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Methods based on sparse coding have been successfully used in single-image superresolution (SR) reconstruction. However, the
traditional sparse representation-based SR image reconstruction for infrared (IR) images usually suffers from three problems. First,
IR images always lack detailed information. Second, a traditional sparse dictionary is learned from patches with a fixed size, which
may not capture the exact information of the images and may ignore the fact that images naturally come at different scales in many
cases. Finally, traditional sparse dictionary learning methods aim at learning a universal and overcomplete dictionary. However,
many different local structural patterns exist. One dictionary is inadequate in capturing all of the different structures. We propose
a novel IR image SR method to overcome these problems. First, we combine the information from multisensors to improve the
resolution of the IR image. Then, we use multiscale patches to represent the image in a more efficient manner. Finally, we partition
the natural images into documents and group such documents to determine the inherent topics and to learn the sparse dictionary
of each topic. Extensive experiments validate that using the proposed method yields better results in terms of quantitation and
visual perception than many state-of-the-art algorithms.

1. Introduction

High-resolution (HR) infrared (IR) images are desired in
various electronic imaging applications, such asmedical diag-
nosis, criminal investigation, surveillance, remote sensing,
and aerospace. However, given the inherent limitation of
relevant imaging devices or other factors, obtaining images at
a desired resolution is difficult. Therefore, many efforts have
been devoted to improving the spatial resolution of the IR
image. Superresolution (SR) is one of the most promising
methods in the research community.

At present, a large number of SR methods have been
developed successfully. The existing methods for image SR
can be divided into three general categories: interpolation-
based methods [1, 2], reconstruction-based methods [3–6],
and learning-based methods [7–11].

The interpolation-based [1, 2] scheme applies the corre-
lation of neighboring image pixels to approximate the fun-
damental HR pixels. These types of methods can be easily
implemented at a high speed. However, these methods may
lead to the loss of detailed information.

Reconstruction-based approaches utilize additional infor-
mation from low-resolution (LR) images to synthesize an HR
image. These approaches are ill-posed estimation problems
and require a priori information on images to regularize
the solution. Therefore, various regularization methods have
been proposed to improve the performance of SR recon-
struction, such as the projection on convex sets [3], max-
imum a posteriori (MAP) [4, 5], and regularization-based
method [6]. Compared with interpolation-based schemes,
the reconstruction-based methods deliver better perfor-
mance with a small desired magnification factor. However,
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the most common defect of multiframe SR reconstruction
is that, with an increase in the magnification factor, the LR
inputs cannot provide sufficient information to maintain a
high-quality SR reconstruction result.

Learning-based methods presume that the high-frequen-
cy details lost in the LR image can be predicted by learning
the cooccurrence relationship between LR training patches
and their corresponding HR patches. Freeman et al. [7] first
introduced the learning idea for SR reconstruction, which
uses a Markov random field model to learn the relationship
between local regions of images and their underlying scenes.
Various effective tools have been proposed to learn prior
information, such as neighbor embedding- (NE-) based
methods [8, 12], regression-based methods [9, 10], and
sparse coding- (SC-) based methods [11, 13–15]. The NE-
based methods estimate each desired HR image patch by
linearly combining its neighbor training HR image patches.
Chang et al. [12] introduced locally linear embedding from
manifold learning to process the image SR task. Zhang
et al. [8] proposed a partially supervised NE method. How-
ever, given the lack of prior textures and details, NE-based
methods are weak in visualizing textures and details. The
regression-based methods directly estimate the desired HR
pixels using some complicated statistical models. Wang and
Tang [9] proposed a principal component analysis-based SR
reconstruction method to estimate the desired HR image.
Wu et al. [10] used the kernel partial least squares regres-
sion model to handle the one-to-many mapping problem.
Wu’s method requires searching the neighbors in the entire
training database and using the same number of principal
components to synthesize the desired HR feature patches,
which result in high computational costs. The SC-based SR
method can better retain the most relevant reconstruction
neighbors and can restore more image information than the
two learning-based methods discussed above. Yang et al. [16]
proposed an approach based on sparse representation, with
the assumption that the HR and LR images share the same
set of sparse coefficients. Therefore, the HR image can be
reconstructed by combining the trained HR dictionary and
the sparse coefficients of the corresponding LR image.

The abovementioned SC-based SRmethods always suffer
from three problems. First, due to the inherent limitation of
relevant imaging devices or other factors, IR images always
lack detailed information, which leads to unsatisfied IR
image reconstruction results. Multiple images acquired by
different sensors provide complementary information on the
same scene. As such, a reasonable method of improving the
resolution of the IR image is the combination of inherently
complementary information from the images obtained from
differentmultisensors. Second, a traditional sparse dictionary
is learned from patches with a fixed size, which cannot
capture the exact information of the images. However, the
local structures of an image tend to repeat themselves many
times with some similar neighbors across the natural images,
not only within the same scale but also across different scales.
Details missing in a local structure at a smaller scale can
be estimated from similar patches at a larger scale. Different
images prefer different patch sizes for optimal representation.
Therefore, jointly representing an image at different scales is

important. Considering the above cues, we propose a model
of obtainingmultiscale patches to learn dictionaries.We use a
simplemodel that generates pyramid images and divides such
images into multiscale patches. Finally, given that dictionary
learning is a key issue of the sparse representation model,
considerable effort in learning dictionaries from example
image patches has been exerted, leading to state-of-the-art
results in image reconstruction. Many dictionary learning
methods aim at learning a universal and overcomplete dictio-
nary that represents various image structures. However, for
natural images, a large number of different local structural
patterns exist. The contents can vary significantly across
different images or different patches in a single image. One
dictionary is inadequate in capturing all of the different
structures. Multiple dictionaries [15, 17] are more effective in
representing various contents in an image and provide better
reconstruction results than one universal dictionary [15].
Based on these observations, training patches are categorized
into multiple groups based on visual characteristics in our
algorithm. A subdictionary is then learned in the respective
data groups. Unsuitable training sample groups used in dic-
tionary learning lead to artifacts in example learning-based
methods [18]. In this study, we group the patches into several
categories. Each category corresponds to a topic. We apply
the probabilistic latent semantic analysis (pLSA) model [19]
to group the patches and to determine the inherent topics.
Thatmeanswe group the patches into several categories. Each
category corresponds to a topic.We then learn the sparse dic-
tionary for each topic. Our framework treats each group indi-
vidually, thereby leading tomore accurate distribution dictio-
naries. We conduct semantic analysis on a given patch to cat-
egorize it to a topic.The given patch can be better represented
by the selected topic subdictionary. Thus, the entire image
can bemore accurately reconstructed using this method than
using a universal dictionary, as validated by our experiments.

In summary, this study makes the following three main
contributions: (1) IR images always lack detailed information.
Meanwhile, VI images contain abundant object edges and
details, providing amore perceptual description of a scene for
human eyes.This study combines the inherently complemen-
tary information from images obtained from different multi-
sensors to improve the resolution of the IR image. (2)To learn
the sparse dictionary for representing similar redundancies
of local patterns within the same scale and across different
scales, this study builds pyramid images downsampled from
the images. Then it divides the pyramid images into multi-
scale patches, thereby representing the image in a more effi-
cient manner and providing a more global look of the image.(3)The pLSAmodel is applied to group the patches by deter-
mining the inherent topics and to group the training patches
with similar patterns. Each dictionary is learned from some
type of example patcheswith the same topic, andmultiple dic-
tionaries are learned simultaneously. Extensive experimental
results show that our proposed method achieves competitive
performance compared to state-of-the-art methods.

The remainder of this paper is organized as follows:
Section 2 presents the details of the proposed approach.
Section 3 reports the experimental results. Section 4 discusses
the conclusion.
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2. The Proposed SR Scheme

This study proposes a novel sparse representation algo-
rithm, which aims to combine the information of visible
images, provide a more global look of the IR image, and
simultaneously utilize the inherent topics of IR images in
a unified framework. The proposed method can be divided
into three steps: (a) combining the information of images
from multisensors, (b) obtaining multiscale patches, and (c)
learning multitopic sparse dictionaries. In combining the
information of visible images, our framework improves the
resolution of the IR image when learning the LR sparse
dictionary. In obtainingmultiscale patches, we build pyramid
images and extract multiscale patches from such images,
which can provide a more global look of the images. In
presenting different structural patterns more accurately, we
partition the natural images into documents and group them
to determine the inherent topics using the pLSA. A compact
subdictionary can then be learned for each topic.

2.1. Combining the Information of Multisensors. Given an
observed LR IR image 𝑌, which is a downsampled and
blurred version of the HR image 𝑋 of the same scene, we
derive the following equation:

𝑌 = 𝐻𝐵𝑋, (1)

where𝐻denotes a downsampling operator and𝐵 is a blurring
filter. The goal of a single-image SR is to reconstruct the HR
image𝑋 from the LR image 𝑌 as accurately as possible.

With the LR image 𝑌, 𝑦𝑖 is the set of patch features
extracted from 𝑌:

𝑦𝑖 = Extract (𝑌) , (2)

where Extract(⋅) is an operator that extracts the feature of
patch 𝑖 from image 𝑌.

Recent works [16, 20] indicate that derivative features
can represent the patch more efficiently than the actual
intensities.The derivative features are obtained using four 1D
filters:

𝑓1 = [−1, 0, 1] ,
𝑓2 = 𝑓𝑇1 ,
𝑓2 = [1, 0, − 2, 0, 1] ,
𝑓4 = 𝑓𝑇3 .

(3)

Images acquired bymultisensors provide complementary
information on the same scene. IR images always lack
detailed information. Meanwhile, VI images contain abun-
dant object edges and details, providing a more perceptual
description of a scene for human eyes [21]. As such, com-
bining the detailed information in visible images to improve
the resolution of the IR image is reasonable; that is, the
information of an LR IR image and the information of the
corresponding HR visible image are used for reconstructing
an HR IR image.

Applying these four filters, we obtain four description
feature vectors for each patch of the LR IR image and its
corresponding HR visible image, which are concatenated as
one vector in the final gradient representation of the LRpatch.
The information of the LR IR image and the information of
its corresponding HR visible image are combined together to
learn the LR sparse dictionary.

With the sparse generative model, each patch feature 𝑦𝑖
(𝑦𝑖 ∈ R𝑛) can be projected over the LR dictionary𝐷𝑙 ∈ R𝑛×𝑘,
which characterizes the LR patches.This projection produces
a sparse representation of 𝑦𝑖 via 𝛼𝑙, expressed as follows:

𝑦𝑖 = 𝐷𝑙𝛼𝑙 𝑦𝑖 ∈ R
𝑛, 󵄩󵄩󵄩󵄩𝛼𝑙󵄩󵄩󵄩󵄩0 ≪ 𝑘, (4)

where 𝛼𝑙 denotes sparse representation atoms. For the HR
IR image, high-frequency information is obtained to present
the HR patch. The corresponding HR patch feature 𝑥𝑖 has𝑥𝑖 ∈ R𝑚 sets of patch features extracted from the HR image𝑋 obtained as follows:

𝑥𝑖 = Extract (𝑋) . (5)

Reapplying the sparse generative model, we have

𝑥𝑖 = 𝐷ℎ𝛼ℎ, (6)

where 𝐷ℎ ∈ R𝑚×𝑘 is the HR dictionary that characterizes
the HR patches and is coupled with 𝐷𝑙 through the relation𝐷𝑙 = 𝐻𝐵𝐷ℎ. This relation indicates that each atom in 𝐷ℎ
has its corresponding LR version in 𝐷𝑙 and vice versa. We
assume that the sparse representation of an LR patch in terms
of 𝐷𝑙 can be directly used to recover the corresponding HR
patch from 𝐷ℎ; namely, 𝛼𝑙 = 𝛼ℎ. The process of Sparse
representation-based SR by combining the information of
visible images is described in Figure 1.

As such, the reconstructed HR image 𝑋 can be built by
applying the sparse representation in each 𝑦𝑖 and then using
the estimated 𝛼𝑙 with 𝐷ℎ to obtain each 𝑥𝑖, which together
form the image𝑋.

The SC is clearly a bridge between the LR andHRpatches.
The dictionaries𝐷𝑙 and𝐷ℎ have a key role in generating such
SC. The dictionaries 𝐷𝑙 and 𝐷ℎ can be easily generated from
a set of samples using algorithms, such as K-SVD [11] and
efficient SC [13, 14, 17, 22].

2.2. ObtainingMultiscale Patches. It is observed that different
images prefer different patch sizes for optimal performance
[13]. Reference [13] even observed the oversmoothing of
artifacts when using unsuitable patches. An explanation for
this phenomenon is that dictionary learning from patches
with a fixed size cannot capture the exact information of the
images. One size of the sample patches corresponds to one
scale. However, selecting the exact patch size of the image
is difficult. As such, having a multiscale dictionary avoids
selecting the patch size in advance. A multiscale treatment
can help represent the image in a more efficient manner.
In our proposed multiscale framework, we focus on simul-
taneously obtaining the multiscale patches. First, pyramid
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Figure 1: Sparse representation-based SR by combining the information of visible images.

images downsampled from the images are built to learn the
sparse dictionary for representing similar redundancies of
local patterns within the same scale and across different
scales. Second, multiscale patches from the pyramid images
are then extracted.

Pyramid transform is an effectivemultiresolution analysis
approach. During pyramid transform, each pixel in the
low spatial pyramid is obtained by downsampling from its
adjacent low-pass filtered HR image. Sequential pyramid
images are constructed, as shown in Figure 2. Pyramid images
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Figure 2: A three-level spatial pyramid.

Level 1 Level 2 Level 3

Figure 3: Gaussian pyramid images.The original image (level 1) and
its Gaussian pyramids are shown from left to right.

can be generated by Gaussian smooth filtering, as shown in
Figure 3.

Let 𝐼(𝑥, 𝑦) denote the original image. The downsampled
version 𝐼𝑝(𝑥, 𝑦) at the 𝑝th level is obtained by convoluting𝐼(𝑥, 𝑦) with a Gaussian kernel 𝐺(𝑥, 𝑦, 𝑝𝜎), as follows:

𝐺 (𝑥, 𝑦, 𝑝𝜎) = 1
2𝜋𝑝2𝜎2 exp(−𝑥

2 + 𝑦2

2𝑝2𝜎2 ) ,
𝐼𝑝 (𝑥, 𝑦) = 𝐼 (𝑥, 𝑦) ×𝐺 (𝑥, 𝑦, 𝑝𝜎) ↓ 𝑠𝑝,

(7)

where ↓ 𝑠𝑝 denotes the downsampling operator, with the
factor 𝑠𝑝 = (0.5)𝑝 at the 𝑝th level.

After generating the pyramid images, we use the quadtree
model [15] to extract multiscale patches from the pyramid
images, as shown in Figure 4. We consider a set of large root
patches of size√𝑁×√𝑁 extracted from the sequential pyra-
mid images.The root patch is then divided into subpatches of
size𝑁𝑠 = 𝑁/4𝑠 (𝑠 = 0, . . . , 𝑆−1) along the tree, where 𝑆 is the
depth of the tree. After obtaining multiscale patches, we can
learn dictionaries from the patches of different scales. Figure 5
illustrates the process of extracting multiscale patches from
the pyramid images.

2.3. Learning the Multitopic Dictionary. We partition the
natural images into documents and group them to determine
the inherent topics using pLSA and to present the differ-
ent structural patterns more accurately. Each dictionary is
learned from some type of example patches with the same
topic, and multiple dictionaries are learned simultaneously.
The example image patches are classified into many topics
by the pLSA model. Given that each topic consists of many
patches with similar patterns, a compact subdictionary can
be learned for each topic. For an image patch to be coded,
the best subdictionary that is most relevant to the given patch
is selected. Considering that the given patch can be better
represented by the selected subdictionary, the entire image
can be more accurately reconstructed than when a universal
dictionary is used, as validated by our experiments. The use
of multitopic dictionary learning has two main advantages:(1) the training patches are divided into some topics, which
ensure that the subdictionary represents the statistical model
of the example patches more accurately and (2) the training
patches enhance the speed of dictionary learning on each
topic and the final reconstruction accuracy through the
transfer of knowledge between topics.

2.3.1. Standard pLSA. The pLSA [19], which is an extension
of LSA [23], provides a probabilistic formulation to model
documents in a text collection. The pLSA assumes that the
words are generated from a mixture of latent aspects, which
can be decomposed from a document. The pLSA model has
been used successfully in image classification, image retrieval,
and image annotation.The pLSAmodel ignores the orders of
words in a document and instead uses the counts of words
occurring in a document. We briefly outline the principle of
the pLSA in this subsection.More details can be found in [19].

A corpus that contains 𝑀 documents is denoted by 𝐷 ={𝑑1, . . . , 𝑑𝑀}, and each document 𝑑𝑖 is represented with the
count of its words from a vocabulary 𝑊 = {𝑤1, . . . , 𝑤𝑁}.
The entire corpus is summarized by the𝑁×𝑀 cooccurrence
matrixN, where each entry 𝑛(𝑑𝑖, 𝑤𝑗) indicates the count of the
word 𝑤𝑗 in the document 𝑑𝑖. In the framework of the pLSA,
the observed word 𝑊 is conditionally independent of the
document𝐷 given a latent variable𝑍 = {𝑧1, . . . , 𝑧𝐾}, which is
referred to as the “latent aspect.” The graphical model shown
in Figure 6(a) illustrates the form of the joint probability of𝑃(𝑤𝑗, 𝑑𝑖, 𝑧𝑘) = 𝑃(𝑑𝑖)𝑃(𝑧𝑘 | 𝑑𝑖)𝑃(𝑤𝑗 | 𝑧𝑘) in the pLSA model.
The joint probability of the observed variables is obtained by
marginalizing over the latent aspect 𝑧𝑘:

𝑃 (𝑑𝑖, 𝑤𝑗) = 𝑃 (𝑑𝑖)
𝐾∑
𝑘=1

𝑃 (𝑧𝑘 | 𝑑𝑖) 𝑃 (𝑤𝑗 | 𝑧𝑘) . (8)

Equation (6) expresses each document as a convex combi-
nation of𝐾 aspect vectors, which results in matrix decompo-
sition, as shown in Figure 6(b). Each document is essentially
modeled as a mixture of aspects, the histogram for a particu-
lar document being composed of a mixture of the histograms
corresponding to each aspect.

The model parameters of pLSA are the two conditional
distributions 𝑃(𝑧𝑘 | 𝑑𝑖) and 𝑃(𝑤𝑗 | 𝑧𝑘), which are estimated
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using the expectation-maximization (EM) algorithm on a
set of training documents. 𝑃(𝑤𝑗 | 𝑧𝑘) characterizes each
aspect and remains valid for documents out of the training
set. By contrast, 𝑃(𝑧𝑘 | 𝑑𝑖) is relative only to the specific
documents and cannot carry any prior information to an
unseen document.

The EM algorithm is used to compute the parameters𝑃(𝑤𝑗 | 𝑧𝑘) and 𝑃(𝑧𝑘 | 𝑑𝑖) by maximizing the log-likelihood
of the observed data:

𝐿 = 𝑁∑
𝑖=1

𝑀∑
𝑗=1

𝑛 (𝑑𝑖, 𝑤𝑗) log𝑃 (𝑑𝑖, 𝑤𝑗) . (9)
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Figure 6: (a) Graphical model representation of pLSA; (b) matrix decomposition of conditional distribution.

The steps of the EM algorithm are described as follows:(1) E-step: the conditional distribution 𝑃(𝑧𝑘 | 𝑑𝑖, 𝑤𝑗) is
computed from the previous estimate of the parameters:

𝑃 (𝑧𝑘 | 𝑑𝑖, 𝑤𝑗) = 𝑃 (𝑧𝑘 | 𝑑𝑖) 𝑃 (𝑤𝑗 | 𝑧𝑘)
∑𝐾𝑙=1 𝑃 (𝑧𝑙 | 𝑑𝑖) 𝑃 (𝑤𝑗 | 𝑧𝑙) . (10)

(2) M-step: the parameters 𝑃(𝑤𝑗 | 𝑧𝑘) and 𝑃(𝑧𝑘 | 𝑑𝑖) are
updated with the new expected value 𝑃(𝑧𝑘 | 𝑑𝑖, 𝑤𝑗):

𝑃 (𝑥𝑗 | 𝑧𝑘) = ∑𝑁𝑖=1 𝑛 (𝑑𝑖, 𝑤𝑗) 𝑃 (𝑧𝑘 | 𝑑𝑖, 𝑤𝑗)
∑𝑀𝑚=1 ∑𝑁𝑖=1 𝑛 (𝑑𝑖, 𝑤𝑗) 𝑃 (𝑧𝑘 | 𝑑𝑖, 𝑤𝑚) ,

𝑃 (𝑧𝑘 | 𝑑𝑖) = ∑𝑀𝑗=1 𝑛 (𝑑𝑖, 𝑤𝑗) 𝑃 (𝑧𝑘 | 𝑑𝑖, 𝑤𝑗)
∑𝑀𝑗=1 𝑛 (𝑑𝑖, 𝑤𝑗) .

(11)

2.3.2. OurMethod. Given a collection of IR images, we intend
to determine the inherent topics of the images. We use
general terms [24], such as topics, documents, and words,
which are mostly used in the text of the literature. In our
application, we define the atoms of the sparse dictionary
as the “words” of the vocabulary and the sliding window
of the sparse dictionary as the “document.” The sliding
window consists of patches. Figure 7 shows the 𝐿 × 𝐿 sliding
window (large blue square) and one patch (small red square)
in it. All of the documents are grouped by “topic” based
on the cooccurrences of different words within and across
the documents. Our method has the following five steps:(1) vocabulary formulation, (2) document representation,(3) topic learning, (4) subdictionary construction, and (5)
superresolution image reconstruction (SRIR). Our method is
illustrated in Figure 8.

Vocabulary Formulation. We need to represent each docu-
ment by a collection of words from a vocabulary. A general
sparse dictionary 𝐷𝐺 with 𝑀 atoms 𝛼𝑚 (𝑚 = 1, 2, . . . ,𝑀)
is learned over all of the patches to construct the vocabulary.
Each atom in𝐷𝐺 is defined as a word of the vocabulary. All of
the atoms of𝐷𝐺 produce the vocabulary for the pLSAmodel.

Document Representation. We assume that document 𝑑𝑖 has𝐿 patches 𝑝𝑙 (𝑙 = 1, 2, . . . , 𝐿). We represent each patch in
the document using a linear combination of atom 𝛼𝑚 (𝑚 =
1, 2, . . . ,𝑀) from the general dictionary. We denote the
atoms representing patch 𝑝𝑙 as 𝛼𝑙,𝑚. We denote the count of

Figure 7: Sliding window and patches.

vocabulary 𝛼𝑗 in document 𝑑𝑖 as 𝑛(𝑤𝑗, 𝑑𝑖), where 𝑛(𝑤𝑗, 𝑑𝑖) =∑𝐿𝑙=1 𝛼𝑙,𝑗.We then use the pLSAmodel to learn the latent topic
of the documents.

Topic Learning. All of the documents can be summarized by
the 𝑀 × 𝑁 cooccurrence matrix, where each entry 𝑛(𝑑𝑖, 𝑤𝑗)
indicates the count of the word 𝛼𝑗 in document 𝑑𝑖 and 𝑁 is
the total number of documents. The EM algorithm is used
to compute the parameters 𝑃(𝑤𝑗 | 𝑧𝑘) and 𝑃(𝑧𝑘 | 𝑑𝑖) by
maximizing the log-likelihood of the observed data. After
learning, 𝑃(𝑧𝑘 | 𝑑𝑖) represents the mixture proportions
of each document. The maximum value for each of the
document can be assumed as the document topic assignment.

Subdictionary Construction.We assume𝐾 determined topics.
All of the documents are then classified into 𝐾 group
Documents = [documents1, documents2, . . . , documents𝐾].
For one document group documents𝑖, we collect all of
the patches that belong to these documents and denote
these patches as patches𝑖. As such, we can obtain 𝐾 group
Patches = [patches1, patches2, . . . , patches𝐾]. We aim to
learn 𝐾 compact subdictionaries 𝐷𝑘 (𝑘 = 1, 2, . . . , 𝐾) from
Patches. Each of the patches𝑘 (𝑘 = 1, 2, . . . , 𝐾) is apparently
expected to have the same distinctive patterns. We use the
SRIR for each group’s patches𝑘 to learn the subdictionary
for each topic, such that the most suitable subdictionary for
each given local image patch can be selected using the pLSA
model.

SRIR. We divide the LR image into overlapping documents
and the documents into overlapping patches. Then, we rep-
resent each document in the same manner as that conducted
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Figure 8: Illustration of our method.
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Figure 9: Some examples of the infrared images and visible images used in our experiments.

during topic discovery. Each document is analyzed by using
the EM algorithm to determine its topic assignment. Each
patch of a document is reconstructed by using the topic
corresponding to the subdictionary. We do this for all of the
documents in the test image and then take the average of all
overlapping portions to obtain the reconstructed HR image.

3. Experimental Results

3.1. Samples and Settings. In our experiments, the IR images
and corresponding visible images were obtained from [25]
http://www.dgp.toronto.edu/∼nmorris/data/IRData/. Samples
of the training images are shown in Figure 9. The LR images
used in all the experiments were downsampled from the HR
images. In our experiments, the LR images were generated by
shrinking the corresponding HR images with the scale factor
of 3.

We employed the peak signal-to-noise ratio (PSNR) and
the structural similarity measurement (SSIM) to evaluate
the superresolved image and assess the performance of the
proposed method. The mean values of the PSNR and SSIM
of all of the test images were used as the quality index.
The PSNR evaluates the reconstruction quality based on the
pixel intensity. The SSIM measures the similarity between
two images based on their structural information. The SSIM
metric needs a “perfect” reference image for comparison
and provides a normalized value between [0, 1], where “0”
indicates that the two images are totally different, whereas
“1” confirms that the two images are the same. Thus, higher
values of PSNR and SSIM indicate a result with better quality.

3.2. Reconstruction Results. In this section, we conduct sev-
eral experiments to evaluate the effectiveness of the proposed
method.

Experiment 1 (comparison with the state-of-the-art algo-
rithms). The proposed method was tested using some IR
images to validate the effectiveness of the proposed resolution
enhancement method in terms of visual fidelity and objective
criterion. We compare our algorithm with some well-known
image SR algorithms, such as the nearest neighbor, cubic
B-spline interpolation method, and Yang’s method [16], to
validate the efficiency of ourmethod. In ourmethod, the root
patch size is 16 × 16, the depth of the tree is 3, and the number
of training patches in the training process is 100,000. For the
multitopic dictionary, the number of atoms in the general
dictionary is 1,000. The number of atoms is the same in
the multitopic dictionaries. We assume 𝐾 determined topics
(𝐾 = 500). For Yang’s method, the number of atoms is 1,000.
We present the SR results of images (with a scale factor of
3) obtained using different methods in Figure 10. We extract
the region after magnification within the red box to show the
details after SR. We observe that the bicubic interpolation
method blurs the sharpness of the edges and misses some
fine details in the reconstructed images. Yang’s method [16]
recovers a significant number of details but produces many
jagged and ringing artifacts, along with edges or details. The
proposed method obtains better visual quality than all of the
other three competing methods.

Moreover, the PSNR and SSIM values of the SR results
on LR images using various algorithms are listed in Table 1.
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Figure 10: Visual comparison of four test images: (a) LR image, (b) original HR image, (c) results obtained using the nearest neighbor
interpolation, (d) results obtained using the cubic B-spline interpolation, (e) results obtained using the sparse representation-based method,
and (f) results obtained using the proposed method.
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Table 1: Numerical results of Figure 10.

Method Nearest neighbor Cubic B-spline Yang’s method Our method
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

36.77 0.4440 36.80 0.4458 36.98 0.5394 37.32 0.5857

38.06 0.7210 38.07 0.7279 38.17 0.7691 38.20 0.8107

36.19 0.4652 36.19 0.4713 36.63 0.6005 36.68 0.6405

36.49 0.4933 36.48 0.5007 36.73 0.5477 36.93 0.5964

32.91 0.3621 32.93 0.3646 34.02 0.3702 34.10 0.3741

We observe that the average PSNR and SSIM gains of the
proposed method over Yang’s method [16] and the bicubic
interpolation method are in dB, which show that the SR
results from the proposed method have better objective
quality in terms of PSNR and SSIM.

Experiment 2 (effect of multisensor). To validate the effec-
tiveness of multisensor by combining the information of
visible images, we compared multisensor SRIR with tradi-
tional SRIR algorithm as Yang’s method [16]. The number
of training patches in the training process is 100,000. For
the dictionary learning step, the number of atoms in the
dictionary is 1,000. Figure 11 shows the SR results of the
IR image. Figure 11(c) shows the results of the traditional
SRIR algorithm as Yang’s method [16], where severely jagged
artifacts along the edges and annoying details are produced.
The SR result is limited. Figure 11(d) shows the results of
combining the information of visible images. We observe
that the result is significantly improved qualitatively and
quantitatively. The PSNR and SSIM values of the SR results
on LR images using various algorithms are listed in Table 2.

Experiment 3 (effect of multiscale patches). We compare the
SR results obtained from the dictionaries using multiscale
patches and one fixed-scale patch. In the multiscale patches-
based method, the root patch size is 16 × 16. In the fixed-
scale patch, fixed patches with three different patch sizes
4 × 4, 8 × 8, and 16 × 16 are analyzed.The number of training
patches in the training process is 100,000. For the dictionary
learning step, the number of atoms in the dictionary is 1,000.
The reconstruction results are shown in Figure 12. We have
observed that different images prefer different patch sizes for

Table 2: Numerical results of Figure 11.

Method Yang’s method Multisensor
PSNR SSIM PSNR SSIM

34.28 0.4123 35.53 0.4237

36.63 0.6005 36.65 0.6247

36.73 0.5477 36.87 0.5751

33.07 0.3731 34.57 0.3769

optimal performance.Themultiscale treatment can help rep-
resent the image in a more efficient manner, thereby allowing
applications to provide a more global look of the image. We
observe that the reconstructed HR images obtained from the
multiscale patches-based method, as shown in Figure 12(f),
are better in terms of quantitation and visual perception than
those obtained from the single-scale patches-based methods,
as shown in Figures 12(c) to 10(e).The PSNR and SSIM values
of the SR results on LR images using various algorithms are
listed in Table 3.
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Figure 11: Visual comparison of four test images: (a) LR image, (b) original HR image, (c) results obtained using the sparse representation-
based method, and (d) results obtained using the multisensor based method.

4. Conclusion

We proposed a novel sparse representation-based image SR
method.The algorithm combines detailed information in vis-
ible images to improve the resolution of the IR image. Given
the complementary nature of these types of information, the
proposed method can generate state-of-the-art results in SR
tasks. Considering the fact that the optimal sparse domains of
natural images can vary significantly across different images
and different image patches in a single image, the proposed
method uses a simple model that generates pyramid images
and divides the pyramid images into multiscale patches to

represent the image in a more efficient manner. We also
partition the natural images into documents and group the
documents to determine the inherent topics using pLSA and
to learn the sparse dictionary of each topic using the sparse
dictionary learning technique. Extensive experimental results
show that our proposed method can achieve competitive
performance compared to state-of-the-art methods.
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Figure 12: Visual comparison of four test images: (a) LR image, (b) original HR image, (c) results obtained with patch size 4 × 4, (d) results
obtained with patch size 8 × 8, (e) results obtained with patch size 16 × 16, and (f) results obtained using the proposed method.
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Table 3: Numerical results of Figure 12.

Method Patch size 4 × 4 Patch size 8 × 8 Patch size 16 × 16 Multiscale patches
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

36.96 0.5378 36.93 0.5327 36.92 0.5298 37.27 0.5679

38.07 0.6247 38.15 0.6538 38.18 0.7721 38.19 0.7894

36.64 0.6109 36.24 0.5371 36.17 0.4928 36.65 0.6362

36.51 0.4959 36.72 0.5468 36.57 0.5179 36.89 0.5683

34.04 0.3723 34.01 0.3703 33.72 0.3674 34.06 0.3726
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