332,067 research outputs found

    Dynamic priority based reliable real-time communications for infrastructure-less networks

    Get PDF
    This paper proposes a dynamic priority system at medium access control (MAC) layer to schedule time sensitive and critical communications in infrastructure-less wireless networks. Two schemes, priority enabled MAC (PE-MAC) and optimized PE-MAC are proposed to ensure real-time and reliable data delivery in emergency and feedback systems. These schemes use a dynamic priority mechanism to offer improved network reliability and timely communication for critical nodes. Both schemes offer a notable improvement in comparison to the IEEE 802.15.4e low-latency deterministic networks. To ensure more predictable communication reliability, two reliability centric schemes, quality-ensured scheme (QES) and priority integrated QES, are also proposed. These schemes maintain a pre-specified successful packet delivery rate, hence improving the overall network reliability and guaranteed channel access

    Dynamic priority based reliable real-time communications for infrastructure-less networks

    Get PDF
    This paper proposes a dynamic priority system at medium access control (MAC) layer to schedule time sensitive and critical communications in infrastructure-less wireless networks. Two schemes, priority enabled MAC (PE-MAC) and optimized PE-MAC are proposed to ensure real-time and reliable data delivery in emergency and feedback systems. These schemes use a dynamic priority mechanism to offer improved network reliability and timely communication for critical nodes. Both schemes offer a notable improvement in comparison to the IEEE 802.15.4e low-latency deterministic networks. To ensure more predictable communication reliability, two reliability centric schemes, quality-ensured scheme (QES) and priority integrated QES, are also proposed. These schemes maintain a pre-specified successful packet delivery rate, hence improving the overall network reliability and guaranteed channel access

    Improving VBR voice performance in integrated services broadband wireless networks

    Get PDF
    The integration of multimedia applications into future wireless networks is expected to accelerate the demand for incorporating broadband infrastructure into wireless arena. Providing an efficient broadband wireless infrastructure capable to carry a mixture of different services brings a large set of new technical challenges. The current wireless networks that have been designed to carry low bit-rate voice and data are not able to carry bandwidth consuming and delay sensitive multimedia traffic. Consequently fundamental changes at different layers of current technology used in wireless networks are required. In this thesis we focus on Medium Access Control protocols (MAC) suitable for broadband wireless networks. Wireless ATM (WATM) has been considered in this work. This is mainly because it is widely accepted that ATM is the foundation of future broadband networks and integrating ATM into wireless networks provides a seamless interface between wired and wireless environments. We investigate the major recent proposals for MAC protocols for broadband wireless networks and propose a new reservation mechanism for the reservation part of a FDD-based MAC protocol. This novel mechanism is called “Dynamic Hybrid Partitioning with Adjustable Repeat” which helps to improve the performance of the Variable Bit Rate (VBR) voice traffic in a broadband wireless network with integrated traffic. Through a number of simulation experiments based on AKAROA2 [Ewi99J, we analyze the different aspects of our proposed mechanism and show how it improves the performance of the VBR voice traffic sources in a network with different classes of traffic

    Improving VBR voice performance in integrated services broadband wireless networks

    Get PDF
    The integration of multimedia applications into future wireless networks is expected to accelerate the demand for incorporating broadband infrastructure into wireless arena. Providing an efficient broadband wireless infrastructure capable to carry a mixture of different services brings a large set of new technical challenges. The current wireless networks that have been designed to carry low bit-rate voice and data are not able to carry bandwidth consuming and delay sensitive multimedia traffic. Consequently fundamental changes at different layers of current technology used in wireless networks are required. In this thesis we focus on Medium Access Control protocols (MAC) suitable for broadband wireless networks. Wireless ATM (WATM) has been considered in this work. This is mainly because it is widely accepted that ATM is the foundation of future broadband networks and integrating ATM into wireless networks provides a seamless interface between wired and wireless environments. We investigate the major recent proposals for MAC protocols for broadband wireless networks and propose a new reservation mechanism for the reservation part of a FDD-based MAC protocol. This novel mechanism is called “Dynamic Hybrid Partitioning with Adjustable Repeat” which helps to improve the performance of the Variable Bit Rate (VBR) voice traffic in a broadband wireless network with integrated traffic. Through a number of simulation experiments based on AKAROA2 [Ewi99J, we analyze the different aspects of our proposed mechanism and show how it improves the performance of the VBR voice traffic sources in a network with different classes of traffic

    Empirical exploration of air traffic and human dynamics in terminal airspaces

    Full text link
    Air traffic is widely known as a complex, task-critical techno-social system, with numerous interactions between airspace, procedures, aircraft and air traffic controllers. In order to develop and deploy high-level operational concepts and automation systems scientifically and effectively, it is essential to conduct an in-depth investigation on the intrinsic traffic-human dynamics and characteristics, which is not widely seen in the literature. To fill this gap, we propose a multi-layer network to model and analyze air traffic systems. A Route-based Airspace Network (RAN) and Flight Trajectory Network (FTN) encapsulate critical physical and operational characteristics; an Integrated Flow-Driven Network (IFDN) and Interrelated Conflict-Communication Network (ICCN) are formulated to represent air traffic flow transmissions and intervention from air traffic controllers, respectively. Furthermore, a set of analytical metrics including network variables, complex network attributes, controllers' cognitive complexity, and chaotic metrics are introduced and applied in a case study of Guangzhou terminal airspace. Empirical results show the existence of fundamental diagram and macroscopic fundamental diagram at the route, sector and terminal levels. Moreover, the dynamics and underlying mechanisms of "ATCOs-flow" interactions are revealed and interpreted by adaptive meta-cognition strategies based on network analysis of the ICCN. Finally, at the system level, chaos is identified in conflict system and human behavioral system when traffic switch to the semi-stable or congested phase. This study offers analytical tools for understanding the complex human-flow interactions at potentially a broad range of air traffic systems, and underpins future developments and automation of intelligent air traffic management systems.Comment: 30 pages, 28 figures, currently under revie

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario
    corecore