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Abstract 

Abstract of thesis entitled: 

Reconstruction of High-Resolution Image from 
Movie Frames 

Submitted by Ling Kai Tung 

for the degree of Master of Philosophy in Mathematics 

at The Chinese University of Hong Kong in August 2003 

Image reconstruction is generally an inverse problem, which intends to re-

cover the original ideal image from its given degraded version. Many methods 

have been proposed to reconstruct a high-resolution image from several under-

sampled, shifted, degraded still images with subpixel displacements. This thesis 

will demonstrate the reconstruction of high-resolution image from low-resolution 

movie frames. From the movement of the video camera, we can obtain the target 

object located in the different positions in movie frames. With these captured 

movie frames, we can get different still images with displacements. We align 

the target object in the still images so that they are shifted from each other 

by approximately one pixel and these images serve as the input images for ex-

isting methods. This technique is illustrated with some examples. We can see 

from these examples that we can reconstruct an improved image from the movie 

frames. The result can be further improved if we can estimate the exact subpixel 

movement of the target object and we would like to apply blind deconvolution to 

achieve this task. 
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摘 要 

從電影畫格重構高解析度圖片 

高解析度圖片重構普遍是一個逆問題，是希望從一些低解析度的圖片中重構一幅高 

解析度圖片。很多方法利用一些低解析度並且有非整像素移位的圖片作重構。此論 

文將會示範從電影畫格重構高解析度圖片。由鏡頭的移動，我們可以獲得目標事物 

位於畫格中不同的位置，從這些畫格中，我們欲將重構之事物截取並作特定的排 

位，令它們大槪與其他截取的事物有一像素之距離，並利用現有的方法應用到這些 

圖片上，我們會給予例子去示範。從這些例子中，我們可見重構之圖片比原來的圖 

片爲佳，我們更會嘗試去估計實際移位的距離，並希望重構出更佳之高解析度圖 

片。 
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Chapter 1 

Introduction 

In this thesis, we consider the reconstruction of high-resolution images from sev-

eral degraded low-resolution frames obtained from a movie. These low-resolution 

frames are shifted from each other by sub-pixel displacements in order to gather 

enough information for the reconstruction of the high resolution images. 

First, we will have a brief introduction to what a digital image is and what is 

the differences between high-resolution and low-resolution images. Some exam-

ples are illustrated and a common phenomenon of image defect called "blurring" 

is introduced at the end of Chapter 2. 

Image reconstruction problem is generally an inverse problem, a least-squares 

approach is often used to solve the problem. In Chapter 3, we survey some of the 

common methods for solving linear and nonlinear least-squares problems. 

In Chapter 4，we will use the model proposed by [2] since they required the 

degraded low-resolution images to be shifted by sub-pixel displacements and these 

displacements can be obtained by the movement of the target object in a movie. 

Although the sub-pixel displacements may not be the ideal one, we can see from 

the illustrated results that improvement of the quality of the image is achieved. 

7 
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Since the model introduced in Chapter 4 is not the ideal one, and the sub-

pixel displacements we obtained is not exact, there may be some errors in it. In 

Chapter 5, we try to impose the errors into the model and we will use the model 

proposed by [5] to see whether more improvement of the reconstructed image can 

be made. 



Chapter 2 

Fundamentals 

2.1 Digital image representation 

A digital image is a 2-D array of integers. It is an approximation to the continuous 

image. Each element of the array is called a pixel and the value of each element 

is called a pixel value. 

For a monochrome image, it consists of one array of integers and these integers 

represent the gray-levels, see Figure 2.1. For color images, there are different 

kind of representations. The most common one is the R G B representations, it 

represents a color image using three arrays of integers. The first, second and the 

third arrays represent the intensities of Red, Green and Blue color respectively, 

see Figure 2.2. For other representations of a color image, please refer to [1 . 

The degree of discernible detail of an image is controlled by the image's res-

olution. The higher the resolution, more points are taken to approximate the 

continuous image and the larger the size of the array(s), see Figures 2.3 and 2.4. 

As a result, the storage and processing requirements increase rapidly as resolution 

increases. 

9 



细
挪
湖
舰
浏
傲
彻
似
似
佛
制
碰
彻
彻
w
側
似
彻
W
W
似
他
彼
搬
职
 一
他
^
^

 
\

 
^
 

锁
側
慨
渐
似
彻
柳
彻
慨
彻
猫
彻
慨
彻
W
彻
彻
棚
愧
側
侦
饿
慨
彻
慨

 

H
 

一”
 

凡

 

H
i
i
i
i
漂
i
l
i
 

I
 

^
 i
i
i
l
i
i
i
i
i

 m

 /
s

 ̂̂
^

 

碰
 

§
 的

S
:
站
M
g
况
O
T
i
朗
站
？
郎
&
•
於
拥
S
i
S
；
朋
；
S
T
O
万

 

h
 

/
 

I

 

--—I—.—I
 
^
 

i
 i
 

、

^
 

•
力
 

§
1
1
0
s
I

 i
i
i
i
i
i
i
 a
 
•
 

i
 n
 

-
 

I
.
 

_
 

此
 

_

 
J
m
m
m
m
m
m
m
m
m
m
m
m
m
n
^

 F

 

.

1

一

一

一

，

•

n
 

s
 

卯
 

c
 

e
 

R
 



Reconstruction of High-Resolution Image from Movie Frames 11 

赞实，、〜”、…•， � � J 
斤、 、）\、： �� � ‘ j f l 

K11 _ 
Figure 2.3: The same scene using 64 x 64 resolution (left), 128 x 128 resolution 

(center) and 256 x 256 resolution (right). 

Figure 2.4: The same scene using 64 x 64 resolution (left), 128 x 128 resolution 

(center) and 256 x 256 resolution (right) with the first 2 images resampled to 

256 X 256 pixels. 
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Figure 2.5: Matrix representation of a color image. 

In mathematical language, a gray-level image is a matrix with entries rep-

resenting the intensities of the gray-level at different pixels. Similarly, a color 

image using RGB representation consists of three matrices with each matrix rep-

resenting the intensities of each color. A monochrome image can be written in 

the following matrix form: 

Q(l，l) /(1，2)…f{l,N�� 

/ (2,1) / (2,2) . . . / (2, N) 
/ (工二 . . . • 

• * • 
• • • 

� / ( M , l ) / ( M , 2) . . . f[M,N�) 

A color image can be written similarly with three matrices instead of one matrix, 

see Figure 2.5. 
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、：l��4康:、發《‘、、\:、：：？、 \ 戈遍 
# I : : 表 V � �义 > M 

. | � f 爹 ^ ^ W 

|y I ' ' , \�1:\、： W iff. 
丄 膽 爹 、 . . . . . 、 』 

Figure 2.6: A motion blurred image. 

2.2 Motion Blur 

Motion blur is a common image defect. It occurs when the exposure time of a 

camera is longer than the optimal one. Because the shutter remains open for 

an extended period of time, all the motion occurred during this time interval is 

recorded in the image and makes the image look hazy, see Figure 2.6. 

We can model the motion blur phenomenon by using a sequence of shifted 

images (see Figure 2.7) and then take the average of these images. 

A + /2 + . . . + /n z   = / 
n 
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Chapter 3 

Methods for Solving Nonlinear 

Least-Squares Problem 

3.1 Introduction 

In image processing problems, one always have to solve linear or nonlinear least-

squares problem. In this chapter, we are going to survey some of the methods 

for solving unconstrained and constrained nonlinear least-squares problems. For 

details analysis of the methods introduced in this chapter, see [7] and [8 . 

3.2 Nonlinear Least-Squares Problem 

The nonlinear least-squares problem is 

1讯 
min /(X), /(X) = -Ri^fRi^) 二 ？ [” (̂乂尸 xeM" Z Z 

2二 1 

where m �n , i?(x) 二 (ri(x), r2(x),. • • , and is nonlinear in x‘ 

15 
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This kind of problem arises commonly in data-fitting applications. In data-

fitting problem, we have a set of data (U, yi), i = 1, 2, • • • ,m and we would like 

to fit a model A;(x,t) that is nonlinear in x such that the distance between the 

points Hi and A:(x, ti), i 二 1,2,... , m is minimized. If we let uix) = k(x, U) — y“ 

then the problem becomes 

1 爪 1 
min / (X), / (X) 二 = - R ( x r R ( x ) . xGM"- Z Z 

i=l 

3.3 Gauss-Newton-Type Methods 

3.3.1 Gauss-Newton Method 

The Gauss-Newton methods use a linear model to approximate R(x) in a neigh-

borhood of a given point x。， 

Me(x) = + J(xe)(x X。） 

where J(x) is the Jacobian matrix of i?(x). Then we can use the linear least-

squares problem 

min J p ( x e ) + J(xe)(x - Xc)||_ (3.1) xgM" 2 

and assume J(xc) has full column rank, then the minimizer of the above problem 

is given by 

X - X e - (J(Xe)V(Xe))-V(Xe)'i?(Xe). 

The method described above is linear and requires the first derivative of R(x) at 

Xc only. It has fast local convergence on mildly nonlinear and nearly consistent 

problems, but it may not converge locally for highly nonlinear problems. 
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3.3.2 Damped Gauss-Newton Method 

Sometimes the Gauss-Newton method takes too long steps length ( J ( x c ) ( x — Xc)) 

which makes the approximated solution diverges away from the exact solution. 

In order to control the step length, a parameter ak is added to (3.1) in order to 

control the step length. 
1 

min -||i?(xc) + afcJ(xc)(x — Xc)||霊 xgM" 2 

The minimizer of the above problem is 

First, we calculate the descent direction by 
X - Xc = -(J(Xe)V(Xe))-V(Xe)'i?(Xe), 

and then ak is obtained by solving the following minimization problem 

min ||r(xk + — 
ak 

A theoretical analysis of the above step length principle has been given in [6 . 

This method is locally convergent on almost all nonlinear least-squares prob-

lems, including problems which are higher nonlinear but the convergent rate is 

slow compare to Newton's method. 

3.4 Full Newton-Type Methods 

For the Full Newton-Type Methods, the approximation is based on Taylor series 

of f{x) up to the quadratic term. 

min /e(x), /e(x) =/(Xe) + V/(Xe)^(x - X � ) + - Xe)^VV(Xc)(x - X。） 

= + i?(Xe)V(Xe)(x - X。） 

+ ^(X - Xc) V(Xc)V(Xc) + 5(xe))(x — x j 
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where 

= G 称 二 z = l，. . . ,m . 
i=i ^ k 

The minimizer of the above problem is 

X = Xc - (J(Xe)V(Xe) + S {^cT^J{^c f • 

This method is locally quadratically convergent as long as 

• V ( X ) = J(Xe)V(Xe) + ^(Xe) 

is Lipschitz continuous around x。，and is positive definite, where x* is 

the minimizer of / (x ) , see [7] for details. 

The convergent rate of this method is much superior than the previous meth-

ods, but it requires the calculation of J(xc)V(xc)+5(xc) which is rarely available. 

If it is not analytically available, one should approximate J(xc)V(xc) + 5'(xc) by 

finite difference which maybe very costly to do so. 

3.4.1 Quasi-Newton methods 

In quasi-Newton method, one have to calculate an approximation to the second 

derivative matrix successively by evaluations of the gradient. 

Let Sk-i be a symmetric approximation to the Hessian at step k. Sk ap-

proximates the change of the gradient of f along the direction Xk — Xk—i，that 

is, 

— Xk-i) = yk, Vk = J(xk)V(xk) - J(Xk—i)V(Xk-i), 

which is called the quasi-Newton relation. 

The search direction pk is then calculated by 

SkPk = -J(xk)V(xk). 

In common practice, the starting approximation of So is taken as aSq = J(xo)力 J(Xo). 
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3.5 Constrained problems 

Sometimes the nonlinear least-squares problem may be subject to constraints. In 

case of nonlinear equality constraints, the problem can be stated as 

min I-RCxYRCx.), subject to h(x) 二 0, xeM" 2 

where R(x) eR"^, he R^, and p < n. 

The Gauss-Newton method can be generalized to solve constrained problems 

by linearizing at a point Xk. A line search direction pk is computed as a solution 

to the linearly constrained problem 

min ||r(Xk) + J(xk)p||2 subject to /i(xk) + C(xk)p = 0, p 

where J and C are the Jacobian matrices for r(x) and h(x), respectively. Then 

this problem can be solved by the method of weighting. The method of weighting 

is to assign a weight in the constraint and minimize it together with the original 

function, i.e. 

min ||r(xk) + J(xk)p||2 + Q;||"(Xk) + C(xk)p||2 p 

By using this method the constrained least-squares problem becomes an uncon-

strained least-squares problem. This method is attractive because of its simplicity. 

It allows the use of programs for solving unconstrained least-squares problem to 

solve the constrained problems. But a should be carefully chosen, otherwise the 

system may becomes ill-conditioned. 



Chapter 4 

Reconstruction of 

High-Resolution Images from 

Movie Frames 

4.1 Introduction 

Electronic surveillance system has a wide-range of usage, for example to enhance 

security. Reconstruction of the high-resolution image from the recorded movie in 

this kind of systems is of great importance. In this chapter, we consider the recon-

struction of high-resolution images from multiple under sampled, shifted, degraded 

and noisy color movie frames which are obtained from a movie of a target object. 

There are a lot of researches regarding the reconstruction of high-resolution im-

ages from low-resolution images taken by camera, see [10] and [11]. We would like 

to find a method that can use the low-resolution movie frames from video and re-

construct a high-resolution image from them. The difference between the source 

20 
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images from camera and from movie frames is that the subpixel displacements 

can be controlled from camera, but not from movie frames. 

We separated the color movie frames into a set of three images in their primary 

color components: red, green and blue. The reconstruction of high-resolution 

color images can be modeled as solving 

9 = Af + fJ, (41) 

where A is the reconstruction operator, fj represents unknown Gaussian noise or 

measurement errors, g is the observed high-resolution color image formed from 

the low resolution color movie frames and / is the desired high-resolution color 

image. The observed and original color images can be expressed as 

(g{r) \ ( fir) \ 

9= 一 ， f 二 /⑷， 

V ； V y 
where g � and / �( z G {r,g,b}) are the observed and the original color images 

from the red, green and blue channels respectively. 

Since the system (4.1) is ill-conditioned and generally not positive definite, 

we solve it by using a minimization and regularization technique: 

2 

mini y a, V 乂 ” / � —+ 7 e ( / � , / � , / � ） . ( 4 = 2 ) 
J < J 

Here the operators A'' and • j) are the entries of A and represent the 

within-channel and the cross-channel degradation operators respectively,尺 is a 

functional which measures the regularity of /，and the regularization parameter 

ai is to control the degree of regularity of the solution for the i-th channel 

The main aim of this chapter is to extend the results in [2] from still images 

to movie frames. We apply the fast and stable image processing algorithm in [2 

to the color image reconstruction problems. 
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The outline of this chapter is as follows. In Section 2, we give a mathematical 

formulation of the problem. We describe the acquisition of the movie frames in 

Section 3. In Section 4, experimental results are presented to demonstrate the 

effectiveness of our method. We have the concluding remarks in the last section. 

4.2 The Mathematical Model 

The mathematical model is the same as [2]. Although we are using movie frames 

rather than taking still images from a sensor array, when the movie is taken 

with sufficient frame rate, we can extract the movie frames with approximately 

the same subpixel displacement as taking still images from the sensor array by 

taking advantage of the movement of the target object in the movie. Therefore 

we can still use the model in [2], i.e., with a sensor array with Li x L2 sensors, 

each sensor has Ni x N2 sensing elements, and the size of each sensing element 

is Ti X T2. We would like to reconstruct a high-resolution image of resolution 

Ml X M2 where Mi = Li x Ni and M2 二丄2 x N2. To maintain the aspect ratio 

of the reconstructed image, we only consider the case where Li = L2 二 L. For 

simplicity, we assume L is an even number. 

Ideally, the sensors are shifted from each other by a value proportional to 

Ti/L X T2/L. For simplicity, we assume there is no imperfection of the imaging 

system, i.e., there are no perturbations around ideal subpixel location. Thus, for 

二 0,1, •. •, L — 1 with (h, I2) + (0, 0), the horizontal and vertical displace-

ments and <“2 are given by d^^ = ^ and d^^ = 平 . 

Let /—),/(") and / � be the original scene in red, green and blue channels 

respectively. The high-resolution reconstruction problem can be modeled as 

p � =̂  u H ] n f � (4.3) 
je{r’g,l)} 
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Here g ( � i s the observed high-resolution image, is the formation of the low-

resolution images. See [2] for more details. The parameter ry� is the noise in the 

i-th channel, and wu and Wij {i + j) are the within-channel and the cross-channel 

degradation parameters. We note that 

Wij > 0, i, j e {r, g, b} and ^ Wij = 1, i G {r, g, b}. (4.4) 

4.2.1 The Discrete Model 

For i G let g � and f � be respectively the discretization of � and / � 

using a column by column ordering. Let 

g 二 [ g � g � g(叩 and f = [ f � f � f �r . (4.5) 

Under the Neunmann boundary condition assumption, the resulting matrices, 

denoted by and Hf̂ î  have a Toeplitz-plus-Hankel structure: 

卜 … 1 Kt 0 � / 1 … 1 hi: 0 � 

：•• •• •• •• : ••• ••• . ‘ ‘ • ‘ • 

HI = 1 1 •• .•• ••• .•• KX +1 1 ••• KX 
“ , 2 - Z hi: ••• . . . � • . ... 1 L ； • 1 

• . . • 
• • • • e c 

• • • • • o » • • • • • . • 

V 0 hii 1 … i j V 0 Kt 1 … i j 
(4=6) 

and is defined similarly. The degradation matrix corresponding to the 

(/i,/2)-tli sensor under the Neunmann boundary condition is given by Hî î  = 

0 进I似 The degradation matrix for the whole sensor array is made up of 

degradation matrices from each sensor: 
L-l L-l 

= , h j e {r，g,b}. (4�7) 
Zi=0/2=0 
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Here are diagonal matrices with diagonal elements equal to 1 if the corre-

sponding component of the observed low resolution image comes from the (/i, h)-

th sensor and zero otherwise, see [3] for more details. From (4.3), we see that 

we have the same matrix H^ within the channels and across the channels, the 

overall degradation matrix is given by 

/ \ Wrr Wrg Wrb 

Al 二 Wgr Wgg Wgb ^ H^ 三 ^ H^ • (4-8) 

\wbr Wbg Wbb 

4.2.2 Regular izat ion 

We use the following weighted discrete Laplacian matrix R proposed by Galat-

sanos et al. in [4] with ||f叫丨2 replaced by ||g�|丨2 as the regularization matrix. 

/ 9 IIP(叫 b 
L 丨丨一 |丨2 

R 二 — • 2 0 I + I 机= S 0 I + I 0 L ， （4.9) 
ll5(r)||2 � lb 

llff ㈦ l|2 O 
~WW2 / 

where L is the 2-dimensional discrete Laplacian matrix with the Neumann bound-

ary condition. 
Using Tikhonov regularization in (4.2)，our discretization problem becomes: 

(A^TA^ + R^R)f = A^Tg, (4.10) 

where 
arl 0 0 ar 0 0 \ 

T = 0 agl 0 = 0 0 ⑧！三^^⑧工， （4.11) 

\ 0 0 a^Iy y 0 a abj 

and ar, oig and a^ are the regularization parameters which are assumed to be 

positive scalars. According to (4.9)，(4.11), and when the Neunmann boundary 

condition is used for both H^ and L, (4.10) can be simplified to 
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[W'OW � A2 + (S 0 I + I (g) E”(S (8) I + I (g) E)]f = (W 'O � A)g, (4.12) 

where A and E are diagonal matrices with diagonal entries given by the eigenval-

ues of Hl and L respectively, f 二 (I (g) Cmi � C ^ J f and g = ( I0 Cmi � CMjg-

The system in (4.12) is a block-diagonalized system of M1M2 decoupled systems. 

The vector f can be computed by solving a set of M1M2 decoupled 3-by-3 matrix 

equations. 

4.3 Acquisition of Low-Resolution Movie Frames 

In this section, we discuss the case L = 2 ， = 7̂ 2 二 1 here. We would like to 

get four low-resolution movie frames with subpixel displacements. First we fix 

our target object and take movie of the target object by circular motion of the 

camera, see Figure 1. Next we have to get the four low-resolution movie frames 

from the recorded movie. The criteria for choosing four movie frames is that they 

have to be different from each other in terms of 2-norm and the target object 

should be located in four different positions in the captured movie frames, see 

Figure 2. 

After that, we have to crop the target object out of the movie frames and 

align them so that they are shifted from each other by approximately one pixel, 

see Figure 3. Note that the cropped images should all have the same size. These 

four cropped images serve as the input images for our algorithm. 

4«4 Experimental Results 

In this section, we illustrate our method by recording a target object in a movie. 

We tried the degradation matrix in our examples with Wrr = Wgg = ŵ b = 0.8 
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and Wij = 0.1 for i j in (4.8). In the tests, we used the same regularization 

parameter for each channel, i.e., ar = ag = at = a = 70. Three different target 

objects are recorded in three examples. The corresponding results are shown in 

Figures 4—9. 

4.5 Concluding Remarks 

Since we are using L = 2, theoretically, we should align the target object by half 

a pixel. In our algorithm, we align the target object so that they are shifted from 

each other by approximately one pixel. In next chapter, we will try to estimate 

the exact sub-pixel movement of the target object by blind-deconvolution and see 

whether better images can be reconstructed. 
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Target Object 

！ Camera j 

— 

Motion of the camera 

Figure 1: Movement of the camera. 

Target Target 
Object Object 

Frame 1 Frame 2 

Target Target 
Object Object 

Frame 3 Frame 4 

Figure 2: Four different positions of the target object in corresponding frames. 

One pixel One pixel 
\ 「 . -t- Z 

L • 丨 . F r a m e 1 
• 1: I Frame 2 
• I I  
I I ‘ I Frame 3 
1 I Target ！ | 
I ： Object ； I 

j ！丨-� 

Onepixel One pixel 

Figure 3: Alignmnet of the target object in corresponding frames. 
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m S m S M m ^ ^ M fc〒： 

Figure 8:A low-resolution image (left) and the observed high-resolution image (right). 

‘ / > i r f 

Figure 9: The reconstructed image using Neunmann boundary condition. 



Chapter 5 

Constrained Total Least-Squares 

Computations for 

High-Resolution Image 

Reconstruction 

5.1 Introduction 

In the previous chapter, we have introduced how to reconstruct a high-resolution 

images from movie frames and we assumed the sensors are shifted from each other 

by 1 X i for L = 2 and there are no perturbation errors around the ideal subpixel 
^ 2 2 

locations. But this assumption is unrealistic. In this section, we will take into 

account how to reconstruct a high-resolution images when there is perturbation 

errors around the ideal subpixel locations. We will use the method proposed in 

31 
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.5] and apply it to our problem. For simplicity, we will focus on monochrome 

images. 

5.2 The Mathematical Model 

We are still using a sensor array with L: x L2 sensors, each sensor has Ni x N2 

sensing elements, and the size of each sensing element is x T2. We would like 

to reconstruct a high-resolution image of resolution Mi x M2 where Mi = la x Ni 

and M2 : 1/2 X 7V2. To maintain the aspect ratio of the reconstructed image, we 

only consider the case where Li = L2 = L. For simplicity, we assume L is an 

even number, Ti 二 二 1. If we imposed perturbation errors into the previous 

model, then the horizontal and vertical displacements df̂ î  and d!(山 are given by 

= a n d � , 2 = 5 ( ' 2 + e t J , 

“，/2 二 ，L— 1 with 沖, 0 ) . 

where 绿“�and ef̂；̂  denote the actual normalized horizontal and vertical displace-

ment errors respectively. 

It is reasonable to assume that 

Ki2\ < \ and | � z j < ^ , 

since if the above conditions are violated, then the low-resolution images acquired 

from different sensors may have excess overlapping information and the resulting 

reconstructed high-resolution image is not satisfactory. 

Let g and f be the vectors formed from the continuous high-resolution ob-

served image g{xi, X2) and the original high-resolution continuous scene / (xi , X2) 

respectively using column ordering. Once again, we applied the Neumann bound-

ary condition on the images. The resulting degradation matrices in the x -

direction and direction have a Toeplitz-plus-Hankel structure. 
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' 1 ••• 1 0 � ‘ • • • 
舉 • • • • . • • • • 

1 1 ... •. • . • • ‘ • • k - ^ h tra; f-x \ _ 2 1212 
= I . .. .• •• 1 

2 + ^hh • • . . 丄 

. - - • • • • • • • 

• • • • • 

V 0 I + 1 … 1 J 
^ 1 … 1 “ � , 2 0 � 

• • • 
• • • 
• • • 

+ 1 1 ••• l - n . l . 

. • • • • • 

• • • 
V � 1 … 1 J 

The matrix HX山(^iD is defined similarly. The degradation matrix for the 

{I1J2) sensor is given by 

二 H f 赢 ) 0 H f 爲 ) ， 

where = ( ^ ^ � ^ ^ j J . 

The degradation matrix for the whole sensor array is composed of degradation 

matrices from each sensor and is given by 

L-l L-l 

= (5.1) 

where e 二 [ e g o ^ ^ i ^ …玲 - 1 l-A-i l-iY and of size 21? x 1. 

Dz山 are diagonal matrices with diagonal elements equal to 1 if the corresponding 

element of g comes from the sensor and zero otherwise and are called 

the sampling matrices. For instance, see [3 . 
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The reconstruction of high-resolution images can be modeled as 

g 二 则 f + n. 

where H{e) is the blurring matrix, f is the high-resolution image we would like 

to find, g is the observed high-resolution image and n is the noise. 

Let £(e, f) be the operator /:(e, f) 二 丑⑷f — g. This operator is linear in f and 

nonlinear in e. Then the reconstruction problem can be formulated as follows: 

min{|l£(6-f)|l^}. (5.2) 
e，f 

That is, we would like to find the best e and f such that the residual H{e)f g 

is minimized. 

However, image reconstruction problem is generally ill-conditioned, therefore 

regularization is imposed. Instead of solving (5.2), we regularize the system and 

solve 

Since the above problem is linear with respect to f, so we first take an initial 

guess of e, then we solve the following linear least-squares problem 

Then we can solve the following nonlinear least-squares problem 

m i n { | | £ ( e , + /x||Pf||2 + ||e||̂ }. 

The above subroutine can be solved by the iterative methods (Newton's method, 

Gauss Newton method, etc) introduced in Chapter 3. But it usually involves 

more than one iteration to get the best e. Here we apply the idea of [5] and just 

iteratively improve e by linearization and then iterate the equation once� 
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In the following, we are going to explain the idea in more detail. We assumed 

e and the observed high-resolution image g are subject to errors and they can be 

rewritten as 

e = e + Se and g = g + Sg, (5.3) 

where 

广 一 [^x M ^x V ^x ^y ^x y ]t £ = L̂OÔOÔOl̂Ol • • • ^L-1 L-2^L-1 L-2^L-1 L-1 仁L—1 L—iJ ‘ 

二 A = [Jeg�(5eg�(5egi(5eL • •. l — 2知 i 

and 

Sg = [SgiSg2. •. SgMiM2f-

By using (5.1) and (5.3) 

L-l L-1 
H^(e)f = E D Z 1 Z 2 H 队 二 g 二 g + Jg 

/l=0/2=0 

and this equation can be reformulated as 

E E D � 桌J 站 ) �H f “ 加 J ) f — g 
Jl=0l2=0 -

Jl=0 l2=0 -

+ £ § ( ^ Z 2 ( D z i Z 2 H f i A “ j 0 E ) f 
Jj=0l2=0 . 
" L - l L - l 一 

+ E E 崎 f “ g = 0 
ji=CH2 二 0 -



Reconstruction of High-Resolution Image from Movie Frames 36 

or 

2 ED/“2(Hf i ,加 2 ) � Hf^J^./J) f - g 

Ji=0Z2=0 -

1^=012=0 Zi=(H2=0 
+ f —短二 0, (5.4) 

J l = 0 l2=0 -

where 

fo ... 0 - 1 0 \ fo ... 0 1 0 � 
- . • - . ‘ • • • .‘ ： ： • 

1 0 ... ••. ... - 1 1 0 ••. .•• ••• .•• - 1 
E 二 7 + 7 

L 1 ... ... ... ... 0 丄 1 .•• ... .•• ••• 0 
• . • • ： ： 

• • • . . . • . : • • • • • 

、0 1 0 ... 0 J \0 -1 0 ... 0 J 
and 

ff山=D“z2(H『山(Gid � E)f, ff“2 = � 

Because Se^^, Seh^ih^k 二 0,1,...，L - 1) should be very small, the term 

associated with 5 � j J � i 2 can be neglected, therefore, 

EE吃 ,2C2(D“�2E0E) f (5.5) 
Jl=0 2̂=0 -

can be ignored. The constrained total least squares formulation can be expressed 

as 
r -| 2 

A 
min 

f w . 

subject to 

H.(.)f - g + E E Ki. • f L E E Ki..疗- & 二 0� (5.6) 
1̂=0̂ 2=0 Zi=CH2=0 
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The above image reconstruction problem is generally ill-conditioned and is 

extremely sensitive to noise. In order to achieve stability, regularization should 

be used. We will use Tikhonov regularization in our problem and the regularized 

solution f is computed as the solution to 

r 1 2 
min A +^||Pf||2 (5.7) 

f W 2 
subject to Eq. (5.5). The regularization parameter controls the degree of bias 

of the solution and ||Pf||2 is chosen to be ||f||2 or ||Rf||2, where R is a first-

order difference operator matrix. We called the above problem the Regularized 

Constrained Total Least Squares (RCTLS) problem. 

5.3 Numerica l A lgor i thm 

In this section, a numerical algorithm to minimize Eq. (5.6) is introduced�By 

Eqs. (5.5) and (5.6), we have 
‘ L - l L-l L-l L-l 2 

min J(f, A)三 mm H ^ ( 6 ) f - g + ^ E K h • + E E K h �疗 i h 
f，A � Zi=(H2=0 /I=0 l2=0 2 

2 2 � 

+ A +M Pf (5�8) 
2 

For a given f, the function J(f,.) is convex with respect to A, and for a given A, 

the function J(-, A) is also convex with respect to f. Therefore, with an initial 

guess Ao, one can minimize Eq. (5.8) by solving 

J(fi,Ao)-minJ(-,Ao) 

and then 

J(fi,Ai)=mmJ(fi,.) 
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in a cyclic fashion. Precisely, the algorithm is stated as follows: 

Assume that is available: 

Determine f^ by solving the following least-squares problem 

, L l L l L l L l 2 � 

minJ - g + E E + E E K-U.irnwi. +"l|Pfn||_、 
n y li=0l2=0 li=0l2=0 2 , 

(5.9) 

where 

f � “ 2 二 D“Z2(H?U(qi ,2)� E)f； and 二 Dz山(E 0 H]； J e “ �f , (5.10) 

The least-squares solution fn can be found by solving 

[ H “ e + + An-i ) + "P 'P] fn = H “ e + An-i ) 'g . (5.11) 

Determine An by solving the following least-squares problem 

‘ L-l L-1 L-1 L-1 2、 

mini " g + E E Kh^nl^h + E E K A l , � 
八 " I 1̂=0̂ 2=0 1̂=0/2=0 2, 

(5.12) 

By using Eq. (5.10), the above equation can be rewritten as 

min{||AJ|2 + � f , — g + Q{Q^n\\l} (5.13) 
八71 

where 

Q ( f ) 二 • • . \^L-1L-2\^L-1L-2\^L-1L-i\^L-1L-1.' 

The cost function in Eq. (5.13) becomes 

J(fn, A O 二 + H^(e)fn 一 g + 八 H ^ �f ； — g + Q(fnAn) 

二貼n + (H^(e)fn - g) ' (H论) fn _ g) + (H二(e)f, — g)^Q(fn)An 

+ (Q(fn)An)' X (Hi(e)fn - g) + (Q(fn)A,)^(Q(fn)An). 
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The gradient of the above cost function with respect to A^ is 

2A . + 2Q(fO'(H^(e)fn - g) + 2Q(fn)^Q(fn)A,. 

By setting the above function equals to zero, we get 

A , = [hL^ + Q( fn )�(fn ) ] - lQ( fn 八 g — (5.14) 

Eq. (5.14) can be solved in just one iteration, because the size of l2L2+Q(fn)^Q(fn) 

is small x so it is very easy to find its inverse. 

The above method is obtained by linearizing g 二 e + and then solving the 

corresponding linear least-squares problem. 

5.4 Numerical Results 

First, we will use the above algorithm to reconstruct a high-resolution image 

from several degraded and shifted images obtained from camera with calibration 

errors, see Figures 5.1, 5.2 and 5.3. Then we will use the low-resolution images 

obtained from a movie to reconstruct a high-resolution image. See Figures 5.4, 

5.5 and 5.6. Both of the results are using p = 0.1 and the initial guess of e = 0. 

5.5 Concluding Remarks 

From the numerical results, we can see that the algorithm works well in the 

reconstruction of high-resolution image by using the low-resolution source images 

from camera. But it fails to reconstruct a good quality high-resolution image 

from the source images obtained in a movie. Reasons that lead to failure maybe 

inaccurate modelling of the situation, the calibration errors that the algorithm 

calculated are incorrect when using the source images from movie frames�One 
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_ _ 

Figure 5.1: One of the low-resolution image (left) and the observed high-resolution 

image (right). 

i • I. - f 
%樣被 

Figure 5.2: The high-resolution image obtained from the first iteration (left) and 

from the second iteration (right). 
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Figure 5.3: The high-resolution image obtained from the third iteration (left) and 

from the forth iteration (right). 

_ _ _ _ 

y mM ！4IKJL 
Figure 5.4: One of the low-resolution image (left) and the observed high-resolution 

image (right). 
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严疆麗 " ^ ^ S B f ，：：‘、〜? \ ： 

m« B t � � � � � � 

Figure 5.5: The high-resolution image obtained from the first iteration (left) and 

from the second iteration (right). 

、〜'“、、、、、、：）、：::、> ？：“她mk 、：、、：…、—、、.、、.、、、、、、、::、”拟： 
、“ ^ — 、 、 、 、 。：、 ；、二、、、：\ 、、、、、”•"”•，、、 、、： 

*…、、、：:、-、、：、、、“/、::为、、、:：、、::、、;：：、”::《:、::>:、、、々 ：•二:.::：、、）、 

Figure 5.6: The high-resolution image obtained from the third iteration (left) and 

from the forth iteration (right). 
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may try to use a better model or explore other methods (for example, by using 

the motion vectors, see [9]) to reconstruct the high-resolution image. 
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