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ABSTRACT 

Aperture arrays are widely used in beamforming applications where element signals are 

steered to a particular direction of interest and a single beam is formed. Multibeamforming is an 

extension of single beamforming, which is desired in the fields where sources located in multiple 

directions are of interest. Discrete Fourier Transform (DFT) is usually used in these scenarios to 

segregate the received signals based on their direction of arrivals. In case of broadband signals, 

DFT of the data at each sensor of an array decomposes the signal into multiple narrowband 

signals. However, if hardware cost and implementation complexity are of concern while 

maintaining the desired performance, Discrete Cosine Transform (DCT) outperforms DFT. 

In this work, instead of DFT, the Discrete Cosine Transform (DCT) is used to decompose 

the received signal into multiple beams into multiple directions. DCT offers simple and efficient 

hardware implementation. Also, while low frequency signals are of interest, DCT can process 

correlated data and perform close to the ideal Karhunen-Loeve Transform (KLT). 

To further improve the accuracy and reduce the implementation cost, an efficient 

technique using Algebraic Integer Quantization (AIQ) of the DCT is presented. Both 8-point and 

16-point versions of DCT using AIQ mapping have been presented and their performance is 

analyzed in terms of accuracy and hardware complexity. It has been shown that the proposed 

AIQ DCT offers considerable savings in hardware compared to DFT and classical DCT while 

maintaining the same accuracy of beam steering in multibeamforming application.  
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CHAPTER 1 
 

       INTRODUCTION 

 

Antennas employed in wireless communication and space-imaging systems range from 

one simple antenna to large groups of complex three-dimensional (3D) antennas [1]. Groups of 

antennas have traditionally been used to form beams to be transmitted to or received from a 

particular direction. This enables filtering of signals spatially. Signals having the same temporal 

frequency but generating from different locations require spatial filters, i.e, beamformers to 

retrieve the desired signal [2].  

The size of antenna required to transmit or receive quality signals to or from a large 

distance is often not practical. Grouping a number of antennas to form beams serves the purpose 

in these situations. The factors that affect beamforming are: antenna types and their geographical 

arrangement while grouping, technology applied to combine the signals, and form beams.  

 

1.1      Theory of Beamforming  

1.1.1 Basic Antennas 

The very basic element of a communication system is antenna. Transmission and 

reception of signals over a distance is made possible due to the application of this element. It can 

be a simple wire or a complicated radio telescope built with thousands of antennas. The basic 

antennas or single element antennas can also be of different kinds depending on their shape, 

functionality, directionality, performance, principle, application and architecture. However, all 

they do is convert the electrical signal into electromagnetic wave and vice versa. 
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1.1.2 Antenna Arrays and Smart Antennas 

In many long distance communications, it is necessary to design antennas with high 

directivity [3]. High directivity can be achieved by increasing the electrical dimension of the 

antenna. Increasing geometric dimension is not always feasible. However, assembling multiple 

antenna elements is another way of achieving the same outcome, which can be defined as an 

array. Fig. 1.1 [36] shows an example of an aperture array. Different kinds of antennas are 

employed in forming arrays as required by the application. The response of the arrays can be 

made adaptive. Adaptive arrays are more popularly known as smart antennas. Smart antennas are 

named so due to their adaptive nature. 

 

1.1.3 Array Types 

Antenna arrays are classified primarily based on their geometric configuration. Another 

classifying factor is the antenna types that are used in the array. Selecting identical radiators is 

the rule of thumb in designing antenna arrays.  

 

 

                Fig. 1.1 [36]. Example of an aperture array 
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The response of the arrays depends on the kind of antennas used in forming the array. 

Both omnidirectional and directional antennas can be used in arrays. Omnidirectional antennas 

are those, which produce radiation in all directions having the same signal strength. Directional 

antennas are responsive or sensitive to particular directions only. Arrays in beamforming can be 

considered as a unit working as a directional antenna.   Geometrically, the array can be linear, 

planar, circular or a combinational one. A linear array is one where the antenna elements are 

organized along a straight line. This would be a one-dimensional (1D) array. A planar array is a 

two-dimensional (2D) array where the elements are arranged in a rectangular shape. When the 

geometric shape of the array is circular, evidently, that would be a circular array.  

Arrays can also be uniform or non-uniform depending on the inter-element spacing. 

When the elements are equidistant, the array is a uniform array.   

The array response varies depending on these classifications. Also, the excitation phase 

and amplitude of each element along with the individual response determine the output pattern of 

an antenna array. 

 

1.1.4 Beamforming concepts 

Aperture arrays are designed so as to transmit or receive radiation of a particular pattern, 

which contain information to/from a particular direction. In radio communication, radar and 

space imaging applications, determining the direction of arrival is an important task. In those 

cases, aperture arrays are implemented to form beams in a particular direction of interest. 

An introduction to beamforming concepts and algorithms is presented in [2][4]. Consider 

an 8-element aperture array arranged along the z-axis as in Fig. 1.2. However, an array can be 

planar or circular with uniform or non-uniform in terms of distance between them. In a Uniform  
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          Fig. 1.2. 8-element Aperture Array 

 

Linear Array (ULA), the same distance from each other separates each element. In this particular 

case, a half wavelength distance is considered between each pair of elements. 

Let us assume a uniform plane wave arriving at the array at an angle θ with respect to the 

z-axis. Considering the elements to be isotropic, the element pattern would be proportional to the 

E-field and summing together the response of all the elements the array pattern, re, would be: 

re = e−Njπ cosθ
n=1

8

∑              1.1 

If we take all other coordinates to be zero except that of the z-axis and consider the 

weighting such as to direct the beam to θe direction with shifting phases of each element, the 

array factor would be:  

AF = e−Njπ (cosθe−cosθ )
N=1

8

∑
           1.2 
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Here, θ is from 0 to 2π, θe is the expected beam direction and N is the number of sensors 

in the array. Beam generated towards the expected beam direction having the maximum power is 

termed as main beam or main lobe. All the other beams having lower power are called side 

lobes. Side lobes are signals to or from undesired directions. Attention is given to lower the 

number and the power of the side lobes as this is a major performance criterion for beamforming 

algorithms. Fig. 1.3 shows an example of main lobes and side lobes on polar plot.  
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Fig. 1.3. Example of main lobe and side lobe on polar plot 
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Here, beams directed towards 60 degrees and 300 degrees are the main lobes. The beam 

directed towards 300 degree is sometimes termed as back lobe. All the other beams with 

distributed along the other directions having lower magnitude are the side lobes.  

 In multibeamforming applications, there would be a number of main lobes in the desired 

directions. Fig. 1.4 [34] shows an artists view of the generated beams from an antenna array. 

This is an example of multibeamormer as can be realized from the figure having multiple beams 

in multiple directions. Beams with maximum power and toward the desired directions are main 

beams. All the other beams are unwanted side lobes. In an ideal multibeamformer, there would 

be multiple main lobes seperated only by nulls instead of any side lobes in between. Nulls are, as 

the name implies, absence of any field strength. Nulls are produced in desired directions if it is of 

particular interest not to transmit or receive any signal to or from that directions.    

 

 

                  Fig. 1.4. [34] Visualization of beams to/from an array 
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Antenna theory dictates that the array response would be same for both reception and 

transmission, and the response of an array is characterized by the array factor and the types of 

antennas used to form the array. For simplicity and practical reasons, identical antennas are form 

arrays. 

 

1.1.5 Major Classifications 

In broad categorization, beamformers can be classified as data independent and data 

dependent [2][4]. Data independent beamformers are the conventional beamformers which steer 

the beam to the look direction irrespective of the properties of the signal data. This is similar to 

mechanically moving the antenna to the desired direction except it moves the antenna 

electronically instead of mechanically. Data dependent beamformers, on the other hand, respond 

accordingly to the received signal data. These are also termed as adaptive beamformers. 

The most common of the conventional beamformers is the time delay beamformer where 

a delay in the time domain is introduced to produce in-phase signals and thereby a beam in the 

desired direction. However, producing time delay with cables is vulnerable to various physical 

constraints and errors [5].  

Availability and advancement in digital technology enables the employment of digital 

processing techniques in beamforming which can overcome the erroneous analog time delay 

concerns in beamforming. Time delays can be achieved in digital beamforming by buffering the 

respective signals by multiple sample times as required. The high frequency signal has to be 

down-converted before processing in the digital processor. Fig. 1.5 shows a generalized system 

architecture employing digital beamforming.  
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Fig. 1.5. Flow graph of a system with beamformer 

 

The signals received from the sensor array are down-converted with Digital Down 

Converters (DDC) after doing the digitization using Analog to Digital Converters (ADC) and 

then received at the appropriate digital receivers before applying to the beamformer processor. 

The beamformed output is then sent to the main processing unit for performing the appropriate 

signal processing to produce the desired result.    

Another way of producing time delay is to produce phase shifts and thus to do the 

beamforming in the frequency domain. But this also limits the processing only to narrowband 

signals. In the case of broadband signals,  the signal has to be segregated into multiple 

narrowband signals first to implement the phase shift beamformer. Fast Fourier Transform is 

traditionally used in this case. Thus, beamformers in the case of narrowband and wideband 

signals have to be different to ensure optimal and accurate performance [6]. 
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1.1.6 Applications 

Beamformers find extensive importance and applications in various fields like RADAR, 

SONAR and other wireless communication systems [2]. Mobile communication systems largely 

employ beamformers to determine the direction of arrival of the signals [4]. In space imaging, 

astrophysical and geophysical explorations systems, arrays with thousands of antennas spreading 

over a large area are implemented to form beams to desired directions. Square Kilometer Array 

is the most talked about aperture array these days in the space imaging area where the apertures 

are arranged across an area of one square kilometer to build the beamformer. Besides these, 

biomedical technology also involve beamformers for various medical applications.
 

   

1.1.7 Multibeamforming 

Multibeamforming, as the name implies, is a type of beamforming where multiple beams 

are produced from a single array or entity. Applications where the directions of interest are 

spread over a wide area find multibeamformers exclusively essential. More on 

multibeamforming will be discussed throughout the thesis. 

 

1.2
     

Algebraic Integer 

In number theory, an algebraic integer is defined as the root of a monic polynomial [17]. 

The leading coefficient in this case has to be 1 unlike algebraic numbers. Let us consider the 

following monic polynomial: 

xn + cn−1x
n−1 + cn−2x

n−2 + .....+ c1x + c0 = 0
           1.3 
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If r is a root of the above equation, it would be an algebraic integer.  

As an example, let us consider ω = e2πi/R  to be the Rth root of unity. Here, R = 2v and v ≥ 

2. If we consider v=3, R would be 8. In that case, ω would the root of: x4 +1= 0 over Z and 

{ω ,ω 2,ω 3} would be the integral basis of Z [ω ]. The highest degree of ω  would be restricted 

to {(R/2)-1}. 

According to the property of algebraic integers, the sum and product of algebraic integers 

are also algebraic integers. 

An algebraic integer in DSP has been considered since long back [16-17]. Algebraic 

integers have been proposed and implemented to realize the DCT and IDCT coefficients in the 

past [13]. Multidimensional algebraic integers have been considered to reduce the dynamic range 

of the transform coefficients. In the field of image compression, significant savings have been 

observed while using multidimensional algebraic integers. Also, an error free implementation of 

the classical DCT is possible with algebraic integer quantization.  

In this thesis,  we will use algebraic integer techniques to implement transform basis 

functions in beamforming applications. The algebraic integers used in the thesis will be denoted
 

as, Algebraic Integer Quantiation or in short AIQ.  

 

1.3     Thesis Motivation 

Multibeamforming is drawing significant attention due to it’s widespread applications in 

recent times. Demands of high-resolution images in astrophysics and other geophysical fields 

call for wide view angle having uncompromised image quality. Increasing demand in wireless 

communications is threatening the limited frequency spectrum to find an alternative before it 
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runs out of scopes. In addition, the advent of huge radio telescopes such as Square Kilometer 

Array (SKA) calls for efficient and accurate beamforming algorithms to cope with the 

tremendous expectation. One of the interesting facts of Square Kilometer Array is that an airport 

radar located tens of light years away would be detected at the SKA telescope [34]. In recent 

radio telescopes containing 100 to 1000 antennas to form the array are grouped following a 

hierarchical architecture, i.e, tile level and station level. Outputs from the tile levels can be 

grouped and correlated together in the station level for further processing. A multibeamforming 

algorithm can be considered for the tile level architectures to provide multiple beams to be 

further processed. 

 Discrete Fourier Transform (DFT) has been the algorithm explored and applied to form 

multiple beams. However, considering its implementation complexity and cost, it is time to 

consider an alternative algorithm that can replace DFT and reduce implementation complexity.  

 

1.4     Thesis Objective 

The main objectives of this thesis are summarized in steps as the followings: 

§ Apply multiple discrete transforms such as, Discrete Sine Transform, Walsh 

Hadamard Transform and Discrete Cosine Transform in multibeamforming and 

analyze their performance. The purpose is to determine a suitable alternative for DFT. 

§ DCT has reported the lowest cost among all discrete transforms with good 

performance. The next task is to apply Integer DCT approximation techniques and 

compare their performance. The purpose is to propose the best approximation DCT 

algorithm for multibeamforming application. 
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§ The next objective is to apply an error-free implementation of classical 8-point DCT 

using AIQ mapping and assess its performance in terms of accuracy and hardware 

complexity.  

§ Lastly, propose both 1D and 3D AIQ mapping for the 16-point DCT and assess its 

performance for the particular application. 

 

1.5     Thesis Organization 

The remaining portion of the thesis is organized as follows. Chapter 2 contains the 

relevant works along with a comparison among different transforms in multibeamforming. 

Different benchmark DCT algorithms and their performances are compared and analyzed in 

chapter 3. The application of 8-point AIQ DCT in multibeamforming is proposed and its 

performance is analyzed in chapter 4. In chapter 5, the 16-point AIQ algorithm is given with its 

performance analysis in multibeamforming. Finally, chapter 6 contains the conclusion and the 

scope of future work.  
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CHAPTER 2 
 

RELEVANT WORKS 

 

Extensive research and application with array and beamforming technology has been 

possible with the advancement in digital technology. Expensive and unrealistic earlier, A/D 

converters, microprocessors, random access memories and other digital circuitry have become 

more available these days. Various radio telescope projects have been developed and are under 

development in space imaging and communication systems due the advancements in digital 

technology. Square Kilometer Array (SKA) [23-25] is the latest addition to the space imaging 

telescopes and is still under research and development. Some other examples include LOFAR 

[26-27], ATA [28] and Argus [29]. 

 

2.1     Beamforming Algorithms 

The most basic kind of beamformer is the delay sum beamformer where all the 

received/transmitted signals are delayed or advanced with reference to one particular sensor in 

the array so that all the signals arrive or transmit at the same instant of time and thereby result in 

constructive interferences only. In analog domain, the delays can be achieved simply with the 

cabling, but it lacks accuracy and also comes with physical constraints.  

An efficient alternative of this is to implement the beamformer in the digital domain. 

Sampling and buffering the samples in that case can implement the delay. However, the 

sampling has to be done at a rate greater than the Nyquist rate to avoid aliasing. Another criterion 

in beamforming that must be taken into account to avoid aliasing is the distance between the 

array sensors. Delay sum beamformers in digital domain also require a significant amount of 
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storage to produce buffering. The cable bandwidth has to be large enough to accomplish the 

required sampling rate. Analog to Digital Converters are required to convert the antenna signal to 

be processed by a digital processor. In the case of high frequency signals, Radio Frequency 

translators are used prior to ADCs to bring the signal frequency down before converting. After 

the conversion, the signals are passed through the digital down-conversion process to shift the 

center frequency to 0 Hz. This produces a quadrature output signal which is used as input in the 

beamformer. 

Phase shift beamformer is another way to implement a delay sum beamformer in the 

frequency domain. Phase delays are implemented in the array sensors instead of time delay in 

this case. It is designed so as to produce the output signals from all the sensors in phase. The 

output signals are then summed to get the beam in the desired direction. To apply phase shift 

beamformers in broadband applications, the signal has to be segregated into multiple narrowband 

signals prior to applying the phase shifts to the corresponding narrowband signals. A 

comparative analysis of different beamforming algorithms is presented in [31]. 

 

2.2     Multibeamforming 

The radio telescopes deployed in radio astronomy need to cover a wide viewing angle 

with high resolution. Multibeamforming provides multiple beams with higher resolution that can 

have a wide area of coverage. Apart from that, the increasing demand in wireless communication 

systems coupled with limited frequency spectrum calls for frequency reuse maintaining the 

quality of demand. Smart antennas and other multibeamforming algorithms can facilitate this 

case to a great extent.  
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Smart antennas with multibeamforming can produce multiple beams in different 

directions. These beams can reuse the same frequency in wireless communication systems which 

extensively increase the service capacity. Multibeamformers, when implemented with satellite 

communication systems, can increase the efficiency in terms of resolution and capacity.  

Multibeamforming and smart antennas in wireless communication systems have been 

analyzed in [31]. Multibeamforming with FFT has been discussed in [32] with null forming in 

required directions in addition to forming multiple beams in multiple directions. 

The cost of multibeamforming in N directions with direct matrix multiplication is Ο(N 2 )  

where the same with FFT can achieved with Ο(N log2 N ) .   

  

2.3     Multibeamforming With Different Transforms 

The array response vector for an eight element uniform linear array with impinging plane 

wave along the z-axis with different transformation matrices is the following: 

Ŷ = x(m,n).e−Njπ (cosθe−cosθ )
N=1

8

∑
           2.1

 

x(m,n) is the preferred transformation matrix employed to form the beams with m and n 

being the row and column of the matrix. The normalized polar plots of the array response of 

ULA using different transformation matrices are shown in Fig. 2.1 and Fig. 2.2. WHT, DST and 

DCT are considered here with DFT to provide us with a comparative view. As seen from the 

polar plots, if the beam is steered towards broadside, the same can be achieved with all the 

transforms for m=0. For all the other indices, a fan of beams is formed. With each row, a beam in 

a different direction is achieved. Multiple beams are formed in multiple directions with all the 

transforms.  
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          (a) m=0                   (b) m=1   
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          (c) m=2                 (d) m=3 

Fig. 2.1. Polar Plot with DWT, DST, DCT and DFT for m=0,1,2 and 3 with the initial 

beam steered at 90 degrees. 
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         (a) m=4                        (b) m=5 
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        (c) m=6                   (d) m=7 

Fig. 2.2. Polar Plot with DWT, DST, DCT and DFT for m=4,5,6 and 7 with the initial 

beam steered at 90 degrees. 
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However, a number of side lobes are also produced with all the transforms, which can be 

considered as noise and unwanted signals from unwanted directions. The normalized peak of a 

main beam is one. All the beams having peak lower than one are from or to unwanted directions. 

The locations in degrees and levels in normalized form of the lobes for all the transforms 

for m=7 are presented in Table 2.1. It can be observed from the table that, for this particular 

index, transform with the lowest peak for a side lobe is DCT. Besides, transform that has the 

minimum highest peak for a side lobe is also DCT. The number of side lobes produced is also 

less in case of DCT compared to DFT.  

The directions of main lobes are different with different transforms with the same indices. 

For m=7, the directions of main and back lobes having normalized unity peak are 60 and 300 

degree with DFT. DCT produces main and back lobes along 37, 143, 217 and 323 degrees. The 

direction of main lobes with DST for m=7 are 34 and 146 degrees. The back lobes in this case 

are along 214 and 326 degrees. Main lobes along 73 and 107 degrees and back lobes along 253 

and 287 degrees are observed for m=7 in case of WHT.  

The directions of the main beams produced are closest in case of DCT and DST. 

Although they produce almost the same directional main beam, the number of side lobes with 

DST is greater than DCT. For all the directions, beams can be obtained for all the transforms. 

However, the index varies with transforms. If a beam in 60 degree is of interest, DFT produces a 

beam in this direction with normalized unity peak for m=6. A main beam along 60-degree 

direction is observed for the fifth row in case of DCT. DST, as marked with green asterisks on 

the polar plots, produces beam in the direction of interest for m=3. The third row in case of WHT 

provides the beam in the desired direction.  
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WHT offers the minimum number of side lobes but the peak of the side lobes produced in 

this case is more than 50 percent of the main lobe, which causes a performance concern. The 

normalized value as can be seen from Table 2.1 is 0.5485.  

 

Table 2.1 Beam locations (Degrees) and levels (Normalized) for different transforms for 

m=7 

DFT DST WHT DCT 

Location Level Location Level Location Level Location Level 

31 0.2291 34 1.0000 49 0.5485 37 1.0000 

60 1.0000 59 0.3453 73 1.0000 66 0.1005 

82 0.2291 75 0.2530 107 1.0000 81 0.0258 

97 0.1507 90 0.2321 131 0.5485 99 0.0258 

112 0.1275 105 0.2530 229 0.5485 114 0.1005 

129 0.1274 121 0.3453 253 1.0000 143 1.0000 

152 0.1509 146 1.0000 287 1.0000 217 1.0000 

208 0.1509 214 1.0000 311 0.5485 246 0.1005 

231 0.1274 239 0.3453   261 0.0258 

248 0.1275 255 0.2530   279 0.0258 

263 0.1507 270 0.2321   294 0.1005 

278 0.2291 285 0.2530   323 1.0000 

300 1.0000 301 0.3453     

329 0.2291 326 1.0000     
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DFT has side lobes having minimum peak of 0.1274 and maximum of 0.2291. 0.3453 is 

the maximum peak side lobe with DST. 0.2321 is the minimum peak. In case of DCT, 0.1005 

and 0.0258 are the maximum and minimum levels of the side lobes for m=7. 

 

2.4     Summary 

Beamforming and multibeamforming have been a research interest for some time. 

Various algorithms for different applications and kinds of beamforming have been proposed and 

analyzed over time. Each algorithm has its own advantages and disadvantages. Application 

specific algorithms have also been developed. The advent of advancement in digital electronics 

and signal processing has facilitated consideration and implementation of different beamforming 

algorithms and also extended its field of application. 
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CHAPTER 3 

 
PERFORMANCE ANALYSIS OF BENCHMARK DCT ALGORITHMS IN 

MULTIBEAMFORMING 

 

Recently, the authors in [7] showed that significant performance improvement can be 

achieved using Approximate Discrete Cosine Transform (DCT), which is also known as Integer 

DCT, in multibeamforming. The DCT, due to its efficiency in de-correlating data, is the 

preferred filter in video coding [8]. Challenges in optimal bit rate and hardware implementation 

cost have resulted in a number of variations in integer DCT approximations. The benchmark 

DCT approximations considered here are JPEG, MPEG-2/4, H.264/AVC, VC-1, AVS and 

HEVC. The performance of these approximations has been analyzed here. 

 

3.1     Benchmark DCT Matrices 

The coefficients of the 8 × 8  matrix of a DCT approximation have to fulfill the properties 

of a DCT matrix. After extensive research and analysis, the DCT approximation matrices 

standardized for image and video compression have been developed.  The 8-point 1-D DCT 

matrices for JPEG, MPEG, H.264/AVC, VC-1, AVS and HEVC are presented below [9-12]: 

JPEG8 =

362 362 362 362 362 362 362 362
502 426 284 100 −100 −284 −426 −502
473 196 −196 −473 −473 −196 196 473
426 −100 −502 −284 284 502 100 −426
362 −362 −362 362 362 −362 −362 362
284 −502 100 426 −426 −100 502 −284
196 −473 473 −196 −196 473 −473 196
100 −284 426 −502 502 −426 284 −100

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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MPEG8 =

362 362 362 362 362 362 362 362
502 426 284 100 −100 −284 −426 −502
473 196 −196 −473 −473 −196 196 473
426 −100 −502 −284 284 502 100 −426
362 −362 −362 362 362 −362 −362 362
284 −502 100 426 −426 −100 502 −284
196 −473 473 −196 −196 473 −473 196
100 −284 426 −502 502 −426 284 −100

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

H .2648 =

8 8 8 8 8 8 8 8
12 10 6 3 −3 −6 −10 −12
8 4 −4 −8 −8 −4 4 8
10 −3 −12 −6 6 12 3 −10
8 −8 −8 8 8 −8 −8 8
6 −12 3 10 −10 −3 12 −6
4 −8 8 −4 −4 8 −8 4
3 −6 10 −12 12 −10 6 −3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

VC −18 =

12 12 12 12 12 12 12 12
16 15 9 4 −4 −9 −15 −16
16 6 −6 −16 −16 −6 6 16
15 −4 −16 −9 9 16 4 −15
12 −12 −12 12 12 −12 −12 12
9 −16 4 15 −15 −4 16 −9
6 −16 16 −6 −6 16 −16 6
4 −9 15 −16 16 −15 9 −4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

AVS8 =

8 8 8 8 8 8 8 8
10 9 6 2 −2 −6 −9 −10
10 4 −4 −10 −10 −4 4 10
9 −2 −10 −6 6 10 2 9
8 −8 −8 8 8 −8 −8 8
6 −10 2 9 −9 −2 10 −6
4 −10 10 −4 −4 10 −10 4
2 −6 9 −10 10 −9 6 −2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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HEVC8 =

64 64 64 64 64 64 64 64
89 75 50 18 −18 −50 −75 −89
83 36 −36 −83 −83 −36 36 83
75 −18 −89 −50 50 89 18 −75
64 −64 −64 64 64 −64 −64 64
50 −89 18 75 −75 −18 89 −50
36 −83 83 −36 −36 83 −83 36
18 −50 75 −89 89 −75 50 −18

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 

3.2     Comparison with FP DCT in Multibeamforming

 

Fig. 3.1 and Fig. 3.2 present the normalized polar plot of the following array factor with 

Uniform Linear Array with different transformation matrices.  

Ŷ = x(m,n).e(−nj2π fd (cosθe−cosθ )/c)
n=0

7

∑
           3.1

 

As transformation matrices, AVC/H.264, AVS, VC-1, JPEG/MPEG-2/4, HEVC and FP 

DCT have been used for comparison.  θe  is taken to be 60 degrees in equation 3.1. For m=0, the 

main lobe is directed towards 60 degrees as the array has been steered towards that direction. 

This direction, as seen from Fig. 3.1 and Fig. 3.2, is the same for all transformation matrices 

applied here having the same beam level and direction for m=0. For the next indices, the beam 

pattern forms a fan of beams with reference to the initially steered direction and multiple beams 

in specific directions are achieved. In addition to the main beams, there are some small beams, 

which are the side lobes in unwanted directions. The preferred transformation matrix would be 

the one that shows the best performance in suppressing side lobes, i.e, that produces the 

minimum number of side lobes with the lowest peaks. 

FP DCT is considered to be pivotal here to evaluate the performance of the other DCT 

approximations in multibeamforming. 
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      (a) m=0                (b) m=1 
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      (c) m=2                  (d) m=3 

Fig. 3.1. Polar plots of the array factor of an eight-element aperture array steered at 60  

degrees with different benchmark DCT algorithm for m=0,1,2 and 3 
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     (a) m=4                (b) m=5 
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      (c) m=6               (d) m=7 

Fig. 3.2. Polar plots of the array factor of an eight-element aperture array steered at 60  

degrees with different benchmark DCT algorithm for m=4,5,6 and 7 
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In most applications, the accuracy of the directions of main and side lobes have to be 

uncompromised. 

Exact DCT and H.264/AVC have been plotted with solid red and magenta respectively. 

The side lobes with AVC compared to classical DCT are a bit of the higher order as can be seen 

from the polar plots. The main lobes are same with both the transforms. Similar performance is 

observed in case of VC-1. However, the main beams for all the standards have similar shape. 

The worst performance is observed for the fourth and sixth rows where the widths and 

peaks of the side lobes are inseparable when compared to the main lobes. However, the same 

performance is observed with classical DCT for that particular index. 

Approximate locations and normalized levels of all the lobes obtained with the main lobe 

being towards 60 degrees for all the standards are presented in Table 3.1.  

 

Table 3.1 Locations (Degrees) and levels (Normalized) of the lobes in classical DCT and 

H.264/AVC, AVS, HEVC, VC-1 and JPEG standards for m=0 

FP DCT  H.264/AVC [10] AVS and HEVC 
[10] 

VC-1 [11] and 
JPEG [9] 

Location Level Location Level Location Level Location Level 
31 0.2291 31 0.2291 31 0.2291 31 0.2291 
60 1.0000 60 1.0000 60 1.0000 60 1.0000 
82 0.2291 82 0.2291 82 0.2291 82 0.2291 
97 0.1507 97 0.1507 97 0.1507 97 0.1507 
112 0.1275 112 0.1275 112 0.1275 112 0.1275 
129 0.1274 129 0.1274 129 0.1274 129 0.1274 
152 0.1509 152 0.1509 152 0.1509 152 0.1509 
208 0.1509 208 0.1509 208 0.1509 208 0.1509 
231 0.1274 231 0.1274 231 0.1274 231 0.1274 
248 0.1275 248 0.1275 248 0.1275 248 0.1275 
263 0.1507 263 0.1507 263 0.1507 263 0.1507 
278 0.2291 278 0.2291 278 0.2291 278 0.2291 
300 1.0000 300 1.0000 300 1.0000 300 1.0000 
329 0.2291 329 0.2291 329 0.2291 329 0.2291 
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It is evident that all the columns and rows of the table have same values, which means the 

performance deviation is quite insignificant. The minimum peak for the side lobes is 0.1274, 

which is identical for all the considered transforms. The maximum level is 0.2291 for the side 

lobes here. Considering the normalized unity peak for the main beam, the maximum level of side 

lobe is 22 percent of the main lobe, which can be a concern in many applications.  

As far as the number of side lobes observed is concerned, it is the same for all the 

benchmark DCT transforms considered here for multibeamforming. 

 

3.3     Error Estimation 

A measure of normalized deviation of all the Integer DCTs used here from exact DCT 

has been obtained and plotted in Fig. 3.3 and 3.4 using [18]: 

Ŷ (c)− Ŷ (p)
2

            3.2
 

Here c is for exact DCT and p for approximations. 

As it can be seen from the plots, m=0 and m=4 produce the minimum error which is 

negligible. For all the other indices, the deviation for different approximations varies from zero 

to 0.006, which makes it difficult to prefer one approximation to another. However, a closer look 

reveals that the maximum error, though apparently insignificant, can be observed in the case of 

AVC/H.264 with VC-1 following. HEVC is the next one that shows prominent deviation from 

FP DCT. Apparently, JPEG shows the best performance as can be seen from Fig. 3.3 and 3.4.  

The error spikes, however, are not spread over the whole viewing region. They appear for 

particular angles only. Also for different indices, the performance is different. The overall 

performance can be evaluated considering the maximum normalized peak observed for the side 

lobes.  
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      (a) m=0                                     (b) m=1 

 
       (c) m=2                                    (d) m=3 
 

Fig. 3.3.  Normalized error estimation for Int-DCT used in AVS, AVC, VC-1, JPEG and 
HEVC 
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         (a) m=4                                       (b) m=5 

 
        (c) m=6                (d) m=7 
 

Fig. 3.4. Normalized error estimation for Int-DCT used in AVS, AVC, VC-1, JPEG and 
HEVC  
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As mentioned earlier, the maximum error which is 0.006 appears for m=2. But this spike 

appears for a small region and specific angles only. This area is smaller for some other indices 

which contain lower peaks than m=2. If the area over which the deviation is spread is considered, 

the second, fourth, sixth and eighth rows show worse performance.  

Although all the results stand for great performance for all the standards as the error and 

deviation is quite insignificant, this can be a deciding factor where even this much deviation can 

be misleading and cause unwanted signal from unwanted directions. Moreover, as these are the 

normalized results only, this seemingly negligible deviation would be considerable in practical 

situations where many other environmental factors and interferences would deteriorate the 

performance of the integer DCT approximations considered here. 

 
3.4     Summary 
 

Benchmark integer DCT algorithms standardized in the field of video and image 

compression have been considered here as the transformation matrices in a multibeamformer. 

Compared with classical DCT, the normalized outputs appear to be within a range of error, 

which is apparently negligible. Also the performance of all the transforms is quite similar to each 

other, which makes it difficult to prefer one over the other.  

 
 
 
 
 
 
 
 
 
 
 



 

 31 
 

 

CHAPTER 4 
 

PROPOSED 8-POINT AIQ DCT 

 

Considering the requirement of an error free and efficient algorithm in multibeamforming 

applications, we propose the 8-pont Algebraic Integer Quantization implementation of DCT. 

Accuracy of data and consequently the analytical result based on that data is highly sensitive to 

the performance of the systems elements and implemented algorithms. An erroneous algorithm 

incrementally accumulates the error throughout the system. Again, implementation cost of an 

algorithm has also to be taken under consideration. Considering both accuracy and cost, an 

optimal algorithm is traditionally finalized which can be implemented with a feasible cost 

keeping the error margin within an acceptable range as required by the specific application. In 

image compression and video coding, 8-point AIQ is already a known algorithm due to its 

hardware efficiency in implementing classical DCT [13-15]. This efficiency accompanied with 

error free results would make AIQ a preferred algorithm in multibeamforming.   

 

4.1     DCT Coefficients  

The 8-point 1D DCT matrix C8×8  is shown below where, 

ck = cos
kπ
16

            4.1 

where k=1,2,……,7  

Instead of direct implementation of all the cosine angles, multidimensional algebraic 

integers are considered here which can be used to obtain all the cosine angles required for DCT 

implementation. 
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C8×8 =
1
2
⋅

c4 c4 c4 c4 c4 c4 c4 c4
c1 c3 c5 c7 −c7 −c5 −c3 −c1
c2 c6 −c6 −c2 −c2 −c6 c6 c2
c3 −c7 −c1 −c5 c5 c1 c7 −c3
c4 −c4 −c4 c4 c4 −c4 −c4 c4
c5 −c1 c7 c3 −c3 −c7 c1 −c5
c6 −c2 c2 −c6 −c6 c2 −c2 c6
c7 −c5 c3 −c1 c1 −c3 c5 −c7

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

We consider here, 

z1 = 2 × c1

⇒ z1 = 2 × cos
π
16

⇒ z1 = 2 ×
2 + 2 + 2

2

⇒ z1 = 2 + 2 + 2

  

z1 = 1.11110110 = 1.00011010 = 2 − 2
−4 + 2−5 − 2−7

          4.2 

and 

z2 = 2 × c4

⇒ z2 = 2 × cos
4π
16

⇒ z2 = 2 ×
2
2

⇒ z2 = 2

  

z2 = 1.01101010 = 1+ 2
−2 + 2−3 + 2−5 + 2−7

          4.3 

This leads to expressions for all coefficients used in an 8-point DCT in terms of these two 

parameters only (z1 and z2). The expressions are presented in Table 4.1. All the cosine angles can 

be realized using these two parameters. The implementation cost, therefore, is greatly reduced as 
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re-usage of these two parameters can implement all the cosine angles. Also, they do not need any 

multipliers for their implementation. The final reconstruction stage is also error free. 

The final reconstruction would be of the following symmetrical form: 

2
2 1 1 2 1 1 2 1 2 2 1 2 2 1[a z (b z c ) z d ]n n n n ny z+ + + + += + + +  and         4.4 

2
2 1 2 2 2 2 2 2(a z ) 2n n n n ny z b z c d= + − +           4.5 

 

         Table 4.1 AIQ Representation of 8-point Classical DCT Coefficients  

Basis coefficients aij f(z1,z2)  
02 ( )
16

cos π  
 

2 0 0 0
0 0 0 0

  
2   

12 ( )
16

cos π   0 1 0 0
0 0 0 0

  z1   

22 ( )
16

cos π  −2 0 1 0
0 0 0 0

  
2
12 z− +   

32 ( )
16

cos π  0 −3 0 1
0 0 0 0

  
3

1 13z z− +   

42 ( )
16

cos π  0 0 0 0
1 0 0 0

  z2   

52 ( )
16

cos π  0 3 0 −1
0 1 0 0

  
3

1 1 1 23z z z z− +   

62 ( )
16

cos π  2 0 −1 0
−2 0 1 0

  
2 2
1 2 1 22 2z z z z− − +   

 
72 ( )
16

cos π  0 −1 0 0
0 −3 0 1

  
3

1 1 2 1 23z z z z z− − +   

 

4.2     Matrix Decompositions 

Decomposing the principal matrix into multiple matrices has been a proven way to 

reduce the number of operations for the matrix implementation. Here, the 8-point 1D DCT 
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matrix is decomposed into several matrices before applying the AIQ implementation, which 

would offer a great advantage in terms of hardware implementation cost. 

The 8-point DCT matrix can be decomposed as:  

C8×8 = p2×c2×p1            4.6 

Here, 

c2 =

c4 c4 c4 c4 0 0 0 0
c2 c6 −c6 −c2 0 0 0 0
c4 −c4 −c4 c4 0 0 0 0
c6 −c2 c2 −c6 0 0 0 0
0 0 0 0 −c7 −c5 −c3 −c1
0 0 0 0 c5 c1 c7 −c3
0 0 0 0 −c3 −c7 c1 −c5
0 0 0 0 c1 −c3 c5 −c7

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

p1=

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0
−1 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

, 

p2 =

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

p1 is a matrix requiring eight additions for the eight rows only. p2 is a permutation matrix which 

does not need any arithmetic operation for the implementation. It needs rewiring only for the 

implementation.  

c2 can be represented with two 4×4 matrices and implemented with a direct sum operation. 

c2 = c21⊕ c22               4.7 

Here, c21 and c22 can be presented as the below matrices. This further provides another 

decomposable matrix c21 to reduce the operations more. 
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c21=

c4 c4 c4 c4
c2 c6 −c6 −c2
c4 −c4 −c4 c4
c6 −c2 c2 −c6

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, c22 =

−c7 −c5 −c3 −c1
c5 c1 c7 −c3
−c3 −c7 c1 −c5
c1 −c3 c5 −c7

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

c21 can further be obtained with: 

c21= c211.c212              4.8 

Here, 

c211=

c4 c4 0 0
0 0 −c6 −c2
c4 −c4 0 0
0 0 c2 −c6

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, c212 =

1 0 0 1
0 1 1 0
0 −1 1 0
−1 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

c212 needs additions only for the implementation as it contains only 1’s and 0’s. This 

realization also reduces the number of non zero coefficients required to be implemented. This 

reduces hardware cost as expected. 

The final equation would be: 

C8×8 = p2 × c211× c212( )⊕ c22{ }× p1                                    4.9 

This can be realized with adders and shifters only.  

 

4.3     Performance Analysis 

Fig. 4.1 and Fig. 4.2 present the polar plots of the array factor with different 

transformation matrices. As transformation matrix, several algorithms such as, the exact DCT, 

BAS approximation [18], CB approximation [19], PMCB approximation [7] and AIQ 

implementation have been used for comparison. The exact DCT and AIQ have been plotted with 
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solid red and black respectively. It can be seen that the width of the side lobes and main lobes are 

the same for each other and narrower compared to the other approximations as expected. 

However, beams for m=0 and m=4 have similar shape and direction due to the same coefficients 

in all the approximations considered in the case of these two particular indices. 

For all the other indices, deviation in beam shape is observed with all the transform 

matrices considered except AIQ. Apart from the main lobes, a number of side lobes are also 

observed with all the transforms and for all the indices, which make a difference in considering 

the preferred algorithm.  

The same can also be realized from Table 4.1. The values of the peaks at different angles 

have not been normalized in this table. The minimum peak for the side lobes is observed in case 

of FP DCT and AIQ DCT. Though the number of lobes appears to be less in BAS and CB 

approximation compared to FP and AIQ DCT, it results in side lobes with larger peaks, which 

makes these approximations more vulnerable and unreliable. PMCB produces the same number 

of lobes but with different peaks.  

A measure of deviation of the other approximations used here from exact DCT has been 

obtained and plotted in Fig. 4.3 and Fig. 4.4 using Ŷ (c)− Ŷ (p)
2

. Here c is for exact DCT and p 

is for approximations. No deviation is observed in case of AIQ DCT, which offers an error free 

implementation of classical DCT in multibeamforming as expected.  

The deviations shown in this plots are the normalized measures of the error. Apart from 

AIQ, all the other approximations deviate from classical DCT as can be seen from the plots. 

These deviations, which appear to be insignificant in some cases due their normalization, would 

affect real time performance to a great extent. 
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      (a) m=0             (b) m=1 
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        (c) m=2              (d) m=3 

Fig. 4.1. Polar Plot of PMCB, BAS, CB, AIQ and FP DCT with steering angle 60 degrees 

for m=0,1,2 and 3 
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                                (a) m=4                           (b) m=5 
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                    (c) m=6                                      (d) m=7 

Fig. 4.2. Polar Plot of PMCB, BAS, CB, AIQ and FP DCT with steering angle 60 degrees 

for m=4,5,6 and 7 
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Table 4.2 Locations (Degrees) and levels (not normalized) of main and side lobes in all 

transforms  

FP DCT and AIQ 
DCT 

PMCB [7] BAS [18] CB [19] 

Location Level Location Level Location Level Location Level 
9 0.7590 14 0.8769 10 1.4327 91 0.5795 
89 0.7572 88 0.8757 89 1.4328 104 0.1359 
104 0.5560 103 0.6692 107 0.5936 120 0.8165 
120 0.5098 120 1.1547 136 0.5940 140 0.1381 
139 0.5565 141 0.6697 180 1.4142 172 0.5819 
180 0.7507 180 0.8165 224 0.5940 188 0.5819 
221 0.5565 219 0.6697 253 0.5936 220 0.1381 
240 0.5098 240 1.1547 271 1.4328 240 0.8165 
256 0.5560 257 0.6692 350 1.4327 256 0.1359 
271 0.7572 272 0.8757   269 0.5795 
351 0.7590 346 0.8769     
 

 

(a) m=1             (b) m=2 

Fig. 4.3. Normalized error Plot of PMCB, CB, BAS and AIQ compared to FP DCT for 

m=1 and 2 
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         (a) m=3                                         (b) m=5 

 

(c) m=6              (d)m=7 

Fig. 4.4. Normalized error Plot of PMCB, CB, BAS and AIQ compared to FP DCT for 

m=3,5,6 and 7 
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BAS, presented with red line on the plots, shows the maximum error for the second, 

fourth, sixth and eighth rows. Maximum deviation for third and fifth rows is found with CB. 

PMCB shows noticeable deviation for m=2,4,6 and 8 with the maximum being at m=2. 

As it can be seen from the plots of Fig. 4.3 and Fig. 4.4, the deviation for different 

approximations at different indices vary from zero to 1.4, which makes it difficult to prefer one 

approximation to another. Furthermore, this deviation would have unwanted side lobe widths in 

the case of multi-beamforming applications where precision of the direction of the received 

beam and interference are of severe importance. 

 

4.4     Hardware Flow Graph and Comparison 

The hardware flow graph of the DCT kernel is shown in Fig. 4.5. The blocks with c1, 

c2,…., c7 which are the algebraic integer coefficients for 8-point DCT present only additions and 

shift operations required for the implementation. Therefore an error-free DCT mapping without 

any multiplication can be obtained. a[0], a[1], a[2], a[3],…..,a[8] are the inputs and y[0], y[1], 

y[2], y[3],….., y[8] are the outputs of the system. 

A cost comparison is provided in Table 4.3. The proposed method is computationally 

efficient compared with others. In BAS approximations, ±1, ±½ and 0 are the only coefficients 

used in the matrix in place of the floating-point coefficients in classical DCT, which offers a 

great advantage in implementation. A diagonal matrix is used in the quantization stage to obtain 

the DCT coefficients. While this process reduces hardware in one stage, it sacrifices hardware 

efficiency in the other stage. 

The same technique is adopted in CB and PMCB approximations. In CB, only ±1 and 0 

are used in place of the DCT coefficients with a diagonal matrix added to the quantization stage. 
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Fewer coefficient options in CB, however, make the algorithm more error prone. ±1, ±2 and 0 

are the chosen DCT coefficients in PMCB algorithm.  The approximation methods used in [7], 

[18] and [19] may cost fewer operations in the transformation stage, but require additional 

computation steps in the next level (i.e., quantization followed by transform). Moreover, these 

algorithms are observed as being erroneous in multibeamforming application. 
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       Figure. 4.5. Hardware flow graph for 8-point DCT  
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Multidimensional AIQ has been presented in [13] along with 1D AIQ for 12-bit and 10-

bit consecutively. However, the number of operations required for the proposed algorithm in this 

work is less as the decomposition of the DCT matrix into different matrices reduces the number 

of operations.  

 

      Table 4.3 Comparison of hardware cost 

Methods Adder Multiplier Shift Error 
Free? 

Operations 
left for next 

step? 
DCT [20] 56 64 0 Yes No 
DFT [21] 58 6 0 Yes No 
Arai [22] 29 5 0 No No 
BAS [18] 18 0 2 No Yes 
CB [19] 22 0 0 No Yes 
PMCB [7] 24 0 6 No Yes 
AIQ [13] 132 0 - Yes No 
Ours 47 0 31 Yes No 

 

 

4.5     Summary 

As expected, the 8-point AIQ provides us with an algorithm that can be implemented 

without any multipliers, resulting in less hardware complexity compared to other FP DCT 

algorithms. It also gives an error free output in multibeamforming which makes it reliable 

compared to other approximations proposed. 
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CHAPTER 5 
 

PROPOSED 16-POINT ALGORITHM 

 

As mentioned earlier, an 8-point DCT would provide us with beams in eight directions. 

Increasing the size of the DCT matrix can increase the number of beams. A 16-point DCT would 

provide 16 beams in 16 different directions. 

   Let us consider a 16-element uniform linear aperture array arranged along the z-axis. 

An array can be planar or circular as well, being uniform or non-uniform in terms of distance in 

between them. In an ULA, each element is separated by half wavelength distance from each 

other. Let us assume a uniform plane wave arriving at the array at an angle θ with respect to the 

z-axis. The array pattern would be: 

re = e−njπ cosθ
n=1

16

∑
            5.1 

If we take all the other coordinates to be zero except that of z-axis and consider the 

weighting such as to direct the beam to θe direction with shifting phases of each element, the 

array factor, AF, would be: 

AF = e−Njπ (cosθe−cosθ )
N=1

16

∑
           5.2 

Here, θ is from 0 to 2π, θe is the expected beam direction and N is the number of sensors 

in the array. 

This array factor defines the response of an array assuming all the elements have identical 

radiation patterns. Taking this as the transfer function and transforming with Discrete Cosine 
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Transform, this would give us a multiple beamformer output at specific directions corresponding 

to the expected direction.  

The equation would be: 

Ŷ = x.V̂             5.3 

where Ŷ  are N beams for input snapshot  for N element ULA and x is a transformation 

matrix. This can be elaborated as: 

Ŷ = x(m,n).e−Njπ (cosθe−cosθ )
N=1

16

∑
           5.4 

Here x(m,n) would be the preferred transformation matrix with m and n being the row and 

column of the matrix. 

 

5.1     One Dimensional AIQ Mapping 

The 16-point DCT matrix is shown below where, 

ck = cos
kπ
32              5.5 

 1D AIQ for 16-point DCT can be implemented by considering, 

 z = 2cos π
32       

 As shown earlier for 8-point DCT, all the other coefficients for 16-point DCT can 

be obtained and implemented using z. The general equation is as follow, 

 f (z) = aiz
i∑             5.6 
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 The integer coefficients for all the cosine angles are presented in table 5.1. The 

maximum degree for z is 15 as can be seen from the table. 

C(16,16) =

c8 c8 c8 c8 c8 c8 c8 c8 c8 c8 c8 c8 c8 c8 c8 c8
c1 c3 c5 c7 c9 c11 c13 c15 −c15 −c13 −c11 −c9 −c7 −c5 −c3 −c1
c2 c6 c10 c14 −c14 −c10 −c6 −c2 −c2 −c6 −c10 −c14 c14 c10 c6 c2
c3 c9 c15 −c11 −c5 −c1 −c7 −c13 c13 c7 c1 c5 c11 −c15 −c9 −c3
c4 c12 −c12 −c4 −c4 −c12 c12 c4 c4 c12 −c12 −c4 −c4 −c12 c12 c4
c5 c15 −c7 −c3 −c13 c9 c1 c11 −c11 −c1 −c9 c13 c3 c7 −c15 −c5
c6 −c14 −c2 −c10 c10 c2 c14 −c6 −c6 c14 c2 c10 −c10 −c2 −c14 c6
c7 −c11 −c3 c15 c1 c13 −c5 −c9 c9 c5 −c13 −c1 −c15 c3 c11 −c7
c8 −c8 −c8 c8 c8 −c8 −c8 c8 c8 −c8 −c8 c8 c8 −c8 −c8 c8
c9 −c5 −c13 c1 −c15 −c3 c11 c7 −c7 −c11 c3 c15 −c1 c13 c5 −c9
c10 −c2 c14 c6 −c6 −c14 c2 −c10 −c10 c2 −c14 −c6 c6 c14 −c2 c10
c11 −c1 c9 c13 −c3 c7 c15 −c5 c5 −c15 −c7 c3 −c13 −c9 c1 −c11
c12 −c4 c4 −c12 −c12 c4 −c4 c12 c12 −c14 c4 −c12 −c12 c4 −c4 c12
c13 −c7 c1 −c5 c11 c15 −c9 c3 −c3 c9 −c15 −c11 c5 −c1 c7 −c13
c14 −c10 c6 −c2 c2 −c6 c10 −c14 −c14 c10 −c6 c2 −c2 c6 −c10 c14
c15 −c13 c11 −c9 c7 −c5 c3 −c1 c1 −c3 c5 −c7 c9 −c11 c13 −c15

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

From Table 5.1, the equation for C10 would be, 

c10 = −2 × z0 + 25 × z2 − 50 × z4 + 35 × z6 −10 × z8 +1× z10   

Realization of all the cosine angles of 16-point DCT is presented in Table 5.2. As can be 

seen and also mentioned earlier, the maximum degree for z is 15. This can be further simplified 

using multidimensional AIQ instead of 1D. Degree of considered algebraic integer tends to 

reduce as the number of integers considered is increased. On the other hand, the hardware 

efficiency achieved using algebraic integers reduces with the increased number of integers 

considered. Therefore, considering an optimum number of algebraic integers for maximum 

hardware efficiency is critical.  
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In the following chapter, a multidimensional algebraic integer implementation of 

classical DCT is proposed and analyzed with three algebraic integers. 

 

Table 5.1 1D AIQ Representations of 16-point DCT 

  ai 

ci 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 

c0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

c1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

c2 -2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

c3 0 -3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

c4 2 0 -4 0 1 0 0 0 0 0 0 0 0 0 0 0 

c5 0 5 0 -5 0 1 0 0 0 0 0 0 0 0 0 0 

c6 -2 0 9 0 -6 0 1 0 0 0 0 0 0 0 0 0 

c7 -7 0 0 14 0 -7 0 1 0 0 0 0 0 0 0 0 

c8 2 0 -16 0 20 0 -8 0 1 0 0 0 0 0 0 0 

c9 0 9 0 -30 0 27 0 -9 0 1 0 0 0 0 0 0 

c10 -2 0 25 0 -50 0 35 0 -10 0 1 0 0 0 0 0 

c11 0 -11 0 55 0 -77 0 44 0 -11 0 1 0 0 0 0 

c12 2 0 -36 0 105 0 -112 0 54 0 -12 0 1 0 0 0 

c13 0 13 0 -91 0 182 0 -156 0 65 0 -13 0 1 0 0 

c14 -2 0 49 0 -196 0 294 0 -210 0 77 0 -14 0 1 0 

c15 0 -15 0 140 0 -378 0 450 0 -275 0 90 0 -15 0 1 



 

 48 
 

 

Table 5.2 1D AIQ Representations of 16-point DCT (in terms of Z) 

 

 

5.2     Three Dimensional AIQ Mapping 

An efficient algorithm for sixteen point DCT implementation with multidimensional 

algebraic integer is proposed here. We consider, 

Coefficients (ci) Expressions 

c0 2 

c1 z 

c2 z2 − 2   

c3 z3 − 3z   

c4 z4 − 4z2 + 2   

c5 z5 − 5z3 + 5z   

c6 z6 − 6z4 + 9z2 − 2   

c7 z7 − 7z5 +14z3 − 7z   

c8 z8 − 8z6 + 20z4 −16z2 + 2   

c9 z9 − 9z7 + 27z5 − 30z3 + 9z   

c10 z10 −10z8 + 35z6 − 50z4 + 25z2 − 2   

c11 z11 −11z9 + 44z7 − 77z5 + 55z3 −11z   

c12 z12 −12z10 + 54z8 −112z6 +105z4 − 36z2 + 2   

c13 z13 −13z11 + 65z9 −156z7 +182z5 − 91z3 +13z   

c14 z14 −14z12 + 77z10 − 210z8 + 294z6 −196z4 + 49z2 − 2   

c15 z15 −15z13 + 90z11 − 275z9 + 450z7 − 378z5 +140z3 −15z   
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z1 = 2cos
π
32

= 2 + 2 + 2 + 2
          5.7 

z2 = 2cos
2π
32

= 2 + 2 + 2
           5.8 

z3 = 2cos
8π
32

= 2
           5.9 

This leads to expressions for all the other constants encountered in 8-point DCT in terms 

of these three coefficients only. All the other cosine angles in sixteen-point classical DCT can be 

presented as 

f (z1, z2, z3) = ai, j ,kz1
iz2

j z3
k∑                                    5.10 

Here,  

i=0,1 

j=0,1,2,3 and 

k=0,1. 

As an example, 2cos(9π
32
)  can be represented as 

2cos(9π
32
) = −z1 + 2z1z2 + z1z3 + z1z2

2 − z1z2
3

 

The coefficients are presented in Table 5.3. The maximum degree of the algebraic 

integers observed in this case is 3 which is a great improvement over 1D AIQ mapping where the 

degree reaches up to 15. The coefficients in 3D AIQ mapping are also much smaller compared to 

those of 1D AIQ. This promises an efficient hardware implementation of 3D AIQ.   
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Table 5.3 3D AIQ Representations of 16-Point DCT Coefficients 

 Cosine 
Angles 

aijk f(z1,z2,z3,)  

2cos(0π
32
)   

 
2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

   2 

2cos(1π
32
)    0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0
  z1   

2cos(2π
32
)  0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0
  z2    

2cos(3π
32
)  0 −1 0 0 1 0 0 0

0 0 0 0 0 0 0 0
  −z1 + z1z2   

2cos(4π
32
)  −2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
  −2 + z2

2   

2cos(5π
32
)  0 −1 0 0 −1 0 0 0

0 1 0 0 0 0 0 0
   −z1 + z1z2

2 − z1z2   

2cos(6π
32
)  0 0 −3 0 0 0 0 0

0 0 0 0 1 0 0 0
   −3z2 + z2

3   
 

2cos(7π
32
)  0 1 0 0 −2 0 0 0

0 −1 0 0 0 1 0 0
  −2z1z2 + z1z2

3 + z1 − z1z2
2    

2cos(8π
32
)  0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0
  z3   

2cos(9π
32
)  0 −1 0 0 2 1 0 0

0 1 0 0 0 −1 0 0
  z1z3 + 2z1z2 − z1z2

3 − z1 + z1z2
2    

2cos(10π
32
)  0 0 3 0 0 0 1 0

0 0 0 0 −1 0 0 0
  3z2 − z2

3 + z2z3   

2cos(11π
32
)  0 1 0 0 1 −1 0 1

0 −1 0 0 0 0 0 0
  z1z2 + z1z2z3 − z1z3 + z1 − z1z2

2   

2cos(12π
32
)  2 0 0 −2 0 0 0 0

−1 0 1 0 0 0 0 0
  

  2− z2
2 − 2z3 + z2

2z3   

2cos(13π
32
)  0 1 0 0 −1 −1 0 −1

0 0 0 1 0 0 0 0
  

  z1 − z1z3 + z1z2
2z3 − z1z2 − z1z2z3   

2cos(14π
32
)  0 0 −1 0 0 0 −3 0

0 0 0 0 0 0 1 0   
  −z2 − 3z2z3 + z2

3z3   

2cos(15π
32
)  0 −1 0 0 0 1 0 −2

0 0 0 −1 0 0 0 1   
  −2z1z2z3 + z1z2

3z3 − z1 + z1z3 − z1z2
2z3   
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These coefficients, while transformed into binary numbers in the final reconstruction 

state can be represented applying booth’s algorithm [35] as: 

z1 = 1.11111101= 1.00000111 = 2 − 2
−6 + 2−7 − 2−8

 

z2 = 1.11110110 = 1.00011010 = 2 − 2
−4 + 2−5 − 2−7

 

z3 = 1.01101010 = 1+ 2
−2 + 2−3 + 2−5 + 2−7  

 

5.3     Performance Analysis in Multibeamforming 

The proposed multiplier-less 16 point AIQ DCT offers us an accurate implementation of 

16 point FP DCT. Furthermore, due to additions and shifts only throughout the operation, it has 

the least error after the final reconstruction stage. Consequently, AIQ DCT tops FP DCT in terms 

of error measurement. Evidently, 16 point DCT provides significant signal input/output in 

sixteen different directions as characterized by its property. 8 point DCT, on the other hand, 

would provide 8 receivable directions. Since the same area is distributed in 16 and 8 directions 

with 16 point and 8 point DCTs respectively, the 16 point DCT results in narrower beams 

compared to those of 8 point DCT. This would offer better Signal to Interference and Noise 

Ratio (SINR) and directionality.  

Fig. 5.3.1, Fig. 5.3.2, Fig. 5.3.3 and Fig. 5.3.4 present the polar plot of 16-point FP and 

AIQ DCT in multibeamforming. Main lobes in 16 different directions can be achieved as can be 

seen from the plots. The beam width is much narrower in case of 16-point DCT as the same view 

area is being covered with more number of beams compared to 8-point DCT. This would enable 

less noise pickups in this case. With AIQ, the beam directions and peaks for both the main lobes 

and side lobes are the same.  
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        (a) m=0                (b) m=1 
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         (c) m=2                                       (d) m=3 

Fig. 5.1. Polar Plot of 16-point FP and AIQ DCT for m=0,1,2 and 3 
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                   (a) m=4                                   (b) m=5 
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        (c) m=6            (d) m=7 

 

Fig. 5.2. Polar Plot of 16-point FP and AIQ DCT for m=4,5,6 and 7 
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(a) m=8               (b) m=9 
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          (c) m=10                (d) m=11 

 

Fig. 5.3. Polar Plot of 16-point FP and AIQ DCT for m=8,9,10 and 11 
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(a) m=12            (b) m=13 
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(c) m=14              (d) m=15 

 

Fig. 5.4. Polar Plot of 16-point FP and AIQ DCT for m=12,13,14 and 15 
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Table 5.4 provides a clear picture of the locations and peaks of main lobes and side lobes 

for m=1 for 8 point and 16 point AIQ DCT and 16 point classical DCT. Being more segmented, 

16 point picks up more signals from the same area causing more number of side lobes. But if we 

observe the peak value, it is much lower than that of the 8 point one. This promises a better 

SINR in case of the 16 point AIQ DCT. Locations in degrees for minimum and maximum side 

lobes and that of main lobe with respective normalized peak values are presented in Table 5.4 for 

16-point DFT, DCT, AIQ and 8-point AIQ.  

 

Table 5.4 Locations (Degrees) and Peaks (Normalized) of lobes in different algorithms 

Algorithm  
 

Location  
(Min-
SL) 

Peak 
(Min-
SL) 

Location 
(Max-
SL) 

Peak 
(Max-
SL) 

 
 
 

Location 
(ML) 

 
 Peak (ML) 

          
16p Classical 
DCT [6] 

 124 0.0626 47 0.2195  60  1.0000 

          
8p Classical 
DCT [6] 

 129 0.1274 31 0.2291  60  1.0000 

          
16p DFT [7]  124 0.0626 47 0.2195  60  1.0000 

          
Proposed 16p 
AIQ 

 124 0.0626 47 0.2195  60  1.0000 

 

 

5.4     Matrix Decomposition 

The symmetric structure of the 16 point classical DCT, C(16,16), can be exploited to 

reduce the hardware by decomposing it into sub-matrices. C(16,16) can be represented as, 

 C 16,16( ) = P1 ×Cp × P2            5.11 
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Where, P1 is a permutation matrix with only one non-zero element which is 1 in each row 

and column adding no additional computational cost at all. P2 is the matrix having ±1 ’s on the 

main diagonal and antidiagonal. Thus, only one addition for each row resulting in a total of 16 

additions is required for the implementation of P2. 

Cp can be considered as the output of direct sum of two sub-matrices: 

Cp = Cp1⊕Cp2                                              5.12 

Applying similar scheme on Cp1, 

Cp1 = P11 ×Cp11 × P12            5.13 

P11 is the permutation matrix here, which needs rewiring only for implementation with no 

additional arithmetic computation. P12 is the 8 × 8  version of P2, which needs eight simple 

additions for the implementation. Cp11 can be obtained with the direct sum as: 

Cp11 = Cp111⊕Cp112           5.14 

 Every decomposition reduces the number of non zero values in the matrices 

which can be seen from the matrices. This consequently reduces the number of arithmetic 

operations and thereby hardware cost. 

 Cp111 can further be implemented as: 

 Cp111 = Cp1111 × P1111          5.15 

 The final equation would be: 

 C(16,16) = P1 × [ P11 × { Cp1111 × P1111( )⊕Cp112}× P12{ }⊕Cp2 ]× P2       5.16 
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Cp =

c8 c8 c8 c8 c8 c8 c8 c8 0 0 0 0 0 0 0 0
c2 c6 c10 c14 −c14 −c10 −c6 −c2 0 0 0 0 0 0 0 0
c4 c12 −c12 −c4 −c4 −c12 c12 c4 0 0 0 0 0 0 0 0
c6 −c14 −c2 −c10 c10 c2 c14 −c6 0 0 0 0 0 0 0 0
c8 −c8 −c8 c8 c8 −c8 −c8 c8 0 0 0 0 0 0 0 0
c10 −c2 c14 c6 −c6 −c14 c2 −c10 0 0 0 0 0 0 0 0
c12 −c4 c4 −c12 −c12 c4 −c4 c12 0 0 0 0 0 0 0 0
c14 −c10 c6 −c2 c2 −c6 c10 −c14 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −c15 −c13 −c11 −c9 −c7 −c5 −c3 −c1
0 0 0 0 0 0 0 0 c13 c7 c1 c5 c11 −c15 −c9 −c3
0 0 0 0 0 0 0 0 −c11 −c1 −c9 c13 c3 c7 −c15 −c5
0 0 0 0 0 0 0 0 c9 c5 −c13 −c1 −c15 c3 c11 −c7
0 0 0 0 0 0 0 0 −c7 −c11 c3 c15 −c1 c13 c5 −c9
0 0 0 0 0 0 0 0 c5 −c15 −c7 c3 −c13 −c9 c1 −c11
0 0 0 0 0 0 0 0 −c3 c9 −c15 −c11 c5 −c1 c7 −c13
0 0 0 0 0 0 0 0 c1 −c3 c5 −c7 c9 −c11 c13 −c15

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 

P1 =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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P2 =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥  

 

Cp1 =

c8 c8 c8 c8 c8 c8 c8 c8
c2 c6 c10 c14 −c14 c10 −c6 −c2
c4 c12 −c12 −c4 −c4 −c12 c12 c4
c6 −c14 −c2 −c10 c10 c2 c14 −c6
c8 −c8 −c8 c8 c8 −c8 −c8 c8
c10 −c2 c14 c6 −c6 −c14 c2 −c10
c12 −c4 c4 −c12 −c12 c4 −c4 c12
c14 −c10 c6 −c2 c2 −c6 c10 −c14

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

 

  Cp11 =

c8 c8 c8 c8 0 0 0 0
c4 c12 −c12 −c4 0 0 0 0
c8 −c8 −c8 c8 0 0 0 0
c12 −c4 c4 −c12 0 0 0 0
0 0 0 0 −c14 −c10 −c6 −c2
0 0 0 0 c10 c2 c14 −c6
0 0 0 0 −c6 −c14 c2 −c10
0 0 0 0 c2 −c6 c10 −c14

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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P11 =

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

P12 =

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0
−1 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

  

Cp1111 =

c8 c8 0 0
0 0 −c12 −c4
c8 −c8 0 0
0 0 c4 −c12

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, P1111 =

1 0 0 1
0 1 1 0
0 −1 1 0
−1 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 

5.5     Hardware Cost and Comparison 

Segmented hardware cost for each matrix of our proposed 16-poind AIQ DCT and other 

specifications are presented in Table 5.5. Apparently, permutation matrices P1 and P11 do not 

require any computations but instead wiring for their implementation. P2 and P12 need 16 and 8 

additions respectively. The three coefficients Z1, Z2 and Z3 can be implemented with a total of 

nine additions when represented with 8 bits. The number of bits can be selected according to the 

precision of the requirement, which offers a flexible implementation. 

Considering all the decomposed matrices, a total of 148 adders would implement our 

proposed 16-point AIQ with a total LUT of 8944.  
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           Table 5.5 Segmented hardware cost for each decomposed matrix 

Component Additions LUT 
P1 0 0 
P2 16 136 
P11 0 0 
P12 8 62 
Cp11 25 1677 
Cp2 56 7066 
Coefficients 34  
z1+z2+z3 9  
Total (Cp) 148 8944 

 

Table 5.6 provides a comparative figure for the hardware cost of AIQ and classical 

implementation of DCT. As it shows, proposed AIQ architecture is multiplier free and offers a 

significant improvement on the classical approach of FP DCT implementation. In place of 31 

and 24 multipliers in case of the DCT [6] and DFT [7] consequently, the proposed AIQ DCT 

offers a completely multiplier free implementation. In case of additions, the proposed algorithm 

needs 148 additions where as the other two algorithms compared here need 81 and 116 additions 

as can be seen from the table. 

 

           Table 5.6 Hardware comparison 

Algorithm Multiplication Addition 
16p Classical DCT [6] 31 81 

16p DFT [7] 24 116 

Proposed 16p AIQ 0 148 
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5.6     Summary 

The Proposed 16-point AIQ implementation of classical DCT offers an error free 

realization in multibeamforming with significant savings in terms of hardware cost and 

complexity. Both 3D and 1D AIQ have been considered to find the optimal mapping in terms of 

hardware complexity. The proposed 3D AIQ offers significant improvement in terms of 

hardware cost over classical DCT and DFT. 
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CHAPTER 6 
 

CONCLUSION 

 

In real time applications, it is required to steer the radiation direction in real time. 

Mechanical movement of gigantic antenna systems to direct radiation to a particular direction in 

real time is not feasible. It has to be done electronically using beamforming techniques to cope 

with the advancement in technology and demand on exploration. If multibeamforming is of 

interest, DFT has been considered to be the preferred algorithm. However, DFT has been 

replaced with DCT in many applications due to the hardware efficiency and competitive 

accuracy in many applications. Several DCT algorithms have been considered and analyzed in 

this work as alternatives of DFT in multibeamforming applications. The next generation radio 

observatories are one of the many fields where our proposed algorithm for multibeamforming 

could be utilized. Proposed AIQ DCT in multibeamforming can be applied along with ADC and 

other required digital circuitry in the tile level to produce multiple narrow beams in multiple 

directions with high accuracy and low hardware complexity. These beams then can be collected 

and correlated in the station level main computer system for further processing to retrieve the 

desired information.  

For high frequency signals, the physical dimension of the antennas is practical as the 

wavelength is low. But for low frequency signals, it is necessary to increase the electrical size of 

the antenna by forming aperture array. A Multibeamforming algorithm such as 16-point AIQ 

DCT with low complexity and high accuracy and capable of producing multiple directional 

beams is a required solution in aperture arrays 
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In wireless communication systems, the limited frequency spectrum is a constraint in 

regards to meeting the increasing demand. Multibeamforming can be applied to form multiple 

localized beams in multiple directions using the same frequency. This would greatly enhance the 

service capacity. Smart antennas with beamformers, these days, are used in wireless 

communication systems for this purpose. Multiple spot beams with 8-point or 16-point AIQ DCT 

would be a good option for the smart antenna systems in wireless communications.  

 

6.1     Thesis Accomplishments 

The accomplishments of this thesis can be concluded as below: 

§ Discrete transforms such as, DST, WHT and DCT along with DFT have been applied 

to the array factor to produce multiple beams in multiple directions. As it has been 

observed, all of these transforms are capable of producing multiple beams. However, 

the directions for different indices appear to be different. Also, the shapes of the main 

beams, though comparable, are not same. The number of side lobes and their 

normalized peaks also make a difference. Depending on the specification and 

requirement of the application where the multibeamformer is to be deployed, the 

algorithm can be chosen. Considering performance and hardware efficiency, DCT, 

however, appears to be a competitive option. 

§ The standardized Integer DCT’s such as JPEG, MPEG, AVS, AVC, and HEVC have 

been considered in multibeamforming and a comparative study has been performed. 

When compared among themselves, similar performance has been observed for all 

the approximations in multibeamforming. All of these hardware-efficient algorithms 
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showed promising performance. However, these approximations, when compared 

with the performance of classical DCT, are not completely error free.   

§ The 8-point AIQ DCT has been considered here in multibeamforming. The 

performance has been analyzed in comparison with BAS [18], CB [19] and PMCB 

[7] approximations. As expected, the performance of AIQ DCT has been observed to 

be completely error free in multibeamforming. An efficient hardware implementation 

of 2D AIQ DCT with matrix decomposition has also been considered. 

§ 16-point DCT has been considered to produce main beams in 16 different directions. 

It showed better performance compared to 8-point DCTs in terms of beam width and 

peaks of side lobes. To make it more efficient in terms of hardware complexity, 16-

point AIQ DCT has been considered. Both 1D and 3D mapping of 16-point AIQ 

DCT have been developed and analyzed to find the optimum one. Naturally, the 3D 

mapping out performs the 1D one in terms of hardware complexity. In 

multibeamforming, this offers an error free implementation of classical DCT.  

 

6.2     Future Works 

The following extensions of this work can be considered to be studied in future: 

§ In this work, the far field has been considered to predict the beam patterns; so the 

inclusion of near field considerations are likely to alter the shape in terms of beam 

width which is required to be considered in practical applications.  

§ ULA with uniform plane wave has been considered to evaluate the performance of 

AIQ DCT in multibeamforming. Consideration of other array architectures and 
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inclusion of TE and TM waves along with accompanying circuitry are to be done to 

ensure its feasibility in practical applications.  

§ Furthermore, increasing the DCT matrix size can increase the number of beams and 

performance can be analyzed. 
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