90 research outputs found

    A Fast Transient Response ESR-Controlled Fixed Frequency Hysteretic Buck Converter

    Get PDF
    Modern application processors (microprocessors and Digital Signal Processors) are power hungry and demand power management solutions that can withstand their frequent and high slew-rate load transients while regulating their supply in a tight voltage tolerance. Hysteretic converter has excellent transient response performance but its variable switching frequency causes concern for electromagnetic interference in noise sensitive applications. A new frequency stabilization scheme for hysteretic buck dc-dc converters is proposed in this thesis. The equivalent series resistance (ESR) of the output capacitor is regulated by a phase-locked loop (PLL) to stabilize the operating frequency of the converter. The proposed fixed frequency ESR-controlled converter achieves a fixed 2MHz switching frequency, with less than 1µs response time to a 500mA load step while limiting undershoot and overshoot on the output voltage to 50mV and 40mV respectively. The performance of the presented work shows that the ESR of the output capacitor of a Hysteretic Buck Converter can be controlled to stabilize the switching frequency of the Hysteretic DC-DC Converter

    Dual-frequency single-inductor multiple-output (DF-SIMO) power converter topology for SoC applications

    Get PDF
    Modern mixed-signal SoCs integrate a large number of sub-systems in a single nanometer CMOS chip. Each sub-system typically requires its own independent and well-isolated power supply. However, to build these power supplies requires many large off-chip passive components, and thus the bill of material, the package pin count, and the printed circuit board area and complexity increase dramatically, leading to higher overall cost. Conventional (single-frequency) Single-Inductor Multiple-Output (SIMO) power converter topology can be employed to reduce the burden of off-chip inductors while producing a large number of outputs. However, this strategy requires even larger off-chip output capacitors than single-output converters due to time multiplexing between the multiple outputs, and thus many of them suffer from cross coupling issues that limit the isolation between the outputs. In this thesis, a Dual-Frequency SIMO (DF-SIMO) buck converter topology is proposed. Unlike conventional SIMO topologies, the DF-SIMO decouples the rate of power conversion at the input stage from the rate of power distribution at the output stage. Switching the input stage at low frequency (~2 MHz) simplifies its design in nanometer CMOS, especially with input voltages higher than 1.2 V, while switching the output stage at higher frequency enables faster output dynamic response, better cross-regulation, and smaller output capacitors without the efficiency and design complexity penalty of switching both the input and output stages at high frequency. Moreover, for output switching frequency higher than 100 MHz, the output capacitors can be small enough to be integrated on-chip. A 5-output 2-MHz/120-MHz design in 45-nm CMOS with 1.8-V input targeting low-power microcontrollers is presented as an application. The outputs vary from 0.6 to 1.6 V, with 4 outputs providing up to 15 mA and one output providing up to 50 mA. The design uses single 10-uH off-chip inductor, 2-nF on-chip capacitor for each 15-mA output and 4.5-nF for the 50-mA output. The peak efficiency is 73%, Dynamic Voltage Scaling (DVS) is 0.6 V/80 ns, and settling time is 30 ns for half-to-full load steps with no observable overshoot/undershoot or cross-coupling transients. The DF-SIMO topology enables realizing multiple efficient power supplies with faster dynamic response, better cross-regulation, and lower overall cost compared to conventional SIMO topologies

    Variable Spurious Noise Mitigation Techniques in Hysteretic Buck Converters

    Get PDF
    This work proposes a current-mode hysteretic buck converter with a spur-free constant-cycle frequency-hopping controller that fully eliminates spurs from the switching noise spectrum irrespective of variations in the switching frequency and operating conditions. As a result, the need for frequency regulation loops to ensure non-varying switching frequency (i.e. fixed spurs location) in hysteretic controllers is eliminated. Moreover, compared to frequency regulation loops, the proposed converter offers the advantage of eliminating mixing and interference altogether due to its spur-free operation, and thus, it can be used to power, or to be integrated within noise-sensitive systems while benefiting from the superior dynamic performance of its hysteretic operation. The proposed converter uses dual-sided hysteretic band modulation to eliminate the inductor current imbalance that results from frequency hopping along with the output voltage transients and low-frequency noise floor peaking associated with it. Moreover, a feedforward adaptive hysteretic band controller is proposed to reduce variations in the switching frequency with the input voltage, and an all-digital soft-startup circuit is proposed to control the in-rush current without requiring any off-chip components. The converter is implemented in a 0.35-õm standard CMOS technology and it achieves 92% peak efficiency

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    An Effect of Output Capacitor ESL on Hysteretic PLL Controlled Multiphase Buck Converter

    Get PDF
    This paper provides analysis of output capacitor effects to phase stability of a hysteretic mode controlled buck converter. The hysteretic control method is a simple and fast control technique for switched-mode converters, but the hysteresis control is not oscillator referenced. It results in difficulty to achieve stable switching phase and frequency. In recent papers, the authors propose a use of phase locked loops (PLL) to permit interleaved multiphase operation where each voltage regulator (VR) module is coupled together via output node and leads to a strong loop interaction. In this work analysis of this interaction is studied by Matlab Simulink simulations and a new solution how to partially suppress this effect is given. The proposed method confirms the theoretical analysis

    Improved transient response of controllers by synchronizing the modulator with the load step: application to v2ic

    Get PDF
    V2Ic is a ripple-based control with an excellent performance for load transients and reference voltage tracking because it exhibits a feedforward of the load current and the error of the output voltage. However, if V2Ic is modulated with constant frequency, constant on-time or constant off-time, its dynamic response is hindered by delays in the response. This paper proposes a technique that synchronizes the clock of the converter to initialize the duty cycle when a worst-case load transient occurs using the current through the output capacitor to detect load transients. It is exemplified on a V2Ic control but it is applicable to most of controllers as it only acts on the modulator

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    v1 concept: designing a voltage mode control as current mode with near time-optimal response for Buck-type converters

    Full text link
    This article introduces the v1 concept, that explains how by only measuring the output voltage, designers have information about almost every signal of the power stage. Following the v1 concept, it is explained how to design a traditional type-III voltage mode control to behave like a current mode control with near time-optimal response under load transients. The work is validated in simulations and experimentally on a 300kHz Buck converter

    Model Predictive Control Based Wind-Solar Hybrid Energy Conversion System

    Get PDF
    Presently a lot of work is being carried in the field of distributed renewable generation. Many distributed generation systems are being designed and connected to the electric grid. At the time when the conventional sources of energy such as coal, oil, gas etc. are fast disappearing, a study of distributed renewable generation systems becomes very important
    corecore