24 research outputs found

    Branching Bisimilarity on Normed BPA Is EXPTIME-complete

    Full text link
    We put forward an exponential-time algorithm for deciding branching bisimilarity on normed BPA (Bacis Process Algebra) systems. The decidability of branching (or weak) bisimilarity on normed BPA was once a long standing open problem which was closed by Yuxi Fu. The EXPTIME-hardness is an inference of a slight modification of the reduction presented by Richard Mayr. Our result claims that this problem is EXPTIME-complete.Comment: We correct many typing errors, add several remarks and an interesting toy exampl

    A Polynomial Time Algorithm for Deciding Branching Bisimilarity on Totally Normed BPA

    Full text link
    Strong bisimilarity on normed BPA is polynomial-time decidable, while weak bisimilarity on totally normed BPA is NP-hard. It is natural to ask where the computational complexity of branching bisimilarity on totally normed BPA lies. This paper confirms that this problem is polynomial-time decidable. To our knowledge, in the presence of silent transitions, this is the first bisimilarity checking algorithm on infinite state systems which runs in polynomial time. This result spots an instance in which branching bisimilarity and weak bisimilarity are both decidable but lie in different complexity classes (unless NP=P), which is not known before. The algorithm takes the partition refinement approach and the final implementation can be thought of as a generalization of the previous algorithm of Czerwi\'{n}ski and Lasota. However, unexpectedly, the correctness of the algorithm cannot be directly generalized from previous works, and the correctness proof turns out to be subtle. The proof depends on the existence of a carefully defined refinement operation fitted for our algorithm and the proposal of elaborately developed techniques, which are quite different from previous works.Comment: 32 page

    Fast equivalence-checking for normed context-free processes

    Get PDF
    Bisimulation equivalence is decidable in polynomial time over normed graphs generated by a context-free grammar. We present a new algorithm, working in time O(n5)O(n^5), thus improving the previously known complexity O(n8polylog(n))O(n^8 * polylog(n)). It also improves the previously known complexity O(n6polylog(n))O(n^6 * polylog(n)) of the equality problem for simple grammars

    Context-Free Session Types for Applied Pi-Calculus

    Get PDF
    We present a binary session type system using context-free session types to a version of the applied pi-calculus of Abadi et. al. where only base terms, constants and channels can be sent. Session types resemble process terms from BPA and we use a version of bisimulation equivalence to characterize type equivalence. We present a quotiented type system defined on type equivalence classes for which type equivalence is built into the type system. Both type systems satisfy general soundness properties; this is established by an appeal to a generic session type system for psi-calculi.Comment: In Proceedings EXPRESS/SOS 2018, arXiv:1808.0807

    On the Complexity of Deciding Behavioural Equivalences and Preorders. A Survey

    Get PDF
    This paper gives an overview of the computational complexity of all the equivalences in the linear/branching time hierarchy [vG90a] and the preordersin the corresponding hierarchy of preorders. We consider finite state or regular processes as well as infinite-state BPA [BK84b] processes. A distinction, which turns out to be important in the finite-state processes, is that of simulation-like equivalences/preorders vs. trace-like equivalencesand preorders. Here we survey various known complexity results for these relations. For regular processes, all simulation-like equivalences and preorders are decidable in polynomial time whereas all trace-like equivalences and preorders are PSPACE-Complete. We also consider interesting specialclasses of regular processes such as deterministic, determinate, unary, locally unary, and tree-like processes and survey the known complexity results inthese special cases. For infinite-state processes the results are quite different. For the class of context-free processes or BPA processes any preorder or equivalence beyond bisimulation is undecidable but bisimulation equivalence is polynomial timedecidable for normed BPA processes and is known to be elementarily decidable in the general case. For the class of BPP processes, all preorders and equivalences apart from bisimilarity are undecidable. However, bisimilarityis decidable in this case and is known to be decidable in polynomial time for normed BPP processes

    Bisimulation Equivalence of First-Order Grammars is ACKERMANN-Complete

    Full text link
    Checking whether two pushdown automata with restricted silent actions are weakly bisimilar was shown decidable by S\'enizergues (1998, 2005). We provide the first known complexity upper bound for this famous problem, in the equivalent setting of first-order grammars. This ACKERMANN upper bound is optimal, and we also show that strong bisimilarity is primitive-recursive when the number of states of the automata is fixed

    Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

    Get PDF

    Bisimulation equivalence and regularity for real-time one-counter automata

    Get PDF
    A one-counter automaton is a pushdown automaton with a singleton stack alphabet, where stack emptiness can be tested; it is a real-time automaton if it contains no ε -transitions. We study the computational complexity of the problems of equivalence and regularity (i.e. semantic finiteness) on real-time one-counter automata. The first main result shows PSPACEPSPACE-completeness of bisimulation equivalence; this closes the complexity gap between decidability [23] and PSPACEPSPACE-hardness [25]. The second main result shows NLNL-completeness of language equivalence of deterministic real-time one-counter automata; this improves the known PSPACEPSPACE upper bound (indirectly shown by Valiant and Paterson [27]). Finally we prove PP-completeness of the problem if a given one-counter automaton is bisimulation equivalent to a finite system, and NLNL-completeness of the problem if the language accepted by a given deterministic real-time one-counter automaton is regular.Web of Science80474372
    corecore