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Abstract
Deciding bisimulation equivalence of two pushdown automata is one of the most fundamental
problems in formal verification. Though Sénizergues established decidability of this problem in 1998,
it has taken a long time to understand its complexity: the problem was proven to be non-elementary
in 2013, and only recently, Jančar and Schmitz showed that it has an Ackermann upper bound.
We improve the lower bound to Ackermann-hard, and thus close the complexity gap.
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1 Introduction

In the area of formal verification, equivalence checking plays a central role in characterizing
when two systems should be considered as the same. A classical equivalence is language
equivalence, which asks if two processes recognize the same language. To characterize more
refined behavioural relations, Milner proposed a fundamental equivalence called bisimulation
equivalence (a.k.a. bisimilarity) [15]. Two processes are bisimilar to each other if every
transition from one process can be simulated by the other one, and the resulting two processes
keep in the same bisimilarity relation. If internal actions are allowed in a bisimulation step,
we will get a more complicated equivalence called weak bisimilarity [15]. A seminal result
proven in [1] shows that bisimulation equivalence is decidable for processes generated by
context-free grammars, while the language equivalence between context-free grammars is
well-known to be undecidable [6]. Extensive works followed up ever since, studying different
equivalence relations on various infinite-state systems. See [13] for a survey.
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Table 1 Complexity results of bisimulation equivalence problems for (variants of) PDA.

Model Lower bound Upper bound
DPDA P-hard Tower [9, 28]
PDA Ackermann-hard Ackermann [10]
FOG Ackermann-hard [9] Ackermann [10]

Pushdown automata (PDA) extend finite-state automata with a stack memory and can
be used to model recursive programs naturally. Since PDA recognize the same language as
context-free grammars [6], language equivalence is undecidable. The language equivalence
of deterministic PDA (DPDA), raised by Ginsburg and Greibach in [5], was first proved to
be decidable for the real-time subclass, i.e., DPDA without internal actions [17, 16]. The
decidable result was extended to DPDA in Sénizergues’s remarkable work [23]. Observe that
on DPDA, language equivalence coincides with weak bisimulation equivalence, which implies
the decidability of weak bisimilarity for DPDA. Sénizergues later generalized the decidability
result to weak bisimilarity of PDA with deterministic internal actions [22, 24]. An internal
action is deterministic if there is no alternative. There are also quite a few works trying
to simplify Sénizergues’s proof [27, 25, 26, 7, 8]. Stirling revisited the decidability proof
for DPDA via a tableau system [27]. He also generalized the tableau system for PDA [26].
Another line of work is conducted by Jančar in the framework of first-order grammars
(FOG) [7, 8]. FOG has very close relationship with PDA [4]. It can describe PDA with
deterministic internal actions by collapsed graphs where all internal actions are absorbed.

Concerning the complexity issue of bisimilarity of PDA, the best known upper bound for
the deterministic case (DPDA) is Tower [28, 9], while only P-hardness is known. For general
PDA, Exptime-hardness was proven by Kučera and Mayr [14]. The Exptime-hardness
even holds for a subclass of PDA, named BPA (Basic Process Algebra), of which the set
of control states is a singleton [12]. The Exptime-hardness was further improved to non-
elementary (Tower-hard actually) [2]. This non-elementary lower bound also holds for the
normed subclass, where every PDA process can empty its stack. As for the upper bound
for bisimilarity of PDA, little was known until very recently. Jančar and Schmitz gave an
Ackermann algorithm in [10]. This upper bound is actually proven in the framework of
FOG. It also matches the Ackermann-hard lower bound for bisimilarity of FOG [9].

Observe that FOG are equivalent to PDA with deterministic internal actions. Without
internal actions, the Ackermann-hardness of FOG cannot be applied to PDA. Thus the
best known lower-bound for bisimilarity of PDA is still Tower-hard.

Our Contribution. We show that bisimilarity of PDA is actually Ackermann-complete by
improving the Tower-hard lower bound to Ackermann-hard. This is done by a reduction
from the coverability problem of reset Petri net [19]. Moreover, our reduction also gives rise
to a parametric complexity result, i.e., Fd−1-hardness if the number of control states d ≥ 4
is fixed. Our proof extends an early work by Jančar [9], where similar results for first-order
grammars are established. We improve the reduction by avoiding ε-rules.

We summarize some mentioned results in Table 1 with our result presented in bold.

Further Comments. According to Table 1, the complexity classes of bisimilarity problems
for PDA and first-order grammars happen to be the same. Thus one may wonder whether
these two models are actually equal with respect to bisimilarity. The answer was known to
be negative [3]. In this paper, we present a new proof which shows that pushdown automata
are strictly weaker than first-order grammars as far as bisimilarity is considered. It also
demonstrates why the reduction in [9] cannot be applied to real-time PDA directly.
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Organization. The rest of the paper is organized as follows. Section 2 introduces the
background knowledge and necessary notations. Section 3 establishes the Ackermann
hardness for bisimilarity of PDA. Section 4 shows that PDA are strictly weaker than FOG
considering bisimilarity. Section 5 concludes this paper.

2 Preliminaries

2.1 Pushdown Automata
I Definition 1 (PDA). A pushdown automaton A = (Q,Γ,Σ,R) consists of

a finite set of control states Q ranged over by r, p, q;
a finite set of stack symbols Γ ranged over by X,Y, Z;
a finite set of actions Σ ranged over by a, b, c, d, f ;
a finite set of rules R ⊆ Q× Γ× Σ×Q× Γ∗.

The set Σ∗ of words will be ranged over by u, v, w, and the set Γ∗ of finite strings of stack
symbols will be ranged over by α, β. We write αβ (respectively uv) for the concatenation
of α and β (respectively u and v). As usual, |α| and |u| represent the length of α and u

respectively. For n ∈ N, we use an to denote n consecutive actions a, and similarly for Xn.
We write pX a−−→ qα to mean (p,X, a, q, α) ∈ R.

The syntax of a PDA process is pα, where p ∈ Q and α ∈ Γ∗. The size of process pα,
denoted by |pα|, is defined as its stack height |α|. The set of PDA processes P is ranged
over by O,P,Q. The semantics of the PDA processes is defined by the following rule:

pX
a−−→ qα ∈ R

pXβ
a−−→ qαβ (1)

If w = a1a2 . . . an with ai ∈ Σ (i ∈ 1, . . . , n), then P
w−→ Q stands for P a1−−→ P1

a2−−→
. . . Pn−1

an−−→ Q for some P1, P2, . . . , Pn−1. A process P is normed if P w−→ p for some w ∈ Σ∗
and p ∈ Q, i.e., P can empty its stack. A PDA A is normed (denoted as nPDA) if every
process defined in A is normed.
I Definition 2 (Bisimulation). A binary relation R ⊆ P × P is a bisimulation if, for all
a ∈ Σ, the following statements are valid:
1. whenever (P,Q) ∈ R and P a−−→ P ′, then Q a−−→ Q′ and (P ′, Q′) ∈ R for some Q′;
2. whenever (P,Q) ∈ R and Q a−−→ Q′, then P a−−→ P ′ and (P ′, Q′) ∈ R for some P ′.

The largest bisimulation relation, denoted by ∼, is an equivalence relation called bisimu-
lation equivalence or bisimilarity [15].

When silent actions are considered, we use a special symbol ε to represent a silent action.
Note that in Definition 1 we assume ε 6∈ Σ. PDA without silent actions are called real-time
PDA. When silent actions are allowed, we will specify action set as Σε = Σ ] {ε}. A rule
of the form pX

ε−−→ qα is referred to as an ε-rule. For an ε-rule pX ε−−→ qα, we say it is
popping if |α| < 1; it is pushing if |α| > 1; it is deterministic if pX a−−→ q′α′ implies a = ε,
q′ = q, and α′ = α. We will write ε==⇒ for the reflexive and transitive closure of ε−−→; and
write a==⇒ for ε==⇒ a−−→ ε==⇒ if a 6= ε.
I Definition 3 (Weak Bisimulation). A binary relation R ⊆ P × P is a weak bisimulation if
for all a ∈ Σε, the following statements are valid:
1. whenever (P,Q) ∈ R and P a−−→ P ′, then Q a==⇒ Q′ and (P ′, Q′) ∈ R for some Q′;
2. whenever (P,Q) ∈ R and Q a−−→ Q′, then P a==⇒ P ′ and (P ′, Q′) ∈ R for some P ′.

The largest weak bisimulation, denoted by ≈ is called weak bisimilarity [15], and is also
an equivalence relation.

ICALP 2020
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Fast-Growing Complexity. We will use an ordinal-indexed hierarchy of “fast-growing” com-
plexity classes defined in [18]. This hierarchy grows as F1,F2,F3, . . . ,Fω,Fω+1 . . . and
allows the classification of many decision problems with a non-elementary complexity. Here
F3 = Tower is the lowest non-elementary complexity class;

⋃
k∈N Fk is the primitive-

recursive complexity class; and Fω = Ackermann is the lowest non-primitive-recursive
complexity class. A complexity class is closed under reduction functions from “lower” com-
plexity class. For example, all classes starting from F3 are closed under elementary reduction.

Bisimilarity Problem for PDA. We are interested in the bisimilarity problem for PDA
defined as follows. Given a PDA A = (Q,Γ,Σ,R) and two process pα and qβ, where p, q ∈ Q
and α, β ∈ Γ∗, the bisimilarity problem asks if pα ∼ qβ.

Our main result stated as follows improves the previous Tower-hard lower bound [2].

I Theorem 4. The bisimilarity problem for PDA is Ackermann-hard and is Fd−1-hard if
the number of control states d ≥ 4 is fixed.

Combining with Ackermann upper bound from [10], we have the following result.

I Corollary 5. The bisimilarity problem for PDA is Ackermann-complete.

2.2 Bisimulation Game
Bisimulation equivalence has a nice game characterization called the bisimulation game.

Bisimulation Game. Given a pair of processes (P0, Q0), a bisimulation game for (P0, Q0) is
played between Attacker and Defender. The game is played in rounds. In round i, Attacker
chooses a transition Pi−1

ai−−→ Pi (resp. Qi−1
ai−−→ Qi), then Defender chooses a transition

with a same action Qi−1
ai−−→ Qi (resp. Pi−1

ai−−→ Pi). We use (Pi−1, Qi−1) ai−−→ (Pi, Qi) to
denote a round. Defender wins if it never gets stuck; otherwise Attacker wins. We say that
one player has a winning strategy if it can always win no matter how the opponent plays.
The following result is well known.

I Lemma 6. P ∼ Q if and only if Defender has a winning strategy in the bisimulation game
for (P,Q).

Macro Rules. Following [2], we introduce two kinds of macro rules to facilitate the design
of bisimulation game and make our presentation concise.

(1). A macro rule (pX, qY ) ATT
↪−−→ (p1α1, q1β1) denotes a pair of transitions:

pX
a−−→ p1α1 qY

a−−→ q1β1

Here action a is fresh. This macro rule favours Attacker. In a bisimulation game for (pX, qY ),
if Attacker chooses transition pX

a−−→ p1α1 (or qY a−−→ q1β1), then Defender is forced to
choose transition qY a−−→ q1β1 (or pX a−−→ p1α1).

(2). A macro rule (pX, qY ) DEF
↪−−→ {(p1α1, q1β1), (p2α2, q2β2)} denotes a set of transitions:

pX
a1−−→ pZ1 pX

a1−−→ pZ2 pX
a1−−→ pZ3

qY
a1−−→ pZ2 qY

a1−−→ pZ3

pZ1
a2−−→ p1α1 pZ1

a3−−→ p2α2 pZ2
a2−−→ p1α1 pZ2

a3−−→ q2β2

pZ3
a2−−→ q1β1 pZ3

a3−−→ p2α2
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pX qY

pZ1 pZ2 pZ3

p1α1 q1β1 p2α2 q2β2

a1 a1
a1 a1 a1

a2 a3a2 a3
a2

a3

Figure 1 State transition diagram of macro rules
DEF

↪−−→.

Here a1, a2, a3 are fresh actions, and Z1, Z2 and Z3 are fresh stack symbols. This macro
rule favours Defender. It is powered by a useful technique called Defender’s forcing [11].
The state transition diagram of this macro rule is shown in Fig. 1. In a nutshell, with this
macro rule, Defender can decide whether the game should continue with (p1α1α, q1β1α) or
(p2α2α, q2β2α) in the bisimulation game for (pXα, qY α).

Let us take a look at the development of the game for (pXα, qY α).
1. If the game reaches a configuration with two identical processes, Defender wins immedi-

ately. Thus Attacker’s optimal choice in the first step is pXα a1−−→ pZ1α.
2. Then Defender can make a choice between qY α a1−−→ pZ2α and qY α a1−−→ pZ3α. If Defender

chooses transition qY α a1−−→ pZ2α, the game continues with (pZ1α, pZ2α). If Defender
chooses transition qY α a1−−→ pZ3α, the game continues with (pZ1α, pZ3α).

3. In the case of (pZ1α, pZ2α), Attacker is forced to choose action a3, the game comes into
(p2α2α, q2β2α). Similarly, in the case of (pZ1α, pZ3α), Attacker is forced to choose action
a2 and the game reaches (p1α1α, q1β1α).

3 Lower Bound

We prove our main result by a reduction from the coverability problem of reset Petri net.
We recall reset Petri net and its Ackermann-complete coverability problem in Section 3.1.
We then construct an exponential time reduction in Section 3.2. Although the exponential
time reduction suffices for our purpose, we revise it to a polynomial one in Section 3.3.

3.1 Reset Petri Net

Reset Petri Net (RPN). A reset Petri net is a tuple N = (S, C, δ) consists of
a finite set of control states S ranged over by s, t;
a finite set of counters C = {c1, c2, . . . , cd};
a finite set of instructions δ ⊆ S × O × S, where the set of operations O consists of
INC(ci), DEC(ci) and RESET(ci) for i = 1, 2, . . . , d.

A configuration is a tuple (s, n1, . . . , nd) with s ∈ S representing the current state, and
n1, . . . , nd ∈ N representing the current contents of the counters. If (s, op, t) ∈ δ then we
have (s, n1, . . . , nd)→ (t, n′1, . . . , n′d) in the following cases:

op = INC(ci), n′i = ni + 1, and n′j = nj for all j 6= i; or
op = DEC(ci), ni > 0, n′i = ni − 1, and n′j = nj for all j 6= i; or
op = RESET(ci), n′i = 0, and n′j = nj for all j 6= i.

ICALP 2020
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By →∗ we denote the reflexive and transitive closure of →. We define a partial order ≤
on the configurations of N :

(s, n1, . . . , nd) ≤ (t,m1, . . . ,md) if s = t ∧ n1 ≤ m1 ∧ . . . ∧ nd ≤ md.

We say σ2 is coverable from σ1 if there is some σ such that σ1 →∗ σ and σ ≥ σ2.

Coverability Problem of RPN. Given a Reset Petri Net N = (S, C, δ), an initial configura-
tion σ1 and a final configuration σ2, where the counters of σ1 and σ2 are given in binary, the
coverability problem asks if σ2 is coverable from σ1.

We recall the following complexity result for coverability problem of RPN [19, 20, 21].

I Theorem 7. The coverability problem of RPN is Ackermann-complete, and is Fd-complete
if the number of counters d ≥ 3 is fixed.

3.2 An Exponential Time Reduction
Given a RPN N = (S, C, δ), an initial configuration σ1, and a final configuration σ2, we will
construct a PDA A = (Q,Γ,Σ,R) and two processes P , Q of A in exponential time such
that

σ2 is coverable from σ1 if and only if P 6∼ Q. (?)

Reduction Overview. Our reduction encodes the run of N from configuration σ1 as a
bisimulation game for (P,Q). In the bisimulation game, Attacker aims to show that σ2 is
coverable from σ1, while Defender aims to show the opposite.

In order to complete the reduction, we should pay attention to the following aspects.
A configuration σ′ of N corresponds to a game for (P ′, Q′) in the sense that the state
and counter values of σ′ are both encoded on the stack of both P ′ and Q′.
To track the counters in the run from σ, the bisimulation game pushes every counter
operation from the initial configuration on the stacks. Observe that the value of a counter
of N can never become negative. Our reduction will guarantee that Attacker can never
cheat by decreasing a counter with value zero. This is fulfilled by Defender’s forcing. More
specifically, for every DEC(ci) operation, Defender has the power to verify its validity by
initiating what we shall call a zero check for ci.
If a configuration that covers σ2 is reached, Attacker wins the game. In the reduction, we
will introduce a special witness action f . When a configuration σ ≥ σ2 is reached, the
game will finally come into some (P ′, Q′) where P ′ can do action f while Q′ cannot.

As mentioned earlier, the basic idea of our reduction follows from [9], where Ackermann-
hardness is proven for the bisimilarity problem of first-order grammars. However, as what
will become clear in Section 4, first-order grammars are strictly more powerful than PDA
w.r.t. bisimilarity. Here we highlight the main differences between our reduction and the
one in [9].

The reduction in [9] records the increasing and decreasing operations of d counters into
2d sub-processes (i.e. sub-terms in the terminology of first-order grammars). These
sub-processes can work “in parallel” and be accessed without being interfered by each
other. Zero check of a specific counter is achieved by skipping irrelevant sub-processes
and comparing the relevant ones directly. Due to the sequential nature of stacks, this is
beyond the reach of (real-time) PDA (see also Section 4). Instead, the increasing and
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decreasing operations recorded on the stack are interfered by each other unavoidably. To
check zero for a counter, we introduce a novel mechanism by comparing the stack as a
whole (Lemma 11).
Our reduction uses d+1 PDA control states to encode a RPN with d counters. This yields
a Fd−1-hardness result, a first parametric lower-bound for the bisimilarity problem for
PDA. In contrast, parametric complexity is not studied in [9]. Moreover, if we transform
the reduction for first-order grammars [9] directly to a new reduction for PDA, the
resulting PDA would require (i) at least 2d control states and (ii) popping ε-rules.

I Remark 8. In [9], the Ackermann-hardness for bisimilarity of FOG is established by
reduction from the control state reachability problem of RPN. When the counters in the
configurations of RPN are given in binary, the coverability problem of RPN is equivalent to
the control state reachability problem under exponential time reduction. Incorporating the
counter encoding and zero check trick into the reduction of [9], we can get the Ackermann-
hard lower bound for bisimilarity of PDA as well. The main reason that we choose the
coverability problem of RPN instead is to build a parametric lower bound under polynomial
time reduction.

The Reduction. We fix a RPN N = (S, C, δ), an initial configuration σ1 = (ts, n1, . . . , nd),
a final configuration σ2 = (tf ,m1, . . . ,md) in this subsection. The corresponding PDA
A = (Q,Γ,Σ,R) and two processes P , Q are defined as follows.

1. We introduce d+ 1 control states:

Q def= {p, q1, q2, . . . , qd}

Here q1, q2, . . . , qd correspond to c1, c2, . . . , cd of C, respectively. The usage of state p
will become clear later.

2. To record the operations on counters in C, we introduce the following stack symbols:

ΓC
def= {X+

i , X
–
i , X

0
i : i = 1, 2, . . . , d} ⊆ Γ

Here X+
i , X

–
i and X0

i represent operations INC(ci), DEC(ci) and RESET(ci), respectively.
3. To record the states of N , for every state s ∈ S, we introduce a pair of stack symbols:

{Ys, Y ′s} ⊆ Γ

4. The two processes P and Q of the initial bisimulation game configuration are defined by

P
def= pYs(X+

1 )n1 . . . (X+
d )nd Q

def= pY ′s (X+
1 )n1 . . . (X+

d )nd

In the rest of this subsection, we will complete the definition of A to validate property (?).
We start with encoding counters of N on the stacks of PDA processes. We then introduce
rules for A to manipulate counters and perform zero checks. Last we show how to verify the
coverability property in bisimulation games.

Counter Encoding. For each i = 1, 2, . . . , d, we introduce a function counti : ΓC∗ → Z. Let
α = XnXn−1 . . . X1 ∈ ΓC∗. Intuitively, counti(α) computes the value of ci after a sequence of
operations X1, X2, . . . , Xn. More specifically, let Ki be the largest index such that XKi

= X0
i ,

i.e., the leftmost occurrence of a reset operation of counter ci. If X0
i does not appear in α,

then Ki = 0. Let Ii and Di be the respective numbers of occurrences of X+
i and X–

i in the
subsequence XnXn−1 . . . XKi+1 of α. The function counti is defined by counti(α) = Ii −Di.

ICALP 2020
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I Remark 9. Since the counters in reset Petri net cannot be negative, some strings, e.g.
X–

1X
–
1X

+
1 , are invalid. For simplicity, the functions counti are defined on all strings in ΓC∗.

I Example 10. count1(X+
2 X

0
1X

+
2 X

+
1 ) = 0 and count2(X+

2 X
0
1X

+
2 X

+
1 ) = 2.

We next introduce rules for counter manipulations. The PDA processes record every
operation to the counters on their stacks. The trick here is to avoid invalid operations on
counters. For example, at configuration (pYsX–

1X
+
1 , pY

′
sX

–
1X

+
1 ), the counter c1 is zero and

it is not supposed to push another X–
1 . Here we use the Defender’s forcing technique to fulfill

this goal. Defender has a chance to force Attacker to check whether a decrease operation is
valid. If it is not valid, Defender can win the game.

Counter Manipulation. For each instruction I = (s, op, t) of N , we introduce a set of PDA
rules to R for counter manipulations as follows.

If op = INC(ci), we introduce (pYs, pY ′s ) ATT
↪−−→ (pYtX+

i , pY
′
tX

+
i ).

If op = RESET(ci), we introduce (pYs, pY ′s ) ATT
↪−−→ (pYtX0

i , pY
′
tX

0
i ).

If op = DEC(ci), we introduce (pYs, pY ′s ) DEF
↪−−→ {(pYtX–

i , pY
′
tX

–
i ), (p, qi)}.

We will make more comments on the decrease operation. The control states q1, q2, . . . , qd
are mainly used to zero check the counters c1, c2, . . . , cd, respectively. In the sequel, we
will introduce some rules to ensure the correctness of zero checks as stated in the following
lemma.

I Lemma 11. qiα ∼ pα if and only if counti(α) = 0, where α ∈ ΓC∗.

By Lemma 11, if Attacker intends to do an invalid decrease operation on counter ci, Defender
can force the game to the branch of (p, qi) and win. If Attacker intends to do a valid decrease
operation on counter ci, Defender would lose in the branch of (p, qi). In that case, Defender
will force the game to the branch of (pYtX–

i , pY
′
tX

–
i ) and the game continues.

Zero Check. We introduce the following rules to ensure the correctness of zero check. For
the sake of concision, we introduce another macro rule. Given w = a1a2 . . . an, we use
pX

w
↪−→ qα to stand for the sequence of transitions pX a1−−→ pX1

a2−−→ . . .
an−1−−−→ pXn−1

an−−→ qα.
Note that these macro rules do not introduce any new state. All the stack symbols introduced
in these macro rules are fresh.

pX
bpopbpop

↪−−−−−→ p For X ∈ ΓC
qiX

–
i

bpop

↪−−→ qi For i = 1, 2, . . . , d

qiX
+
i

bpopbpopbpop

↪−−−−−−−−→ qi For i = 1, 2, . . . , d

qiX
0
i

bpopbpop

↪−−−−−→ p For i = 1, 2, . . . , d

qiX
bpopbpop

↪−−−−−→ qi For i = 1, 2, . . . , d, X ∈ ΓC \ {X–
i , X

+
i , X

0
i }

Proof of Lemma 11. Observe that the bisimilarity between qiα and pα only depends on the
total numbers of consecutive actions bpop from qiα and pα. Process pα can do action bpop twice
for every stack symbol. Process qiα can do three bpop actions for each X+

i and one bpop action
for each X–

i before it meets the first X0
i . Let Ii and Di be the numbers of X+

i and X–
i before

it meets the first X0
i . It follows that qiα ∼ pα if and only if 3Ii +Di + 2(|α|− Ii−Di) = 2|α|.

Note that counti(α) = Ii −Di. Thus qiα ∼ pα if and only if counti(α) = 0. J
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I Remark 12. The implementation of counters and their zero check mechanism is the main
technical difference of our reduction from the one for first-order grammars [9]. The reduction
in [9] compares the increasing and decreasing operations of a counter directly, by skipping
non-relevant operations. As will be seen in Section 4, the ability to skip non-relevant
operations also makes first-order grammars more powerful than PDA.

Coverability Check. When the game reaches (pYtfα, pY ′tfα), Attacker can initiate a cover-
ability check. Then Defender will choose a counter ci and check if counti(α) ≥ mi. To this
end, we introduce d+ 1 pairs of stack symbols (Z1, Z

′
1), . . . (Zd+1, Z

′
d+1) for counter choice.

For each 1 ≤ i ≤ d, we introduce mi + 1 pairs of stack symbols (Zi,0, Z ′i,0), . . . , (Zi,mi
, Z ′i,mi

)
for coverability check of counter ci.

(1). We first add rules to check coverability of a specific counter ci (1 ≤ i ≤ d). For the
pair (pZi,n, pZ ′i,n), where 0 ≤ n ≤ mi, we introduce the following rules.

(pZi,n, pZ ′i,n) DEF
↪−−→ {(pZi,n−1X

–
i , pZ

′
i,n−1X

–
i ), (p, qi)};

pZi,0
f−−→ p, pZ ′i,0

bpop−−−→ p.

If counti(α) < mi, then by Defender’s forcing, Defender can push counti(α) number of
X–
i to the stack and the game reaches (pγα, piγα), where γ = (X–

i )counti(α). By Lemma 11,
Defender wins. If counti(α) ≥ mi, Defender’s best strategy would lead the game into a
configuration (pZi,0βα, pZ ′i,0βα) where β = (X–

i )mi . Attacker wins since pZi,0βα admits a
fresh action f , while pZ ′i,0βα does not. As a result, we have the following lemma.

I Lemma 13. pZi,mi
α ∼ pZ ′i,mi

α if and only if counti(α) < mi, where α ∈ Γ∗.

(2). We next introduce the following rules to help Defender pick a specific counter to
perform coverability check.

(pYtf , pY ′tf ) ATT
↪−−→ (pZ1, pZ

′
1);

(pZi, pZ ′i)
DEF
↪−−→ {(pZi,mi , pZ

′
i,mi

), (pZi+1, pZ
′
i+1)} for i = 1, 2, . . . , d;

pZd+1
f−−→ p, pZ ′d+1

bpop−−−→ p.

Suppose that Attacker initiates a coverability check and the game reaches (pZ1α, pZ
′
1α).

Defender can choose a specific counter to verify by Defender’s forcing. Indeed if counti(α) <
mi for some 1 ≤ i ≤ d, Defender can force the game to (pZi,mi

α, pZ ′i,mi
α). By Lemma 13,

Defender wins. If counti(α) ≥ mi for all 1 ≤ i ≤ d, then Defender’s best strategy is leading
the game to configuration (pZd+1α, pZ

′
d+1α). Attacker wins via a fresh action f .

I Proposition 14. The coverability problem of RPN (with d counters) can be reduced to the
complement of the bisimilarity problem for PDA (with d+ 1 states) in exponential time.

Proof. We construct the reduction as described in the section and prove the property (?).
(⇒). If (tf ,m1, . . . ,md) is coverable from (ts, n1, . . . , nd), then there exists a configuration

(tf ,m′1, . . . ,m′d) ≥ (tf ,m1, . . . ,md), which is reachable from (ts, n1, . . . , nd). We describe
a winning strategy for Attacker. Attacker simply follows the path from (ts, n1, . . . , nd) to
(tf ,m′1, . . . ,m′d). Since every decrease operation is valid, Defender will not ask for zero
checks. The bisimulation game will reach (pYtfα, pY ′tfα) such that counti(α) = m′i for each
i ∈ {1, 2, . . . , d}. Attacker starts a coverability check and wins the game.
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(⇐). If (tf ,m1, . . . ,md) is not coverable from (ts, n1, . . . , nd), we describe a winning strategy
for Defender. Defender just follows what Attacker does and asks for zero check if Attacker
tries to decrease a zero counter. Whenever the game reaches (pYtfβ, pY ′tfβ) for some β ∈ Γ∗,
there exists some i ∈ {1, 2, . . . , d}, counti(β) < mi. If Attacker asks for a coverability check,
then Defender can choose to verify the value of counter ci. By Lemma 13, Defender wins. If
Attacker never initiates a coverability check, Defender also wins as it will never get stuck. J

By Theorem 7 and Proposition 14, we have our main result Theorem 4. Observe that it
is safe to introduce rules pYs

bpop−−−→ p and pY ′s
bpop−−−→ p for every s ∈ S since these transitions

will never be chosen by Attacker (or Attacker loses immediately). As a result, the PDA A is
normed and our lower bound can be generalized to the normed case.

I Corollary 15. The bisimilarity problem of normed PDA is Ackermann-complete and is
Fd−1-hard if the number of control states is d ≥ 4.

3.3 A Polynomial Time Reduction

Although an elementary reduction suffices for our purpose, we show that the exponential time
reduction can be actually revised to be polynomial. There are two exponential factors in the
reduction presented in Section 3.2: (i) the size of the initial configuration of the bisimulation
game can be exponentially large; and (ii) the number of rules for coverability check can be
exponentially many. We eliminate both by incorporating a binary representation of counters.

Counter Binary Encoding. Let m be the maximal number occurs in the initial and final
configuration of N , and k the smallest number such that 2k ≥ m. For every counter ci,
we introduce two new stack symbols X+

i,j and X–
i,j for each j ∈ {0, 1, . . . , k}. Intuitively,

X+
i,j (resp. X–

i,j) represents 2j increasing (resp. decreasing) operations on counter ci. Stack
symbol X0

i is still used to represent operation RESET(ci). We then replace the initial game
configuration by this binary representation. The function counti can also be revised easily
by taking the binary representation into account. We omit the details.

I Example 16. An initial RPN configuration σ1 = (s, 6, 3) can be encoded by a game
configuration (pYsX+

1,2X
+
1,1X

+
2,1X

+
2,0, pY

′
sX

+
1,2X

+
1,1X

+
2,1X

+
2,0).

We next revise the rules to make zero check and coverability check work.

Zero Check. We introduce new rules for X+
i,j and X–

i,j for zero check, where 0 ≤ j ≤ k.

pX+
i,j

bpopbpop

↪−−−−−→ pX+
i,j−1 . . . X

+
i,0, pX+

i,0
bpopbpop

↪−−−−−→ p;

pX–
i,j

bpopbpop

↪−−−−−→ pX–
i,j−1 . . . X

–
i,0, pX–

i,0
bpopbpop

↪−−−−−→ p;

qiX
+
i,j

bpopbpopbpop

↪−−−−−−−−→ qiX
+
i,j−1 . . . X

+
i,0, qiX

+
i,0

bpopbpopbpop

↪−−−−−−−−→ qi;

qiX
–
i,j

bpop

↪−−→ qiX
–
i,j−1 . . . X

–
i,0, qiX

–
i,0

bpop

↪−−→ qi;

Note that besides the rules introduced above, we keep the rule qiX0
i

bpopbpop

↪−−−−−→ p for
i ∈ {1, . . . , d}. Lemma 11 is still valid and can be proved along the same line.
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Coverability Check. Let mi be the value of ci in the final configuration σ2 and ki be the
least number such that 2ki − 1 ≥ mi. We replace the rules for (pZi,j , pZ ′i,j) (0 ≤ j ≤ mi) by

(pZi,mi , pZ
′
i,mi

) ATT
↪−−→ (pWi,0β, pW

′
i,0β), (pWi,ki , pW

′
i,ki

) ATT
↪−−→ (p, qi);

(pWi,j , pW
′
i,j)

DEF
↪−−→ {(pWi,j+1X

–
i,j , pW

′
i,j+1X

–
i,j), (pWi,j+1, pW

′
i,j+1)} (0 ≤ j < ki)

Here Wi,0, . . . , Wi,ki
are new stack symbols for coverability check and β consists of the

binary stack symbols introduced above such that counti(β) = 2ki −mi.
We show that Lemma 13 still holds. Consider the bisimulation game for (pZi,mi

α, pZ ′i,mi
α).

Intuitively, the coverability check starts with increasing counter ci with 2ki −mi. After that,
Defender decreases ci by a combination of ki choices and the game reaches a configuration
(pγα, qiγα). If counti(α) < mi, Defender can pick γ such that counti(γα) = 0. By Lemma 11,
Defender wins. If counti(α) ≥ mi, then counti(α) + (2ki −mi)− (2ki − 1) > 0. The counter
ci can never be decreased to zero and Attacker wins.

4 Relative Expressiveness of PDA

First-order grammars have close relationship with pushdown automata [7, 9, 10], as they are
equivalent to PDA with deterministic and popping ε-rules. More specifically, any process T
definable in a first-order grammar can be encoded into a PDA process P with deterministic
and popping ε-rules, and vice versa. The processes T and P are weakly bisimilar. In the
real-time case, i.e, when no ε-rules is allowed, FOG have strictly richer behaviours than PDA.
This can be proved by considering the transition graph of real-time PDA and PDA with
deterministic ε-rules (see, e.g., [3], Proposition 5.8).

Nevertheless, to build better intuition for this result and also demonstrate why the original
reduction in [9] cannot be directly applied to real-time PDA, we give another proof in this
section to show that FOG are strictly stronger than PDA, as far as bisimilarity is considered.

To avoid introducing the definition of FOG, we construct a special PDA with deterministic
and popping ε-rules and show that it can define a process which cannot be bisimulated by
any real-time PDA process. The special PDA A contains the following rules:

pX0
a−−→ pX, pX

a−−→ pXX, pX
b−−→ pY X, pY

b−−→ pY Y ;
pY

c−−→ p1Y , pY
d−−→ p2Y ;

p1Y
ε−−→ p1, p1X

a−−→ p1, p2Y
b−−→ p2, p2X

ε−−→ p2.

Observe that pX0 can do actions ambn and record m and n by pushing Y mXn into stack.
The popping ε-rules enable the process to recover the information of m or n immediately (via
doing actions am after c or actions bn after d). We will show that such ε-rules are necessary
in the sense that no real-time PDA is weakly bisimilar to A. Intuitively, any real-time PDA
process, after executing actions ambn, cannot access both the information of m and n on the
stack without undesired interference. The necessity of ε-rules is also the basic reason why
the reduction in the hardness proof for first-order grammars [9] fails for real-time PDA.

I Proposition 17. For any real-time PDA process O, O 6≈ pX0.

A direct consequence is that first-order grammars are strictly stronger that PDA. Indeed,
following the transformation in [10], one can construct a process T in a first-order grammar
such that (i) T ≈ pX0 and (ii) T has no ε transitions (the ε transitions are absorbed in FOG
during transformation). As a result T cannot be related to any PDA process by bisimilarity.

I Corollary 18. There exists a process T definable by a first-order grammar, such that for
any real-time PDA process O, O 6∼ T .
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We prove Proposition 17 in the rest of this section. To do that, we need a useful pumping
property of pushdown automata. We say a transition sequence ξ : P0

a1−−→ P1
a2−−→ . . .

ak−−→ Pk
is non-sinking if |Pi| ≥ |P0| for 1 ≤ i ≤ k. Moreover, ξ is pumpable if (i) ξ is non-sinking and
(ii) P0 = pZα and Pk = pZβα for some p ∈ Q, Z ∈ Γ, α ∈ Γ∗, and β ∈ Γ+.

I Lemma 19. Suppose that P0 is a PDA process defined in A = (Q,Γ,Σ,R) and it holds that
|α| ≤ 2 for each (p,X, a, q, α) ∈ R. If there exists a transition sequence ξ : P0

a1−−→ P1
a2−−→

. . .
an−−→ Pn such that (i) n ≥ |P0| · (|Q||Γ|+ 1)|Q||Γ|+1 and (ii) Pi 6∼ Pj (∀i 6= j, 0 ≤ i, j ≤ n),

then ξ contains a pumpable transition subsequence.

Proof. Let ξ′ : Q0
b1−−→ Q1

b2−−→ . . .
bm−−→ Qm be a non-sinking transition sequence such that

Qi 6∼ Qj (∀i 6= j). Denote by type(ξ′) the set of different pairs of state and top stack symbol
that occur in ξ′. More specifically, type(ξ′) def= {(q, Z) : there is a process qZβ in ξ′}. It is
sufficient to prove the following property:

if m ≥ (|type(ξ′)|+ 1)|type(ξ′)|+1, then ξ′ contains a pumpable transition subsequence. (??)

Our lemma is established by observing that ξ contains a non-sinking subsequence ξ′ of length
at least (|Q||Γ|+ 1)|Q||Γ|+1. Suppose otherwise, then in less than |P0| · (|Q||Γ|+ 1)|Q||Γ|+1

steps P0 will reach a process p′ε for some p′ ∈ Q. This contradicts with our assumption (i).
We next prove (??) by induction on |type(ξ′)|.

|type(ξ′)| = 1. It is trivial since ξ′ is pumpable.
|type(ξ′)| = k+1. By assumption, ξ′ is of length at least (k+2)k+2. Since ξ′ is non-sinking
and any two processes in ξ′ are not equal, there are no more than k other processes of
the size |Q0|. By removing these (shortest) processes, we get at most k + 1 transition
subsequences. There must be a sequence (denoted as ξ′′) of length at least (k + 1)k+1.
By assumption of A, the stack height will increase at most by one in a transition. It
follows that ξ′′ is non-sinking. Let Q0 = qZα. If (q, Z) ∈ type(ξ′′), say Qj = qZβα, then
Q0

b1−−→ . . .
bj−−→ Qj is pumpable. Otherwise |type(ξ′′)| = k. By induction hypothesis, ξ′′

contains a pumpable transition subsequence. J

We are ready to prove Proposition 17.

Proof of Proposition 17. Suppose otherwise and let O be a process of a real-time PDA
B = (Q,Γ,Σ,R) and O ≈ pX0. W.l.o.g., we assume that |α| ≤ 2 for each (p,X, q, α) ∈ R.
Let N = |Q||Γ|+ 1 and m ≥ 1. Consider the following transition sequence of pX0

pX0
am

−−→ pXm b−−→ pY Xm b−−→ . . .
b−−→ pY nXm. (2)

Since O ≈ pX0 and O is real-time, there exists Om,i (0 ≤ i ≤ n) such that

O
am

−−→ Om,0
b−−→ Om,1

b−−→ . . .
b−−→ Om,n (3)

and Om,i ≈ pY iXm for 0 ≤ i ≤ n. Observe that pY iXm 6≈ pY jXm (∀i 6= j). Hence
Om,i 6∼ Om,j (∀i 6= j). Let n = |Om,0|NN . By Lemma 19, we can find q ∈ Q and Z ∈ Γ
such that
(i) qZα = Om,s and qZβα = Om,t for some 0 ≤ s < t ≤ n, α ∈ Γ∗ and β ∈ Γ+; and
(ii) the transition subsequence of Om,s

b−−→ Om,s+1
b−−→ . . .

b−−→ Om,t is pumpable.
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Let k = t− s, we can repeat the pumpable transition sequence as many times as we want

qZα
bk

−→ qZβα
bk

−→ qZββα
bk

−→ . . . (4)

As qZα = Om,s ≈ pY sXm, the above sequence must be simulated by

pY sXm bk

−→ pY s+kXm bk

−→ pY s+2kXm bk

−→ . . . (5)

such that qZβiα ≈ pY s+kiXm for i ≥ 0.
For different m, we can have different transition sequences (4) and (5), possibly with

different s > 0, k > 0, q ∈ Q, Z ∈ Γ, α ∈ Γ∗ and β ∈ Γ+. By the pigeonhole principle,
there are two different numbers 1 ≤ m1 < m2 ≤ N so that q and Z are the same in
transition sequence (4). Assume w.l.o.g. that qZα1 = Om1,s1 ≈ pY s1Xm1 , qZα2 = Om2,s2 ≈
pY s2Xm2 and qZ bk1

−−→ qZβ1 for some s1, s2, k1 > 0, α1, α2 ∈ Γ∗ and β1 ∈ Γ+. The actions
Om1,s1

bk1·N

−−−→ qZβN1 α1 must be simulated by pY s1Xm1 bk1·N

−−−→ pY s1+k1·NXm1 . Similarly
Om2,s2

bk1·N

−−−→ qZβN1 α2 must be simulated by pY s2Xm2 bk1·N

−−−→ pY s2+k1·NXm2 . We also have
that pY s1+k1·NXm1 ≈ qZβN1 α1 and pY s2+k1·NXm2 ≈ qZβN1 α2.

Consider the following transition sequence of pY s2+k1·NXm2

pY s2+k1·NXm2 c−−→ p1Y
s2+k1·NXm2 ε==⇒ p1X

m2 am1+1

−−−−→ p1X
m2−m1−1. (6)

It can be matched by qZβN1 α2
cam+1

−−−−→ P1 for some P1. Since qZβN1 α2 is real-time and
N ≥ m1+1, the actions cam1+1 from qZβN1 α2 only depend on qZβN1 . Thus qZβN1 α1

cam1+1

−−−−−→
Q for some Q. This contradicts with qZβN1 α1 ≈ pY s1+k1·NXm1 , since after transition
pY s1+k1·NXm1 c−−→ p1Y

s1+k1·NXm1 , the longest non-ε action sequence is am1 . J

5 Conclusion

In this paper, we show that the bisimilarity of PDA is Ackermann-hard. Combining with
the result in [10], we can conclude that the bisimilarity of PDA is Ackermann-complete.
The result can be generalized to normed PDA. Besides, we give another proof on that the
so-called real-time pushdown processes are strictly weaker than first-order grammars. Our
work answers the question proposed by Jančar and Schmitz in [10].

When the number of control states of PDA is fixed as d ≥ 4, bisimilarity is Fd−1-hard.
An obvious open problem is to close the complexity gap with the Fd+4 upper bound in [10].
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