11 research outputs found

    Joint segmentation of multivariate time series with hidden process regression for human activity recognition

    Full text link
    The problem of human activity recognition is central for understanding and predicting the human behavior, in particular in a prospective of assistive services to humans, such as health monitoring, well being, security, etc. There is therefore a growing need to build accurate models which can take into account the variability of the human activities over time (dynamic models) rather than static ones which can have some limitations in such a dynamic context. In this paper, the problem of activity recognition is analyzed through the segmentation of the multidimensional time series of the acceleration data measured in the 3-d space using body-worn accelerometers. The proposed model for automatic temporal segmentation is a specific statistical latent process model which assumes that the observed acceleration sequence is governed by sequence of hidden (unobserved) activities. More specifically, the proposed approach is based on a specific multiple regression model incorporating a hidden discrete logistic process which governs the switching from one activity to another over time. The model is learned in an unsupervised context by maximizing the observed-data log-likelihood via a dedicated expectation-maximization (EM) algorithm. We applied it on a real-world automatic human activity recognition problem and its performance was assessed by performing comparisons with alternative approaches, including well-known supervised static classifiers and the standard hidden Markov model (HMM). The obtained results are very encouraging and show that the proposed approach is quite competitive even it works in an entirely unsupervised way and does not requires a feature extraction preprocessing step

    Semi-supervised sequence classification through change point detection

    Full text link
    Sequential sensor data is generated in a wide variety of practical applications. A fundamental challenge involves learning effective classifiers for such sequential data. While deep learning has led to impressive performance gains in recent years in domains such as speech, this has relied on the availability of large datasets of sequences with high-quality labels. In many applications, however, the associated class labels are often extremely limited, with precise labelling/segmentation being too expensive to perform at a high volume. However, large amounts of unlabeled data may still be available. In this paper we propose a novel framework for semi-supervised learning in such contexts. In an unsupervised manner, change point detection methods can be used to identify points within a sequence corresponding to likely class changes. We show that change points provide examples of similar/dissimilar pairs of sequences which, when coupled with labeled, can be used in a semi-supervised classification setting. Leveraging the change points and labeled data, we form examples of similar/dissimilar sequences to train a neural network to learn improved representations for classification. We provide extensive synthetic simulations and show that the learned representations are superior to those learned through an autoencoder and obtain improved results on both simulated and real-world human activity recognition datasets.Comment: 14 pages, 9 figure

    Movement primitives as a robotic tool to interpret trajectories through learning-by-doing

    Get PDF
    Articulated movements are fundamental in many human and robotic tasks. While humans can learn and generalise arbitrarily long sequences of movements, and particularly can optimise them to fit the constraints and features of their body, robots are often programmed to execute point-to-point precise but fixed patterns. This study proposes a new approach to interpreting and reproducing articulated and complex trajectories as a set of known robot-based primitives. Instead of achieving accurate reproductions, the proposed approach aims at interpreting data in an agent-centred fashion, according to an agent's primitive movements. The method improves the accuracy of a reproduction with an incremental process that seeks first a rough approximation by capturing the most essential features of a demonstrated trajectory. Observing the discrepancy between the demonstrated and reproduced trajectories, the process then proceeds with incremental decompositions and new searches in sub-optimal parts of the trajectory. The aim is to achieve an agent-centred interpretation and progressive learning that fits in the first place the robots' capability, as opposed to a data-centred decomposition analysis. Tests on both geometric and human generated trajectories reveal that the use of own primitives results in remarkable robustness and generalisation properties of the method. In particular, because trajectories are understood and abstracted by means of agent-optimised primitives, the method has two main features: 1) Reproduced trajectories are general and represent an abstraction of the data. 2) The algorithm is capable of reconstructing highly noisy or corrupted data without pre-processing thanks to an implicit and emergent noise suppression and feature detection. This study suggests a novel bio-inspired approach to interpreting, learning and reproducing articulated movements and trajectories. Possible applications include drawing, writing, movement generation, object manipulation, and other tasks where the performance requires human-like interpretation and generalisation capabilities

    Feature Extraction for Change-Point Detection using Stationary Subspace Analysis

    Full text link
    Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change point detection, which is based on an extended version of Stationary Subspace Analysis. We reduce the dimensionality of the data to the most non-stationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data we show that the accuracy of three change point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring.Comment: 24 pages, 20 figures, journal preprin

    A Corpus-based Approach to the Chinese Word Segmentation

    Get PDF
    For a society based upon laws and reason, it has become too easy for us to believe that we live in a world without them. And given that our linguistics wisdom was originally motivated by the search for rules, it seems strange that we now consider these rules to be the exceptions and take exceptions as the norm. The current task of contemporary computational linguistics is to describe these exceptions. In particular, it suffices for most language processing needs, to just describe the argument and predicate within an elementary sentence, under the framework of local grammar. Therefore, a corpus-based approach to the Chinese Word Segmentation problem is proposed, as the first step towards a local grammar for the Chinese language. The two main issues with existing lexicon-based approaches are (a) the classification of unknown character sequences, i.e. sequences that are not listed in the lexicon, and (b) the disambiguation of situations where two candidate words overlap. For (a), we propose an automatic method of enriching the lexicon by comparing candidate sequences to occurrences of the same strings in a manually segmented reference corpus, and using methods of machine learning to select the optimal segmentation for them. These methods are developed in the course of the thesis specifically for this task. The possibility of applying these machine learning method will be discussed in NP-extraction and alignment domain. (b) is approached by designing a general processing framework for Chinese text, which will be called multi-level processing. Under this framework, sentences are recursively split into fragments, according to a language-specific, but domainindependent heuristics. The resulting fragments then define the ultimate boundaries between candidate words and therefore resolve any segmentation ambiguity caused by overlapping sequences. A new shallow semantical annotation is also proposed under the frame work of multi-level processing. A word segmentation algorithm based on these principles has been implemented and tested; results of the evaluation are given and compared to the performance of previous approaches as reported in the literature. The first chapter of this thesis discusses the goals of segmentation and introduces some background concepts. The second chapter analyses the current state-of-theart approach to Chinese language segmentation. Chapter 3 proposes a new corpusbased approach to the identification of unknown words. In chapter 4, a new shallow semantical annotation is also proposed under the framework of multi-level processing

    Bootstrapping movement primitives from complex trajectories

    Get PDF
    Lemme A. Bootstrapping movement primitives from complex trajectories. Bielefeld: Bielefeld University; 2014

    Lernen komplexer Aufgaben aus Demonstration und eigener Erfahrung

    Get PDF
    Heutige Industrieproduktionen wären nicht möglich ohne die Erfindung von Robotern, die effizient und präzise sich ständig wiederholende Aufgaben ausführen. Gleichzeitig stellt die industrielle Fertigung das bisher einzige Gebiet dar, in dem Roboter in großem Maßstab eingesetzt werden. Dabei gibt es auch in anderen Bereichen des Alltags Aufgaben, bei denen Roboter Menschen sinnvoll unterstützen können. Für die Entwicklung von Servicerobotern für diese neuen Einsatzgebiete ergeben sich eine Reihe von Herausforderungen. So ist etwa eine Programmierung, die ab Werk alle Ausprägungen der Aufgabe und Rahmenbedingungen berücksichtigt, nicht mehr praktikabel. In diesem Vortrag werden daher Verfahren vorgestellt, mit deren Hilfe Roboter die benötigten Fähigkeiten auf eine intuitive Art und Weise erlernen und sie bei Bedarf an neue Situationen anpassen und ergänzen können. Als Voraussetzung zum Erlernen von Aktionen wird zunächst ein Verfahren zur Segmentierung und Klassifizierung von Bewegungstrajektorien einerseits und zur Erzeugung generalisierter Bewegungen zwischen beliebigen Endpunkten andererseits vorgestellt. Durch den Einsatz einesiterativen Segmentierungs- und Klassifizierungsalgorithmus sowie eines gemeinsamen probabilistischen Aktionsmodells werden dabei systematische Segmentierungsfehler vermieden. Darauf aufbauend werden Lernverfahren vorgestellt, die Bestärkendes Lernen und Lernen aus Demonstrationen kombinieren, um Robotern das Lösen komplexer Aufgaben durch eine gezielte Kombination einfacher Fähigkeiten beizubringen. Dabei werden zunächst sequentielle Aufgaben betrachtet, bei denen die heterogene Zusammensetzung des Zustands- und Aktionsraumes sowie die variable Länge der zu lernenden Aktionssequenzen besondere Herausforderungen darstellen. Diesen begegnet der daraufhin vorgestellte Ansatz durch eine probabilistische Approximation der Nutzenfunktion über Zustands- und Aktionspaare mit einem speziell entwickelten, kombinierten Kernel. Diese Approximation liefert die Grundlage für eine Bayessche Explorationsstrategie, die auf der Optimierung der Erwarteten Veränderung basiert und ein effizientes Bestärkendes Lernen ermöglicht. Um eine bestmögliche Integration des Bestärkenden Lernens mit Expertenwissen aus Demonstrationen zu erreichen, wird ein mehrstufiges Entscheidungssystem genutzt, das in jeder Situation bestimmt, welches der beiden Lernmodule das geeignetere ist und so ein sicheres, aber gleichzeitig auch effizientes Lernen von Bewegungssequenzen ermöglicht. Um auch komplexe Aufgaben effizient lösen zu können, wird zu guter Letzt ein hierarchisches Lernverfahren vorgestellt, das durch Nutzung von Abstraktionsmöglichkeiten eine verbesserte Skalierbarkeit bietet. Dabei wird die MAXQ-Methode für hierarchisches Bestärkendes Lernen für die Nutzung in kontinuierlichen Zustandsräumen erweitert. Mittels einer Gauß-Prozess-Approximation der MAXQ-Zerlegung für jede Teilaufgabe werden dabei rekursiv probabilistische Schätzungen der Q-Werte entlang der Aufgabenhierarchie berechnet. Auf diese Weise kann das bereits erfolgreich zum Lernen von Aktionssequenzen eingesetzte Bayessche Explorationskriterium auch zum effizienten Lernen von MAXQ-Hierarchien angewandt werden.Darüber hinaus nutzt das Verfahren die hierarchische Aufgabenstruktur, um gezielt Demonstrationen nur für Aufgabenteile anfordern werden, in denen diese tatsächlich benötigt werden und somit unnötige redundante Demonstrationen zu vermeiden. Die vorgestellten Verfahrenwurden durch Experimente in einer simulierten Umgebung und auf einem humanoiden Roboter evaluiert

    Temporal Segmentation of Human Motion for Rehabilitation

    Get PDF
    Current physiotherapy practice relies on visual observation of patient movement for assessment and diagnosis. Automation of motion monitoring has the potential to improve accuracy and reliability, and provide additional diagnostic insight to the clinician, improving treatment quality, and patient progress. To enable automated monitoring, assessment, and diagnosis, the movements of the patient must be temporally segmented from the continuous measurements. Temporal segmentation is the process of identifying the starting and ending locations of movement primitives in a time-series data sequence. Most segmentation algorithms require training data, but a priori knowledge of the patient's movement patterns may not be available, necessitating the use of healthy population data for training. However, healthy population movement data may not generalize well to rehabilitation patients due to large differences in motion characteristics between the two demographics. In this thesis, four key contributions will be elaborated to enable accurate segmentation of patient movement data during rehabilitation. The first key contribution is the creation of a segmentation framework to categorize and compare different segmentation algorithms considering segment definitions, data sources, application specific requirements, algorithm mechanics, and validation techniques. This framework provides a structure for considering the factors that must be incorporated when constructing a segmentation and identification algorithm. The framework enables systematic comparison of different segmentation algorithms, provides the means to examine the impact of each algorithm component, and allows for a systematic approach to determine the best algorithm for a given situation. The second key contribution is the development of an online and accurate motion segmentation algorithm based on a classification framework. The proposed algorithm transforms the segmentation task into a classification problem by modelling the segment edge point directly. Given this formulation, a variety of feature transformation, dimensionality reduction and classifier techniques were investigated on several healthy and patient datasets. With proper normalization, the segmentation algorithm can be trained using healthy participant data and obtain high quality segments on patient data. Inter-participant and inter-primitive variability were assessed on a dataset of 30 healthy participants and 44 rehabilitation participants, demonstrating the generalizability and utility of the proposed approach for rehabilitation settings. The proposed approach achieves a segmentation accuracy of 83-100%. The third key contribution is the investigation of feature set generalizability of the proposed method. Nearly all segmentation techniques developed previously use a single sensor modality. The proposed method was applied to joint angles, electromyogram, motion capture, and force plate data to investigate how the choice of modality impacts segmentation performance. With proper normalization, the proposed method was shown to work with various input sensor types and achieved high accuracy on all sensor modalities examined. The proposed approach achieves a segmentation accuracy of 72-97%. The fourth key contribution is the development of a new feature set based on hypotheses about the optimality of human motion trajectory generation. A common hypothesis in human motor control is that human movement is generated by optimizing with respect to a certain criterion and is task dependent. In this thesis, a method to segment human movement by detecting changes to the optimization criterion being used via inverse trajectory optimization is proposed. The control strategy employed by the motor system is hypothesized to be a weighted sum of basis cost functions, with the basis weights changing with changes to the motion objective(s). Continuous time series data of movement is processed using a sliding fixed width window, estimating the basis weights of each cost function for each window by minimizing the Karush-Kuhn-Tucker optimality conditions. The quality of the cost function recovery is verified by evaluating the residual. The successfully estimated basis weights are averaged together to create a set of time varying basis weights that describe the changing control strategy of the motion and can be used to segment the movement with simple thresholds. The proposed algorithm is first demonstrated on simulation data and then demonstrated on a dataset of human subjects performing a series of exercise tasks. The proposed approach achieves a segmentation accuracy of 74-88%
    corecore