-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Bisimulation Equivalence of Pushdown Automata
Is Ackermann-Complete

Wenbo Zhang

BASICS, Shanghai Jiao Tong University, Shanghai, China
wbzhang@sjtu.edu.cn

Qiang Yin!

Alibaba Group, Shanghai, China
giang.yq@alibaba-inc.com

Huan Long
BASICS, Shanghai Jiao Tong University, Shanghai, China
longhuan@sjtu.edu.cn

Xian Xu
Fast China University of Science and Technology, Shanghai, China
xuxian@ecust.edu.cn

—— Abstract

Deciding bisimulation equivalence of two pushdown automata is one of the most fundamental
problems in formal verification. Though Sénizergues established decidability of this problem in 1998,

it has taken a long time to understand its complexity: the problem was proven to be non-elementary
in 2013, and only recently, Janc¢ar and Schmitz showed that it has an ACKERMANN upper bound.
We improve the lower bound to ACKERMANN-hard, and thus close the complexity gap.

2012 ACM Subject Classification Theory of computation — Logic and verification; Theory of
computation — Formal languages and automata theory

Keywords and phrases PDA, Bisimulation, Equivalence checking
Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.141
Category Track B: Automata, Logic, Semantics, and Theory of Programming

Acknowledgements This work is supported by NSF of China (61772336, 61872142, 61572318). The
authors are grateful to Yuxi Fu for insightful discussions on this topic and support. We also thank

the anonymous reviewers for their helpful comments and suggestions.

1 Introduction

In the area of formal verification, equivalence checking plays a central role in characterizing
when two systems should be considered as the same. A classical equivalence is language
equivalence, which asks if two processes recognize the same language. To characterize more
refined behavioural relations, Milner proposed a fundamental equivalence called bisimulation
equivalence (a.k.a. bisimilarity) [15]. Two processes are bisimilar to each other if every
transition from one process can be simulated by the other one, and the resulting two processes
keep in the same bisimilarity relation. If internal actions are allowed in a bisimulation step,
we will get a more complicated equivalence called weak bisimilarity [15]. A seminal result
proven in [1] shows that bisimulation equivalence is decidable for processes generated by
context-free grammars, while the language equivalence between context-free grammars is
well-known to be undecidable [6]. Extensive works followed up ever since, studying different
equivalence relations on various infinite-state systems. See [13] for a survey.

! corresponding author

© Wenbo Zhang, Qiang Yin, Huan Long, and Xian Xu;

37 licensed under Creative Commons License CC-BY L}
47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 141; pp. 141:1-141:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

souvd

¢

https://core.ac.uk/display/343692558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-1375-0081
mailto:wbzhang@sjtu.edu.cn
https://orcid.org/0000-0003-3398-8345
mailto:qiang.yq@alibaba-inc.com
https://orcid.org/0000-0002-1328-6197
mailto:longhuan@sjtu.edu.cn
https://orcid.org/0000-0001-9713-9751
mailto:xuxian@ecust.edu.cn
https://doi.org/10.4230/LIPIcs.ICALP.2020.141
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

141:2

Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

Table 1 Complexity results of bisimulation equivalence problems for (variants of) PDA.

Model Lower bound Upper bound
DPDA P-hard TOWER |9, 28]
PDA Ackermann-hard | ACKERMANN [10]
FOG | ACKERMANN-hard [9] | ACKERMANN [10]

Pushdown automata (PDA) extend finite-state automata with a stack memory and can
be used to model recursive programs naturally. Since PDA recognize the same language as
context-free grammars [6], language equivalence is undecidable. The language equivalence
of deterministic PDA (DPDA), raised by Ginsburg and Greibach in [5], was first proved to
be decidable for the real-time subclass, i.e., DPDA without internal actions [17, 16]. The
decidable result was extended to DPDA in Sénizergues’s remarkable work [23]. Observe that
on DPDA, language equivalence coincides with weak bisimulation equivalence, which implies
the decidability of weak bisimilarity for DPDA. Sénizergues later generalized the decidability
result to weak bisimilarity of PDA with deterministic internal actions [22, 24]. An internal
action is deterministic if there is no alternative. There are also quite a few works trying
to simplify Sénizergues’s proof [27, 25, 26, 7, 8]. Stirling revisited the decidability proof
for DPDA via a tableau system [27]. He also generalized the tableau system for PDA [26].
Another line of work is conducted by Jancar in the framework of first-order grammars
(FOG) [7, 8]. FOG has very close relationship with PDA [4]. It can describe PDA with
deterministic internal actions by collapsed graphs where all internal actions are absorbed.

Concerning the complexity issue of bisimilarity of PDA, the best known upper bound for
the deterministic case (DPDA) is TOWER [28, 9], while only P-hardness is known. For general
PDA, EXPTIME-hardness was proven by Kucera and Mayr [14]. The EXPTIME-hardness
even holds for a subclass of PDA, named BPA (Basic Process Algebra), of which the set
of control states is a singleton [12]. The EXPTIME-hardness was further improved to non-
elementary (TOWER-hard actually) [2]. This non-elementary lower bound also holds for the
normed subclass, where every PDA process can empty its stack. As for the upper bound
for bisimilarity of PDA, little was known until very recently. Jancar and Schmitz gave an
ACKERMANN algorithm in [10]. This upper bound is actually proven in the framework of
FOG. It also matches the ACKERMANN-hard lower bound for bisimilarity of FOG [9].

Observe that FOG are equivalent to PDA with deterministic internal actions. Without
internal actions, the ACKERMANN-hardness of FOG cannot be applied to PDA. Thus the
best known lower-bound for bisimilarity of PDA is still TOwWER-hard.

Our Contribution. We show that bisimilarity of PDA is actually ACKERMANN-complete by
improving the TOWER-hard lower bound to ACKERMANN-hard. This is done by a reduction
from the coverability problem of reset Petri net [19]. Moreover, our reduction also gives rise
to a parametric complexity result, i.e., Fy_i-hardness if the number of control states d > 4
is fixed. Our proof extends an early work by Jancar [9], where similar results for first-order
grammars are established. We improve the reduction by avoiding e-rules.

We summarize some mentioned results in Table 1 with our result presented in bold.

Further Comments. According to Table 1, the complexity classes of bisimilarity problems
for PDA and first-order grammars happen to be the same. Thus one may wonder whether
these two models are actually equal with respect to bisimilarity. The answer was known to
be negative [3]. In this paper, we present a new proof which shows that pushdown automata
are strictly weaker than first-order grammars as far as bisimilarity is considered. It also
demonstrates why the reduction in [9] cannot be applied to real-time PDA directly.

W. Zhang, Q. Yin, H. Long, and X. Xu

Organization. The rest of the paper is organized as follows. Section 2 introduces the
background knowledge and necessary notations. Section 3 establishes the ACKERMANN
hardness for bisimilarity of PDA. Section 4 shows that PDA are strictly weaker than FOG
considering bisimilarity. Section 5 concludes this paper.

2 Preliminaries

2.1 Pushdown Automata

» Definition 1 (PDA). A pushdown automaton A = (Q,I', X, R) consists of

a finite set of control states Q ranged over by r,p, q;

a finite set of stack symbols T' ranged over by X,Y, Z;

a finite set of actions ¥ ranged over by a,b,c,d, f;

a finite set of rules R C Q xI' x ¥ x @ x I'*.
The set X* of words will be ranged over by u,v,w, and the set I'* of finite strings of stack
symbols will be ranged over by a, 8. We write af (respectively uv) for the concatenation
of a and 3 (respectively u and v). As usual, |o| and |u| represent the length of o and u
respectively. For n € N, we use a” to denote n consecutive actions a, and similarly for X™.
We write pX — ga to mean (p,X,a,q,a) € R.

The syntax of a PDA process is pa, where p € Q and « € I'*. The size of process pa,
denoted by |paf, is defined as its stack height |a|. The set of PDA processes P is ranged
over by O, P, Q. The semantics of the PDA processes is defined by the following rule:

pX L gaeR

pXpB — qaf (1)
If w=ajas...a, with a; € £ (i € 1,...,n), then P 2 Q stands for P 2% P, =%
P2 Q for some Py, Ps,...,P,_1. A process P is normed if P ﬂ>p for some w € ¥*

and p € Q, i.e., P can empty its stack. A PDA A is normed (denoted as nPDA) if every
process defined in A is normed.

» Definition 2 (Bisimulation). A binary relation R C P x P is a bisimulation if, for all
a € X, the following statements are valid:

1. whenever (P,Q) € R and P -+ P', then Q % Q' and (P',Q') € R for some Q';

2. whenever (P,Q) € R and Q - Q', then P -+ P' and (P',Q’) € R for some P’.

The largest bisimulation relation, denoted by ~, is an equivalence relation called bisimu-
lation equivalence or bisimilarity [15].

When silent actions are considered, we use a special symbol € to represent a silent action.
Note that in Definition 1 we assume ¢ ¢ ¥. PDA without silent actions are called real-time
PDA. When silent actions are allowed, we will specify action set as ¥, = X W {e}. A rule
of the form pX —» ga is referred to as an e-rule. For an e-rule pX — ga, we say it is
popping if |a| < 1; it is pushing if || > 1; it is deterministic if pX — ¢’a’ implies a = ¢,
¢ = q, and o = a. We will write = for the reflexive and transitive closure of —; and
write == for === if a # €.

» Definition 3 (Weak Bisimulation). A binary relation R C P x P is a weak bisimulation f
for all a € X, the following statements are valid:

1. whenever (P,Q) € R and P - P', then Q == Q' and (P',Q’) € R for some Q’;

2. whenever (P,Q) € R and Q - @', then P == P’ and (P',Q’) € R for some P'.

The largest weak bisimulation, denoted by = is called weak bisimilarity [15], and is also
an equivalence relation.

141:3

ICALP 2020

141:4

Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

Fast-Growing Complexity. We will use an ordinal-indexed hierarchy of “fast-growing” com-
plexity classes defined in [18]. This hierarchy grows as F1,Fo,F3,... , F, F,11... and
allows the classification of many decision problems with a non-elementary complexity. Here
F3; = TOWER is the lowest non-elementary complexity class; |J,cyFx is the primitive-
recursive complexity class; and F,, = ACKERMANN is the lowest non-primitive-recursive
complexity class. A complexity class is closed under reduction functions from “lower” com-
plexity class. For example, all classes starting from F3 are closed under elementary reduction.

Bisimilarity Problem for PDA. We are interested in the bisimilarity problem for PDA
defined as follows. Given a PDA A = (Q,T', %, R) and two process pa and ¢3, where p,q € Q
and a, 8 € I'*, the bisimilarity problem asks if pa ~ ¢8.

Our main result stated as follows improves the previous TOWER-hard lower bound [2].

» Theorem 4. The bisimilarity problem for PDA is ACKERMANN-hard and is F4_1-hard if
the number of control states d > 4 is fized.

Combining with ACKERMANN upper bound from [10], we have the following result.

» Corollary 5. The bisimilarity problem for PDA is ACKERMANN-complete.

2.2 Bisimulation Game

Bisimulation equivalence has a nice game characterization called the bisimulation game.

Bisimulation Game. Given a pair of processes (Py, Qo), a bisimulation game for (Py, Qo) is
played between Attacker and Defender. The game is played in rounds. In round ¢, Attacker
chooses a transition Pj_; — P, (resp. Qi—1 N Q;), then Defender chooses a transition
with a same action Q;_; —» Q; (resp. Pi_; —» P;). We use (P;i_1,Qi_1) — (P;,Q;) to
denote a round. Defender wins if it never gets stuck; otherwise Attacker wins. We say that
one player has a winning strategy if it can always win no matter how the opponent plays.
The following result is well known.

» Lemma 6. P ~ Q if and only if Defender has a winning strategy in the bisimulation game

for (P, Q).

Macro Rules. Following [2], we introduce two kinds of macro rules to facilitate the design
of bisimulation game and make our presentation concise.

ATT
(1). A macro rule (pX,qY) <—— (p1a1,q101) denotes a pair of transitions:
pX == prag Y == aif

Here action a is fresh. This macro rule favours Attacker. In a bisimulation game for (pX, qY),
if Attacker chooses transition pX — piay (or ¢ —% ¢181), then Defender is forced to
choose transition ¢Y - ¢1 31 (or pX - proy).

(2). A macro rule (pX,qY) DEE {(p1o1,q151), (p2ca, g22)} denotes a set of transitions:

pX 5 pZi pX S pZy pX 5 pZs
v 5 pZ, qY 2% pZs
pZ1 =% prax pZy —% paas pZa — prax pZa — qafa
as as
pZs — 1)y pZ3z — P20

W. Zhang, Q. Yin, H. Long, and X. Xu

pX qY
ai
ay ay & a1
pZ1 P22 pZ3
a/ az a3 az as as
p1a q1/1 D202 q232

DEF
Figure 1 State transition diagram of macro rules —.

Here aq, as, az are fresh actions, and Z;, Zs and Z3 are fresh stack symbols. This macro

rule favours Defender. It is powered by a useful technique called Defender’s forcing [11].

The state transition diagram of this macro rule is shown in Fig. 1. In a nutshell, with this

macro rule, Defender can decide whether the game should continue with (pyaya, g1 81) or

(p2cacy, g282¢x) in the bisimulation game for (pX«, ¢Y «).

Let us take a look at the development of the game for (pX«, ¢Y).

1. If the game reaches a configuration with two identical processes, Defender wins immedi-
ately. Thus Attacker’s optimal choice in the first step is pXa — pZ;a.

2. Then Defender can make a choice between qY o —% pZoav and qY o %5 pZsav. If Defender
chooses transition qY o — pZsa, the game continues with (pZ;a, pZsa). If Defender
chooses transition ¢Y a — pZsa, the game continues with (pZ;a, pZsa).

3. In the case of (pZ1a, pZaar), Attacker is forced to choose action ag, the game comes into
(p2aacy, g282cx). Similarly, in the case of (pZ1a, pZsa), Attacker is forced to choose action
as and the game reaches (p1aia, g1 51@).

3 Lower Bound

We prove our main result by a reduction from the coverability problem of reset Petri net.
We recall reset Petri net and its ACKERMANN-complete coverability problem in Section 3.1.
We then construct an exponential time reduction in Section 3.2. Although the exponential
time reduction suffices for our purpose, we revise it to a polynomial one in Section 3.3.

3.1 Reset Petri Net

Reset Petri Net (RPN). A reset Petri net is a tuple N' = (S,C, d) consists of
a finite set of control states S ranged over by s, t;
a finite set of counters C = {c1,ca,...,¢q};

a finite set of instructions § C S x O x S, where the set of operations O consists of
INC(c;), DEC(¢;) and RESET(¢;) for i =1,2,...,d.

A configuration is a tuple (s,n1,...,n4) with s € S representing the current state, and
ni,...,nq € N representing the current contents of the counters. If (s,op,t) € ¢ then we
have (s,n1,...,nq) = (t,n],...,n) in the following cases:

op = INC(¢;), nj = n; + 1, and n; = n; for all j # 4; or

op = DEC(¢;), ni > 0, nj = n; — 1, and n/; = n; for all j # 4; or

op = RESET(¢;), nj = 0, and nj; = n; for all j # i.

141:5

ICALP 2020

141:6

Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

By —* we denote the reflexive and transitive closure of —. We define a partial order <
on the configurations of N:

(s,n1,...,mg) < (&,my,...,mg)ifs=¢t A np<mg A ... A ng<mg.

We say o4 is coverable from o if there is some ¢ such that o1 —* ¢ and o > 0.

Coverability Problem of RPN. Given a Reset Petri Net N' = (S,C, §), an initial configura-
tion o7 and a final configuration o9, where the counters of o; and o9 are given in binary, the
coverability problem asks if oy is coverable from o7;.

We recall the following complexity result for coverability problem of RPN [19, 20, 21].

» Theorem 7. The coverability problem of RPN is ACKERMANN-complete, and is F 3-complete
if the number of counters d > 3 is fixed.

3.2 An Exponential Time Reduction

Given a RPN N = (§,C,d), an initial configuration ¢y, and a final configuration o9, we will
construct a PDA A = (Q,T,3,R) and two processes P, @ of A in exponential time such
that

o9 is coverable from oy if and only if P ¢ Q. (%)

Reduction Overview. Our reduction encodes the run of N from configuration o; as a
bisimulation game for (P, Q). In the bisimulation game, Attacker aims to show that oy is
coverable from o, while Defender aims to show the opposite.
In order to complete the reduction, we should pay attention to the following aspects.
A configuration ¢’ of A corresponds to a game for (P’,Q’) in the sense that the state
and counter values of ¢’ are both encoded on the stack of both P’ and Q'.
To track the counters in the run from o, the bisimulation game pushes every counter
operation from the initial configuration on the stacks. Observe that the value of a counter
of N can never become negative. Our reduction will guarantee that Attacker can never
cheat by decreasing a counter with value zero. This is fulfilled by Defender’s forcing. More
specifically, for every DEC(¢;) operation, Defender has the power to verify its validity by
initiating what we shall call a zero check for c;.
If a configuration that covers o is reached, Attacker wins the game. In the reduction, we
will introduce a special witness action f. When a configuration o > o9 is reached, the
game will finally come into some (P’, Q") where P’ can do action f while Q' cannot.

As mentioned earlier, the basic idea of our reduction follows from [9], where ACKERMANN-
hardness is proven for the bisimilarity problem of first-order grammars. However, as what
will become clear in Section 4, first-order grammars are strictly more powerful than PDA
w.r.t. bisimilarity. Here we highlight the main differences between our reduction and the
one in [9].

The reduction in [9] records the increasing and decreasing operations of d counters into
2d sub-processes (i.e. sub-terms in the terminology of first-order grammars). These
sub-processes can work “in parallel” and be accessed without being interfered by each
other. Zero check of a specific counter is achieved by skipping irrelevant sub-processes
and comparing the relevant ones directly. Due to the sequential nature of stacks, this is
beyond the reach of (real-time) PDA (see also Section 4). Instead, the increasing and

W. Zhang, Q. Yin, H. Long, and X. Xu

decreasing operations recorded on the stack are interfered by each other unavoidably. To
check zero for a counter, we introduce a novel mechanism by comparing the stack as a
whole (Lemma 11).

Our reduction uses d+1 PDA control states to encode a RPN with d counters. This yields
a F4_1-hardness result, a first parametric lower-bound for the bisimilarity problem for
PDA. In contrast, parametric complexity is not studied in [9]. Moreover, if we transform
the reduction for first-order grammars [9] directly to a new reduction for PDA, the
resulting PDA would require (i) at least 2d control states and (ii) popping e-rules.

» Remark 8. In [9], the ACKERMANN-hardness for bisimilarity of FOG is established by
reduction from the control state reachability problem of RPN. When the counters in the
configurations of RPN are given in binary, the coverability problem of RPN is equivalent to
the control state reachability problem under exponential time reduction. Incorporating the
counter encoding and zero check trick into the reduction of [9], we can get the ACKERMANN-
hard lower bound for bisimilarity of PDA as well. The main reason that we choose the
coverability problem of RPN instead is to build a parametric lower bound under polynomial
time reduction.

The Reduction. We fix a RPN A = (8,C,§), an initial configuration o1 = (ts,n1,...,n4),
a final configuration oo = (t¢,m1,...,mq) in this subsection. The corresponding PDA
A=(Q,T,X,R) and two processes P, @ are defined as follows.

1. We introduce d + 1 control states:

def
Q :e {p7Q17(]27-~7Qd}

Here g1, q2, ..., qq correspond to ¢y, co, ..., cq of C, respectively. The usage of state p
will become clear later.
2. To record the operations on counters in C, we introduce the following stack symbols:

Te ¥ X X7, X0 i=1,2,...,d}CT

3

Here X", X; and X? represent operations INC(c;), DEC(c;) and RESET(c;), respectively.
3. To record the states of AV, for every state s € S, we introduce a pair of stack symbols:

v.yjcr

4. The two processes P and @ of the initial bisimulation game configuration are defined by

def def
PE Ly (XH™ (X QU pyi(xhym L (X
In the rest of this subsection, we will complete the definition of A to validate property ().
We start with encoding counters of A/ on the stacks of PDA processes. We then introduce
rules for A to manipulate counters and perform zero checks. Last we show how to verify the
coverability property in bisimulation games.

Counter Encoding. TFor each i = 1,2,...,d, we introduce a function count; : T'¢* — Z. Let
a=X,X,_1...X; € T¢". Intuitively, count;(a) computes the value of ¢; after a sequence of
operations X1, Xo, ..., X,,. More specifically, let K; be the largest index such that Xz, = X?,
i.e., the leftmost occurrence of a reset operation of counter c¢;. If X? does not appear in a,
then K; = 0. Let I; and D; be the respective numbers of occurrences of Xf and X7 in the
subsequence X, X,,_1 ... Xk, +1 of a. The function count; is defined by count;(«) = I; — D;,.

141:7

ICALP 2020

141:8

Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

» Remark 9. Since the counters in reset Petri net cannot be negative, some strings, e.g.
X7X7X{, are invalid. For simplicity, the functions count; are defined on all strings in T'¢*.

» Example 10. count; (X5 XX X)) = 0 and counta (X5 X? X X) = 2.

We next introduce rules for counter manipulations. The PDA processes record every
operation to the counters on their stacks. The trick here is to avoid invalid operations on
counters. For example, at configuration (pY,X7X;", pY/X7X}), the counter ¢; is zero and
it is not supposed to push another X7. Here we use the Defender’s forcing technique to fulfill
this goal. Defender has a chance to force Attacker to check whether a decrease operation is
valid. If it is not valid, Defender can win the game.

Counter Manipulation. For each instruction I = (s,0p,t) of N, we introduce a set of PDA

rules to R for counter manipulations as follows.

If op = INC(c;), we introduce (pYs, pY?) i (pY: X", pY/ X "),

If op = RESET(c;), we introduce (pY, pY!) s (pY, X0, pY{ X0).

K3
If op = DEC(c;), we introduce (pYs, pY!) < {(pYe X7, pY/X7), (9, 41)}-
We will make more comments on the decrease operation. The control states g1, g2, ..., q4
are mainly used to zero check the counters ¢y, ca, ..., cq, respectively. In the sequel, we
will introduce some rules to ensure the correctness of zero checks as stated in the following
lemma.

» Lemma 11. g;a ~ pa if and only if count;(a)) = 0, where o € T¢c™.

By Lemma 11, if Attacker intends to do an invalid decrease operation on counter ¢;, Defender
can force the game to the branch of (p, ¢;) and win. If Attacker intends to do a valid decrease
operation on counter ¢;, Defender would lose in the branch of (p, ¢;). In that case, Defender
will force the game to the branch of (pY; X7, pY/ X7) and the game continues.

Zero Check. We introduce the following rules to ensure the correctness of zero check. For
the sake of concision, we introduce another macro rule. Given w = ajas...a,, we use
pX < g to stand for the sequence of transitions pX —% pX; —2 ... N pXno1 —2 ga.
Note that these macro rules do not introduce any new state. All the stack symbols introduced

in these macro rules are fresh.

bp op bp op

pX — p For X € T'¢
bo
X5 g Fori=1,2,...,d
bpopbpopbpo
X S g Fori=1,2,...,d
0 bPOPbPOP .
¢GX; —— D Fori=1,2,...,d
bPOPbPOP . —_ + 0
GX — g Fori=1,2,....d, X el \ {X;, X, X?'}

Proof of Lemma 11. Observe that the bisimilarity between ¢;a and pa only depends on the
total numbers of consecutive actions by, from g;or and pa. Process pa can do action by, twice
for every stack symbol. Process g;« can do three by, actions for each X;™ and one b,,, action
for each X before it meets the first X?. Let I; and D; be the numbers of X~ and X before
it meets the first X?. It follows that g;a ~ pa if and only if 31; + D; +2(|a| — I; — D;) = 2|a.
Note that count;(a)) = I; — D;. Thus g;a ~ pc if and only if count;(a) = 0. <

W. Zhang, Q. Yin, H. Long, and X. Xu

» Remark 12. The implementation of counters and their zero check mechanism is the main
technical difference of our reduction from the one for first-order grammars [9]. The reduction
in [9] compares the increasing and decreasing operations of a counter directly, by skipping
non-relevant operations. As will be seen in Section 4, the ability to skip non-relevant
operations also makes first-order grammars more powerful than PDA.

Coverability Check. When the game reaches (pY:, o, pY/,), Attacker can initiate a cover-
ability check. Then Defender will choose a counter ¢; and check if count;(a) > m;. To this

end, we introduce d 4 1 pairs of stack symbols (Z1, Z1), ... (Zay1, 2},) for counter choice.
For each 1 <i < d, we introduce m; + 1 pairs of stack symbols (Z; 0, Z]), - -+, (Zim;» Zi ;)

for coverability check of counter c;.

(1). We first add rules to check coverability of a specific counter ¢; (1 < i < d). For the
pair (pZiﬁn,le{,n), where 0 < n < m;, we introduce the following rules.

DEF
(pZin,0Z}) — {(PZin—1X7,0Z ;1 X7), (P 4i) };
bpop

f
pZio — D, pZig —p.

If count;(«) < m;, then by Defender’s forcing, Defender can push count;(a) number of
counti(@) By Lemma 11,
Defender wins. If count;(a) > m;, Defender’s best strategy would lead the game into a

X7 to the stack and the game reaches (pyo, p;ya), where v = (X7)
configuration (pZ; ofa, pZ; oBa) where f = (X7)™. Attacker wins since pZ; oS admits a
fresh action f, while pZ{yOﬂa does not. As a result, we have the following lemma.

» Lemma 13. pZ; ,,,a ~ pZ;,, o if and only if count;(a) < m;, where a € I'™*.

(2). We next introduce the following rules to help Defender pick a specific counter to

perform coverability check.
ATT
(pYt,, pYY,) — (021, pZ1);
DEF .
(pZ'mpiZ) — {(pZi,mi7pZz{77ni)a (pZi+17pZ7{+1)} for i = 17 2? v 7da

f bpo
pZay1 —— D, P2y — p.

Suppose that Attacker initiates a coverability check and the game reaches (pZ o, pZ).
Defender can choose a specific counter to verify by Defender’s forcing. Indeed if count;(a) <
m; for some 1 < i < d, Defender can force the game to (pZ; m, o, pZ; ,,,.). By Lemma 13,
Defender wins. If count;(a)) > m; for all 1 < ¢ < d, then Defender’s best strategy is leading
the game to configuration (pZg10,pZ;). Attacker wins via a fresh action f.

» Proposition 14. The coverability problem of RPN (with d counters) can be reduced to the
complement of the bisimilarity problem for PDA (with d + 1 states) in exponential time.

Proof. We construct the reduction as described in the section and prove the property ().
(=). If (ty,ma,...,mq) is coverable from (¢s,n1,...,nq), then there exists a configuration

(tr,mh,...,ml) > (t;,m,...,mg), which is reachable from (ts,n1,...,n4). We describe
a winning strategy for Attacker. Attacker simply follows the path from (¢s,n1,...,nq) to
(ty,m},...,m}). Since every decrease operation is valid, Defender will not ask for zero
checks. The bisimulation game will reach (pY;,a, th'f «) such that count;(«) = m} for each

i€{1,2,...,d}. Attacker starts a coverability check and wins the game.

141:9

ICALP 2020

141:10 Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

(«=). If (tf,ma, ..., mq) is not coverable from (ts,n1,...,nq), we describe a winning strategy
for Defender. Defender just follows what Attacker does and asks for zero check if Attacker
tries to decrease a zero counter. Whenever the game reaches (pY;, 3, th/f B) for some € T'*,
there exists some ¢ € {1,2,...,d}, count;(8) < m;. If Attacker asks for a coverability check,
then Defender can choose to verify the value of counter ¢;. By Lemma 13, Defender wins. If
Attacker never initiates a coverability check, Defender also wins as it will never get stuck. <

By Theorem 7 and Proposition 14, we have our main result Theorem 4. Observe that it

bp op

bpo . s
is safe to introduce rules pY; —= p and pY] — p for every s € S since these transitions
will never be chosen by Attacker (or Attacker loses immediately). As a result, the PDA A is
normed and our lower bound can be generalized to the normed case.

» Corollary 15. The bisimilarity problem of normed PDA is ACKERMANN-complete and is
Fy_1-hard if the number of control states is d > 4.

3.3 A Polynomial Time Reduction

Although an elementary reduction suffices for our purpose, we show that the exponential time
reduction can be actually revised to be polynomial. There are two exponential factors in the
reduction presented in Section 3.2: (i) the size of the initial configuration of the bisimulation
game can be exponentially large; and (ii) the number of rules for coverability check can be
exponentially many. We eliminate both by incorporating a binary representation of counters.

Counter Binary Encoding. Let m be the maximal number occurs in the initial and final
configuration of NV, and k the smallest number such that 2¥ > m. For every counter c;,
we introduce two new stack symbols X;fj and X;; for each j € {0,1,...,k}. Intuitively,
X;L f (resp. X j) represents 27 increasing (resp. decreasing) operations on counter c;. Stack
symbol X? is still used to represent operation RESET(c;). We then replace the initial game
configuration by this binary representation. The function count; can also be revised easily
by taking the binary representation into account. We omit the details.

» Example 16. An initial RPN configuration o1 = (s,6,3) can be encoded by a game
configuration (pYSXfCQXf,lXQle;’O,pYS’XfCQXf,lXilX;,O).

We next revise the rules to make zero check and coverability check work.

Zero Check. We introduce new rules for X:j and X7 for zero check, where 0 < j < k.

bPUPbPUP

bpopb
+ por’por + + + .
pXm- (—>pXi7j_1...Xi707 pXL0 — P;
_ bPUPbPOP _ _ _ bPOPbPOP
pXi,j — pXiJ—l c NG00 pXi g ——p;
bpopbpopb bpopbpopb
+ pop¥Ypop¥Ypop + + JF pop¥Ypop¥Ypop .
QiXi,j — QiXi’j71 e Xi,oa %’Xi,o —— i

_ bIJOP — — — prP .
GXi; — X, - Xi o X5 0 — Gis

bPOPbPOP

Note that besides the rules introduced above, we keep the rule g; X? p for

i€{1,...,d}. Lemma 11 is still valid and can be proved along the same line.

W. Zhang, Q. Yin, H. Long, and X. Xu

Coverability Check. Let m; be the value of ¢; in the final configuration oo and k; be the

least number such that 2% — 1 > m,;. We replace the rules for (pZij,pZ; ;) (0 <j <my) by
ATT ATT
(pZz,m”pZz/,ml) — (pWi,OﬂapWi/,O/BL (sz,kﬂpWZ/’kl) — (p7 ql)a
DEF _ _ ,
(pWivaWi/,j) — {(pWi,j+1Xi,j7pWi/,j+1Xi,j)7 (pWi7j+17pWil,j+1)} (0<j<ki)

Here W, o, ..., W, 1, are new stack symbols for coverability check and S consists of the
binary stack symbols introduced above such that count;(3) = 2¥ — m,.

We show that Lemma 13 still holds. Consider the bisimulation game for (pZ; m,a, pZ; ,,,).

Intuitively, the coverability check starts with increasing counter ¢; with 2% —m;. After that,
Defender decreases ¢; by a combination of k; choices and the game reaches a configuration
(pya, giyer). If count; () < my, Defender can pick v such that count;(ya) = 0. By Lemma 11,
Defender wins. If count;(a) > m;, then count;(a) + (2% —m;) — (2% — 1) > 0. The counter
¢; can never be decreased to zero and Attacker wins.

4 Relative Expressiveness of PDA

First-order grammars have close relationship with pushdown automata [7, 9, 10], as they are
equivalent to PDA with deterministic and popping e-rules. More specifically, any process T'
definable in a first-order grammar can be encoded into a PDA process P with deterministic
and popping e-rules, and vice versa. The processes T and P are weakly bisimilar. In the

real-time case, i.e, when no e-rules is allowed, FOG have strictly richer behaviours than PDA.

This can be proved by considering the transition graph of real-time PDA and PDA with
deterministic e-rules (see, e.g., [3], Proposition 5.8).

Nevertheless, to build better intuition for this result and also demonstrate why the original
reduction in [9] cannot be directly applied to real-time PDA, we give another proof in this
section to show that FOG are strictly stronger than PDA, as far as bisimilarity is considered.

To avoid introducing the definition of FOG, we construct a special PDA with deterministic
and popping e-rules and show that it can define a process which cannot be bisimulated by
any real-time PDA process. The special PDA A contains the following rules:

pXo - pX, pX - pXX, pX -5 pYX, pY 5 pYY;

pY S piY, pY -5 poY;

Y <5 pi, ;X S p, pY < pa, peX S po.

Observe that pXg can do actions a™b" and record m and n by pushing Y™ X™ into stack.
The popping e-rules enable the process to recover the information of m or n immediately (via
doing actions a™ after ¢ or actions b™ after d). We will show that such e-rules are necessary
in the sense that no real-time PDA is weakly bisimilar to 4. Intuitively, any real-time PDA
process, after executing actions a™b", cannot access both the information of m and n on the
stack without undesired interference. The necessity of e-rules is also the basic reason why
the reduction in the hardness proof for first-order grammars [9] fails for real-time PDA.

» Proposition 17. For any real-time PDA process O, O % pX.

A direct consequence is that first-order grammars are strictly stronger that PDA. Indeed,
following the transformation in [10], one can construct a process 7' in a first-order grammar
such that (i) T' = pX, and (ii) T has no ¢ transitions (the e transitions are absorbed in FOG
during transformation). As a result T' cannot be related to any PDA process by bisimilarity.

» Corollary 18. There exists a process T definable by a first-order grammar, such that for
any real-time PDA process O, O £ T.

141:11

ICALP 2020

141:12 Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

We prove Proposition 17 in the rest of this section. To do that, we need a useful pumping
property of pushdown automata. We say a transition sequence & : Py —» P; —25 ... 2% Py
is non-sinking if | P;| > |Py| for 1 <14 < k. Moreover, £ is pumpable if (i) £ is non-sinking and
(i) Py =pZa and Py = pZBa forsome pe Q, Z €T, a € I'*, and S € T't.

» Lemma 19. Suppose that Py is a PDA process defined in A = (Q,T', X, R) and it holds that
la| < 2 for each (p, X,a,q,a) € R. If there exists a transition sequence & : Py = P, 22
. 2% P, such that (i) n > |Po| - (|Q||T| + D)ICITIHY and (ii) P; £ Pj (Vi # 5,0 < 4,5 <n),
then & contains a pumpable transition subsequence.

Proof. Let & : Qg BN Q1 Loy by Q. be a non-sinking transition sequence such that
Qi #* Q; (Vi # j). Denote by type(£’) the set of different pairs of state and top stack symbol
that occur in £’. More specifically, type(£’) et {(¢,Z) : there is a process ¢Zf in &'}. Tt is
sufficient to prove the following property:

if m > (Jtype(€’)| + 1)IvPe@)I+1 then ¢ contains a pumpable transition subsequence. (x%)

Our lemma is established by observing that £ contains a non-sinking subsequence &’ of length

at least (|Q||T| + 1)IQII"+1. Suppose otherwise, then in less than |Py| - (|Q||T| 4 1)!<@ITI+1

steps Py will reach a process p’e for some p’ € Q. This contradicts with our assumption (i).
We next prove (*) by induction on |type(&')].

[type(¢’)| = 1. Tt is trivial since & is pumpable.

ltype(¢')| = k+1. By assumption, ¢ is of length at least (k-+2)¥*2. Since £’ is non-sinking
and any two processes in £’ are not equal, there are no more than k other processes of
the size |Qo|. By removing these (shortest) processes, we get at most k + 1 transition
subsequences. There must be a sequence (denoted as ¢”) of length at least (k + 1)k
By assumption of A, the stack height will increase at most by one in a transition. It
follows that ¢” is non-sinking. Let Qo = ¢Za. If (¢, Z) € type({”), say Q; = qZ B, then
Qo LN @, is pumpable. Otherwise [type({”)| = k. By induction hypothesis, £’
contains a pumpable transition subsequence. |

We are ready to prove Proposition 17.

Proof of Proposition 17. Suppose otherwise and let O be a process of a real-time PDA
B=(9,TI,%R)and O =~ pXy. W.lo.g., we assume that |a| < 2 for each (p, X, q,a) € R.
Let N = |Q||T'| +1 and m > 1. Consider the following transition sequence of pXjy

pXo 2 pxm by pyxm by by pynxm, (2)
Since O =~ pXjy and O is real-time, there exists Oy, ; (0 < i < n) such that

0 Opmo -2 Ot =5 ... =25 O (3)

and O,,; ~ pY'X™ for 0 < i < n. Observe that pY*X™ % pYIX™ (Vi # j). Hence
Om,i # Omj (Vi # j). Let n = |Op, 0| NY. By Lemma 19, we can find ¢ € Q and Z € T
such that

(i) ¢Za = Oy, s and qZBa = Oy ¢ for some 0 < s <t <n, a € * and § € I'"; and

(ii) the transition subsequence of O,, s LN O, s+1 BN IN O+ is pumpable.

W. Zhang, Q. Yin, H. Long, and X. Xu

Let k =t — s, we can repeat the pumpable transition sequence as many times as we want
bk bk bk
qZa — qZBa — qZBBa — ... (4)

As qZa = Oy, s = pY*X™, the above sequence must be simulated by
k k k
pYex™ Uy pysthxm b pyst2kym b (5)

such that ¢ZB'a ~ pY 5T+ X™ for i > 0.

For different m, we can have different transition sequences (4) and (5), possibly with
different s > 0,k > 0,¢g€ Q, Z €', a € I'* and 8 € I'". By the pigeonhole principle,
there are two different numbers 1 < m; < mg < N so that ¢ and Z are the same in
transition sequence (4). Assume w.l.o.g. that ¢Za; = Opy, 5, R DY X™, qZ0a2 = Opy 5y =

k
pY 2 X"™2 and qZ LA qZ (3 for some s1,82,k1 >0, oy, a0 € T'* and B € I'". The actions
k1-N k1-N
Oy s LA qZ B a; must be simulated by pY*1 X™ LA pY sitkN xmi - Gimilarly
k1-N k1 N
Oy LA qZ BN o, must be simulated by pY 2 X™2 b pysetkiN Xme We also have
that pY 1 trFNXm ~ qZpNay and pY S22tk N X™m2 ~ 78N a.
Consider the following transition sequence of pY$2Tk1-N xm2

mp+1

pys2+k1-NXm2 _C_> plyserk‘l-Nsz :5’> pleQ a plxmzfmlfl' (6)

m41
It can be matched by ¢ZBN as 2 P, for some P;. Since qZ BN ay is real-time and
mi+1

N > m;y +1, the actions ca™ ! from ¢ZBY a; only depend on ¢ZB1Y. Thus ¢ZBNa; <4—
Q for some Q. This contradicts with ¢ZBNa; ~ pY*s1+ki-N X™1 gince after transition
pY sithuN xmi _Cy 0, ysitkN xmithe longest non-e action sequence is a™!. <

5 Conclusion

In this paper, we show that the bisimilarity of PDA is ACKERMANN-hard. Combining with
the result in [10], we can conclude that the bisimilarity of PDA is ACKERMANN-complete.
The result can be generalized to normed PDA. Besides, we give another proof on that the
so-called real-time pushdown processes are strictly weaker than first-order grammars. Our
work answers the question proposed by Janc¢ar and Schmitz in [10].

When the number of control states of PDA is fixed as d > 4, bisimilarity is F4_1-hard.
An obvious open problem is to close the complexity gap with the F 4,4 upper bound in [10].

—— References

1 Jos CM Baeten, Jan A Bergstra, and Jan Willem Klop. Decidability of bisimulation equivalence
for process generating context-free languages. Journal of the ACM, 40(3):653-682, 1993.
doi:10.1145/174130.174141.

2 Michael Benedikt, Stefan Goller, Stefan Kiefer, and Andrzej S Murawski. Bisimilarity of
pushdown automata is nonelementary. In Proc. LICS ’18, pages 488-498. IEEE, 2013.
doi:10.1109/LICS.2013.55.

3 Didier Caucal. Bisimulation of context-free grammars and of pushdown automata. Modal
Logic and Process Algebra, 53:85-106, 1995.

4 Bruno Courcelle. Recursive applicative program schemes. In Formal Models and Semantics,
pages 459-492. Elsevier, 1990. doi:10.1016/B978-0-444-88074-1.50014-7.

5 Seymour Ginsburg and Sheila Greibach. Deterministic context free languages. Information
and Control, 9(6):620-648, 1966. doi:10.1016/S0019-9958(66)80019-0.

141:13

ICALP 2020

https://doi.org/10.1145/174130.174141
https://doi.org/10.1109/LICS.2013.55
https://doi.org/10.1016/B978-0-444-88074-1.50014-7
https://doi.org/10.1016/S0019-9958(66)80019-0

141:14 Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley Publishing Company, 1979.

Petr Jancar. Decidability of DPDA Language Equivalence via First-Order Grammars. In Proc.
LICS ’12, pages 415-424. IEEE, 2012. doi:10.1109/LICS.2012.51.

Petr Jancar. Bisimulation Equivalence of First-Order Grammars. In Proc. ICALP ’14, LNCS,
pages 232—243. Springer, 2014. doi:10.1007/978-3-662-43951-7_20.

Petr Jancar. Equivalences of pushdown systems are hard. In Proc. FoSSaCS 1/, pages 1-28.
Springer, 2014. doi:10.1007/978-3-642-54830-7_1.

Petr Jancar and Sylvain Schmitz. Bisimulation equivalence of first-order grammars is
ACKERMANN-complete. In Proc. LICS ’19, pages 1-12. IEEE, 2019. doi:10.1109/LICS.
2019.8785848.

Petr Jancar and Jivii Srba. Undecidability of bisimilarity by Defender’s forcing. Journal of
the ACM (JACM), 55(1):5, 2008. doi:10.1145/1326554.1326559.

Stefan Kiefer. BPA bisimilarity is EXPTIME-hard. Information Processing Letters, 113(4):101—
106, 2013. doi:10.1016/j.1pl.2012.12.004.

Antonin Kucera and Petr Jancar. Equivalence-checking on infinite-state systems: Tech-
niques and results. Theory and Practice of Logic Programming, 6(201), 2006. doi:
10.1017/S1471068406002651.

Antonin Kucera and Richard Mayr. On the complexity of checking semantic equivalences
between pushdown processes and finite-state processes. Information and Computation,
208(7):772-796, 2010. doi:10.1016/j.ic.2010.01.003.

Robin Milner. Communication and concurrency, volume 84. Prentice-Hall, Inc., 1989.
Michio Oyamaguchi. The equivalence problem for real-time DPDAs. Journal of the ACM
(JACM), 34(3):731-760, 1987. doi:10.1145/28869.28881.

V Yu Romanovskii. The equivalence problem for real-time deterministic pushdown automata.
Cybernetics, 22(2):162-175, 1986. doi:10.1007/BF01074776.

Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Transactions on Computa-
tion Theory (TOCT), 8(1):3, 2016. doi:10.1145/2858784.

Sylvain Schmitz. Algorithmic Complezity of Well-Quasi-Orders. Habilitation thesis, Ecole
Normale Supérieure Paris-Saclay, 2017.

Sylvain Schmitz. The parametric complexity of lossy counter machines. In Proc. ICALP ’19,
volume 132, pages 129:1-129:15. LZI, 2019. doi:10.4230/LIPIcs.ICALP.2019.129.

Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. In Proc. MFCS ’10, pages 616—628. Springer, 2010. doi:10.1007/
978-3-642-15155-2_54.

Géraud Sénizergues. Decidability of bisimulation equivalence for equational graphs of finite
out-degree. In Proc. FOCS 98, pages 120-129. IEEE, 1998. doi:10.1109/SFCS.1998.743435.
Géraud Sénizergues. L(A)=L(B)? Decidability results from complete formal systems. Theoret-
ical Computer Science, 251(1-2):1-166, 2001. doi:10.1016/S0304-3975(00)00285-1.
Géraud Sénizergues. The bisimulation problem for equational graphs of finite out-degree.
SIAM Journal on Computing, 34(5):1025-1106, 2005. doi:10.1137/S0097539700377256.
Colin Stirling. Decidability of bisimulation equivalence for normed pushdown processes.
Theoretical Computer Science, 195(2):113-131, 1998. doi:10.1016/50304-3975(97)00216-8.
Colin Stirling. Decidability of bisimulation equivalence for pushdown processes. Technical
report, University of Edinburgh, 2000.

Colin Stirling. Decidability of DPDA equivalence. Theor. Comput. Sci., 255(1-2):1-31, 2001.
doi:10.1016/S0304-3975(00)00389-3.

Colin Stirling. Deciding DPDA equivalence is primitive recursive. In Proc. ICALP 02, pages
821-832. Springer, 2002. doi:10.1007/3-540-45465-9_70.

https://doi.org/10.1109/LICS.2012.51
https://doi.org/10.1007/978-3-662-43951-7_20
https://doi.org/10.1007/978-3-642-54830-7_1
https://doi.org/10.1109/LICS.2019.8785848
https://doi.org/10.1109/LICS.2019.8785848
https://doi.org/10.1145/1326554.1326559
https://doi.org/10.1016/j.ipl.2012.12.004
https://doi.org/10.1017/S1471068406002651
https://doi.org/10.1017/S1471068406002651
https://doi.org/10.1016/j.ic.2010.01.003
https://doi.org/10.1145/28869.28881
https://doi.org/10.1007/BF01074776
https://doi.org/10.1145/2858784
https://doi.org/10.4230/LIPIcs.ICALP.2019.129
https://doi.org/10.1007/978-3-642-15155-2_54
https://doi.org/10.1007/978-3-642-15155-2_54
https://doi.org/10.1109/SFCS.1998.743435
https://doi.org/10.1016/S0304-3975(00)00285-1
https://doi.org/10.1137/S0097539700377256
https://doi.org/10.1016/S0304-3975(97)00216-8
https://doi.org/10.1016/S0304-3975(00)00389-3
https://doi.org/10.1007/3-540-45465-9_70

	Introduction
	Preliminaries
	Pushdown Automata
	Bisimulation Game

	Lower Bound
	Reset Petri Net
	An Exponential Time Reduction
	A Polynomial Time Reduction

	Relative Expressiveness of PDA
	Conclusion

