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Abstract

As the more recent next-generation sequencing (NGS) technologies provide longer read sequences, the use of sequencing
datasets for complete haplotype phasing is fast becoming a reality, allowing haplotype reconstruction of a single
sequenced genome. Nearly all previous haplotype reconstruction studies have focused on diploid genomes and are rarely
scalable to genomes with higher ploidy. Yet computational investigations into polyploid genomes carry great importance,
impacting plant, yeast and fish genomics, as well as the studies of the evolution of modern-day eukaryotes and (epi)genetic
interactions between copies of genes. In this paper, we describe a novel maximum-likelihood estimation framework,
HapTree, for polyploid haplotype assembly of an individual genome using NGS read datasets. We evaluate the performance
of HapTree on simulated polyploid sequencing read data modeled after Illumina sequencing technologies. For triploid and
higher ploidy genomes, we demonstrate that HapTree substantially improves haplotype assembly accuracy and efficiency
over the state-of-the-art; moreover, HapTree is the first scalable polyplotyping method for higher ploidy. As a proof of
concept, we also test our method on real sequencing data from NA12878 (1000 Genomes Project) and evaluate the quality
of assembled haplotypes with respect to trio-based diplotype annotation as the ground truth. The results indicate that
HapTree significantly improves the switch accuracy within phased haplotype blocks as compared to existing haplotype
assembly methods, while producing comparable minimum error correction (MEC) values. A summary of this paper appears
in the proceedings of the RECOMB 2014 conference, April 2–5.
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Introduction

While human and other eukaryotic genomes typically contain

two copies of every chromosome, plants, yeast and fish such as

salmon can have strictly more than two copies of each chromosome.

By running standard genotype calling tools, it is possible to

accurately identify the number of ‘‘wild type’’ and ‘‘mutant’’ alleles

(A, C, G, or T) for each single-nucleotide polymorphism (SNP) site.

However, in the case of two heterozygous SNP sites, genotype

calling tools cannot determine whether ‘‘mutant’’ alleles from

different SNP loci are on the same or different chromosomes (i.e.

compound heterozygote). While the former would be healthy, in

many cases the latter can cause loss of function; it is therefore

necessary to identify the phase (phasing) —the copies of a

chromosome on which the mutant alleles occur—in addition to

the genotype (Figure 1). This necessitates efficient algorithms to

obtain accurate and comprehensive phase information directly from

the next-generation-sequencing read data in higher ploidy species.

Various sources of information can be utilized for the

computational identification of an individual’s diplotype/poly-

plotype: pedigree (e.g. trio-based phasing) [1–3], population

structure of variants (e.g. phasing by linkage disequilibrium)

[3–6] and more recently by identity-by-descent in unrelated

individuals [7,8], as well as sequencing read datasets [9–13].

Among these approaches, methods for sequence-based haplotype

phasing are the only viable approach for haplotype phasing on a

single individual member of a species (assuming homologous

chromosomes are sequenced together), as other approaches either

require family members or a population. For an individual diploid

genome, the problem of reconstructing the diplotype using

sequence information, the diploid phasing problem, is equivalent

to the identification of the sequence of alleles on either parental

haplotype. If this sequence is correctly inferred, then the other

haplotype will automatically carry the corresponding opposite

alleles (reference or alternative). Solving an error-free version of

the diploid haplotype reconstruction problem is straightforward:

the haplotype of each connected (by reads) component of

heterozygous SNPs can be obtained by propagating allele

information within reads. In reality, however, sequencing errors

as well as false read mappings cause conflicts within sequence

information, requiring a mathematical formulation of the haplo-

type reconstruction problem. Among various formulations sug-

gested for this problem, the most commonly used is an NP-hard

minimum error correction (MEC) definition [14,15], which aims

to identify the smallest set of nucleotide changes required within
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mapped fragments that would allow a conflict-free separation of

reads into two separate homologous chromosomes (or a bipartite

separation of the fragment conflict graph). Some of the solutions

proposed for this problem include: HapCUT[9], an algorithm for

optimizing MEC score based on computing max-cuts of the

fragment graph; Fast Hare [16], a heuristic that clusters reads into

two sets in a greedy fashion, and HapCompass [10], a spanning

tree based approach for minimizing fragment conflicts.

Unlike diploid genomes, computational identification of com-

mon chromosomal variants in polyploid genomes using sequenc-

ing data has received little attention, except in the pioneering work

of Aguiar & Istrail [8]. Polyploidy studies are of importance as they

allow a comprehensive investigation of variants within plant, fish,

and yeast genomes and help understand mechanisms of eukaryotic

evolution. However, haplotype reconstruction in polyploid

genomes is fundamentally more complex, even in the error-free

version of the problem (without sequencing errors or false read

mappings). Due to the newness of the NGS-based biological

research in polyploid genomes, the mathematical foundations of

the polyploid phasing problem have not yet been established. The

solution proposed by Aguiar & Istrail for single individual

polyplotyping problem is based on phasing all possible SNP loci

pairs independently while further consolidating this information in

a separate stage in order to infer a set of haplotypes.

Diploid phasing methods focus on a given list of heterozygous

variants that are guaranteed to contain a single reference allele, as

well as an alternative allele (assuming all heterozygous loci are bi-

allelic). In contrast, in the polyploid phasing problem, there is no

such guarantee of a single type of heterozygous SNP. Each

heterozygous locus for a k-ploid chromosome can potentially

contain from 1 up to k{1 alternative alleles within the

heterozygous loci, significantly increasing the complexity of the

phasing problem in comparison to the diploid case. Furthermore,

in a diploid phasing setting, there are always two possible options

for phasing a pair of SNP loci, regardless of what other SNPs they

are phased with. These two options can be thought as parallel

(alternative allele pairs and reference allele pairs are matched

within themselves) or switched (each alternative allele is matched

with the other reference allele). These two options are no longer

relevant when the genome contains more than two copies of each

chromosome, due to the fact that there are up to k! options when

merging a phased haplotype block with another.

In this paper, we introduce a maximum-likelihood formulation

of the polyploid full haplotype reconstruction problem and present

a haplotype assembly algorithm, HapTree, which concurrently

performs SNP-pair phasing and full haplotype assembly based on

a probabilistic framework. We observe that, on simulated

polyploid data, HapTree substantially improves the phasing

capabilities and performance of any existing program. Because

real polyploid data is hard to come by, we also evaluate HapTree

on real human diploid data and find that, when compared to the

more accurate trio-based data as the ground truth [17], HapTree

significantly reduces the number of switch errors, while remaining

on par in terms of MEC score over existing single-individual

haplotype assembly methods for diploid genomes. We also

introduce a relative likelihood (RL) score definition for annota-

tion-free evaluation of phasing quality for polyploid haplotype

assembly as an alternative to MEC score. Using simulated

polyploid sequencing datasets, we demonstrate that RL-score

performs significantly better at capturing haplotype assembly

quality than MEC-score as ploidy increases.

Author Summary

While human and other eukaryotic genomes typically
contain two copies of every chromosome, plants, yeast
and fish such as salmon can have strictly more than two
copies of each chromosome. By running standard geno-
type calling tools, it is possible to accurately identify the
number of ‘‘wild type’’ and ‘‘mutant’’ alleles (A, C, G, or T)
for each single-nucleotide polymorphism (SNP) site.
However, in the case of two heterozygous SNP sites,
genotype calling tools cannot determine whether ‘‘mu-
tant’’ alleles from different SNP loci are on the same or
different chromosomes. While the former would be
healthy, in many cases the latter can cause loss of function;
it is therefore necessary to identify the phase—the copies
of a chromosome on which the mutant alleles occur—in
addition to the genotype. This necessitates efficient
algorithms to obtain accurate and comprehensive phase
information directly from the next-generation-sequencing
read data in higher ploidy species. We introduce an
efficient statistical method for this task and show that our
method significantly outperforms previous ones, in both
accuracy and speed, for phasing triploid and higher ploidy
genomes. Our method performs well on human diploid
genomes as well, as demonstrated by our improved
phasing of the well known NA12878 (1000 Genomes
Project).

Figure 1. Loss of function in different polyplotypes of a sample pentaploid genome. As the loss of function is often determined by
whether a healthy copy of a gene exists, knowing the genotype vector is sufficient if there is a single SNP site. In the case of two SNP sites however,
the genotype vector cannot be used to unambiguously determine loss of function, and phasing is required.
doi:10.1371/journal.pcbi.1003502.g001
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Method

Overview of HapTree
The HapTree pipeline is designed to perform phasing and full

haplotype assembly of a single genome. The key component of

HapTree is a relative likelihood function which measures the

concordance between the aligned read data and a given haplotype

phase under a probabilistic model that also accounts for possible

sequencing errors. To identify a phasing solution of maximal

likelihood, HapTree finds a collection of high-likelihood solutions

for phases of the first m SNP loci and extends those to high

likelihood phases of the first mz1 SNP loci, for each incremental

m. In each step, HapTree maintains only the set of likely partial

phases to be extended in next steps. Finally, a phase of maximal

likelihood for all loci is obtained after the extension of the last SNP

locus.

Broadly speaking, HapTree aims to discover the best, or

maximum likelihood, haplotype based on the read data available.

Theoretically, one could enumerate all possible haplotypes,

compute the likelihood of each being the true haplotype (using

formulas described below), and choose the most likely one; in most

cases this approach is intractable as there are exponentially many

possible haplotypes. HapTree therefore has a variety of ways of

trimming down the solution set from all possible haplotypes to a

much smaller set of more likely solutions, making the problem

tractable. It does so by taking an inductive approach, generating a

collection of likely phasing solutions for the first two SNPs in the

genome, and then extending those to phasing solutions of the first

three SNPs, and those to the first four SNPs, and so on. When

extending any particular solution, HapTree chooses (based on

computing likelihoods) how the alleles of the newly added SNP

may be assigned to chromosomes; it includes only those

assignments that are sufficiently likely. Additionally, if HapTree

finds after extending all solutions to include the next SNP that

there are too many likely solutions, it throws the worst (least likely)

solutions away. Upon including all SNPs to be phased, HapTree

randomly chooses a solution of maximum likelihood from amongst

the solutions it has found.

Availability
An implementation of our method, HapTree, is available for

download at: http://groups.csail.mit.edu/cb/haptree/

Definitions and Notation
We describe below the problem of sequence-based polyploid

haplotype assembly and provide basic technical notation that will

be useful for describing our method. We assume for now that each

SNP locus to be phased is bi-allelic (i.e. contains only two possible

alleles, one being the reference allele). We further assume that for

each SNP locus s, the genotype of s is known and is defined to be

the number of chromosomes carrying the alternative allele

(denoted by g(s)). If k denotes the ploidy, g(s) can range from 1
to k{1 for heterozygous loci s. At this point, we would like to note

that these two assumptions are made for the sake of simplicity of

method description and implementation, though the genotype

information does tend to be available. After describing our method

we also describe the changes needed to our original approach to

accommodate multi-allelic and genotype-oblivious polyploid

haplotype assembly. At this time our implementation accommo-

dates the aforementioned simpler case of bi-allelic SNPs and

known genotypes; it is simple to extend this implementation to the

more general case, and we describe such an extension in

Discussion.

We denote the sequence of observed nucleotides of a fragment

simply as a ‘‘read’’ (independent from single/paired-end reads

and sub-reads of a strobe read structure). The set of all reads is

denoted as R. We define a read r[R as a vector with entries

r½i�[f0,1,{g where a 0 denotes the reference allele, a 1 the

alternative allele, and a { indicates one of two possibilities:

First, that the read does not overlap with the corresponding SNP

locus, or second, that neither the reference nor alternative allele

is present and hence there must be a read error. A read r[R
contains a SNP s if r½s�={. A read can also be represented as a

dictionary or mapping with keys the positions (from amongst the

SNPs to be phased) of SNP loci it contains and values of either

reference allele or alternative allele, represented by 0 and 1

respectively (e.g. r~f3 : 0, 4 : 1, 5 : 0, 8 : 1, 9 : 1g). As

current sequencing technologies generate read data with a

certain rate of sequencing errors, some of the positions within a

read likely contain false nucleotide information. Among these

erroneous bases, unless they are located at SNP loci and contain

opposite allele information, we ignore them by representing

them with {, and thus keep only confounding sequencing errors

that can affect phased haplotype results. For each read r and for

each SNP locus s, we assume an error rate of er,s and a

probability of opposite false allele information r½s� is equal to

er,s~
er,s

1{ 2
3

er,s
. We modify this error rate by a factor of two-

thirds because conditional on there being an error, we model the

error as equally likely to be any of the three other alleles. Two of

the three of these alleles are neither the reference nor the

alternative allele and thus we know that an error has been made

in this case. Therefore, two-thirds of the time the erroneous

alleles produced are known as such and may be thrown out,

leaving a true error only one-third of the time. We represent

these error rates as matrices e,e. At this time our method assumes

uniform error rates with respect to the SNP position; the error

rate is supplied by the user and ought to depend on the read

sequencing technologies used.

Upon the set of SNP loci S and read set R; we define a Read

Graph, G(S,R), such that there is a vertex for each SNP locus s[S
and an edge between any two vertices s1,s2 if there is some read

containing both s1 and s2; equivalently if Ar[R,r½s1�=
{ ^ r½s2�={. Without loss of generality, we assume that

G(S,R) is connected; otherwise each connected component can

be processed independently.

Vector set. A k-ploidy phase of n SNPs with genotypes fg(s)g is

a tuple of k vectors (not necessarily distinct) (v1,:::,vk)5f0,1gn

satisfying the genotype allele counts property, that is:

v1½s�zv2½s�z:::zvk½s�~g(s) for all s[f1,2,:::,ng. We will refer

to this collection as a vector set and we think of each vector as a row

vector.

We can build a phase by selecting a permutation of the alleles

present for each SNP locus s. Note that the number of distinct

permutations, C(s), is strictly dependent on the genotype of

the SNP and in the diploid bi-allelic case is equivalent to

selecting the chromosomes containing the alternative alleles,

hence

C(s)~
k

g(s)

� �
~

k!

g(s)!(k{g(s))!
:

For example, let k~4, then g(s)[f1,2,3g. We enumerate the

possible permutations below and include an example tetraploid

genome.

Individual Genome Phasing Using NGS Data
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0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1 1 1

0 1 1 0 0 1

1 0 1 0 1 0

1 1 0 1 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

All possible permutations of tetraploid bi{allelic

heterozygous SNPs

00011010

01110011

10111100

10000111

(00011010),(01110011),(10111100),(10000111)f g
A sample tetraploid genome and and its corresponding

vector set:

The sample tetraploid genome featured above on the right has a

genotype vector: ½2,1,2,3,2,2,3,2�; recall this counts the number of

alternative alleles present at each SNP site. For any SNP s, let Ps

denote the set of distinct allele permutations at SNP locus s.

Throughout we are indifferent to the order of each chromosome,

with this in mind we can see that the total number of phases is

bounded below by 1
k!Ps C(s).

Likelihood of a phase. We formulate the haplotype

reconstruction problem as identifying the most likely phase(s)

given the read data R, all SNP loci S, as well as their genotypes,

and sequencing error rates e. We assume the sequencing errors are

independent of each other, that is for all r[R and all s[r, that

fr½s�g are independently correct with probabilities (1{er,s) and

incorrect with probabilities er,s. Let e be a matrix containing all of

these probabilities: fer,sg. Given a vector set, Vset, corresponding

to a phase, R, and e; the likelihood of the phase is determined by:

P½VsetjR,e�~ P½RjVset,e�P½Vsetje�
P½Rje� : ð1Þ

As P½Rje� depends only on e and the read set R, it is therefore

the same across all vector sets. Hence, we define a relative likelihood

measure (RL) as

RL½VsetjR,e�~P½RjVset,e�P½Vsetje�:

As for P½Vsetje�, there are several ways this can be modeled

depending on the situation. For polyploid simulated data, we can

assume that P½Vsetje� is equal for almost all vector sets, excluding

ones containing duplicate vectors. Let M~fm1,m2,:::g be the set

of the multiplicities in Vset; for example, if

Vset~f0001,0010,1100,0001,0010g then M~f2,2,1g. The prob-

abilities P½Vsetje� will differ multiplicatively by multinomial

coefficients
k

m1,m2,:::

� �
~ k!

m1 !m2!:::. Specifically:

P½Vsetje�~

k

m1,m2,:::

� �

Ps C(s)
:

For real diploid data, there will never be duplicate vectors. To

model P½Vsetje�, we might assume that since mutations tend to

occur together, adjacent SNP sites are more likely to be phased in

parallel (00) or (11) than switched (01) or (10). Let V~(v,v’) and

let P(V ) denote the number of adjacent SNPs that are parallel in v
and S(V ) the number of adjacent SNPs that are switched in v (we

must only consider v as it determines v’). For example, if

V~((00010111000),(11101000111)), then P(V )~6 and

S(V )~4. For some pw:5 (denoted as parallel bias) and q~1{p,

we model this vector set probability as

P½Vsetje�~pP(Vset)qS(Vset):

Finally, we consider P½RjVset,e�. For a given r[R and v[Vset, let

A(r,v),D(r,d) denote the positions of SNP loci where r and v agree

and disagree respectively. For example, if

r~({,{,1,0,1,{,{,1,0) and v~(1,0,0,1,1,0,0,1,0), then

A(r,v)~(5,8,9) and D(r,v)~(3,4) We may now compute the

desired probability, that is:

P½RjVset,e�~ P
r[R

P½rjVset,e�

P½rjVset,e�~
1

k

X
v[Vset

P
s[A(r,v)

(1{er,s) P
s[D(r,v)

er,s

� �
:

The goal of our haplotype reconstruction problem is to find the

vector set(s) maximizing the product P½RjVset,e�P½Vsetje�, equiva-

lently RL½VsetjR,e�. However, as the number of possible phases is

on the order kn, checking all of these is intractable. Our solution is

based on finding high likelihood phases for the first mz1 SNPs,

conditioned on a collection of high likelihood phases for the first m
SNPs.

Semi-reads and sub-reads. To properly describe our

method we must first define the semi-reads of a SNP locus s and

the sub-reads of a subset S’5S.

Semi-reads. To form the set of semi-reads of s, denoted SR(s),
include each read r[R that contains both s and some s’vs (s’ is

upstream of s) and ignore all information from r on SNPs s’’ws (s’’
is downstream of s). Suppose the set of reads is:

{1:1, 2:1, 3:1, 4:1} {3:1, 4:1, 5:0, 6:0} {4:0, 5:1, 6:1} {4:0, 5:1,

6:1, 7:0} {5:0, 6:0, 7:1} {5:1, 6:1, 7:0}

The corresponding semi-reads for each SNP locus would be:

1 ? None 2 ? {1:1, 2:1} 3 ? {1:1, 2:1, 3:1} 4 ? {1:1, 2:1,

3:1, 4:1} {3:1, 4:1}

5 ? {3:1, 4:1, 5:0} {4:0, 5:1} {4:0, 5:1}

6 ? {3:1, 4:1, 5:0, 6:0} {4:0, 5:1, 6:1} {4:0, 5:1, 6:1} {5:0, 6:0}

{5:1, 6:1}

7 ? {4:0, 5:1, 6:1, 7:0} {5:0, 6:0, 7:1} {5:1, 6:1, 7:0}

Sub-reads. The sub-reads of S’5S, denoted R(S’), are obtained

by, for each r[R, removing all keys s[S\S’ to form r’, and then

adding r’ to R(S’) if the length of r’ is at least 2. Alternatively,

R(S’) corresponds to the set of reads relevant to the problem of

only phasing S’. Continuing with the example above, if

Individual Genome Phasing Using NGS Data
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S’~f1,2,3,4,5g, then

R(S0)~ff1 : 1, 2 : 1, 3 : 1, 4 : 1g,

f3 : 1, 4 : 1, 5 : 0g,

f4 : 0, 5 : 1g, f4 : 0, 5 : 1gg:

HapTree
Our main approach to solving the single individual polyploid

haplotype assembly problem is by finding highly probable

solutions on m SNPs and extending those to highly probable

solutions on mz1 SNPs. Our algorithm has two fundamental

parts: branching and pruning. For each connected component of

the ReadGraph, G(S,R), we inductively generate a collection of

high likelihood phases on the first m SNPs. For each of these

phases, we branch them to phases on mz1 SNPs by considering

all possible orderings of alleles for position mz1 and including

branches for those which occur with probability above a certain

threshold. After doing so, we prune the tree of phases by removing

all leaves that occur with probability sufficiently less than the most

probable leaf. We discuss both parts in more detail below. We note

that although a dynamic programming algorithm can be directly

applied to infer the best solutions under HapTree’s likelihood

model, we instead developed HapTree, which is substantially

faster than exact dynamic programming but with nearly identical

empirical performance.

Extension. We first describe how to extend an existing a

haplotype assembly H on m§0 SNPs onto the mz1th SNP s.

Recall the set of permutations of s is denoted Ps and one particular

permutation as o[Ps. An extension H ’ of H onto SNP locus s can

be defined by appending some permutation o[Ps of alleles to H;

H ’~Hzo. Note that it is possible for two distinct permutations to

result in the same H ’: Hzo~Hzo’. In these cases we do not

include duplicates, as they are equivalent. Observe that if H is

empty, all allele permutations are the same as vector sets; we

therefore include only one. For any H ’, we can compute the

probability of it being the correct haplotype (for the first mz1
SNPs) conditioning on H being correct (for the first m SNPs), as

well as the semi-read data SR(s) and error rate e. We express this

below:

P½H ’ j H, SR(s), e�~ P½SR(s) j H ’, H, e�P½H ’ j H, e�
P½SR(s) j H, e� ð2Þ

This computation is similar to those done above in equation (1).

The EXTEND algorithm (Algorithm 1) is given below, which

returns a list of all extensions H ’ of H that occur with probability

above a certain threshold, r, given haplotype H.

Branching. Here we define branching a collection of haplo-

types H with threshold r to SNP s: BRANCH(H,r,s) (Algorithm

2). We assume all H[H phase the first m§0 SNPs and that SNP s

is the mz1th SNP. The act of branching H returns H0: a list of all

extensions generated by EXTEND with threshold r for all H in

H. To initialize BRANCH we EXTEND the empty vector set to

an arbitrary permutation of the alleles of the first SNP, as all

permutations are equivalent as vector sets.

Pruning. For a collection of haplotypes H of SNPs S’5S, we

can compute the relative likelihood of each haplotype conditioned

on the sub-reads R(S’) and error rate e; we write this as

RL½H j R(S’), e�. The same computation as performed in

equation 1 yields:

P½H j R(S’),e�~ P½R(S’) j H,e�P½H j e�
P½R(S’) j e� :

Since P½R(S’)je� does not depend on H :

RL½H jR(S’),e�~P½R(S’)jH,e�P½Hje�: ð3Þ

The goal of PRUNE(H,k,S’) (Algorithm 3) is to return a subset

H05H containing only sufficiently probable haplotypes. It does so

by computing the relative likelihood of the most probable H[H,

that is v~ maxH[HRL½HjR(S’), e�, and adding H[H to H0 if

RL½HjR(S’), e�§kv, where k is between 0 and 1. We note that

that one can compute RL(H ’) from RL(H) by only looking at the

semi-reads RS(s): we store the relative likelihood values for all

H[H and update them when branching to H 0; PRUNE is

therefore no more costly than BRANCH.

Main algorithm. Here we give a high-level description of our

overall haplotype assembly method HapTree(R,r̂r,k̂k,S) (Algorithm

4) using the EXTEND, BRANCH, and PRUNE algorithms. We

generate high likelihood phases for the first m SNPs, BRANCH

those phases to include s (the mz1th SNP), then PRUNE the

resulting phases, and repeat for m~mz1. We begin with an

arbitrary permutation of the first SNP, since all orderings result in

the same vector set. For the final step, we PRUNE with k~1, and

therefore return only the maximally probable phases that we have

found; if this set is of size greater than one, we choose a phasing

from within it randomly. More generally, below we take r̂r and k̂k to

be vectors, as r and k may depend on m, the size of H or other

user-specified variables.

Algorithm 1. EXTEND(H, r, s): Extending a haplotype H at

SNP s to all H9 that occur with probability $ r M [0, 1).

Input: H, r, s

Output: E9

E = [ ]

for o M Ps do
H9 = H+o

if H9 1 E then
if P[H9 | H, SR(s), e] . r then

E + = H9

return E

Algorithm 2. BRANCH(H, r, s): Branching haplotypes H at

SNP s with threshold r M [0, 1).

Input: H, r, s

Output: H’
H’~½ �
for H[H do

E = EXTEND(H, r, s)

for H9 M E do
Hz~H ’

return H

Individual Genome Phasing Using NGS Data

PLOS Computational Biology | www.ploscompbiol.org 5 March 2014 | Volume 10 | Issue 3 | e1003502



Results

Scoring and Evaluation
Determining the quality of a phasing solution depends on

whether the true phase is known. When no such information is

avaliable, the Minimum Error Correction (MEC) score [15] is a

widely used scoring function to measure the quality of phasing

solutions. The MEC score is defined as the minimum (amongst

chromosomes) number of mismatches between a phase H and the

read set R. A number of existing programs, including HapCut [9],

find phasing solutions by optimizing the MEC score in diploid

cases. For higher ploidy the MEC score can no longer be reliably

used because unlike in the diploid case, the phase of any one

chromosome does not determine the phases of the others.

Moreover, the MEC score does not distinguish between two

separate phases of a pair of SNP loci with different non-zero

counts of (0,0),(0,1),(1,0),(1,1) in their vector sets. Finally, unlike

in the diploid case, a phase of a pair of SNP loci containing a set of

parallel alleles does not prevent it from containing a set of switched

alleles as well. To demonstrate these issues, consider two possible

vector sets corresponding to phases of a pair of triploid SNPs both

with genotype 2: a : ((0,0),(0,0),(1,1)) and b : ((0,0),(0,1),(1,0))g.
If the read data is ((0,0),(0,0),(0,0)), it is clear from a probabilistic

standpoint that phase a is a better fit, but both a and b have equal

MEC scores. This effect is exaggerated as k increases.

When a true phase is available, there are a variety ways to

evaluate how accurate any predicted phase is. A widely used

measure in diploid phasing is switch error, which is calculated as

the number of positions where the two chromosomes of a

proposed phase must be switched in order to agree with the true

phase. For polyploid phasing, we generalize switch error to vector

error. In higher ploidy cases, at any SNP locus, it is possible for no

chromosomes in a proposed phase to require a switch or anywhere

from 2 to k chromosomes to require switches, in order for a

proposed phase to agree with the true phase. We do not wish to

penalize a solution where only two vectors must be switched at a

given position with the same penalty to be used for a solution in

which all vectors must be switched. The vector error of a proposed

phase (with respect to the true phase) is defined by the minimum

number of segments on all chromosomes for which a switch must

occur; for the diploid case this score is exactly twice the switch

error. One may also think of the vector error as the minimum

number of segments a proposed phase and the true phase have in

common, less the ploidy. Even for triploid genomes, the vector

error is more discriminative than switch error. Consider the

following example in Figure 2:

In Figure 2 phase (i) is a more accurate phase than (ii), and

phase (ii) more accurate than phase (iii). The segments are broken

up by row and color: phase (i) having five segments, phase (ii)

having six, and phase (iii) having seven. Note that there may be

several ways to break a vector set into a minimal number of

segments; phase (ii) is such an example. Finally, we remark that

vector error can be computed in time O(kn2), where k is the

ploidy and n the block size.

Results for Simulated Polyploid Data
Relative Likelihood (RL) objective function vs. MEC score

for polyploid genomes. We assessed the effectiveness of our

RL score by comparison to MEC score on simulated data. To do

so, we simulated reads with error rate 0:02 from a pair of phased

k-ploid SNP loci for different coverages (56, 106, 206, 1006) and

for k[f2,:::,10g. All possible phases were exhaustively enumerat-

ed, and phases of the maximal relative likelihood (RL) and phases

of the minimal MEC score chosen. We computed the proportion

of perfectly phased SNP pairs in both cases (perfect solution rate).

Even with two SNP loci, RL significantly outperforms MEC for all

k§3 (Figure 3A). It is also worth noting that MEC (in comparison

to RL) deteriorates more seriously in accuracy as ploidy (k)
increases (Figure 3A). In addition, we also compared the vector

error rate in both cases; for a pair of SNPs, this rate is the number

of vectors from the proposed solution that cannot be matched with

vectors from the true solution (Figure 3B).

The results demonstrate that the higher the ploidy, the better

the relative likelihood (RL) score performs in comparison to MEC

score for phasing a pair of SNPs (Figure 3). In fact, in simulations

where k§8, RL with 56 the coverage already outperforms MEC

with 1006 coverage. For the same coverage, RL always

outperforms MEC for k§3, and they are equivalent in the

diploid case (k~2).
Comparisons of HapTree and HapCompass. To evaluate

the phasing capabilities of HapTree, we compare it with

Algorithm 4. HapTree(R, r̂r, k̂k, S): Assembling haplotype from

reads R with parameters r̂r, k̂k.

Input: R, r̂r, k̂k, S

Output: H
H~½ �
S9 = {}

for s M [1, 2, …, |S|] do
S9 + = s

H~BRANCH H,r̂r sð Þ,sð Þ
H~PRUNE H,k̂k sð Þ,S’ð Þ

return H

Algorithm 3. PRUNE(H, k, S9): Pruning haplotypes H on S9

with factor k M [0,1].

Input: H, k, S9

Output: H’
H’~½ �
v~max

H[H
RL HjR S’ð Þ,e½ �

for H[H do
if RL[H | R(S9), e] $ kv then
H’z~H

return H

Figure 2. Examples of Vector Error in a sample tetraploid genome; the true phase is on the left and examples with two, three, and
four vector errors are on the right.
doi:10.1371/journal.pcbi.1003502.g002
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HapCompass [8] (latest version available at: www.brown.edu/

Research/Istrail_Lab/hapcompass.php), to our knowledge the

only other existing program that directly addresses polyploid

haplotype assembly, over multiple depth coverage values and

component sizes for triploid and tetraploid simulated genomes.

We simulated triploid and tetraploid genomes with different block

lengths (10, 20 or 40 SNP loci), different coverages (56, 106, 206
and 406), SNP positions, and SNP densities. Throughout the

simulations for both the triploid and tetraploid cases, our

EXTEND module is run with threshold r~:01 and PRUNE

primarily with threshold k~:001. When the current number of

haplotype options generated is above 1000, we prune more

aggressively with k~:01 and when above 5000, with k~:05.

These parameters are chosen to ensure the efficiency of HapTree

by only keep a tractable collection of promising solutions in each

step. We also simulate a read set with uniform error rate and size

dependent on coverage.

For the triploid case, we observed that HapTree finds a perfect

solution at a rate independent of the number of SNPs used in the

simulation; in contrast, HapCompass declines in performance the

larger the block size (Figure 4). While both HapTree and

HapCompass improve steadily the higher the coverage, in every

case HapTree significantly outperforms HapCompass; the least

significant improvement of 63% occurs in the case of 10 SNP loci

and 106 coverage, whereas the most significant improvement

occurs in the case of 40 SNP loci and 406 coverage. For both

vector error rate and likelihood of perfect solution, we find that

HapTree substantially outperforms HapCompass.

For tetraploid simulations, HapTree significantly outperforms

HapCompass with block length of 10 SNP loci (Figure 5). For

larger block lengths HapCompass arrives at the perfect solution

at a rate of less than 1%; HapTree however does so at a rate

between 40% and 70% depending on block size and coverage at

least 206.

We varied the allele error rates (:001,:02,:05, and :1) and

observed decreases in accuracy that vary approximately linearly

with the (uniform) allele error rates (Figure 6). The allele error rate

is the likelihood of the sequencing technology to report the

incorrect allele for a given position in one read. We ran 10000

trials for simulated triploid genomes of block size 10, with

coverages 106, 206, and 406.

For the simulations above in Figure 6, we modeled our read

data on Illumina sequencing technologies; for more details, please

see section Simulated polyploid data generation below. We

also ran simulations on longer read data, modeled after 454

sequencing technologies and found almost identical results.

The primary reasons for HapTree’s superior performance are,

first, that HapTree’s relative likelihood is more effective than

HapCompass’s MEC score (see Relative likelihood vs MEC);

and second, that HapTree’s inference algorithm is more accurate

than the approximation algorithm used by HapCompass.

Discussion

Run-Time Evaluation
Not only does HapTree outperform HapCompass on phasing

quality, it is also significantly faster, especially for longer block

length. The median runtimes for block length 10 and 106
coverage were (0:00702,0:633) seconds for HapTree and

HapCompass, respectively; for block length of 40 and 406
coverage, they were (0:0279,13:099) seconds, respectively.

Results on Real Diploid Data
As seen in the results of Geraci et al. [18], there is no perfect

solution for diploid phasing. HapCUT is one of the methods

reported that consistently performs best or close-to-best for a

variety of experiments. For a proof of concept of how HapTree

would perform on real data, we ran HapTree and HapCUT using

Figure 4. HapTree (solid lines) and HapCompass (dashed lines) on simulated triploid genomes: Likelihood of Perfect Solution and
Vector Error Rates, 1000 Trials, Block lengths: 10, 20, and 40.
doi:10.1371/journal.pcbi.1003502.g004

Figure 3. Proportion of perfectly phased SNP pairs and vector error rate for RL (solid line) and MEC (dashed line) optimization in
10000 trials over 56, 106, 206and 1006 coverage.
doi:10.1371/journal.pcbi.1003502.g003
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454 and Illumina sequencing data of the well-studied NA12878

genome (1000 Genomes Project Phase 1) [17], and compared

MEC scores as well as switch errors to a trio phasing annotation

accepted as ground truth; we present these results in Table 1. The

trio phasing annotation represents a high quality diplotype of

NA12878 for all SNP sites where either parent (NA12891 or

NA12892) is homozygous [17]. Note that we computed the

number of switch errors within connected SNP components only,

against SNPs whose phase has been determined by the trio-based

phasing; we then sum over components. In this case, HapTree was

run with a uniform error rate of :02, an EXTEND threshold :001,

and primarily with a PRUNE threshold of :001. We begin to

prune more aggressively when we have at least 100,500, or 1000
possible haplotypes with thresholds of (:01,05,:1) respectively. For

the vector set prior, from examining the read data, we ran

HapTree with parallel bias p~:8.

We found that HapTree and HapCUT perform almost

identically in MEC scores, with HapCUT having marginally

smaller scores for both 454 and Illumina data sets. It is worth

noting that HapCUT optimizes MEC score, and MEC score

measures only the consistency between a phasing solution and

read data, not with the true phase.

Notably, when comparing to the ground-truth phase as

determined by trio-based phasing, we found HapTree significantly

outperforms HapCut in terms of switch error rate for the phasing

experiments on the NA12878 genome for 454 and Illumina

datasets. Although our method is not primarily designed for

phasing diploid genomes, it is still able to achieve better phasing

results, when compared to the state-of-the-art diploid method.

Again, the results on real-world read datasets showed the

superiority of our likelihood function over MEC score for NGS-

based phasing.

Simulated Polyploid Data Generation
Reads. To generate a paired-end read, we uniformly choose a

starting point on the genome (we make sure the genome starts

sufficiently before the first SNP and ends at the last). We fix the

read-end length (read_len) to be 150. The fragment length

(frag_len) is normally distributed with a mean of 550 and standard

deviation of 30, but with min and max lengths of 500 and 600

respectively. The insert length (insert_len) is determined by the

fragment length and read-end length, that is, insert_len =

frag_len - 2read_len. Once we know the start and fragment

length, we must choose from which chromosome to read; we do so

uniformly from the k chromosomes. Finally, we add uniform error

to the read; we choose a rate of :02, based on the reported error

rate of Illumina sequencing technologies. For every SNP that the

read covers, independently with probability e we flip the allele to

any other allele; two-thirds of the time when we have this error, we

can see that the allele present is neither the reference nor the

alternative, and therefore we delete it. Hence, conditional on

seeing a SNP in a read, it is incorrect with probability e~ e
1{2

3
e

and

correct with probability 1{e.

Genomes. To simulate a genome, we fix a ploidy (k) and the

number of SNPs (n). We determine the positions for the SNPs by

randomly generating the distance between each pair of adjacent

SNPs. We do so using a geometric random variable with

parameter p (SNP density); this choice is equivalent to assuming

that any position is a SNP independently with probability p. For

phasing purposes, once one has generated the reads, the exact

genomic positions are no longer relevant; they were only needed to

simulate more accurate read data. We therefore refer to SNPs by

their position amongst the SNPs, not their position in the genome.

For each SNP, we randomly generate its haplotype, assuming for

each chromosome, that the alternative and reference alleles are

Figure 6. HapTree performance over varied error rates (.001, .02, .05, .1) and coverages (106, 206, 406) on simulated triploid
genomes: Likelihood of Perfect Solution and Vector Error Rates, 10000 Trials, Block length: 10.
doi:10.1371/journal.pcbi.1003502.g006

Figure 5. HapTree (solid line) and HapCompass (dashed line) on simulated tetraploid genomes: Likelihood of Perfect Solution and
Vector Error Rates, 1000 Trials, Block length: 10.
doi:10.1371/journal.pcbi.1003502.g005
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equally likely; if we generate a homozygous SNP, we try again.

This procedure results in the likelihood of genotype

g(s)[f1,:::,k{1g equal to
k

g(s)

� �
=(2k{2), and all orderings

o[Ps being equally likely. For the simulations discussed we use this

model. Note, however, that HapTree is not dependent on this

model. When running HapTree on real data, different assump-

tions ought to be made regarding the distributions of vector sets.
Coverage. For any genome, to generate a read set with Cx

coverage we need each base pair to be on average covered by C
reads. To determine the number of reads to generate, we must

know the length of the genome and the read length (read_len). The

expected length of the genome is n
p

for SNP density p, and the

read_len is 150 for each end (of which there are two); therefore we

simulate Cn
300p

reads for Cx coverage. Note that many of these reads

will see only zero or one SNP(s), thus for Cx coverage the number

of useful reads for any SNP will be less than C.

Discussion

We have presented a scalable algorithm, HapTree, for

polyplotyping using NGS sequencing data and a new metric for

measuring accuracy in this context. We have described an

efficient algorithm to identify phases that maximize our RL

metric, a relative likelihood function which measures the quality

of a given phase according to the read dataset. We have

demonstrated the advantages of such a likelihood formulation

over the existing MEC score in phasing both polyploid and

diploid genomes. HapTree not only substantially improves the

efficiency and phasing accuracy of the state-of-the-art in

polyploid phasing, but also produces more accurate phased

haplotype blocks for diploid genomes, as compared to HapCUT,

which is designed for diploid phasing by MEC score optimiza-

tion. Our results indicate that HapTree can be used in phasing

individual triploid and tetraploid genomes, as well as improving

phasing of real diploid genomes. HapTree also easily scales to

genomes of higher ploidy.

Our algorithm can be easily extended to phase data with multi-

allelic SNPs and with unknown genotype information as well.

With unknown genotype information and multi-allelic SNPs,

instead of
k

g(s)

� �
allele permutations, there are 4k possibilities,

since all 4 alleles (A,C,G,T) are possible for all k chromosomes.

For bi-allelic SNPs with unknown genotypes, there are 2k, as

all possible reference and alliterative allele permutations are

allowable. Finally, when the genotype is known but a SNP is

multi-allelic, we may use multinomial coefficients to

compute the number of allele permutations allowable:

k

#A,#C,#G,#T

� �
~

k!

#A!#C!#G!#T !
, where #X denotes

the number of alleles X according to the genotype, where

X[fA,C,G,Tg. The only change to HapTree in these cases is that

at each EXTEND step, we allow all allele permutation possibilities

as dictated by whatever genotypic is available: we compute the

probabilities for all 4k, 2k, or
k

#A,#C,#G,#T

� �
possibilities

(depending on the situation) as opposed to
k

g(s)

� �
and EXTEND

accordingly. Moreover, the type of information available does not

need to be the same for all SNPs, since it only determines which

allele permutations we introduce at the EXTEND step.

A future application of HapTree is genotype imputation, which

can predict missing genotype from phasing results. As polyploid

sequencing data becomes available, HapTree will be useful for the

investigation of the role of heterozygosity in plant, fish, and other

species. Moreover, accurate individual phases of diploid haplo-

types can be assembled without the use of pedigree or population

information.

A summary of this paper appears in the proceedings of the

RECOMB 2014 conference, April 2–5 [19].
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