such that (P ◦S ◦R)(G, k)−Y is
perfect. But then, by Property P2 of Lemma 7.25, we have that Y is a hitting
set of size at most |X| = c(k + 1) ≤ ck(k + 1) in S(R(G, k)) which avoids v∗.
However, this is a contradiction since Case C2 guarantees that v∗ is contained
in every hitting set for S(R(G, k)) of size at most ck(k + 1).

In a similar vein to the reduction of Heggernes et al. [101, Thm. 1] (Defini-
tion 7.24) there is a reduction L from Hitting Set to Wheel-free Deletion
(WheelDel for short) due to Lokshtanov [130]. A wheel Wq consists of a
cycle of length q ≥ 3 and a ‘center’ vertex adjacent to every vertex of the cycle.
The WheelDel problem therefore asks to remove all such structures from the
graph. The original reduction is defined as follows. Given an instance (H, k) of
Hitting Set with |V (H)| = n, for each universe element x ∈ V (H) add two
vertices x1 and x2 and add an edge between them. Then for each hyperedge
e ∈ E(H), construct the wheel W3n and distinguish an induced matching of
length n in the cycle of the wheel. To each edge uv of the matching, assign an
element of the universe V (H), say x. If e contains x, also add special edges
ux1 and vx2. Finally, contract all special edges. A sketch is given in Figure 7.2.
With the goal of proving hardness for detecting essential vertices in mind, we
need a slight modification to the reduction as currently solutions to WheelDel
may interchangeably use either x1 and x2 for any x ∈ V (H). This would cause
our special vertex v∗ in H to lose its essential properties. The reduction we
need is defined as follows.
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Figure 7.2: Sketch of reduction from Hitting Set to WheelDel for an
instance with universe [3] and hyperedges {1, 2} and {2, 3}. Square vertices
indicate elements initally added for V (H) that result from contracting special
edges. Left the reduction due to Lokshtanov [130], where for each wheel the
universe elements are mapped to an induced matching. Right the reduction as
in Definition 7.27, where universe elements are mapped to every other vertex
of the cycle.

Definition 7.27. Let H be a hypergraph with n ≥ 2 vertices. Then L(H) is
the graph defined as follows.

• Initialize L(H) as the edgeless graph on V (H).

• For each hyperedge e ∈ E(H), add a disjoint copy of a wheel W2n with
cycle (v1, . . . , v2n). To each vi with i being odd, assign a universe element
of V (H), say x, to vi. If e contains x, then add the special edge vix.

• Finally contract all special edges into the universe element (the new
vertex resulting from each contraction vjx should get label x so that
V (H) ⊆ V (L(H))).

Again see Figure 7.2 for a sketch. The following properties are analogous to
those in Lemma 7.25 for Perfect Deletion. Since the reduction is slightly
changed, we briefly argue its correctness following the arguments in [130].

Lemma 7.28. Given any Hitting Set instance (H, k) with at least 2 vertices,
the graph L(H) defined in Definition 7.27 satisfies the following properties:

L1 Given any vertex-subset X of L(H) such that L(H) −X is wheel-free;
if there is an x ∈ X such that x /∈ V (L(H)) ∩ V (H), then x lies on
exactly one wheel W , and, for any vertex y ∈ V (W )∩V (H) we have that
L(H) − (X ∪ {y}) \ {x} is wheel-free.

L2 For any X ⊆ V (H), the set X is a hitting set in H if and only if L(H)−X
is wheel-free.
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Proof. We first argue that the only vertices of L(H) that can be centers of a
wheel are the centers of W2n that were added for each e ∈ E(H). Clearly for
each vi of the cycle with i even, no special edges are incident to it, and so its
neighborhood before contracting special edges is contained in W2n. Therefore,
after contracting special edges, the neighborhood of vi induces a P3 (path of
length 2) in L(H). This also holds for any vi with i being odd that corresponds
to a universe element that was not in the hyperedge e and therefore did not
get any special edges. In the remaining case, after contracting special edges
it may be that vi (which corresponds to a universe element x ∈ V (H)) has
neighbors in multiple wheels. This results in a neighborhood that is a disjoint
union of P3’s, hence the vertex cannot be the center of a wheel. Since the
neighborhood of the center of W2n is an induced cycle, it follows that every
vertex of V (L(H)) \ V (H) is part of exactly one wheel and therefore we get
Property L1.

For Property L2, suppose that X ⊆ V (H) is a hitting set in H. To see that
L(H) −X is wheel-free, by the previous paragraph we only have to argue that
the wheels W2n that were added for each hyperedge are hit. By contracting
the special edges, the cycle of each wheel contains all elements of e ⊆ V (H).
Since X hits e, it follows X hits W2n and therefore L(H) −X is wheel-free.
In the other direction suppose X ⊆ V (H) is a wheel-free deletion set of L(H)
(which exists due to Property L1). For every wheel W2n that was added for
hyperedge e, X contains at least one element of e ⊆ V (H) that hits it and
therefore X is a hitting set of H.

Given Lemma 7.28, we can argue in similar vein to Theorem 7.26 to show
the intractability of c-Essential detection for WheelDel. We leave out
the proof as it would be identical to that of Theorem 7.26 with Lemma 7.25
replaced by Lemma 7.28.

Theorem 7.29. Unless FPT = W [1], there is no FPT-time algorithm for
c-Essential detection for WheelDel parameterized by k for any c.

7.7 Conclusion

We introduced the notion of c-essential vertices for vertex-subset minimization
problems on graphs, to formalize the idea that a vertex belongs to all reason-
able solutions. Using a variety of approaches centered around the theme of
covering/packing duality, we gave polynomial-time algorithms that detect a
subset of an optimal solution containing all c-essential vertices. This decreased
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the search space of parameterized algorithms from exponential in the size of the
solution, to exponential in the number of non-essential vertices in the solution.

Throughout this chapter we have restricted ourselves to working with un-
weighted problems. However, many of the same ideas can be applied in the set-
ting where each vertex has a positive integer weight of magnitude O(|V (G)|O(1))
and we search for a minimum-weight solution. Since integral vertex weights
can be simulated for many problems by making twin-copies of a vertex, our
approach can be extended to Weighted Vertex Cover, Weighted Odd
Cycle Transversal, and Weighted Chordal Deletion.

Our results shed a new light on which instances of NP-hard problems can be
solved efficiently. FPT algorithms for parameterizations by solution size show
that instances are easy when their optimal solutions are small. Theorem 7.1
refines this view: it shows that instances with large optimal solutions can still
be easy, as long as only a small number of vertices in the optimum is not
c-essential.

We remark that there is an alternative route to algorithms for c-Essential
detection, which is applicable to H-Deletion problems which admit a
constant-factor approximation. If there is a polynomial-time algorithm that,
given a graph G and vertex v, outputs a c-approximation for the problem of
finding a minimum-size H-modulator avoiding v, it can be used for c-Essential
detection. A valid output S for the detection problem with input (G, k) is
obtained by letting S contain all vertices for which the approximation algorithm
outputs a v-avoiding modulator of size more than c · k. Using this approach
(cf. [79]) one can solve maxF∈F |V (F )|O(1)-Essential detection for F-
Minor-Free Deletion for any finite family F containing a planar graph. As
the results for problems for which no constant-factor approximation exists are
more interesting, we focused on those.

Our work opens up several questions for future work. Is the integrality gap
for v-Avoiding Planar Vertex Deletion constant, when G− v is planar?
Can O(1)-Essential detection for Planar Vertex Deletion be solved
in polynomial time? Can 2-Essential detection for Chordal Deletion
be solved in polynomial time? Can the constant c for which we can detect
c-essential vertices be lowered below 2?

Considering a broader horizon, it would be interesting to investigate whether
there are less restrictive notions than c-essentiality which can be used as the
basis for guaranteed search-space reduction.



Part IV

Conclusion





Chapter 8

Concluding Remarks

In this thesis we have looked at H-Deletion problems, where the task is to
remove a minimum number of vertices to obtain a graph in a given graph
class H. Many of these problems are known to be FPT parameterized by the
solution size, implying that instances with small solutions remain tractable in
some sense. We explored two extensions of these tractable instances. In Part II
we considered solutions which may be large, but are structured in some way.
We looked at algorithms that use recently introduced hybrid parameters such
as H-treewidth, where essentially large induced subgraphs that belong to H
with small neighborhoods are not counted towards the width. We have given an
algorithm that computes an 8-approximate tree H-decomposition whenever H-
Deletion is FPT by solution size (Theorem 5.1). Using dynamic programming
techniques over these decompositions we are then able to solve H-Deletion
parameterized by twH (Theorem 6.1). In their respective chapters we have
mentioned possibilities for further work, such as improving approximation ratios,
parameter dependencies, and polynomial factors of the given algorithms. The
parameter dependency of our algorithm for H-Deletion for H being the class
of bipartite graphs or the class of planar graphs is as good as the best-known
dependency on the natural parameter. It would be great to add more graph
classes to this list. A first concrete candidate would be the Chordal Deletion
problem. Our algorithm under the hybrid parameterization has a dependency
of 2O(k2) where k = twH, whereas under the natural parameterization there is
an algorithm with parameter dependency 2O(k log k) [38].

In Part III we looked at algorithms that identify part of an optimal solution,
with the aim of speeding up a follow-up FPT algorithm that uses the natural
solution-size parameterization. Our algorithms try to identify of vertices that
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are somehow essential to creating good solutions. Roughly speaking, for a
constant c depending on the graph class H, for some H-Deletion problems we
are able to identify vertices that belong to every c-approximation in polynomial
time. This results in algorithms for H-Deletion where the parameter is
the number of non-essential vertices of the instance rather than the total
solution size. Section 7.7 mentions some possibilities for further work in this
paradigm such as improving these constants c. One thing in particular is that
the value of c for which we can find c-essential vertices is typically 2 or 3
(see Theorem 7.1). It remains open whether this is a limit, or if say 1.5-essential
vertices can somehow be found for certain graph problems.

We conclude with some possible research directions that do not directly
relate to the results of this thesis.

Superclass parameterization. The solution-size parameterization of H-
Deletion is essentially a parameterization by distance to H. Another method
to obtain parameters that are smaller than solution size is to parameterize by
the distance to some superclass G of H. Consider for instance Vertex Cover
parameterized by distance to bipartite (observe that every edgeless graph is
bipartite). By Kőnig’s theorem [48, Thm. 2.11] a minimum vertex cover can
be computed in polynomial time in bipartite graphs. Given a graph G and
a bipartite deletion set S, a minimum vertex cover can be computed by the
following procedure: for every subset X of S for which S \X is independent,
compute a minimum vertex cover YX in the bipartite graph G−S−NG(S \X)
and output the minimum cardinality of |X| + |NG(S \X) \X| + |YX | over all
options X. This simple branching algorithm implies that Vertex Cover is
FPT parameterized by distance to bipartite. The same applies for any graph
class G in which Vertex Cover is polynomial time solvable and for which
computing a minimum G-modulator is FPT parameterized by solution size,
which holds for instance for chordal graphs [70, §4]. It would be interesting to
see if there are more positive results of this type. Since Interval Deletion
is NP-hard in chordal graphs, the parameterization ‘distance to chordal’ would
not give positive results for this problem. On the other hand, Split Deletion
(obtaining a graph that can be partitioned into an independent set and a clique)
parameterized by distance to chordal or Cluster Deletion (obtaining a
graph that is a disjoint union of cliques) parameterized by distance to interval
could be considered. Preliminary investigation suggests that the former one is
FPT.

The parameterization described in this paragraph is similar in spirit to
that of ‘above guarantee’ parameterizations [120]. The difference is that the
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parameter described here is considered to be the distance to G, whereas the
above guarantee parameterization would consider the difference between this
lower bound (distance to G) and the target solution size as the parameter.

Filling in the gaps for the natural parameterization. While this thesis
focuses on obtaining FPT results for H-Deletion for smaller parameters than
the natural one, even for the natural parameter there remain some interesting
open problems. Due to the work of Cai [35], it follows that H-Deletion is
FPT for any hereditary graph class H which is characterized by a finite set of
forbidden induced subgraphs. No such general theorem is known for hereditary
classes whose forbidden induced subgraph characterization is not finite. Results
for these problems are obtained on a case by case basis, with a recent addition
of an FPT result for the class of bipartite permutation graphs [29]. Hardness
results for the class of perfect graphs [101] and wheel-free graphs [130] show
that FPT algorithms cannot always be obtained. Is it possible to obtain a
dichotomy that characterizes the classes H for which H-Deletion is FPT
parameterized by the natural parameter? Even for subclasses of perfect graphs
such a classification would be interesting.

Other problems. This thesis heavily focuses on the H-Deletion problem,
but there are plenty of other interesting graph problems that are NP-hard in
general graphs. First of all, H-Deletion is part of a larger class of problems
known as graph modification problems. Besides vertex deletions, you could
also consider other operations such as edge removal, edge addition, and edge
contraction to reach a graph with a certain desired property. These edge
modification problems are typically more difficult to solve than their vertex-
deletion counterpart. A survey of Crespelle et al. [47] gives an overview of the
state of the art and lists many open problems in this paradigm.

Besides graph modification problems, there are many other interesting graph
problems that are hard to solve in general graphs. A lot of work in classical
complexity has resulted in restrictions of graph classes in which these problems
remain polynomial time solvable. Consider for instance the Hamiltonian
Cycle problem, which asks for the existence of a cycle that visits all vertices
exactly once. The problem is NP-hard in general graphs, but is solvable in
polynomial time in co-comparability graphs [55] (yet another subclass of perfect
graphs). In the spirit of ‘distance to triviality’ parameterizations [98], it would
be interesting to see if such results extend to FPT algorithms parameterized
by distance to the graph class H in which they are polynomial time solvable.
It is currently not known if Co-comparability Deletion parameterized by
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solution size is FPT. Any positive results of this type could then be considered
as a problem to be tackled using the techniques of Part II as mentioned
in Section 6.6; do the ‘deletion distance to H’ results also extend to the
‘elimination distance to H’ parameterization?



Part V

Back Matter
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[103] Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Nieder-
meier. Fixed-parameter algorithms for cluster vertex deletion. Theory
Comput. Syst., 47(1):196–217, 2010. doi:10.1007/s00224-008-9150-x.

[104] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-
SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.

2000.1727.

[105] Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality,
LP-branching, and FPT algorithms. SIAM J. Comput., 45(4):1377–1411,
2016. doi:10.1137/140962838.

[106] Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/All CSPs, half-
integral A-path packing, and linear-time FPT algorithms. In Proceedings
of the 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, pages 462–473. IEEE Computer Society, 2018. doi:10.1109/
FOCS.2018.00051.

[107] Ashwin Jacob, Jari J. H. de Kroon, Diptapriyo Majumdar, and Venkatesh
Raman. Parameterized complexity of deletion to scattered graph classes.
CoRR, abs/2105.04660, 2021. arXiv:2105.04660.

[108] Bart M. P. Jansen and Jari J. H. de Kroon. FPT algorithms to compute
the elimination distance to bipartite graphs and more. In Proceedings of
the 47th International Workshop on Graph-Theoretic Concepts in Com-
puter Science, WG 2021, volume 12911 of Lecture Notes in Computer Sci-
ence, pages 80–93. Springer, 2021. doi:10.1007/978-3-030-86838-3_6.

https://doi.org/10.1137/1.9781611975482.104
https://doi.org/10.1137/1.9781611975482.104
https://doi.org/10.1016/j.tcs.2012.03.013
https://doi.org/10.1016/j.tcs.2012.03.013
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/140962838
https://doi.org/10.1109/FOCS.2018.00051
https://doi.org/10.1109/FOCS.2018.00051
http://arxiv.org/abs/2105.04660
https://doi.org/10.1007/978-3-030-86838-3_6


185

[109] Bart M. P. Jansen and Jari J. H. de Kroon. Preprocessing vertex-deletion
problems: Characterizing graph properties by low-rank adjacencies. J.
Comput. Syst. Sci., 126:59–79, 2022. doi:10.1016/j.jcss.2021.12.

003.

[110] Bart M. P. Jansen, Jari J. H. de Kroon, and Micha l W lodarczyk. Ver-
tex deletion parameterized by elimination distance and even less. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2021, pages 1757–1769. ACM, 2021. doi:

10.1145/3406325.3451068.

[111] Bart M. P. Jansen, Jari J. H. de Kroon, and Micha l W lodarczyk. Vertex
deletion parameterized by elimination distance and even less. CoRR,
abs/2103.09715, 2021. arXiv:2103.09715.

[112] Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-
optimal planarization algorithm. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
pages 1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130.

[113] Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization
for chordal vertex deletion. SIAM J. Discret. Math., 32(3):2258–2301,
2018. doi:10.1137/17M112035X.

[114] Bart M. P. Jansen, Venkatesh Raman, and Martin Vatshelle. Pa-
rameter ecology for feedback vertex set. Tsinghua Science and Tech-
nology, 19(4):387–409, 2014. Special Issue dedicated to Jianer Chen.
doi:10.1109/TST.2014.6867520.

[115] Bart M. P. Jansen and Jules J. H. M. Wulms. Lower bounds for protrusion
replacement by counting equivalence classes. Discret. Appl. Math., 278:12–
27, 2020. doi:10.1016/j.dam.2019.02.024.
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Summary

Parameterized Graph Modification Beyond the
Natural Parameter

For the class of NP-hard problems, assuming P ̸= NP, no algorithm is able to
solve all instances with a running time that is bounded by some polynomial in
the input size. There are several ways of dealing with these problems. In the
field of parameterized complexity, one takes a fine-grained approach. Rather
than just focusing on input size, additional aspects of the input are taken
into account. The goal is then to come up with algorithms whose exponential
dependency is restricted to these additional aspects, known as parameters,
while the running time remains polynomial in the input size. Whenever there
exists such an algorithm for a problem and parameter pair, we say that the
problem is fixed-parameter tractable (FPT) for this parameter.

In this thesis we consider a certain class of graph problems known as vertex-
deletion problems. In these graph modification problems, the task is to do a
minimum number of vertex deletions such that the resulting graph belongs to
some graph class H such as bipartite, edgeless, or chordal graphs. In computer
science, these H-Deletion problems have been studied for half a century and
are a prominent class of problems in parameterized complexity. An obvious
choice for a parameter is the number of vertex-deletions, which is often referred
to as the natural parameter. Many vertex-deletion problems turn out to be
FPT with this parameter. In this work we try to obtain algorithms using even
smaller parameters, that is, we aim to do parameterized graph modification
beyond the natural parameter. We do so in two directions.

In the first direction our aim is to combine the solution-size parameter with
structural parameters. Many problems become efficiently solvable if certain
structural graph parameters, such as treewidth or treedepth, are bounded.
Extending these definitions slightly based on some graph class H results in
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parameters H-treewidth (twH) and H-elimination distance (edH), which are
smaller than both the solution size and respectively treewidth and treedepth.
These hybrid parameters were recently introduced in the literature. As a
first step we give classification algorithms showing for which graph classes H
these parameters can be computed in FPT time, most notably for the class
of bipartite graphs. Next, we focus our attention to twH, where we compute
approximately optimal decompositions and use them to solve H-Deletion
building on widely used dynamic programming techniques. We show that if H
is hereditary (closed under vertex-deletions), closed under taking disjoint union
of graphs, and H-Deletion parameterized by solution size is FPT, then we
can construct a so-called tree H-decomposition whose width is at most 8 times
twH(G) in time that is FPT with respect to twH. For our dynamic program
over these decompositions, we additionally need that we can solve a special
type of H-Deletion with undeletable vertices. Finally, using (either known
or new) bounds on a certain equivalence relation regarding containment in
H with respect to gluing boundaried graphs, we come up with algorithms for
H-Deletion that are FPT with respect to twH. As an example, we obtain
an algorithm that solves Chordal Deletion in time 2O(k2) · nO(1) where
k = twchordal(G).

In the second direction we take a slightly different approach. By identifying
part of an optimal solution to H-Deletion in a preprocessing phase, the
follow-up FPT algorithm that uses the solution-size parameterization will be
sped up. We come up with algorithms that allow to find part of the solution
in polynomial time under certain conditions. This condition is based on c-
essentiality, where a vertex is c-essential if it belongs to every solution of
at most c times the optimum size. The intuition being that these vertices
should stand out and are therefore more easily detected. Among others, we
show that in polynomial time all 2-essential vertices can be detected for Odd
Cycle Transversal. This results in an algorithm for OCT that runs in
time 2.3146ℓ · nO(1) where ℓ is the number of vertices that are not 2-essential,
where previously this exponent was the total solution size.
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