51 research outputs found

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    The Complementarity of Tangible and Paper Interfaces in Tabletop Environments for Collaborative Learning

    Get PDF
    The current trend in Human-Computer Interaction aims at bridging the gap between the digital and the real world, exploring novel ways to engage users with computational devices. Computers take new forms that are better integrated into our environment and can be embedded in buildings, furniture or clothes. Novel forms of interfaces take advantage of people's intuitive knowledge of everyday objects to offer more direct and natural interactions. Tangible User Interfaces (TUIs) allow users to interact with digital objects through tangible artifacts, building on their rich physical affordances. Paper User Interfaces (PUIs) add digital capabilities to paper documents, synchronizing for instance their content with their digital counterpart. Unique properties of paper are also used to create engaging and intuitive interfaces to computer applications. This dissertation is interested in the complementarity of tangible and paper interfaces in tabletop environments. We introduce the concept of Tangible and Paper Environments (TaPEs) where Interactive Paper Forms (IPFs), a particular type of PUIs based on the paper form metaphor, are used as a complementary interface to a TUI. We evaluate the potential of IPFs to overcome two main shortcomings of TUIs, in terms of scalability and pedagogy. The scalability issue comes from the limited expressiveness of task-specific physical artifacts, which offer rich physical affordances but limit the complexity of applications that can be controlled by a TUI. The pedagogy issue is raised by the lack of consistent evidence regarding the use of physical manipulatives in educational settings, which is one of the main application domain of TUIs. IPFs overcome the scalability issue by offering a set of generic interaction elements that allow TaPEs to cope with applications of any complexity. In a pedagogical setting, IPFs present learners with abstract representation which facilitate understanding by the embodied and concrete representations offered by tangible artifacts. A TaPE, the Tinker Environment, has been developed with two logistics teachers in the context of the Swiss vocational training system. It consists of a warehouse physical small-scale model (TUI) and TinkerSheets, our implementation of IPFs. It aims at helping apprentices understand theoretical concepts presented at schools. We followed a Design-based Research (DBR) approach: ten studies were conducted during the development of the Tinker Environment in authentic classroom settings. Controlled experiments were conducted to address specific questions. v The general research questions concern the respective affordances of paper and tangible components of TaPEs. The analysis is not limited to usability aspects but also considers their impact on group problem-solving activities and their potential in terms of integration of the system in its context of use. A descriptive model is proposed, built around three interaction circles: individual (usability), group (collaboration) and context (integration). Results identify design guidelines that limit the impact of the less direct interaction modality offered by IPFs, allowing TaPEs to overcome the scalability issue while supporting rich interactions. At the group level, observations of groups of apprentices solving problems around the Tinker Environment show that the consistent physical interaction modality offered by TaPEs naturally supports collaborative interactions. Apprentices tend to take implicit roles based on their location around the system. Regarding the context circle, we observed that carefully designed IPFs play the role of bridges between offline and online activities and contribute to a tight integration of the system in a its context (i.e. a classroom). The specific research questions address the potential of the Tinker Environment in this pedagogical context and its appropriation by teachers. The observations conducted with the Tinker Environment show that the warehouse small-scale model reduces the complexity of problems and allows apprentices to engage in meaningful problem-solving activities. Controlled experiments comparing a TUI to a mulitouch interface demonstrate that tangible artifacts lead to a higher learning gain and an increased performance in a problem-solving activity. Collaboration quality and perceived playfulness are also improved. The teacher plays a central role in the use of the environment, guiding apprentices through activities and encouraging reflections during debriefing sessions. The design of IPFs, emphasizing either their interface or document nature, has a strong influence on their ability to support teachers. We finally discuss the two-way adaptation process that took place between teachers and the system during the development of the Tinker Environment

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    29th IAPRI Symposium on Packaging 2019:Proceedings

    Get PDF

    Technology 2004, Vol. 2

    Get PDF
    Proceedings from symposia of the Technology 2004 Conference, November 8-10, 1994, Washington, DC. Volume 2 features papers on computers and software, virtual reality simulation, environmental technology, video and imaging, medical technology and life sciences, robotics and artificial intelligence, and electronics

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Global Shipping Container Monitoring Using Machine Learning with Multi-Sensor Hubs and Catadioptric Imaging

    Get PDF
    We describe a framework for global shipping container monitoring using machine learning with multi-sensor hubs and infrared catadioptric imaging. A wireless mesh radio satellite tag architecture provides connectivity anywhere in the world which is a significant improvement to legacy methods. We discuss the design and testing of a low-cost long-wave infrared catadioptric imaging device and multi-sensor hub combination as an intelligent edge computing system that, when equipped with physics-based machine learning algorithms, can interpret the scene inside a shipping container to make efficient use of expensive communications bandwidth. The histogram of oriented gradients and T-channel (HOG+) feature as introduced for human detection on low-resolution infrared catadioptric images is shown to be effective for various mirror shapes designed to give wide volume coverage with controlled distortion. Initial results for through-metal communication with ultrasonic guided waves show promise using the Dynamic Wavelet Fingerprint Technique (DWFT) to identify Lamb waves in a complicated ultrasonic signal
    • …
    corecore