1,664 research outputs found

    Haplotype-aware Diplotyping from Noisy Long Reads

    No full text

    HapTree: A Novel Bayesian Framework for Single Individual Polyplotyping Using NGS Data

    Get PDF
    As the more recent next-generation sequencing (NGS) technologies provide longer read sequences, the use of sequencing datasets for complete haplotype phasing is fast becoming a reality, allowing haplotype reconstruction of a single sequenced genome. Nearly all previous haplotype reconstruction studies have focused on diploid genomes and are rarely scalable to genomes with higher ploidy. Yet computational investigations into polyploid genomes carry great importance, impacting plant, yeast and fish genomics, as well as the studies of the evolution of modern-day eukaryotes and (epi)genetic interactions between copies of genes. In this paper, we describe a novel maximum-likelihood estimation framework, HapTree, for polyploid haplotype assembly of an individual genome using NGS read datasets. We evaluate the performance of HapTree on simulated polyploid sequencing read data modeled after Illumina sequencing technologies. For triploid and higher ploidy genomes, we demonstrate that HapTree substantially improves haplotype assembly accuracy and efficiency over the state-of-the-art; moreover, HapTree is the first scalable polyplotyping method for higher ploidy. As a proof of concept, we also test our method on real sequencing data from NA12878 (1000 Genomes Project) and evaluate the quality of assembled haplotypes with respect to trio-based diplotype annotation as the ground truth. The results indicate that HapTree significantly improves the switch accuracy within phased haplotype blocks as compared to existing haplotype assembly methods, while producing comparable minimum error correction (MEC) values. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5.National Science Foundation (U.S.) (NSF/NIH BIGDATA Grant R01GM108348-01)National Science Foundation (U.S.) (Graduate Research Fellowship)Simons Foundatio

    Minimum error correction-based haplotype assembly: considerations for long read data

    Full text link
    The single nucleotide polymorphism (SNP) is the most widely studied type of genetic variation. A haplotype is defined as the sequence of alleles at SNP sites on each haploid chromosome. Haplotype information is essential in unravelling the genome-phenotype association. Haplotype assembly is a well-known approach for reconstructing haplotypes, exploiting reads generated by DNA sequencing devices. The Minimum Error Correction (MEC) metric is often used for reconstruction of haplotypes from reads. However, problems with the MEC metric have been reported. Here, we investigate the MEC approach to demonstrate that it may result in incorrectly reconstructed haplotypes for devices that produce error-prone long reads. Specifically, we evaluate this approach for devices developed by Illumina, Pacific BioSciences and Oxford Nanopore Technologies. We show that imprecise haplotypes may be reconstructed with a lower MEC than that of the exact haplotype. The performance of MEC is explored for different coverage levels and error rates of data. Our simulation results reveal that in order to avoid incorrect MEC-based haplotypes, a coverage of 25 is needed for reads generated by Pacific BioSciences RS systems.Comment: 17 pages, 6 figure

    Joint Haplotype Assembly and Genotype Calling via Sequential Monte Carlo Algorithm

    Get PDF
    Genetic variations predispose individuals to hereditary diseases, play important role in the development of complex diseases, and impact drug metabolism. The full information about the DNA variations in the genome of an individual is given by haplotypes, the ordered lists of single nucleotide polymorphisms (SNPs) located on chromosomes. Affordable high-throughput DNA sequencing technologies enable routine acquisition of data needed for the assembly of single individual haplotypes. However, state-of-the-art high-throughput sequencing platforms generate data that is erroneous, which induces uncertainty in the SNP and genotype calling procedures and, ultimately, adversely affect the accuracy of haplotyping. When inferring haplotype phase information, the vast majority of the existing techniques for haplotype assembly assume that the genotype information is correct. This motivates the development of methods capable of joint genotype calling and haplotype assembly. Results: We present a haplotype assembly algorithm, ParticleHap, that relies on a probabilistic description of the sequencing data to jointly infer genotypes and assemble the most likely haplotypes. Our method employs a deterministic sequential Monte Carlo algorithm that associates single nucleotide polymorphisms with haplotypes by exhaustively exploring all possible extensions of the partial haplotypes. The algorithm relies on genotype likelihoods rather than on often erroneously called genotypes, thus ensuring a more accurate assembly of the haplotypes. Results on both the 1000 Genomes Project experimental data as well as simulation studies demonstrate that the proposed approach enables highly accurate solutions to the haplotype assembly problem while being computationally efficient and scalable, generally outperforming existing methods in terms of both accuracy and speed. Conclusions: The developed probabilistic framework and sequential Monte Carlo algorithm enable joint haplotype assembly and genotyping in a computationally efficient manner. Our results demonstrate fast and highly accurate haplotype assembly aided by the re-examination of erroneously called genotypes.National Science Foundation CCF-1320273Electrical and Computer Engineerin

    NGS Based Haplotype Assembly Using Matrix Completion

    Full text link
    We apply matrix completion methods for haplotype assembly from NGS reads to develop the new HapSVT, HapNuc, and HapOPT algorithms. This is performed by applying a mathematical model to convert the reads to an incomplete matrix and estimating unknown components. This process is followed by quantizing and decoding the completed matrix in order to estimate haplotypes. These algorithms are compared to the state-of-the-art algorithms using simulated data as well as the real fosmid data. It is shown that the SNP missing rate and the haplotype block length of the proposed HapOPT are better than those of HapCUT2 with comparable accuracy in terms of reconstruction rate and switch error rate. A program implementing the proposed algorithms in MATLAB is freely available at https://github.com/smajidian/HapMC

    HapPart: partitioning algorithm for multiple haplotyping from haplotype conflict graph

    Get PDF
    Each chromosome in the human genome has two copies. The haplotype assembly challenge entails reconstructing two haplotypes (chromosomes) using aligned fragments genomic sequence. Plants viz. wheat, paddy and banana have more than two chromosomes. Multiple haplotype reconstruction has been a major research topic. For reconstructing multiple haplotypes for a polyploid organism, several approaches have been designed. The researchers are still fascinated to the computational challenge. This article introduces a partitioning algorithm, HapPart for dividing the fragments into k-groups focusing on reducing the computational time. HapPart uses minimum error correction curve to determine the value of k at which the growth of gain measures for two consecutive values of k-multiplied by its diversity is maximum. Haplotype conflict graph is used for constructing all possible number of groups. The dissimilarity between two haplotypes represents the distance between two nodes in graph. For merging two nodes with the minimum distance between them this algorithm ensures minimum error among fragments in same group. Experimental results on real and simulated data show that HapPart can partition fragments efficiently and with less computational time

    Haplotype Assembly: An Information Theoretic View

    Full text link
    This paper studies the haplotype assembly problem from an information theoretic perspective. A haplotype is a sequence of nucleotide bases on a chromosome, often conveniently represented by a binary string, that differ from the bases in the corresponding positions on the other chromosome in a homologous pair. Information about the order of bases in a genome is readily inferred using short reads provided by high-throughput DNA sequencing technologies. In this paper, the recovery of the target pair of haplotype sequences using short reads is rephrased as a joint source-channel coding problem. Two messages, representing haplotypes and chromosome memberships of reads, are encoded and transmitted over a channel with erasures and errors, where the channel model reflects salient features of high-throughput sequencing. The focus of this paper is on the required number of reads for reliable haplotype reconstruction, and both the necessary and sufficient conditions are presented with order-wise optimal bounds.Comment: 30 pages, 5 figures, 1 tabel, journa

    A Graph Auto-Encoder for Haplotype Assembly and Viral Quasispecies Reconstruction

    Full text link
    Reconstructing components of a genomic mixture from data obtained by means of DNA sequencing is a challenging problem encountered in a variety of applications including single individual haplotyping and studies of viral communities. High-throughput DNA sequencing platforms oversample mixture components to provide massive amounts of reads whose relative positions can be determined by mapping the reads to a known reference genome; assembly of the components, however, requires discovery of the reads' origin -- an NP-hard problem that the existing methods struggle to solve with the required level of accuracy. In this paper, we present a learning framework based on a graph auto-encoder designed to exploit structural properties of sequencing data. The algorithm is a neural network which essentially trains to ignore sequencing errors and infers the posteriori probabilities of the origin of sequencing reads. Mixture components are then reconstructed by finding consensus of the reads determined to originate from the same genomic component. Results on realistic synthetic as well as experimental data demonstrate that the proposed framework reliably assembles haplotypes and reconstructs viral communities, often significantly outperforming state-of-the-art techniques

    Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of Single Individual Haplotyping techniques

    Get PDF
    Determining the underlying haplotypes of individual human genomes is an essential, but currently difficult, step toward a complete understanding of genome function. Fosmid pool-based next-generation sequencing allows genome-wide generation of 40-kb haploid DNA segments, which can be phased into contiguous molecular haplotypes computationally by Single Individual Haplotyping (SIH). Many SIH algorithms have been proposed, but the accuracy of such methods has been difficult to assess due to the lack of real benchmark data. To address this problem, we generated whole genome fosmid sequence data from a HapMap trio child, NA12878, for which reliable haplotypes have already been produced. We assembled haplotypes using eight algorithms for SIH and carried out direct comparisons of their accuracy, completeness and efficiency. Our comparisons indicate that fosmid-based haplotyping can deliver highly accurate results even at low coverage and that our SIH algorithm, ReFHap, is able to efficiently produce high-quality haplotypes. We expanded the haplotypes for NA12878 by combining the current haplotypes with our fosmid-based haplotypes, producing near-to-complete new gold-standard haplotypes containing almost 98% of heterozygous SNPs. This improvement includes notable fractions of disease-related and GWA SNPs. Integrated with other molecular biological data sets, this phase information will advance the emerging field of diploid genomics
    corecore