46 research outputs found

    Mathematical analysis of super-resolution methodology

    Get PDF
    The attainment of super resolution (SR) from a sequence of degraded undersampled images could be viewed as reconstruction of the high-resolution (HR) image from a finite set of its projections on a sampling lattice. This can then be formulated as an optimization problem whose solution is obtained by minimizing a cost function. The approaches adopted and their analysis to solve the formulated optimization problem are crucial, The image acquisition scheme is important in the modeling of the degradation process. The need for model accuracy is undeniable in the attainment of SR along with the design of the algorithm whose robust implementation will produce the desired quality in the presence of model parameter uncertainty. To keep the presentation focused and of reasonable size, data acquisition with multisensors instead of, say a video camera is considered.published_or_final_versio

    An efficient parallel algorithm for high resolution color image reconstruction

    Get PDF
    This paper studies the application of preconditioned conjugate gradient methods in high resolution color image reconstruction problems. The high resolution color images are reconstructed from multiple undersampled, shifted, degraded color frames with subpixel displacements. The resulting degradation matrices are spatially variant. The preconditioners are derived by taking the cosine transform approximation of the degradation matrices. The resulting preconditioning matrices allow the use of fast transform methods. We show how the methods can be implemented on parallel computers, and we demonstrate their parallel efficiency using experiments on a sixteen processor IBM SP-2.published_or_final_versio

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    Reconstruction of high-resolution image from movie frames.

    Get PDF
    by Ling Kai Tung.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 44-45).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.7Chapter 2 --- Fundamentals --- p.9Chapter 2.1 --- Digital image representation --- p.9Chapter 2.2 --- Motion Blur --- p.13Chapter 3 --- Methods for Solving Nonlinear Least-Squares Prob- lem --- p.15Chapter 3.1 --- Introduction --- p.15Chapter 3.2 --- Nonlinear Least-Squares Problem --- p.15Chapter 3.3 --- Gauss-Newton-Type Methods --- p.16Chapter 3.3.1 --- Gauss-Newton Method --- p.16Chapter 3.3.2 --- Damped Gauss-Newton Method --- p.17Chapter 3.4 --- Full Newton-Type Methods --- p.17Chapter 3.4.1 --- Quasi-Newton methods --- p.18Chapter 3.5 --- Constrained problems --- p.19Chapter 4 --- Reconstruction of High-Resolution Images from Movie Frames --- p.20Chapter 4.1 --- Introduction --- p.20Chapter 4.2 --- The Mathematical Model --- p.22Chapter 4.2.1 --- The Discrete Model --- p.23Chapter 4.2.2 --- Regularization --- p.24Chapter 4.3 --- Acquisition of Low-Resolution Movie Frames --- p.25Chapter 4.4 --- Experimental Results --- p.25Chapter 4.5 --- Concluding Remarks --- p.26Chapter 5 --- Constrained Total Least-Squares Computations for High-Resolution Image Reconstruction --- p.31Chapter 5.1 --- Introduction --- p.31Chapter 5.2 --- The Mathematical Model --- p.32Chapter 5.3 --- Numerical Algorithm --- p.37Chapter 5.4 --- Numerical Results --- p.39Chapter 5.5 --- Concluding Remarks --- p.39Bibliography --- p.4

    Multiscale and Multitopic Sparse Representation for Multisensor Infrared Image Superresolution

    Get PDF
    Methods based on sparse coding have been successfully used in single-image superresolution (SR) reconstruction. However, the traditional sparse representation-based SR image reconstruction for infrared (IR) images usually suffers from three problems. First, IR images always lack detailed information. Second, a traditional sparse dictionary is learned from patches with a fixed size, which may not capture the exact information of the images and may ignore the fact that images naturally come at different scales in many cases. Finally, traditional sparse dictionary learning methods aim at learning a universal and overcomplete dictionary. However, many different local structural patterns exist. One dictionary is inadequate in capturing all of the different structures. We propose a novel IR image SR method to overcome these problems. First, we combine the information from multisensors to improve the resolution of the IR image. Then, we use multiscale patches to represent the image in a more efficient manner. Finally, we partition the natural images into documents and group such documents to determine the inherent topics and to learn the sparse dictionary of each topic. Extensive experiments validate that using the proposed method yields better results in terms of quantitation and visual perception than many state-of-the-art algorithms

    A High Resolution Color Image Restoration Algorithm for Thin TOMBO Imaging Systems

    Get PDF
    In this paper, we present a blind image restoration algorithm to reconstruct a high resolution (HR) color image from multiple, low resolution (LR), degraded and noisy images captured by thin (< 1mm) TOMBO imaging systems. The proposed algorithm is an extension of our grayscale algorithm reported in [1] to the case of color images. In this color extension, each Point Spread Function (PSF) of each captured image is assumed to be different from one color component to another and from one imaging unit to the other. For the task of image restoration, we use all spectral information in each captured image to restore each output pixel in the reconstructed HR image, i.e., we use the most efficient global category of point operations. First, the composite RGB color components of each captured image are extracted. A blind estimation technique is then applied to estimate the spectra of each color component and its associated blurring PSF. The estimation process is formed in a way that minimizes significantly the interchannel cross-correlations and additive noise. The estimated PSFs together with advanced interpolation techniques are then combined to compensate for blur and reconstruct a HR color image of the original scene. Finally, a histogram normalization process adjusts the balance between image color components, brightness and contrast. Simulated and experimental results reveal that the proposed algorithm is capable of restoring HR color images from degraded, LR and noisy observations even at low Signal-to-Noise Energy ratios (SNERs). The proposed algorithm uses FFT and only two fundamental image restoration constraints, making it suitable for silicon integration with the TOMBO imager

    Superresolution imaging: A survey of current techniques

    Full text link
    Cristóbal, G., Gil, E., Šroubek, F., Flusser, J., Miravet, C., Rodríguez, F. B., “Superresolution imaging: A survey of current techniques”, Proceedings of SPIE - The International Society for Optical Engineering, 7074, 2008. Copyright 2008. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insufficient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.This research has been partially supported by the following grants: TEC2007-67025/TCM, TEC2006-28009-E, BFI-2003-07276, TIN-2004-04363-C03-03 by the Spanish Ministry of Science and Innovation, and by PROFIT projects FIT-070000-2003-475 and FIT-330100-2004-91. Also, this work has been partially supported by the Czech Ministry of Education under the project No. 1M0572 (Research Center DAR) and by the Czech Science Foundation under the project No. GACR 102/08/1593 and the CSIC-CAS bilateral project 2006CZ002

    Super-resolução em vídeos de baixa qualidade para aplicações forenses, de vigilância e móveis

    Get PDF
    Orientadores: Siome Klein Goldenstein, Anderson de Rezende RochaTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Algoritmos de super-resolução (SR) são métodos para obter um aumento da resolução de imagens compostas por pixels. Na super-resolução por múltiplas imagens, um conjunto de imagens de baixa resolução de uma cena é combinado para construir uma imagem de resolução superior. Super-resolução é uma solução barata para superar as limitações dos sistemas de aquisição de imagens, e pode ser útil em diversos casos em que o dispositivo não pode ser melhorado ou substituído - mas em que é possível obter diversas capturas da mesma cena. Neste trabalho, é explorada a super-resolução por múltiplas imagens para imagens naturais, em cenários nos quais é possível obter diversas imagens de uma cena. São propostas cinco variações de um método que explora propriedades geométricas de múltiplas imagens de baixa resolução para combiná-las em uma imagem de resolução superior; duas variações de um método que combina técnicas de inpainting e super-resolução; e mais três variações de um método que utiliza filtros adaptativos e regularização para resolver um problema de mínimos quadrados. Super-resolução por múltiplas imagens é possível quando existe movimento e informações não redundantes entre as imagens de baixa resolução. Entretanto, combiná-las em uma imagem de resolução superior pode não ser computacionalmente viável por técnicas complexas de super-resolução. A primeira aplicação dos métodos propostos é para um conjunto de imagens capturadas pelos dispositivos móveis mais recentes. Este tipo de ambiente requer algoritmos eficazes que sejam executados rapidamente e utilizando baixo consumo de memória. A segunda aplicação é na Ciência Forense. Câmeras de vigilância espalhadas pelas cidades poderiam fornecer dicas importantes para identificar um suspeito, por exemplo, em uma cena de crime. Entretanto, o reconhecimento dos caracteres de placas veiculares é especialmente difícil quando a resolução das imagens é baixa. Por isso, este trabalho também propõe um arcabouço que realiza a super-resolução de placas veiculares em vídeos reais de vigilância, capturados por câmeras de baixa qualidade e não projetadas especificamente para esta tarefa, ajudando o especialista forense a compreender um evento de interesse. O arcabouço realiza todas as etapas necessárias para rastrear, alinhar, reconstruir e reconhecer automaticamente os caracteres de uma placa suspeita. O usuário recebe, como saída, a imagem de alta resolução reconstruída, mais rica em detalhes, e também a sequência de caracteres reconhecida automaticamente nesta imagem. São apresentadas validações quantitativas e qualitativas dos algoritmos propostos e de suas aplicações. Os experimentos mostram, por exemplo, que é possível aumentar o número de caracteres reconhecidos corretamente, colocando o arcabouço proposto como uma ferramenta importante para fornecer aos peritos uma solução para o reconhecimento de placas veiculares sob condições adversas de aquisição. Por fim, também é sugerido o número mínimo de imagens a ser utilizada como entrada em cada aplicaçãoAbstract: Super-resolution (SR) algorithms are methods for achieving high-resolution (HR) enlargements of pixel-based images. In multi-frame super resolution, a set of low-resolution (LR) images of a scene are combined to construct an image with higher resolution. Super resolution is an inexpensive solution to overcome the limitations of image acquisition hardware systems, and can be useful in several cases in which the device cannot be upgraded or replaced, but multiple frames of the same scene can be obtained. In this work, we explore SR possibilities for natural images, in scenarios wherein we have multiple frames of a same scene. We design and develop five variations of an algorithm which rely on exploring geometric properties in order to combine pixels from LR observations into an HR grid; two variations of a method that combines inpainting techniques to multi-frame super resolution; and three variations of an algorithm that uses adaptive filtering and Tikhonov regularization to solve a least-square problem. Multi-frame super resolution is possible when there is motion and non-redundant information from LR observations. However, combining a large number of frames into a higher resolution image may not be computationally feasible by complex super-resolution techniques. The first application of the proposed methods is in consumer-grade photography with a setup in which several low-resolution images gathered by recent mobile devices can be combined to create a much higher resolution image. Such always-on low-power environment requires effective high-performance algorithms, that run fastly and with a low-memory footprint. The second application is in Digital Forensic, with a setup in which low-quality surveillance cameras throughout the cities could provide important cues to identify a suspect vehicle, for example, in a crime scene. However, license-plate recognition is especially difficult under poor image resolutions. Hence, we design and develop a novel, free and open-source framework underpinned by SR and Automatic License-Plate Recognition (ALPR) techniques to identify license-plate characters in low-quality real-world traffic videos, captured by cameras not designed for the ALPR task, aiding forensic analysts in understanding an event of interest. The framework handles the necessary conditions to identify a target license plate, using a novel methodology to locate, track, align, super resolve, and recognize its alphanumerics. The user receives as outputs the rectified and super-resolved license-plate, richer in details, and also the sequence of license-plates characters that have been automatically recognized in the super-resolved image. We present quantitative and qualitative validations of the proposed algorithms and its applications. Our experiments show, for example, that SR can increase the number of correctly recognized characters posing the framework as an important step toward providing forensic experts and practitioners with a solution for the license-plate recognition problem under difficult acquisition conditions. Finally, we also suggest a minimum number of images to use as input in each applicationDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação1197478,146886153996/3-2015CAPESCNP
    corecore