158 research outputs found

    Seminario sullo Standard MPEG-4: utilizzo ed aspetti implementativi

    Get PDF
    Una delle tecnologie chiave che hanno permesso il grande sviluppo della televisione digitale è la compressione video. La tecnologia di codifica video nota come MPEG-2, sviluppata nei primi anni novanta, è diventata lo standard di trasmissione DTV (Digital TV) sia satellitare sia terrestre in quasi tutti i paesi del mondo. Da allora la velocità dei microprocessori e le capacità di memoria dei dispositivi hardware per la codifica e la decodifica sono migliorate significativamente rendendo possibile lo sviluppo e l’implementazione di algoritmi di codifica innovativi in grado di abbattere significativamente i limiti di compressione dello standard MPEG-2. Tali innovazioni, sfociate nel 2003 nello standard MPEG-4 AVC (Advanced Video Coding), non hanno permesso di mantenere la compatibilità all’indietro con l’MPEG-2, e questo ha inizialmente costituito un limite alla loro introduzione nei sistemi di trasmissione DTV. Tuttavia, negli ultimi anni la codifica MPEG-4 AVC si è diffusa rapidamente, è stata adottata dal progetto DVB, recentemente dall’ATSC, ed è lo standard di codifica nell’IPTV. L’obiettivo di questo seminario, che si articola in due giornate, è quello di presentare lo standard di codifica MPEG-4 AVC con particolare attenzione agli aspetti implementativi del livello di codifica video.2008-11-18Sardegna Ricerche, Edificio 2, Località Piscinamanna 09010 Pula (CA) - ItaliaSeminario sullo Standard MPEG-4: utilizzo ed aspetti implementativ

    Fast Motion Estimation Algorithms for Block-Based Video Coding Encoders

    Get PDF
    The objective of my research is reducing the complexity of video coding standards in real-time scalable and multi-view applications

    Performance analysis of Discrete Cosine Transform in Multibeamforming

    Get PDF
    Aperture arrays are widely used in beamforming applications where element signals are steered to a particular direction of interest and a single beam is formed. Multibeamforming is an extension of single beamforming, which is desired in the fields where sources located in multiple directions are of interest. Discrete Fourier Transform (DFT) is usually used in these scenarios to segregate the received signals based on their direction of arrivals. In case of broadband signals, DFT of the data at each sensor of an array decomposes the signal into multiple narrowband signals. However, if hardware cost and implementation complexity are of concern while maintaining the desired performance, Discrete Cosine Transform (DCT) outperforms DFT. In this work, instead of DFT, the Discrete Cosine Transform (DCT) is used to decompose the received signal into multiple beams into multiple directions. DCT offers simple and efficient hardware implementation. Also, while low frequency signals are of interest, DCT can process correlated data and perform close to the ideal Karhunen-Loeve Transform (KLT). To further improve the accuracy and reduce the implementation cost, an efficient technique using Algebraic Integer Quantization (AIQ) of the DCT is presented. Both 8-point and 16-point versions of DCT using AIQ mapping have been presented and their performance is analyzed in terms of accuracy and hardware complexity. It has been shown that the proposed AIQ DCT offers considerable savings in hardware compared to DFT and classical DCT while maintaining the same accuracy of beam steering in multibeamforming application

    Algorithms & implementation of advanced video coding standards

    Get PDF
    Advanced video coding standards have become widely deployed coding techniques used in numerous products, such as broadcast, video conference, mobile television and blu-ray disc, etc. New compression techniques are gradually included in video coding standards so that a 50% compression rate reduction is achievable every five years. However, the trend also has brought many problems, such as, dramatically increased computational complexity, co-existing multiple standards and gradually increased development time. To solve the above problems, this thesis intends to investigate efficient algorithms for the latest video coding standard, H.264/AVC. Two aspects of H.264/AVC standard are inspected in this thesis: (1) Speeding up intra4x4 prediction with parallel architecture. (2) Applying an efficient rate control algorithm based on deviation measure to intra frame. Another aim of this thesis is to work on low-complexity algorithms for MPEG-2 to H.264/AVC transcoder. Three main mapping algorithms and a computational complexity reduction algorithm are focused by this thesis: motion vector mapping, block mapping, field-frame mapping and efficient modes ranking algorithms. Finally, a new video coding framework methodology to reduce development time is examined. This thesis explores the implementation of MPEG-4 simple profile with the RVC framework. A key technique of automatically generating variable length decoder table is solved in this thesis. Moreover, another important video coding standard, DV/DVCPRO, is further modeled by RVC framework. Consequently, besides the available MPEG-4 simple profile and China audio/video standard, a new member is therefore added into the RVC framework family. A part of the research work presented in this thesis is targeted algorithms and implementation of video coding standards. In the wide topic, three main problems are investigated. The results show that the methodologies presented in this thesis are efficient and encourage

    Dyadic spatial resolution reduction transcoding for H.264/AVC

    Get PDF
    In this paper, we examine spatial resolution downscaling transcoding for H.264/AVC video coding. A number of advanced coding tools limit the applicability of techniques, which were developed for previous video coding standards. We present a spatial resolution reduction transcoding architecture for H.264/AVC, which extends open-loop transcoding with a low-complexity compensation technique in the reduced-resolution domain. The proposed architecture tackles the problems in H.264/AVC and avoids visual artifacts in the transcoded sequence, while keeping complexity significantly lower than more traditional cascaded decoder-encoder architectures. The refinement step of the proposed architecture can be used to further improve rate-distortion performance, at the cost of additional complexity. In this way, a dynamic-complexity transcoder is rendered possible. We present a thorough investigation of the problems related to motion and residual data mapping, leading to a transcoding solution resulting in fully compliant reduced-size H.264/AVC bitstreams

    Compressed-domain transcoding of H.264/AVC and SVC video streams

    Get PDF

    Distributed Video Coding for Resource Critical Applocations

    Get PDF
    corecore