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 Each chromosome in the human genome has two copies. The haplotype 

assembly challenge entails reconstructing two haplotypes (chromosomes) 

using aligned fragments genomic sequence. Plants viz. wheat, paddy and 

banana have more than two chromosomes. Multiple haplotype 

reconstruction has been a major research topic. For reconstructing multiple 

haplotypes for a polyploid organism, several approaches have been 

designed. The researchers are still fascinated to the computational challenge. 

This article introduces a partitioning algorithm, HapPart for dividing the 

fragments into k-groups focusing on reducing the computational time. 

HapPart uses minimum error correction curve to determine the value of k at 

which the growth of gain measures for two consecutive values of  

k-multiplied by its diversity is maximum. Haplotype conflict graph is used 

for constructing all possible number of groups. The dissimilarity between 

two haplotypes represents the distance between two nodes in graph. For 

merging two nodes with the minimum distance between them this algorithm 

ensures minimum error among fragments in same group. Experimental 

results on real and simulated data show that HapPart can partition fragments 

efficiently and with less computational time. 
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1. INTRODUCTION  

Domestication is crucial in agriculture because it meets up the human interest to a great extent. Its 

major goal is to exert significant control over an organism's reproduction so that newer organisms can 

survive in difficult environments. It is gaining popularity on a daily basis since it ensures a consistent supply 

of resources. Scientists are quite interested in coming up with innovative ideas in this field. Several studies 

based on animal and plant domestication are existed. This paper focuses on plant domestication. Majority of 

significant plants that we need in our daily life possess polyploid cells which have more than one pair of each 

chromosome. Polyploidy can be achieved through plant genetic material multiplication or hybridization. 

Study on multiple haplotyping of a polyploid genome becomes necessary for creating new organisms. 

A haplotype is a collection of deoxyribonucleic acid (DNA) variants inherited from a single parent. 

Polyploid organisms have several haplotypes, whereas diploid species have two. It's possible that a DNA 

sequence can contain insertion of wrong alleles or deletion of actual alleles. The haplotype assembly 

challenge is concerned with reassembling haplotypes from a set of DNA sequence that may contain a 

significant number of errors. Determination of haplotypes is more challenging than determination of 

genotypes from DNA reads of a polyploid genome. There have been a lot of research efforts on this 

computational problem to increase the accuracy and reduce the computational cost so that it can be used 
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widely on large-scale datasets. To reconstruct haplotypes, Wang et al. [1] suggested a clustering algorithm 

which can divide all fragments from the set of DNA sequence into two disjoint subsets solving the minimum 

error correction (MEC) model and each subset constructs the haplotype. Kargar et al. [2] proposed a model 

where the most observed allele is inserted into two constructed haplotypes and the corresponding column is 

deleted from the single nucleotide polymorphisms (SNP) matrix. A semi-supervised competitive neural 

network, proposed by XXu [3] divides all DNA fragments into two groups correcting minimum number of 

SNPs. The HapCompass model [4] is made up of a compass graph with SNPs as nodes, and the weight of 

each edge indicates the difference in phasing between two pieces. It removes the edges containing minimum 

weights from the graph. A novel Bayesian framework, HapTree designed by [5] performs SNP-pair phasing 

and full haplotype assembly based on a probabilistic framework. Xie et al. [6] suggested a heuristic algorithm 

H-PoP which is a dynamic programming model and reduces computational cost at each iteration. Individual 

haplotyping with minimum error correction proposed by [7] uses heuristic algorithm to find haplotypes for 

diploid organisms. An extension of this algorithm proposed by [8] finds multiple haplotypes for polyploid 

organisms. Fuzzy conflict graph is introduced by [9] to develop a fast heuristic partitioning model. Extension 

of compass graph and HapCompass framework has been performed by [10] to implement optimization in 

haplotype assembly. Moeinzadeh et al. [11] represents a new tool Rainbow for reconstructing haplotypes for 

polyploid genomes using short read sequence data from a highly heterozygous hexaploid genome. A greedy 

heuristic approach has been introduced by [12] to compute max-cuts in a graph derived from DNA 

fragments. It is shown by [13] that haplotyping problem is NP-hard and polynomial time algorithms have 

been designed for fragments assembly. A heuristic solution introduced by [14] is faster and more accurate 

than a dynamic programming. Some algorithmic strategies for haplotype determination have been suggested 

by [15] from localized polymorphism data. A novel computational model proposed by [16] improves the 

MEC model. A survey on single individual haplotyping problems has been performed by [17] on real 

haplotype data and its complexity has been explained by [18]. Phasing of variants in haplotypes proposed  

by [19] from overlapping sequenced fragments. Zhang et al. [20] presented reconstruction for haplotypes by 

identifying the compatible ones with the observed genotypes. Li et al. [21] reconstructed the haplotypes by 

computing the neighboring SNP phases and connecting them. Useful measures for genotype imputation 

accuracy and its several statistical methods have been suggested by [22] and [23] respectively. The relation 

of phase information with human genome has been illustrated by [24]. Baaijens and Schönhuth [25] 

introduced an overlap graph based on the interaction of DNA reads. This method performs better than the 

other reconstructing haplotype approaches. The importance of non-SNP genetic variation for defining human 

genome has been explained by [26]. 

This paper proposes a novel partitioning algorithm, HapPart which can partition a sequence of  

𝑘-ploid organism into k groups faster than the heuristic algorithm H-PoP. Analyzing the minimum error 

correction (MEC) values for each value of k i.e., from 1 to total number of fragments, the expected partition 

is obtained. We use haplotype conflict graph which contains the haplotypes as its nodes and their distances as 

its edges. Merging two groups in order to move from k-groups to k-1 groups ensures construction of 

haplotypes with minimum error. Furthermore, this algorithm requires less amount of memory than H-PoP. 

 

 

2. RESEARCH METHOD 

2.1.   Preliminaries 

DNA sequencing techniques deal with overlapping fragments which consist of nucleotides. The 

smallest portion of the DNA sequence is called base. For a diploid organism, a pair of DNA molecules comes 

from the parents’ copies. These copies are different in few positions and they are known as SNP. SNPs are 

considered as bi-allelic, let two alleles in an SNP site be 0 and 1. They can represent any two elements of the 

set {A, T, G, C}. A fragment is considered as a sequence of SNP sites. It is built up with symbols {0, 1, –} of 

length n. ‘–’ is usually known as a gap. It means an undetermined SNP. 

The input of the problem is aligned fragments of a DNA sequence. Let m be the numbers of 

fragments. Then 𝑚 × 𝑛 denotes the SNP matrix M. Each entry is denoted by M [i, j] which defines the allele 

of the ith fragment at jth SNP site. We need to determine the dissimilarity between two alleles a1, a2 ∈  
{0, 1, –}. The dissimilarity function d (a1, a2) [6] is defined as (1). 

 

 d(a1,  a2)= {
1,   if a1,  a2 ≠ –  and a1 ≠ a2

0,  otherwise                             
 (1) 

 

2.2.  Haplotype construction 

Partitioning the given fragments into some sets of fragments and constructing the haplotypes from 

those sets is the main objective of the haplotype assembly problem. Let C be the total sets of fragments, then 
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C={C1, C2, C3, …, Ck}. The haplotypes are constructed in such a way that they conflict with one another in 

minimum number of positions in the SNP site. The methodology of construction according to [7] is: 

 

Hij= {

1,  if Nj
1(Ci) > Nj

0(Ci);                          

0,  if Nj
0(Ci) ≥ Nj

1(Ci) and Nj
0(Ci) ≠ 0  

– ,  if Nj
0(Ci) = Nj

1(Ci) = 0                    

 (2) 

 

where i ∈{1, 2, …, k} and j ∈{1, 2, …, n}. Nj
1(C) is the number of fragments in a cluster C where the 

fragments contain 1’s in the j-th position of SNP matrix, similarly Nj
0(C) means the number of fragments 

containing 0’s. Partition P(C1,…Ck) is made by one or more sets and the haplotypes for all sets are 

constructed then the number of errors E(P) [6] is calculated as (3): 

 

 Ek(P)= ∑ ∑ ∑ d(f
j
, Hij)

n
j = 1f ∈ Ci

k
i = 1  (3) 

 

where k is total number of sets or groups that are to be constructed. Partitioning and haplotype construction 

should not consider only the minimum number of errors rather it should also consider the maximum diversity 

among the haplotypes. According to [6], the diversity measure among the haplotypes can be calculated as (4): 

 

 D(P) = ∑ ∑ d(Hi1j, Hi2j)
n
j=1i1, i2=1…k;i1≠i2

 (4) 

 

In this approach, we use the diversity measure as Dk
' (P)= 

1

k
D(P). Here k is the normalization factor which is 

the number of total sets. 

 

2.3. Pairwise haplotype distance 

The distance between two fragments f1 and f2, D (f1, f2), is generally defined as the number of SNPs 

where both fragments have different alleles. Therefore,  

 

 D(f
1
, f

2
) = ∑ d(f

1i
, f

2i
)n

i = 1  (5) 

 

two fragments f1 and f2 are said to be conflicting if D (f1, f2)> 0. In this approach, we are defining the 

pairwise haplotype distance which is similar to the (5) as (6): 

 

∆(H1, H2)= ∑ d(H1i, H2i).n
i = 1  (6) 

 

2.4.  Haplotype conflict graph 

The haplotype conflict graph is built based on the pairwise haplotype distances. This graph is used 

to partition the fragments into k groups. Initially, for m number of fragments, there are m haplotypes which 

results C2 

m  edges in the graph with m nodes. The pairwise haplotype distance represents the edge and each 

haplotype represents a node. An example with 6 fragments and their conflict graph has been shown in Figure 1. 

First, each fragment is mapped to a string of {0, 1, –}. Then the distances among them are calculated. 

 

 

 
 

Figure 1. SNP Matrix and haplotype conflict graph for 6 fragments 
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2.5. Method 

In the haplotype conflict graph, the two nodes having the least distance are merged together to create 

a new group and the haplotypes are updated as shown in the Figure 2. At each stage of the graph contraction, 

the MEC value is calculated and the conflict graph is updated according to the new distances among the 

haplotypes for further calculation. In Figure 2(a), 5 groups are formed out of 6 groups. Nodes 3 and 5 are 

chosen to be merged and their haplotype is updated. In the next, the distances among the 5 nodes are updated 

according to the distances among the haplotypes. The updated distances are indicated by red color. In the 

following figures from Figures 2(b) to 2(f), each iteration is demonstrated. From the MEC values found in 

each iteration, the MEC curve is formed and the best partition for particular k is determined according to the 

equations provided in the next subsection. 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

 

 

(e) (f) 

 

Figure 2. Steps of haplotype conflict graph contraction to find MEC values (a) initially there are 6 groups and 

MEC=0; 3 and 5 are merged together, (b) MEC=0; 1 and 4 are merged together, (c) MEC=0; new 1 and 4 

are merged together, (d) MEC=1; 2 and 3 are merged together, (e) MEC=2; new 1 and 2 are together, and  

(f) MEC=18 when there is only 1 group 

 

 

2.6.  Algorithm 

In order to find out the value of k at which the best partition can be achieved, we look into the errors 

among the fragments in all groups by varying k. The number of errors is 0 for k=total fragments, m because 

each haplotype contains 1 fragment. The number of errors becomes the highest for k=1 because only one 

haplotype contains all the fragments. Varying the value of k from 1 to m, we obtain the MEC curve which is 

similar to an exponential curve. 
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Figures 3(a), 3(b) and 3(c) show the MEC curves for partitioning 5, 90 and 400 fragments 

respectively. An important feature of these curves is: an abrupt change occurs at certain value of k. This 

certain value leads towards the best partition. To find out the abrupt change in the MEC curve the difference 

between two consecutive MEC values i.e., the gain, ΔE is calculated and then growth of this gain, Δ’E is 

calculated. 

 

∆Ei = Ei - 1(P) – Ei(P)  (7) 

 

∆'Ei = ∆Ei  – ∆Ei + 1  (8)  

 

where i is total number of sets. To perform these calculations, one complication will arise. To find the values 

of ΔE1 and Δ’Em, we need E0(P) and ΔEm+1(P). For E0(P), we need to extend the exponential curve upward 

solving the general exponential equation, f(x)=abx. For, ΔEm+1(P), let it be equal to 0. Considering the MEC 

values E1(P) and E2(P), E0(P) can be calculated by (9). 

 

E0(P) = 
E1(P)

2

E2(P)
  (9) 

 

The diversity among the haplotypes for each value of k is calculated by the formula of Dk
' (P). Finally, the 

final score Sk for each k is computed as: 
 

Sk = ∆'Ek * Dk
' (P) (10) 

 

The value of k for which we can get maximum score Sk is the required number of sets or groups and the 

profiles for each group i.e., the haplotypes are the output of this algorithm. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 3. MEC curves in several events (a) partitioning 5 fragments, (b) partitioning 90 fragments,  

and (c) partitioning 400 fragments 

Fragments 

Fragments Fragments 
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Algorithm 1: HapPart 
Input: an m x n matrix M. 

Ouput: k number of sets of fragments and their haplotypes. 

Initiate a heap H of size m 

Assign each fragment to Ci where i ε {1, 2, …, m} 

j = 1 

while j <= m do 

   begin 

      Compute all haplotypes Ht for the partition P(C) where t ε {1, 2, …, (m–j+1) } 

      Compute MEC Ej(P) and diversity D’j(P) 

   Insert all haplotypes Ht, Ej(P) and Dj(P) into H 

   Initiate adjacency matrix G of size (m–j+1) x (m–j+1)      

if j < m 

   begin 

       Build or update the graph G of which each cell Gab = Dissimilarity between Ha and Hb 

       Find the minimum distance dpq in the graph G 

       Merge the sets Cp and Cq 

end if 

j++ 

end while 

Compute E0(P) according to (9) 

for each element at k in heap H do 

   Compute Δ’Ek and Sk  

end for 

Find the maximum score Sk according to (10) 

Let L be the element in H with maximum score Sk 

output k and H1, …, Hk according to haplotypes in L. 

 

For avoiding disruptions, diversity in case of k=1 is considered as 0.001 or a value that tends to 0. 

Similarly, the MEC values for higher values of k are considered as inverse of total number of fragments. 

While merging two sets, it may happen that there are several distances which are minimum. For that case we 

cannot choose any one of them and merge their sets. To ensure that the total error among the fragments with 

the haplotypes is minimum and the diversity is maximum, we have to choose all the minimum distances and 

build all possible partitions of fragments. We take that partition for which (MEC–diversity) is minimum.  

In Figure 4, there are 4 haplotypes of which haplotype H1 contains fragments 1 and 3, H2 contains 2 

and 5, H3 contains only 4 and H4 contains only 6. Among the distances there are 2 which are minimum i.e., 3. 

H3 has to be merged with either H1 or H2. We consider H1 to be merged with H3 and calculate  

(MEC-diversity). Again, we consider H2 to be merged with H3 and do the same. H3 must be merged with that 

haplotype for which (MEC – diversity) is minimum. 

 

 

 
 

Figure 4. An instance where two sets are to be merged 

 

 

Theorem 1. Choosing the minimum distance in the graph and merging the groups having that distance 

ensures the best partition when k-1 groups are built from k groups. 

Proof. Let there be four fragments p, q, r, and s. The distances between p and q is d1, between q and s is d2 

and between p and r is d3. The relation among the distances is d1<d2<d3. As d1 is the minimum, we choose p 

and q be merged together and haplotype, Hpq be constructed. Usually, haplotype is constructed in such a way 

that it represents most of the characteristics of its fragments. 
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In Figure 5(a), d1 is considered as minimum and p and q are merged. In Figure 5(b), the distances 

between Hpq and r and between Hpq and s have been updated as d3’ and d2’ respectively where d2’<d3’. Now 

we have to prove that merging p, q and s results better partition than merging p, q, and r. In Figure 5(c) p, q 

and s are merged. Haplotype Hpqs will be at their center to make sum of the distances between Hpqs and the 

fragments minimum. Similarly, in Figure 5(d) Hpqr will be at the center of p, q, and r. The distance d1 is same 

in both figures but because of d3’ being greater than d2’ the area of triangle pqr is larger than that of triangle 

pqs. Therefore, the sum of distances between Hpqr and the fragments of its group is greater than that of 

distances between Hpqs and its fragments. That means merging p, q and s ensures better partition. In the 

similar way, for more fragments a polygon is formed. The area of the polygon has to be minimum. This can 

be achieved when minimum distance is considered. In Figure 5(e), 4 haplotypes are constructed using the 

minimum distances between two haplotypes. Let us consider that this construction is not correct and 

according to Figure 5(f) haplotypes H1 and H4 are reconstructed for better partition. The fragment which is 

included with the group of H4 has the smaller distance from the group of H1 than that of H4. Since HapPart 

considers the minimum distance. Therefore, the area of the new polygons is larger than the previous. This 

means total error has become larger which is against the objective. On the other hand, merging the groups 

having minimum distance ensures maximum diversity among haplotypes. Moreover, when there are more 

than one minimum distance, all possible partitions are checked for minimum (MEC-diversity) measure. It 

makes clear that HapPart ensures the best partition when k-1 groups are built from k groups. 

 

 

    
(a) (b) (c) (d) 

    

  
(e) (f) 

 

Figure 5. Several cases of merging 2 groups are shown (a) p and q are merged, (b) the graph is updated 

considering the distances between new haplotype hpq and other fragments, (c) p, q and s are merged together, 

(d) p, q and r are merged together, (e) 4 haplotypes are constructed according to HapPart, and (f) haplotypes 

h1 and h4 are reconstructed. 

 

 

3. RESULTS AND DISCUSSION 

This research compares the performance of this approach with that of a heuristic partitioning 

technique, H-PoP, utilizing both actual and simulated data. We perform the simulation using the data of 

oryza sativa cDNA 5', mRNA sequence and triticum aestivum cDNA, mRNA sequence collected from 

national center for biotechnology information (NCBI) nucleotide database. Simulated data is used varying the 

coverage rates and error rates. The value of k is also varied to find out the correctness for tetraploid, 

pentaploid and hexaploid containing errors. All experimental tests are carried on a Windows 64-bit operating 

system node containing processing unit 2.40 GHz and memory unit 4.00 GB. 

 

3.1.  Experiments on oryza sativa cDNA 5’, mRNA sequence 

From the oryza sativa cDNA 5', mRNA sequence containing 490 SNPs, numerous samples of reads 

are created with 75% coverage rate. During the overlapping reads generation, the polyploidy is maintained. 

Using the multiple sequence alignment tool, the reads are first aligned. The data is then used to run the 

proposed model. This model varies the total number of SNP sites and its ploidy. Figure 6 shows the result 

from this model that runs on a sequence of triploid oryza sativa. 
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Figure 6 shows final score Δ’E at different values of k for a sequence consisting of 90 fragments 

from a triploid oryza sativa. At k = 3, the score is the highest which indicates the best partition of the 

fragments. Table 1 shows comparisons in execution time and memory use between HapPart and H-PoP. 

Table 1 shows that as the value of k rises, the computational cost of H-PoP rises faster than that of HapPart in 

proportion to the total number of SNPs. When the total number of SNPs for k = 3 and k = 2 are the same,  

H-PoP takes more than 20 minutes. In terms of memory utilization, HapPart requires far less than H-PoP. 

Memory use for H-PoP increases dramatically as the value of k increases. 

 

 

 
 

Figure 6. Score Δ’E against different values of k for a triploid oryza sativa sequence 

 

 

Table 1. Comparisons considering dataset oryza sativa cDNA 5’, mRNA sequence 

k-ploidy Total SNPs 
Execution time (sec) Memory use (MB) 

HapPart H-PoP HapPart H-PoP 

k = 2 25200 5.033 61.504 15.36 35.83 

k = 3 5016 0.129 34.169 9.6 61.51 

k = 4 3444 0.051 58.631 9.3 194.59 

 

 

3.2.  Experiments on triticum aestivum cDNA, mRNA sequence 

This experiment is performed exactly in the same way that we have done for oryza sativa cDNA 5’, 
mRNA sequence. The triticum aestivum cDNA, mRNA sequence contains 770 SNPs. Result of executing the 

sequence for tetraploid triticum aestivum has been shown in Figure 7. The sequence consists of 400 

fragments. The scores Δ’E for some of first 50 values of k have been provided. Table 2 shows the 

comparisons between HapPart and H-PoP for the data varying k and the total number of SNPs. 

Each fragment has a longer length than the previous data. As a result, we must consider a smaller 

number of fragments. Otherwise, H-PoP takes several minutes to complete. On the other hand, this algorithm 

takes a fraction of 1 second. It takes about 6 minutes to execute a sequence of 400 fragments. 
 

 

 
 

Figure 7. Score Δ’E against different values of k for a tetraploid triticum aestivum sequence 

 

Fragments 

 

Fragments 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2856-2866 

2864 

Table 2. Comparisons considering dataset triticum aestivum cDNA, mRNA sequence 

k-ploidy Total SNPs 
Execution time (sec) Memory use (MB) 

HapPart H-PoP HapPart H-PoP 

k = 2 12680 0.279 11.712 10.24 30.709 

k = 3 6944 0.109 14.916 9.78 43.103 
k = 4 6780 0.116 142.670 12.28 256.06 

 

 

3.3.  Experiments on simulated data 

 For further evaluation, this research uses simulated data. Experiments on the real data show that the 

proposed model takes less time to execute than the existing H-PoP model. Several overlapping reads are 

generated with 50% and 75% coverage rates. In addition, this model varies the error rates by 5%, 10%, 15% 

and 20%. The value of k is varied from 4 to 6 to show the performance of HapPart regarding the 

reconstruction of haplotypes. Phasing accuracy is the degree to which the SNPs in the reconstructed 

haplotypes match those in the genuine haplotypes. Correct phasing rate [6] is used to measure this degree for 

k haplotypes. The comparisons between HapPart and H-PoP are shown in Figure 8.  

In Figures 8(a) and 8(b), though the correct phasing rates are better for H-PoP in most of the cases, 

HapPart shows results close to H-PoP in many cases. They remain within 0.89 to 0.91 for coverage 75% and 

within 0.95 to 0.96 for coverage 50%. In Figure 8(c), we show the change of correct phasing rate with the 

change of value k from 4 to 6. When k=4, the rate is 0.94 and it decreases to 0.91 at k = 6. It is observed that 

for long reads HapPart performs better. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 8. Correct phasing rate of HapPart and H-PoP (a) considering 50% coverage, (b) considering 75% 

coverage with error rates 5%, 10%, 15% and 20%, and (c) varying k from 4 to 6 
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4. CONCLUSION  

The task of haplotype assembling is challenging. Many studies have been conducted in order to find 

an accurate and quick solution. The polyploid haplotyping problems search on large number input reads to 

find optimal partitioning. These are called polyploid balanced optimal partition (PBOP) problems and they 

are NP-hard. The heuristic algorithm, H-PoP based on distance between the consensus haplotypes of different 

groups can compute haplotypes faster than SDhaP, HapTree and HapCompass. Nevertheless, it requires huge 

amount of memory. In this paper, we developed a new partitioning algorithm for reconstructing multiple 

haplotypes for a polyploid organism. Performance study has been carried out with a variety of real-world and 

hypothetical comparisons on simulated data. It shows that HapPart computes the haplotypes faster. It also 

requires less amount of memory than H-PoP. However, novel direction on the calculation of pairwise 

haplotype distance may lead to better accuracy of the result. 
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