35 research outputs found

    Event Representations with Tensor-based Compositions

    Full text link
    Robust and flexible event representations are important to many core areas in language understanding. Scripts were proposed early on as a way of representing sequences of events for such understanding, and has recently attracted renewed attention. However, obtaining effective representations for modeling script-like event sequences is challenging. It requires representations that can capture event-level and scenario-level semantics. We propose a new tensor-based composition method for creating event representations. The method captures more subtle semantic interactions between an event and its entities and yields representations that are effective at multiple event-related tasks. With the continuous representations, we also devise a simple schema generation method which produces better schemas compared to a prior discrete representation based method. Our analysis shows that the tensors capture distinct usages of a predicate even when there are only subtle differences in their surface realizations.Comment: Accepted at AAAI 201

    Compositional Distributional Semantics with Compact Closed Categories and Frobenius Algebras

    Full text link
    This thesis contributes to ongoing research related to the categorical compositional model for natural language of Coecke, Sadrzadeh and Clark in three ways: Firstly, I propose a concrete instantiation of the abstract framework based on Frobenius algebras (joint work with Sadrzadeh). The theory improves shortcomings of previous proposals, extends the coverage of the language, and is supported by experimental work that improves existing results. The proposed framework describes a new class of compositional models that find intuitive interpretations for a number of linguistic phenomena. Secondly, I propose and evaluate in practice a new compositional methodology which explicitly deals with the different levels of lexical ambiguity (joint work with Pulman). A concrete algorithm is presented, based on the separation of vector disambiguation from composition in an explicit prior step. Extensive experimental work shows that the proposed methodology indeed results in more accurate composite representations for the framework of Coecke et al. in particular and every other class of compositional models in general. As a last contribution, I formalize the explicit treatment of lexical ambiguity in the context of the categorical framework by resorting to categorical quantum mechanics (joint work with Coecke). In the proposed extension, the concept of a distributional vector is replaced with that of a density matrix, which compactly represents a probability distribution over the potential different meanings of the specific word. Composition takes the form of quantum measurements, leading to interesting analogies between quantum physics and linguistics.Comment: Ph.D. Dissertation, University of Oxfor

    A Markovian approach to distributional semantics with application to semantic compositionality

    Get PDF
    International audienceIn this article, we describe a new approach to distributional semantics. This approach relies on a generative model of sentences with latent variables, which takes the syntax into account by using syntactic dependency trees. Words are then represented as posterior distributions over those latent classes, and the model allows to naturally obtain in-context and out-of-context word representations, which are comparable. We train our model on a large corpus and demonstrate the compositionality capabilities of our approach on different datasets

    Current trends

    Get PDF
    Deep parsing is the fundamental process aiming at the representation of the syntactic structure of phrases and sentences. In the traditional methodology this process is based on lexicons and grammars representing roughly properties of words and interactions of words and structures in sentences. Several linguistic frameworks, such as Headdriven Phrase Structure Grammar (HPSG), Lexical Functional Grammar (LFG), Tree Adjoining Grammar (TAG), Combinatory Categorial Grammar (CCG), etc., offer different structures and combining operations for building grammar rules. These already contain mechanisms for expressing properties of Multiword Expressions (MWE), which, however, need improvement in how they account for idiosyncrasies of MWEs on the one hand and their similarities to regular structures on the other hand. This collaborative book constitutes a survey on various attempts at representing and parsing MWEs in the context of linguistic theories and applications

    Representation and parsing of multiword expressions

    Get PDF
    This book consists of contributions related to the definition, representation and parsing of MWEs. These reflect current trends in the representation and processing of MWEs. They cover various categories of MWEs such as verbal, adverbial and nominal MWEs, various linguistic frameworks (e.g. tree-based and unification-based grammars), various languages including English, French, Modern Greek, Hebrew, Norwegian), and various applications (namely MWE detection, parsing, automatic translation) using both symbolic and statistical approaches

    Similarity Models in Distributional Semantics using Task Specific Information

    Get PDF
    In distributional semantics, the unsupervised learning approach has been widely used for a large number of tasks. On the other hand, supervised learning has less coverage. In this dissertation, we investigate the supervised learning approach for semantic relatedness tasks in distributional semantics. The investigation considers mainly semantic similarity and semantic classification tasks. Existing and newly-constructed datasets are used as an input for the experiments. The new datasets are constructed from thesauruses like Eurovoc. The Eurovoc thesaurus is a multilingual thesaurus maintained by the Publications Office of the European Union. The meaning of the words in the dataset is represented by using a distributional semantic approach. The distributional semantic approach collects co-occurrence information from large texts and represents the words in high-dimensional vectors. The English words are represented by using UkWaK corpus while German words are represented by using DeWaC corpus. After representing each word by the high dimensional vector, different supervised machine learning methods are used on the selected tasks. The outputs from the supervised machine learning methods are evaluated by comparing the tasks performance and accuracy with the state of the art unsupervised machine learning methods’ results. In addition, multi-relational matrix factorization is introduced as one supervised learning method in distributional semantics. This dissertation shows the multi-relational matrix factorization method as a good alternative method to integrate different sources of information of words in distributional semantics. In the dissertation, some new applications are also introduced. One of the applications is an application which analyzes a German company’s website text, and provides information about the company with a concept cloud visualization. The other applications are automatic recognition/disambiguation of the library of congress subject headings and automatic identification of synonym relations in the Dutch Parliament thesaurus applications

    D6.1: Technologies and Tools for Lexical Acquisition

    Get PDF
    This report describes the technologies and tools to be used for Lexical Acquisition in PANACEA. It includes descriptions of existing technologies and tools which can be built on and improved within PANACEA, as well as of new technologies and tools to be developed and integrated in PANACEA platform. The report also specifies the Lexical Resources to be produced. Four main areas of lexical acquisition are included: Subcategorization frames (SCFs), Selectional Preferences (SPs), Lexical-semantic Classes (LCs), for both nouns and verbs, and Multi-Word Expressions (MWEs)

    Proceedings of the Conference on Natural Language Processing 2010

    Get PDF
    This book contains state-of-the-art contributions to the 10th conference on Natural Language Processing, KONVENS 2010 (Konferenz zur Verarbeitung natĂĽrlicher Sprache), with a focus on semantic processing. The KONVENS in general aims at offering a broad perspective on current research and developments within the interdisciplinary field of natural language processing. The central theme draws specific attention towards addressing linguistic aspects ofmeaning, covering deep as well as shallow approaches to semantic processing. The contributions address both knowledgebased and data-driven methods for modelling and acquiring semantic information, and discuss the role of semantic information in applications of language technology. The articles demonstrate the importance of semantic processing, and present novel and creative approaches to natural language processing in general. Some contributions put their focus on developing and improving NLP systems for tasks like Named Entity Recognition or Word Sense Disambiguation, or focus on semantic knowledge acquisition and exploitation with respect to collaboratively built ressources, or harvesting semantic information in virtual games. Others are set within the context of real-world applications, such as Authoring Aids, Text Summarisation and Information Retrieval. The collection highlights the importance of semantic processing for different areas and applications in Natural Language Processing, and provides the reader with an overview of current research in this field
    corecore