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ABSTRACT – BOOTSTRAPPING
MOVEMENT PRIMITIVES FROM

COMPLEX TRAJECTORIES
ANDRE LEMME

The impressive adaptive behavior of humans to approach tasks in everyday life is a desirable ability
also for robotic applications. This behavior, especially the applied motion skills, is not available right
after birth, but it is the result of a learning process. This learning process can acquire new motion
skills or refine existing skills with growing experience (i.e., training). The goal of this thesis is to build a
learning architecture which enables a robot to learn motion skills by means of a library of smaller motion
building blocks. At first, the representation of movement shapes by movement primitives is discussed.
It is shown that the movement primitives can be represented and learned with neural networks. In this
context of movement primitives, many state-of-the-art movement learning methods are available. To
compare the features and characteristics of these models, a novel benchmark framework is developed that
allows systematic testing in standardized tasks according to human likeness and precision criterion. A
decomposition algorithm is introduced to identify and extract similar primitives in complex trajectories.
This algorithm uses a movement primitive library for the decomposition of complex trajectories. The
decomposition is instrumental in the creation of new movement primitives and in the refinement of
existing ones.

In a final step, these concepts are assembled in a versatile architecture that implements a higher level
open-end learning process. It uses statistics from the decomposition algorithm such as what movement
primitives are used and in what order they are needed to compose a similar complex trajectory. This
information is exploited for the bootstrapping of new movement primitives from complex trajectories.
The versatility and effectiveness of the architecture is evaluated in complex handwriting scenarios and
also in a robotic application using the humanoid robot iCub.
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CHAPTER 1

INTRODUCTION

In every day life humans are able to control their bodies to perform complex motion tasks with phenom-
enal ease. These tasks can reach from a single handshake or waving to drawing, writing and complex
object manipulation. These motion abilities are not present right after birth. Human infants are not able
to move in a very coordinated way, which indicates a motion learning process that starts in the first years
of their life and proceeds over years. One interesting example for the motion learning ability of young
children is the process of learning how to write. The learning process starts in the first classes of school
with simple tasks like reproducing single letters, before the complexity is increased and sequences of
letters (i.e. words) are practiced. Many school books describe tasks which help the pupils to learn the art
of cursive writing by tracing a shape of a letter e.g. [Merz et al., 2012]. These tasks provide information
such as the direction of movement, together with indication of the start and end points. These instruc-
tions help to trigger an autonomous learning process in which the pupils can improve their motion skills
by tracing letters multiple times. The way how humans are able to adapt their motion skills to complex
tasks, as e.g. learning how to write, is most impressive and desirable to understand. The transfer of
this ability to adapt to new complex tasks would be very beneficial in robotics and might open a path to
multiple applications of ’learning’ robots.

Since long ago, people have been fascinated by artificial beings that move and behave like humans.
In the 15th century, Leonardo da Vinci had plans for an artificial knight with limited motion capabil-
ities like sitting up and functionality for arm movements. Of course, this mechanism did not move
autonomously. Only with the help of a human pulling the strings, the robot (or puppet) was able to move
(details can be found in [Moran, 2006]). Science fiction movies present different examples of humanoid
robots or androids (e.g. Lieutenant Commander Data of the starship Enterprise [Luokkala, 2014]) which
learn and move autonomously with impressive human like motion abilities that even surpass human be-
ings. The development from an artificial knight to humanoid robots, maybe even similar to Commander
Data, show an interesting theme, to which the work of this thesis is contributing to.

As a research field, humanoid robotics aims for robotic entities that serve as human companions
and assist them in their daily life. This goal requires a repertoire of flexible motions and behavioral
abilities which can cope with the complexity of the real world. Typically, robotic experts are in charge
of programming robots to solve specific tasks in well defined environments [Argall et al., 2009]. This
approach becomes very costly and does not scale, if redundant robotic systems are used with high
degrees of freedom (DoF). It becomes more costly and time consuming, if the programming needs to
be repeated every time the task conditions change, which also limits the adaptability to new unforeseen
situations. Especially in human-robot interaction scenarios it is desirable to have robots which do not
only move accurately along pre-programmed paths, but show motion behavior similar to humans in
order to enhance the predictability and acceptance of the robot to the human interaction partner [Oztop
et al., 2005; Chaminade et al., 2005].

Programming-by-demonstrations (PbD) is an alternative approach to prepare a robotic system for
given tasks and increasingly important in the robotics community [Billard et al., 2008]. This learning
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2 Introduction

Fig. 1.1: Motion skill learning is a
complex process discussed in this the-
sis. The endeavor starts in Chapter 3,
4, where motion primitives representa-
tions are in the research focus. How
to compose these motion primitives to
create complex motions are introduced
in Chapter 5,6. To find the considered
motion primitives again in the com-
plex motion is described in Chapter 7.
This processing cycle of composition
and decomposition can be exploited for
learning motion skills and is evaluated
in Chapter 8.

Motion Primitives

Decomposition Composition

Complex Motion

Motion Skill 
Learning

Chapter 3
Chapter 4

Chapter 5
Chapter 6Chapter 7

Chapter 8

paradigm allows to find important motion features, which are relevant for a task by solely analyzing
recorded trajectory data and generalize them to new situations. In other words, the user of the robot
demonstrates the task (see [Argall et al., 2009]) either with his or her own body, observed by a tracking
system or in physical interaction with the robot itself i.e. kinesthetic teaching. It is most likely that
human motion features are identified and mimicked by the robot from the recorded data, although the
morphology of the robot may not be the same as the tutor’s.

In context of learning motion skills, it is an established paradigm to use motion primitives (e.g. [Pas-
tor et al., 2009; Mühlig et al., 2012; Reinhart et al., 2012]). One key idea is to find representations of
motions which can be generalized towards different scenarios and allow to cope with changing situa-
tions. Such building blocks or motion primitives are expected to be used by humans to compose complex
motions [Mussa-Ivaladi and E., 2000; Flash and Hochner, 2005]. Motion primitives on their own are
limited and small units which need to be utilized in concert, such that more complex motions can be
generated. For a new complex motion which is perceived, the necessary motion primitives to reproduce
the complex motion are not directly clear. This means that the identification and decomposition of com-
plex movements becomes necessary. The challenge is to build up a library of primitives, to sequence the
available primitives according to a given task, and to use them to represent more complex motions, i.e.
to perceive complex motions with known primitives.

The aim of this research is to develop a motion control architecture able to bootstrap a
compact representation of motion primitives from complex trajectories and to generalize
these to new tasks.

Thus, the overall objective of this thesis is to develop concepts and methods for autonomous learning
of a primitive library, which create and refine motion skills from observations. An overview of the state-
of-the-art approaches to represent motion primitives together with the biological interpretation is given
in Chapter 2. In particular the standard learning paradigm and the general implementation of motion
primitives in a learning architecture are described.

A schematic view for a general motion skill learning cycle developed in this thesis is given in
Fig. 1.1. It illustrates a processing circle, where motion primitives are composed to complex motions,
but also that complex motions are decomposed into motion primitives. By following this processing
circle motion skill learning will be executed.
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One specific example of a motion primitive representation is discussed in Chapter 3, where a neural
learning approach is used. The work focuses on learning vector field in a neural network, such that it
can be safely used as an autonomous dynamical system to represent motion primitives. The learning
approach uses mechanisms to incorporate stability constraints into the learning process. Especially, in
learning scenarios where only sparse trajectory data is provided, it becomes essential to incorporate
stability constraints to provide stable dynamical systems for motion generation.

Due to the recent advent of a tremendous variety of new approaches for learning motion primi-
tives, it became necessary to provide standardized tests for systematic comparisons. Therefore, a novel
benchmark framework is proposed in Chapter 4, which can evaluate these approaches and can identify
strengths and weaknesses of the different motion primitive representations. The delivered performance
is evaluated accordingly to robotic features like precision but also analyses the human likeness of each
approach.

After the discussion of motion primitive representations, the composition of motion primitives to
complex motions moves into focus. Therefore, a primitive library approach which provides a possibility
to store and to sequence primitives in a cheap and efficient fashion is proposed in Chapter 5.

As a next step towards the bootstrapping of movement primitives, concepts to create new and re-
fine old primitives are introduced in Chapter 6. A non-autonomous dynamic system representation for
motion primitives is used together with a neural network learning paradigm. It is shown that the com-
bination of signal-depending noise and a global state representation is beneficial to produce a similar
motion learning behavior as it is observed in human data.

An important component towards the targeted learning architecture is the decomposition of complex
motions. In Chapter 7, an algorithm is introduced that uses a given set of motion primitives stored in
motion primitive library and decomposes complex motions with a heuristic. This decomposition method
provides information on how to compose the motion primitives to generate a similar complex motion.

Finally, the gathered techniques are applied to an autonomous learning cycle (as depicted in Fig. 1.1)
in which motion primitives are bootstrapped from complex trajectories. In Chapter 8, it is shown that
motion skills can be learned by bootstrapping a suitable motion primitive library. This learning cycle
is then embedded into a larger motion skill learning architecture in the context of a robotic application
with the humanoid robot iCub.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, the basic concepts of motion primitives are introduced from different perspectives.
Thereby, the idea of complex motions being represented by building blocks denoted as motion prim-
itives is discussed. Within the framework of motion primitives, possible categories of motion repre-
sentation depending on the required command signals and the level of abstraction are defined. These
categories are first discussed in relation to biological concepts such as motor synergies, motor primitives
and movement primitives and are then illustrated by several mathematical models based on dynamical
system theory.

The first question is: how many types of these motion primitive representations are in the human
brain or mammal brain. This question is addressed in Sec. 2.1. The state-of-the-art methods to rep-
resent motion primitives in robotics and their learning approaches are discussed in Sec. 2.2. Possi-
ble architectural structures on how to use motion primitives for complex behavior generation are dis-
cussed in Sec. 2.3.

2.1 The idea of motion primitives from a biological perspective

The general idea of motion primitives is an established concept in the motor control community. Motion
primitives describe small motion units that can be used as efficient building block to create complex
motions. This section introduces important characteristics of these building blocks and discriminates
between different types of motion primitives.

2.1.1 Observations of human arm motions and their invariant features

The analysis of human motions to identify principles of human motion generation is one of the major
goals in the motor control community. In the literature, many invariant features of human motions have
been discovered, e.g. [Wolpert et al., 1995]. These invariant features can be expressed by means of
motion speed and geometric shape [Flash and Hogan, 1985; Flash, 1987]. One of the prominent features
is the bell shaped form of the speed profile found in quasi straight line motions shown in [Morasso,
1981; Atkeson and Hollerbach, 1985]. In general, the common observations of human motion behavior
is that the human brain seems to favor smooth motions, which is captured by, e.g. the minimum-jerk or
minimum-variance model (see [Todorov, 2004] for a review).

Relations between motion features are captured in e.g. the isochrony principle [Viviani and Schnei-
der, 1991] and Fitts’ Law [Fitts, 1954]. The isochrony principle specifies that the average velocity of
the motion is increased, if the size of the motion increases as well, i.e. the motion duration stays ap-
proximately the same. The Fitts’ Law quantifies the relation between the movement amplitude and the
target size, which means that accuracy constraints are taken into account. Isochrony principle together
with Fitts’ Law result in a prediction model for the target precision. Another regularity can be found in
hand motions which tend to slow down, if the shape of the trajectory becomes curved. This tendency is
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quantified by the two-thirds power law [Lacquaniti et al., 1983], which predicts the hand’s speed to be
proportional to the curvature of the path of the motion trajectory raised to the power of minus one third.

The observation of such invariant motion features, indicates the organization of complex motions in
smaller building blocks. These motion primitives capture the aforementioned features and define general
principles for the generation of motions [Flash and Hochner, 2005]. As an example, a motion primitive
can be defined solely with kinematic features in context of hand trajectories in Cartesian space, which
can be also called e.g. sub-movements [Rohrer and Hogan, 2003]. One kinematic feature can be the
peak of a speed profile, where each peak indicates the presence of one sub-movement. An alternative
primitive definition is described by dynamics which consists of static force fields [Giszter and Kargo,
2001]. Although it is not entirely clear what drives the human motor system, it is known that human
motions have these characteristics described by these features. In Chapter 4, these features are used as a
baseline for the comparison of computational motion generation methods in terms of human likeness.

2.1.2 Distribution of motion primitives in the motor hierarchy

In this section, the focus is on hypotheses where the motion primitive representations may reside and
what kind of functionality they provide in the human motor hierarchy.

In the wide variety of motions, two categories can be identified. First, discrete motions and second
rhythmic motions. Discrete motions generate trajectories, which connect a start and end point e.g. reach-
ing to an object. Rhythmic or oscillatory motions describe “closed” trajectories like circles or ellipses.
Oscillatory motions are often used in locomotion to model gait behavior of bipedal or quadruple leg
robots [Ijspeert, 2008]. But also in drawing or scribbling motions are examples for oscillatory motions.
In [Degallier and Ijspeert, 2010], a detailed review is given comparing different categories of models
for motion generation combining discrete and rhythmic primitives. Primitives on a neuronal level cor-
responds to a neuron assembly of spinal or cortical neurons. These can correspond to central pattern
generators (CPGs reviewed in [Ijspeert, 2008]) or to point-to-point motions (reaching motions). These
variations of motion primitives, describe either a cyclic or point attractor [Schaal et al., 2003a]. Motions
like walking or drumming are easy to categorize, however, it is also possible that reaching motions are
executed in a periodic way, which makes it more difficult to classify them. Waving motions for example
can be described as a single rhythmic motion, but also as two reaching motions sequenced one after the
other. In experiments with functional magnetic resonance imaging (fMRI) evidence was found which
encourages the believe that different representations of motions are justified. These experiments showed
separated cortical activity if rhythmic or discrete motions are performed [Schaal et al., 2004].

Primitives can describe motions on multiple levels in the motor hierarchy. For instance, the paradigm
of motor synergies located at the muscular level can be found in the literature [d’Avella et al., 2003a;
d’Avella and Bizzi, 2005; Latash et al., 2007; Bizzi et al., 2008]. The sheer amount of muscles in the
human body allows humans to move in a very flexible way that enables complex motions to be optimized
for each task that needs to be solved. Motor synergies describe the timely coordinated activation of
muscles depending on the task. By using this synergy representation the need to generate detailed time
courses for all elemental variables in a given task is reduced. Therefore, this representation may reduce
the computational costs for the central nervous system (CNS) [d’Avella and Lacquaniti, 2013].

In the higher level of the motor hierarchy, concepts like motor primitives and movement primitives
are described in the literature. Motor primitives can be seen as building blocks, which can be composed
to generate the entire motion repertoire [Wolpert and Kawato, 1998] together with discrete muscle syn-
ergies. These concepts are used, but do not consistently describes the same behavior. One definition of
motor primitives [Mussa-Ivaldi et al., 1994] is that trajectories are learned on joint level, whereas motion
primitives describe trajectories learned in hand (end-effector) coordinate system.

In the field of neuroscience, motion skills of increasing complexity shall be achieved by blending
and sequencing of motion primitives by utilizing a continuous stream of activation signals [Luksch et al.,
2012c]. These activation signals should then indicate the sequence of motion primitives which are used
either in parallel or in a serial blending. Representation of sequences and the selection of those might be
done in the CNS [Rhodes et al., 2004]. In this thesis, the concepts for discrete point-to-point reaching
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Motion primitives

Movement Primitives

defined in task space
generate hand trajectories

Motor Primitives

defined in joint space
generate joint trajectories

Fig. 2.1: In this thesis motion primitives
denote two types of primitives. The first
type is the movement primitive which rep-
resents motions in a task space for hand
trajectories. The second type is the motor
primitive and represents motions on the
joint level and generates joint trajectories.

motions are in the focus. Fig. 2.1 illustrates the relation the terminology of motion primitives, movement
primitives and motor primitives as they are used in this thesis.

2.2 Motion primitive representation and learning in robotics

In this section the robotic applications of motion primitives are introduced and discussed according to:
(i) What representations of motion primitives can be used? (ii) What features must be incorporated in
the primitive representation? And (iii) how can motion primitives be adapted to a given motion shape in
a learning process.

2.2.1 Motion primitive representation in dynamical systems

In the context of robotic systems, the representation of reaching movements is typically given in form of
dynamical systems. Two conceptually different dynamical systems are considered given by first order
differential equations:

(A) The non-autonomous dynamical systems:

u̇ = g(α,u, t) (2.1)

are considered, where u is a state vector, t is the time parameter and α gives a modulation parameter,
which can be used to modulate the speed of the system.

(B) The autonomous dynamical system:
u̇ = g(α,u), (2.2)

where no explicit time dependency exists.

Nonlinear dynamical systems appear to be one of the most promising candidates as computational
basis for exploitation of flexible motion capabilities featured by modern humanoid robots [Mühlig et al.,
2012; Pistillo et al., 2011; Billard et al., 2008]. Point-to-point reaching motions modeled by dynamical
systems can provide a library of basic motion primitives, which can be successfully applied to generate
motions in a variety of manipulation tasks [Moro et al., 2012; Ude et al., 2010].

An example, which uses a second order nonlinear dynamical system, is the Vector Integration To
Endpoint model (VITE). It was originally developed by [Bullock and Grossberg, 1988, 1989] and is
designed to simulate biological plausible straight motions using a muscular system. However, there
is no learning methodology provided, which can adapt to non straight line motions. In the following,
means to approximate complex shapes by machine learning methods are considered.
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2.2.2 Learning how to move from experts

Manual programming of robot motions often requires a large amount of engineering knowledge about
both the task and the robot. This issue becomes particularly non-intuitive when dealing with dexterous
humanoid robots with many DoFs [Biggs and MacDonald, 2003]. In recent years, human-like motions
in, not only humanoid robots, but also industrial robots became desirable. The advantage of robots with
human motion capabilities is that humans can predict easier where the robot is going. This becomes
especially important if robots start to work in close proximity with the human [Oztop et al., 2005;
Chaminade et al., 2005].

Therefore, it is widely recognized that exploiting human knowledge about motion skills either by
reproduction of recorded human movements [Ude et al., 2004; Riley et al., 2003], by training through
teleoperation [Babic et al., 2011] or by observation and subsequent imitation [Calinon et al., 2007;
Yamashita and Tani, 2008; Pastor et al., 2009; Kulic et al., 2011] is a key to progress towards rich
motion skills in robotics [Schaal and Sternad, 1998; Schaal et al., 2003a]. Typically, primitives are
learned from a small number of trajectories demonstrated by a human teacher, which is referred to as
e.g. learning from demonstrations [Atkeson and Schaal, 1997; Argall et al., 2009], imitation learning
[Schaal, 1999] or programming by demonstrations [Billard et al., 2008]. These learning approaches aim
at the generation of an invariant internal representation which can generalize the observed motion to
modified or new tasks.

One issue is that the quality of the learning results strongly correlates with the quality of the shown
demonstrations. To counter act this issue, prior knowledge of the task is used in the learning approach
where “wrong” demonstrations are corrected or ignored. In human-robot interaction scenarios, the robot
needs to perform the motion even if the interaction partner is touching the robot or pushing him per ac-
cident without injuring the interaction partner or breaking itself. Therefore, the most important prior
knowledge in learning from demonstrations is that the learned dynamics are stable with regard to pertur-
bations and does not result in unpredictable behavior of the robot. Due to the large variety of different
methods an overview of them is discussed which represent three different ways on how to approach
these requirements in imitation learning.

2.2.3 Computational models for representing and learning movement primitives

In the last decades, many computational models for representing motion primitives have been proposed,
e.g. [Ijspeert et al., 2003; Giese et al., 2009; Mukovskiy et al., 2013; Moro et al., 2011; Grave and
Behnke, 2012; Paraschos et al., 2013; Khansari-Zadeh and Billard, 2011, 2014; Calinon et al., 2013;
Reinhart, 2012]. This thesis focuses on movement primitives represented by dynamical systems. Non-
linear dynamical systems are a promising basis to represent motion primitives. Besides their ability
to display diverse behavior, it is of major importance that such systems work in a stable manner. To
find a suitable dynamical system that ensures these requirements simultaneously is particularly hard.
Two prominent learning approaches are described, (i) spring damper systems and (ii) vector field based
approaches.

Dynamic Movement Primitives

A widely known approach is called Dynamic Movement Primitives (DMP) [Ijspeert et al., 2002, 2003;
Schaal, 2006; Ijspeert et al., 2013], which is a technique to generate motions with non-autonomous
dynamical systems that models a spring-damper system. This analytically well understood dynamical
system with good stability properties is considered, where the dynamics can be adapted by a nonlinear
force term to achieve a desired attractor behavior. This approach provides a very accurate nonlinear
estimate of a given trajectory which is robust to perturbations while ensuring global stability.

The original DMP approach uses a transformation system (following the notation of [Ijspeert et al.,
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2013]):
τü = αu(βu(g−u)− u̇)+ f(s)(g−u0)s︸ ︷︷ ︸

perturbation

, (2.3)

coupled with a canonical system:
τ ṡ =−αss, (2.4)

where αu,βu are stiffness and damping constants βu = αu/4 the system is critically damped and con-
verges towards the goal g. The stability of this dynamical system is ensured in case that the perturbation
f becomes zero at the end of the movement, which results in a linear convergence to the goal point. The
smooth switch from nonlinear to linear dynamics is controlled by a phase variable s. The phase variable
can be seen as external stabilizer which in return distorts the temporal pattern of the dynamics.

A variation of the DMP transformation system is given by [Park et al., 2008].

τü = K(g−u)−Du̇−Ks(g−u0)+ Kf(s)︸ ︷︷ ︸
perturbation

, (2.5)

where K,D are stiffness and damping constants with D = 2
√

K to generate a critically damped system.
It is also coupled with a canonical system as described above in Eq. (2.4). The major difference is that
the transformation system in Eq. (2.5) is invariant to the relative position of the start and goal position.
In [Park et al., 2008], the properties of this transformation system are described in more detail.

The transformation system Eq. (2.5) is a linear dynamical system which is perturbed by a non linear-
ity function f to represent arbitrarily shaped and smooth reaching motions. Typically, the function f can
be approximated by a mixture of Gaussian basis functions. The state representation R for the Gaussian
basis function networks (GBFs) is given by:

fi(s) =
∑

R
j=1 Φ j(s)Wout

i j

∑
R
j=1 Φ j(s)

= (Wout
i h(s)), (2.6)

with Φi(s) = exp(−li(s− ci)
2) representing the nonlinearity in the DMP approach. ci and li are fixed

a priory. Due to linear dependence of f on Wout ∈ RK×R it simplifies the use of learning methods and
allows to use any linear regression technique. One exemplary learning approach is the Linear Weighted
Regression (LWR) [Schaal and Atkeson, 1998] to solve this regression problem for motion primitives.

Stable Estimator of Dynamical Systems

An exemplary approach that uses an autonomous dynamical system with a vector field representation
is the Stable Estimator of Dynamical System (SEDS) [Khansari-Zadeh and Billard, 2011]. The SEDS
approach uses a Gaussian Mixture Models (GMM) representation which encodes vector fields where
global asymptotic stability is ensured.

The dynamical system is defined by a nonlinear combination of linear dynamical systems. The open
parameters Θ = {π,µ,Σ} are the prior π , the mean µ and the covariance matrix Σ, where the mean µ

and the covariance Σ are defined by:

µ =

[
µu

µu̇

]
& Σ =

[
Σu Σuu̇

Σu̇u Σu̇

]
.

Then each linear dynamical system is given by:

z(u) = (µu̇ +Σu̇uΣ
−1
u (u−µu)). (2.7)

These linear dynamical systems are combined by:

ˆ̇u = f̂ (u) =
M

∑
m=1

gm(u)zm(u), (2.8)
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Fig. 2.2: A general motion architec-
ture has to organize the integration of
perception and action into one coher-
ent framework. Actions can be for-
mulated in form of motion primitives,
which can generate commands for the
robot. If the environment has uncer-
tainties perceiving the environment is
crucial. The feedback can then be used
to alter the planed actions which move
the robot.
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Perception

Action

Robot

command

sensors

feedback

where M is the number of Gaussian functions. The nonlinear weighting term g(u), where 0 < g(u)≤ 1
models the contribution of each linear dynamical system in Eq. (2.7) to the combined system. The
learning method can minimize either the mean square error:

argmin
Θ

E(Θ) =
1

2N

N

∑
n=1
|| ˆ̇un− u̇n||2, (2.9)

or the log-likelihood to build a model as described in [Khansari-Zadeh and Billard, 2011]. These er-
ror functions are solved under stability constraints derived from a quadratic Lyapunov function. This
optimization problem can be formulated as a nonlinear programming problem and can be solved with
iterative optimization techniques.

2.3 Architectural perspective on motion skill learning

Humans and animals are capable of learning, perfecting and reproducing complex trajectories that allow
them to perform a variety of tasks, from coordinated body movements to catching, and particularly in
humans, object manipulation, writing and drawing. The mechanisms underlying motion skills, from
the learning of basic motion primitives to their organization in higher-level cognitive structures, are
fundamental in understanding how humans accomplish advanced motion skills [Schack, 2004].

Motion primitives are only limited building blocks which can create complex trajectories if they are
used in combination, e.g. by sequencing motion primitives one after the other or by executing them in
parallel which is also denoted by blending. The question is how such building blocks can be organized
in a motion skill architecture?

2.3.1 General architecture structures and primitive-based control

In general, a motion skill architecture needs to combine perception and actions in order to control a
robot in an environment where uncertainties exists as illustrated in Fig. 2.2, which is also biologically
motivated [Fuster, 2004]. The perception needs to process sensory inputs to provide necessary feedback
for the actions. In this case actions are represented as motion primitives which generate commands to
move the robot in the environment.

Typically, motion primitives are used in a hierarchical design, where either motor or movement
primitives build the basic control units interfacing the joint control directly or the task space control. In
the latter case, an inverse kinematics solver is needed which can map the task space trajectories to joint
angle trajectories.

The HAMMER (hierarchical attentive multiple models for execution and recognition) architecture
motivates the organization of motion in a hierarchical structure [Demiris and Khadhouri, 2006] and it
aspires to be biologically plausible. It is hiding details of motion generation in the lower level of motion
primitives. These are encoded as pairs of forward and inverse models. The forward model produces pre-
diction of the current state whereas the inverse models produces a motor command to move the current
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state to the target/goal. Adding new primitives becomes possible through a self-exploration mechanism
inspired by motor babbling in infants or through imitating others. In [Demiris and Khadhouri, 2006],
forward and inverse models are represented by Bayesian belief networks (BBN). An extension of the
HAMMER model utilizes a reformulated minimum variance model [Harris and Wolpert, 1998], such
that it can be used in this architecture called HAMMER-MV architecture [Demiris and Simmons, 2006]
which allows a more biological motion generation. Another biological inspired approach was earlier
introduced in [Billard and Matarić, 2001]. This approach models abstractions of brain regions involving
also visuo-motor control in a hierarchy of neural networks each representing e.g. the spinal cord, motor
cortex and the cerebellum.

In [Ito and Tani, 2004; Tani et al., 2004; Paine and Tani, 2004], a recurrent neural network with
parametric biases (RNNPB) is presented. This network can generate and recognize behavior patterns and
is inspired by the neural mirror system. A highly nonlinear dynamical system models a self-organized
mapping between parameter vectors and different behavior patterns in a single neural network. It is
shown that multiple cyclic motion patterns can be represented as limit cycle in the internal memory
of the neural network. Point-to-point motion with smooth blending behavior is also possible. The
continuous time recurrent neural network (CTRNN) is proposed in [Yamashita and Tani, 2008]. The
recurrent neural network is structured, where each part is running on a different temporal scale without
spatial hierarchical structure.

Primitive based control is introduced in [Speeter, 1991], where grasping motions are implemented
using the abstraction of primitives. In [Inamura et al., 2001, 2003], a learning architecture is introduced
in which whole body motion capture data is used to extract movement primitives and sequences of these
primitives, to compose complex whole body motions. The segmentation of complex motions is done
by identifying high acceleration points (using second order derivati). These motion segments are then
classified by a probabilistic neural network with radial basis functions (RBFs) to generate movement
primitive symbols. These symbols are then used to model the seen motion by hidden Markov models
(HMMs). A complex motion is reproduced by using the identified set of trajectories and sequencing
them again by simply attaching the segments one to another. To achieve a smooth trajectory which
can be reproduced by the robot, a dynamic filter [Inamura et al., 2003] is applied that fulfills dynamic
constraints. In most previous work on learning motion primitives, the observed data is directly given or
transformed into a suitable task space [Calinon et al., 2007; Asfour et al., 2008; Pastor et al., 2009; Kulic
et al., 2011], in most cases tool tip or hand coordinates or even more task specific coordinates [Mühlig
et al., 2009, 2012]. In this task space, a compact representation of the movement is learned where in-
variance can be achieved by representing movements in relative task coordinates, e.g. by placing the
goal of a reaching movement at the origin of the coordinate system. For motion generation, this task
space representation is then modulated, for instance transformed according to the visual recognition of
an object to be manipulated. The movement is deployed on the robot via inverse kinematic solvers. This
scheme provides high flexibility, in particular for free goal-directed movements, and efficient methods
have been provided to resolve the kinematic redundancies [Chiaverini, 1997; Liégeois, 1977; Gienger
et al., 2005, 2008]. In [Luksch et al., 2012a], a control approach for motion skills is introduced. These
motion skills are modeled by continuously combining motion primitives, where the motion primitives
can be designed for different reference spaces. These primitives are represented by dynamical systems
and coordinated by a continuous stream of control signals. In [Reinhart et al., 2012], it is discovered that
generalization strongly scales with variations of the motion skill architecture, i.e. how the different mo-
tion representations are combined. The paper argues in a qualitative evaluation of different architectural
configurations of representational layers for a particular scheme with a late spatial modulation of skills
in favor of optimal generalization from few demonstrations.

Motion skills which use several motion primitives in this context can be associated with sensory
input during the motion skill execution. These machine learning methods are denoted as associative
skill memories [Pastor et al., 2013]. Depending on the sensory information the associative skill memory
can be used differently. However, the main application is to repeat the motion skill as stereotypical
as possible. In Chapter 5, a similar concept is used to store movement primitives and the execution
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sequence in one shared representation of a neural network approach.

2.3.2 Identifying primitives in complex trajectories

In the neurocognitive literature, the concept of motor resonance motivates that human infants use their
own motion representation to perceive and represent observed motion behavior (see [Berthier, 1996] and
[Paulus, 2014] for a review). So the question is how can a skill learning architecture process complex
trajectories into smaller motion primitive representation in robotics? There are three ways on how to
approach this issue denoted as decomposition. First, the decomposition can be designed to segment a
complex trajectory according to predefined features or cost functions. Second, the decomposition is
designed according to the motion primitive methods:

The detection of critical points counts to the first design scheme of decomposition approaches and is
used in [Mohan et al., 2011]. Critical points can be used to build a symbolic representation of the com-
plex trajectory, where a set of critical points can then again be transformed into a complex trajectory. In
[Endres et al., 2013], the motion power law describing the relation of the velocity and the curvature (see
Sec. 2.1.1) is used for unsupervised segmentation of endpoint trajectories. Velocity and curvature are
used as parametrization of the seen trajectory and is exploited for the unsupervised segmentation. Seg-
ments can be identified by using a Gaussian observation model denoted as Bayesian binning (BB). Also
Hidden Markov Models are used in [Kohlmorgen and Lemm, 2001], where segmentation is conducted
by following the changes of the probability density in a sliding window. By using predefined features
for the decomposition it becomes necessary to represent those also in the motion primitives to make
sure that similar features are generated. As a consequence, motion primitives do not exceed a certain
complexity which is limited by the predefined features.

Some approaches, e.g. [Mann et al., 2002; Hellbach et al., 2009; Kohlmorgen and Lemm, 2001],
focus on the demonstrated trajectory that is analyzed and decomposed, employing polynomial decom-
position [Mann et al., 2002] according to a specific cost function. One intrinsic feature and limitation of
motion primitives is that they generate basic rather than arbitrary long and convoluted trajectories. As a
consequence, recent research has focused on the problem of combining simple primitives to form more
complex and longer trajectories [Mann et al., 2002; Hellbach et al., 2009; Konidaris et al., 2010; Peters
and Schaal, 2008; Konidaris et al., 2012]. Particularly those based on reinforcement learning, assume
a given cost function to a specify the task and learn the motion primitive representation accordingly as
shown in [Peters and Schaal, 2008; Konidaris et al., 2010, 2012]. Algorithms that combine primitive or
shape-identification, trajectory segmentation and on-line learning have also be proposed e.g. in [Kulic
et al., 2011; Mohan et al., 2011; Konidaris et al., 2012] to integrate various sub-problems in more capable
learning algorithms.

In the recent years, decomposition approaches are introduced which use a set of motion primitives to
represent complex motions. In [Meier et al., 2011, 2012], DMPs are used to represent motion primitives.
A likelyhood is calculated at each timestep for all motion primitives, which then specifies the best
match for the current segment of the complex trajectory. Alternatively, in [Grave and Behnke, 2012],
a similar approach is introduced where Hidden Markov Models are applied for the decomposition and
representation of the motion primitive.

Chapter 7 contributes to this topic by presenting an algorithm which uses a set of motion primitives
to represent complex trajectories. The decomposition only focuses on geometrical properties of trajec-
tories, while it is agnostic to the velocity profiles. This apparent limitation in reality allows for a more
flexible interpretation of trajectories, which may not be necessarily determined by the velocity profile
used during generation.



CHAPTER 3

MOVEMENT PRIMITIVES IMPRINTED IN
NEURAL NETWORKS

In Chapter 2, the central role played by movement primitive in human and robot motion generation is
emphasized. In this chapter, a new autonomous dynamical systems approach is presented, where an
underlying neurally imprinted vector field is learned from sparse data to drive the dynamical system. In
general the data-driven approximation of vector fields that encode dynamical systems is a difficult task
in machine learning. If data is sparse and given in form of velocities derived from few trajectories only,
then there are state-space regions where no information on the vector field and its induced dynamics is
available. Generalization towards such regions is meaningful only if strong biases are introduced, for
instance assumptions on global stability properties of the to-be-learned dynamics.

In this proposed approach, asymptotic stability of the induced dynamics is explicitly enforced through
utilizing prior knowledge from Lyapunov’s stability theory, in a predefined workspace. The learning of
vector fields is constrained through point-wise conditions, derived from a suitable Lyapunov function
candidate, which is first adjusted towards the training data. The approach is analyzed in a scenario
where trajectories from human handwriting motions are learned and generalized. In addition, robust
motion generation is demonstrated after learning from robotic data obtained from kinesthetic teaching
of the humanoid robot iCub. Finally, potential downsides and advantages of this new learning approach
are discussed. The results and conceptional ideas are also published in [Lemme et al., 2013; Neumann
et al., 2013a; Lemme et al., 2014a].

3.1 Learning vector field representations from sparse data

From a general machine learning point of view, the approximation of vector fields from sparse data
to represent dynamical systems, e.g. encoding of quantitative flow visualization [Gharib et al., 2002],
optical flow in computer vision [Verri and Poggio, 1989] or force fields in motor control [Mussa-Ivaldi
and Giszter, 1992; Giszter and Kargo, 2001], is an important but also persistently hard task for learning
algorithms.

In recent work, vector fields were applied to learn and generate complex motions for robots [Heinz-
mann and Zelinsky, 2003; Corteville et al., 2007]. In such scenarios, training data typically consist of
only few trajectories and thus leave many regions in the state space with no information of the desired
vector field. Generalization towards regions subject to sparse sampling is challenging, because small
errors in the approximation of the vector field can get amplified during integration and can lead to the
divergence of the dynamical system, which is an unwanted and unpredictable behavior.

Thus, a strong model bias is needed for generalization which has to be derived from prior knowledge
about the underlying dynamics. In [Mussa-Ivaldi, 1992], a superposition of irrotational basis fields is
used to approximate a variety of vector patterns, where it is assumed that the data originate from the
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Fig. 3.1: Schematic view of the proposed approach
to learn vector fields with respect to constraints de-
rived from prior knowledge. The learning is sep-
arated into three main steps: i) predefine a proper
Lyapunov candidate through parameter optimiza-
tion and ii) use this function to sample inequal-
ity constraints that are implemented by a quadratic
program learning the data. iii) Add constraints to
restrict the motion to stay in the defined workspace.
The resulting dynamical system approximates the
data and is asymptotically stable in the defined
workspace after learning.
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gradient of a potential function. Kuroe and Kawakami introduced a combination of neural networks to
reconstruct vector fields where prior knowledge of inherent vector field properties is used to enhance the
accuracy [Kuroe and Kawakami, 2007, 2009].

In context of motion generation from vector fields, one prominent approach is the stable estimator of
dynamical systems (SEDS) which is described in Sec. 2.2.3. This learning approach represents vector
fields by a Gaussian mixture of linear dynamical systems. Learning is achieved by solving a nonlinear
constrained optimization problem formulated as a quadratic program. The learned dynamical system
then complies to a specific quadratic Lyapunov function. The main advantage of this method is that the
learned dynamics are provably globally asymptotically stable. On the downside, the stability constraints
may be too restrictive with respect to the motion that shall be learned. If the training data and the stability
constraints contradict, accurate learning of the desired motion is prevented. However, the learning of
dynamics that satisfy desired Lyapunov functions and guarantees stability without interfering with the
data is so far only solved for special cases and remains difficult in case of using a dynamical systems
represented by vector fields.

These issues are partly addressed in [Reinhart et al., 2012]. Here a neural network approach is used
to learn from demonstrations and to generate motions for the humanoid robot iCub. The accuracy perfor-
mance and the stability are addressed by two separately trained but superimposed neural networks. The
first network approximates the data while the second network addresses stability by learning a velocity
field, which implements a contraction towards the desired movement trajectory. However, the superpo-
sition of two networks seems complex for representing only one motion. Additionally, no guarantee for
stable motion generation is given.

The contribution of this chapter is to introduce of stability theory of dynamical systems, described
by Lyapunov, in neural networks learning in context of stable motion generation. It is based on the
idea to represent time-independent vector fields in one neural network that lead to asymptotically stable
dynamics in a predefined workspace. This approach is schematically illustrated in Fig. 3.1. The learning
is separated into three steps: First, construct a suitable stability function (i.e. a so called Lyapunov func-
tion) through parameter optimization towards the data. Second, use the constructed Lyapunov function
to obtain inequalities constraints for learning. Third, add inequality constraints which ensure that the
dynamics cannot leave a predefined region. The inequality constraints are implemented by a quadratic
program, which minimizes the error between the training data and the output of the network. To keep
the number of used constraints to a minimum, a sampling algorithm identifies problematic regions and
adds constraints until the dynamical system is stabilized. Thus, the resulting vector field induces stable
dynamics by construction. The flexibility of this new learning approach is demonstrated in a rigorous
analysis that evaluates the own learning properties and also compares the learned dynamical systems
to the SEDS approach. Additionally, it is demonstrated that the new approach generates smooth and
accurate motions in a kinesthetic teaching scenario with the humanoid robot iCub.
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Fig. 3.2: ELM with its three layer
structure used in an integration
loop. Only the read-out weights are
trained.

3.2 Neurally imprinted vector fields for motion generation

In this section, sparse data in form of trajectories are considered. In the following, the task and the
learning setup are introduced.

3.2.1 Dynamical system based motions

In this work, point-to-point motions are considered which can be described as trajectory data given
by the state variable x(t) with time t. The trajectories are considered to be driven by an underlying
autonomous dynamical system, which can be represented by vector fields:

ẋ = v(x) ,x ∈Ω , (3.1)

where the state variable x(t) ∈ Ω ⊂ Rd with dimension d and a workspace Ω. Because point-to-point
motions are considered, it is assumed that the vector field v(x) is nonlinear and continuous with a single
asymptotically stable point attractor x∗ with v(x∗) = 0 in Ω. The limit of each trajectory in Ω thus
satisfies:

lim
t→∞

x(t) = x∗ : ∀x(0) ∈Ω . (3.2)

The key question of this work is how to learn v as a function of x by using demonstrations for training
and ensure its asymptotic stability at target x∗ in Ω. The estimate is denoted by v̂ in the following. The
generation of motions can then be computed by numerical integration of ẋ = v̂(x), where x(0) ∈ Ω

denotes the starting point of the motion:

x(t +1) = x(t)+∆t ·v(x(t)), (3.3)

where ∆t is a time constant for discretization of the continuous dynamics.

3.2.2 Vector field representation and learning with extreme learning machines

For the estimation of v̂ the neural architecture depicted in Fig. 3.2 is described. The figure shows a single
hidden layer feed-forward neural network, where x ∈ Rd denotes the input, h ∈ RR the hidden, and
v̂ ∈ Rd the output neurons. The input is connected to the hidden layer by the input matrix Winp ∈ RR×d .
The read-out matrix is given by Wout ∈ Rd×R. For input x, the output v̂ is thus given by:

v̂ = Wouth(x) = Wout
σ(Winpx),

where σ(ai) = (1+ exp(−ai− bi))
−1 are sigmoid activation functions applied to the neural activities

ai = ∑
d
j=1(Winp)i jx j for all hidden neurons i = 1, . . . ,R. The components of the input matrix and

the biases are drawn from a random distribution and remain fixed after initialization. The follow-
ing experiments reveal that this network architecture is particularly well suited for incorporation of
stability constraints in the learning. The input weights Winp and biases bi are randomly initialized
and remain fixed. This approach is called extreme learning machine (ELM) [Huang and Siew, 2006].
ELMs combine a nonlinear and high-dimensional random projection of inputs x ∈ Rd into a hidden
layer h ∈ RR�d with efficient linear regression learning of a perceptron-like read-out layer Wout . Let
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D = (x(k),v(k)) : k = 1 . . .Ntr be the dataset for training where Ntr is the number of samples in the
dataset. Supervised learning for ELMs is restricted to the read-out weights Wout . They are trained by
minimizing the quadratic error with weight regularization:

Wout = argmin
W

(‖W ·H(X)−v‖2 + ε‖W‖2) (3.4)

which is solved by:

Wout =
(
HHT + ε1

)−1 HvT , (3.5)

where H = (h(x(1)), . . . ,h(x(Ntr))) : k = 1 . . .Ntr is a matrix harvesting the hidden states for each input
x(k) in the training dataset, 1 is the identity matrix, and ε > 0 is a regularization parameter.

In Fig. 3.3, two examples of the learned estimation of a nonlinear dynamical system using the ELM
are shown. Due to the generalization ability of the ELM both examples show that the motion can either
converges to other spurious attractors away from the desired attractor (i.e. the target) or completely
diverge from it. This observed performance is highly undesired because one of the most important
feature in the case of point-to-point movements is to converge to a given target. This issue is addressed
by the additional learning schema described in the following.
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Fig. 3.3: Unstable estimation of dynamical systems through demonstrations. Data were taken from the
LASA dataset: A-shape (left) and sharp-C (right). Note that the reproduced trajectories either diverge
or converge to spurious attractors.

3.3 Implementation of asymptotic stability

Learning a vector field from a few training trajectories gives only sparse information of the shape of
the entire vector field. Therefore, there is considerable need for generalization to spatial regions where
no training data reside. Besides the generalization ability, particular feature need to be learned as well,
e.g. the target should be described as a fixed-point attractor in the vector field. Learning this attractor
without prior knowledge is especially hard, because the training data comprises of only a few training
samples that encode the target.

3.3.1 Extreme learning machines with Lyapunov theory

In order to stabilize the dynamical system induced by the network, asymptotic stability conditions of
arbitrary dynamical systems defined by Lyapunov are recalled: a dynamical system is asymptotically
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stable at fixed-point x∗ ∈Ω in the compact region Ω⊂Rd if there exists a continuous function L : Ω→R

(i) L(x∗) = 0 (ii) L(x)> 0 : ∀x ∈Ω,x 6= x∗ (3.6)

(iii) L̇(x∗) = 0 (iv) L̇(x)< 0 : ∀x ∈Ω,x 6= x∗ . (3.7)

For now it is assumed that the function L satisfies condition (i)-(iii) and is called Lyapunov candidate.
In order to obtain a learning algorithm for Wout that also respects the condition (iv) of the Lyapunov
candidate L, The time derivative of L is taken to analyze this condition:

L̇(x) =
d
dt

L(x) = (∇xL(x))T · d
dt

x = (∇xL(x))T · v̂ (3.8)

=
I

∑
i=1

(∇xL(x))i ·
R

∑
k=1

W out
i j · f (a j

I

∑
k=1

W inp
jk xk +b j)< 0 . (3.9)

Note that L̇ is linear in the output parameters Wout irrespective of the form of the Lyapunov candidate
L. For a given point u ∈ Ω, Eq. (3.8) and Eq. (3.9) define a linear constraint L̇(u) < 0 on the read-
out parameters Wout , which is implemented by a quadratic programming scheme introduced for ELMs
in [Neumann et al., 2013b]. It is shown in [Neumann et al., 2013b] that a well-chosen sampling of
points U = (u(1), . . . ,u(Nu)) : u ∈ Rd , is sufficient to generalize the incorporated discrete constraints to
continuous regions in a reliable way.

The read-out weights Wout are trained by minimizing the quadratic error with weight regularization:

Wout = argmin
W

(‖W ·H(X)−v‖2 + ε‖W‖2) (3.10)

with subject to: L̇(U)< 0 , (3.11)

where the matrix H(X) = (h(x(1)), . . . ,h(x(Ntr))) collects the hidden layer states obtained from a given
dataset D = (X,V) = (x(k),v(k)) : k = 1 . . .Ntr for inputs X and the corresponding output vectors V.

3.3.2 Positive invariant regions

The previous section introduced the implementation of inequalities, which are derived from a Lyapunov
candidate L, at discrete points. These points are element of a predefined region Ω. However, stability
according to condition (iv) is not stringently achieved in the entire space Ω without consideration of L.
Even if the condition (iv) is valid in Ω, the state of the dynamical system ẋ = v̂(x) can possibly cross
the border of Ω during numerical integration. In this case, stability cannot be guaranteed, since those
parts of the input space outside Ω are not considered in the constraint implementation process. Stability
is, in principle, enforced in the largest level set region of the candidate function L that is completely
intersecting with the sampling region Ω. Each initial point outside this region is potentially subject to
divergence. As mentioned before, the identification of such regions is difficult for arbitrary Lyapunov
candidates.

Therefore an additional constraint is introduced. It is defined on the surface of Ω (denoted by ∂Ω)
which forces the learned dynamics to stay in the predefined region Ω. This region can principally have
arbitrary shapes, however, only hypercubes are used where each point x ∈Ω on the surface of this cube
∂Ω is mapped onto an uniquely defined normal vector n(x) ∈ Rd with ‖n(x)‖ = 1 that point outward
of the cube. The resulting constraints are expressed as a scalar product between the normal vector n(x)
and the network’s output v̂(x):

L∂ (x) := n(x)T · v̂(x)≤ 0 : x ∈Ω . (3.12)

Note that the scalar product has the same form as Eq. (3.8) and is thus linear in Wout . It forces the
network’s dynamics to stay inside the hypercube implementing a positive invariant region (see Fig. 3.4).
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Fig. 3.4: Possible solutions, which can be
chosen by the learning algorithm. The
solid black lines give the left bottom
corner of the rectangle illustrating the
workspace border ∂Ω. The center of each
circle represent the corresponding posi-
tion x. Possible directions of v̂ are indi-
cated by the solid part of each circle. Note
that the corners are allowing only a small
range for a valid solution of the dynamics.

3.3.3 Sampling strategy to implement efficiently the Lyapunov candidate

The following sampling strategy is introduced in order to minimize the number of samples needed for
generalization of the local constraints towards the continuous region Ω. The dataset D for training and
the region Ω where the constraints are supposed to be implemented are assumed to be given. As a first
step (k = 0), the network is initialized and trained without any constraints (i.e. the sample matrices
Uk

i = U0
i = /0 are empty). In this case learning can be accomplished by linear regression, which is the

standard learning scheme for ELMs, see Eq. (3.5).
In the next step, NC samples Û = {û1, û2, . . . , ûNC} are randomly drawn from a uniform distribution

in Ω and ∂Ω, respectively. Afterwards, the number of samples ν1 fulfilling (iv) of Lyapunov’s conditions
of asymptotic stability (see Eq. (3.8)) and the number of samples ν2 satisfying Eq. (3.12) are determined.

The sampling algorithm stops if more or equal than p percent of these samples fulfill the continuous
constraints, i.e. νi/NC ≥ p. Otherwise, the most violating sample û for each constraint is added to the
respective sample pool Uk+1

i =Uk
i ∪ û to constitute the new sample set Uk+1

i . The most violating sample
û thus maximizes either L̇(û) or L∂ (û) with respect to the Lyapunov candidate L. The obtained set of
samples is then used for training. A pseudo code of the learning procedure is provided in Algorithm 3.1.

Algorithm 3.1 Sampling Strategy

Require: dataset D, region Ω, counter k = 0, sample pools Uk
i = /0, and ELM v̂ trained with D

1: repeat
2: draw NC samples Û = {û1, û2, . . . , ûNC}
3: ν1 = no. of samples in Û fulfilling condition (iv)
4: ν2 = no. of samples in Û fulfilling Eq. (3.12))
5: if p > ν1

NC
then Uk+1

1 =Uk
1 ∪ argmaxu∈Û L̇(u)

6: if p > ν2
NC

then Uk+1
2 =Uk

2 ∪ argmaxu∈Û L∂ (u)
7: train ELM with D and Uk+1

i
8: k← k+1
9: until p≤ νi

NC
: ∀i

Note that the constraints at points U and the input samples X of the training data are not the same.
For learning according to Eq. (3.10), it remains to select a set of samples U in addition to the training
inputs X. As mentioned before it was already shown in [Neumann et al., 2013b] that a well-chosen
sampling of points U is sufficient for generalization of the incorporated discrete constraints towards
a continuous region Ω and that stability can be proven ex-post after learning. This is possible since
the neural network method allows analytical differentiation and exploits the linear dependency on the
learning parameters in order to use a worst case approximation by means of Taylor polynomials. The
approximation of the constraint surface is, however, computationally costly and should only be applied
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if required. It is also important to note that, in absence of the verification processes, stability is only
given with a certain probability. Sampling and ex-post verification is only possible in finite regions and
can only enforce local asymptotic stability.

 

 

(a) Lq = x2

 

 

(b) LP = xT Px

 

 

(c) L =?

Fig. 3.5: Level sets of three different Lyapunov candidates, but which one to apply for learning?

3.4 Design of data-driven Lyapunov candidates

As a first example, a well known quadratic Lyapunov candidate is used, given by Lq = (x−x∗)T
1(x−x∗),

where 1 denotes the identity matrix for stability implementation. This function is data independent,
quadratic and fulfills conditions (i)-(iii) in Sec. 3.3.1. The Lyapunov candidate function Lq is only able
to capture a limited class of dynamics, but more complex functions could be possible as depicted in
Fig. 3.5. This raises the question: which Lyapunov candidate function is suitable for learning dynamical
systems from complex but sparse data? In the following approaches are presented, which can be shaped
accordingly to training data.

3.4.1 Quadratic Lyapunov candidates

As a first attempt to find a Lyapunov candidate with more complexity, the function Lq is parameterized
and is considered in the following form:

LP(x) =
1
2
(x−x∗)T P(x−x∗) . (3.13)

Note that (i)-(iii) are fulfilled if P is positive definite and symmetric. It is defined as:

P = argmin
P∈P

M(LP) . (3.14)

M is defined according to the following sum over the training data:

M(LP) =
1

Nds

Ntraj

∑
i=1

Ni

∑
k=1

Θ
[
(xi(k))T Pvi(k)

]
, (3.15)

where the desired attractor x∗ = 0 and Θ : R→{0,1} denotes the heavy side function.

Θ(z) =

{
0, if z < 0
1, otherwise.

The minimization operator in Eq. (3.14) can be formulated as a nonlinear program, which allows
to be solved by successive quadratic programming based on quasi Newton methods for optimization
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[Bazaraaa et al., 2006]. The possible matrices are restricted to be an element of P := {P ∈Rd×d : PT =
P, λi ∈ [α,1], λi is EV of G}1, where α = 0.1 is a small and positive scalar.

Note that for some shapes it is impossible to find an estimate that approximates the data accurately
while simultaneously fulfilling the quadratic constraint given by the Lyapunov candidate Lq. Part of
the training samples (x(k),v(k)) are violated by Lq, where violation means that the angle between the
negative gradient of the Lyapunov candidate at point x and the velocity of the data sample v is bigger
than 90◦:

^(−∇L(x(k)),v(k))> 90◦⇔ (∇L(x(k)))T v(k)> 0 (3.16)

Note that the derivation in Eq. (3.9) shows that this is in contradiction to condition (iv) of Lyapunov’s
theorem.

In order to evaluate if a given Lyapunov candidate L is compliant with the training data D, the
measure M in Eq. (3.15) is generalized to arbitrary Lyapunov candidates. The violation of the training
data is defined as:

M(L) =
1

Nds

Ntraj

∑
i=1

Ni

∑
k=1

Θ
[
(∇L(xi(k)))T ·vi(k)

]
, (3.17)

only those samples (xi(k),vi(k)) are counted in M where the scalar product between ∇L(xi(k)) and vi(k)
is positive and thus violating Lyapunov’s condition (iv).

3.4.2 Learning Lyapunov candidates with neural networks

The application of standard candidates, i.e. quadratic Lyapunov candidates as in Fig. 3.5(a) or matrix
parametrized candidates visualized in Fig. 3.5(b) are not satisfactory if the tasks demand an appropriate
complexity. In theory, much more complex functions are possible and also desired, see Fig. 3.5(c).

To approach the issue of designing such a flexible Lyapunov candidate an ELM is considered which
defines a scalar function LELM : Rd → R. The major goal is to minimize the violation of the training
data measured by Eq. (3.17) by making the negative gradient of this function follow the training data.
The definition of a quadratic program suited for the new constraints is given by:

1
Nds

Ntraj

∑
i=1

Ni

∑
k=1

(
‖−∇LELM(xi(k))−vi(k)‖2 + . . . + εRR‖W out‖2)→min

W out
, (3.18)

subject to the following equality and inequality constraints corresponding to Lyapunov’s conditions (i)-
(iv) such that LELM becomes a valid Lyapunov candidate:

(a) LELM(x∗) = 0 (b) LELM(x)> 0 : x 6= x∗

(c) ∇LELM(x∗) = 0 (d) L̇ELM(x)< 0 : x 6= x∗
(3.19)

where the time derivative in (d) is defined w.r.t the stable system ẋ = −x. The constraints (b) and (c)
define inequality constraints which are implemented by sampling these constraints.

The gradient of the scalar function defined by the ELM is linear in Wout and given by:

(∇LELM(x))i =
R

∑
j=1

Wout
j f

′
(

d

∑
k=1

Winp
jk xk +b j) · (Winp

ji ) , (3.20)

where f
′
denotes the first derivative of the Fermi function. A sampling strategy is defined which is very

similar to the one defined in Sec. 3.3.3 (see Algorithm 3.1). This strategy is described in Algorithm 3.2.
The final dynamical system is acquired in two steps. First use one ELM to learn a suitable Lyapunov

candidate (LELM) by using Algorithm 3.2. Then use a second ELM to implement the desired dynamical
system by using the derived stability constraint from the first ELM representing the Lyapunov candidate.

1EV is used as abbreviation of eigenvalue.
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Algorithm 3.2 Lyapunov Function Learning

Require: dataset D, region S , counter k = 0, sample pools Uk
1 = /0 and Uk

2 = /0
Require: LELM : Rd → R trained with D w.r.t. (a) and (c)

repeat
draw samples Û = {û1, û2, . . . , ûNC}
ν1 = no. of samples in Û fulfilling (2)
ν2 = no. of samples in Û fulfilling (4)
if p > ν1

NC
then Uk+1

1 =Uk
1 ∪ argmaxu∈Û LELM(u)

if p > ν2
NC

then Uk+1
2 =Uk

2 ∪ argminu∈Û L̇ELM(u)
train ELM with D, Uk+1

1 and Uk+1
2 w.r.t. (a) and (c)

k← k+1
until p > ν1

NC
and p > ν2

NC

3.5 Impact of stability-constraints on the resulting dynamical systems

In order to analyze the impact of the learning with constraints, experiments are conducted, where the
networks learn from human-demonstrated handwriting motions collected for motion primitive learning
[Khansari-Zadeh, 2012a]2. At first a single motion is considered, which is composed of three S-like
trajectories with 250 samples each and the end-point located at the origin (see Fig. 3.6).

The ELM is initialized with R = 100 neurons in the hidden layer. The biases bi and components
of Winp are initialized randomly drawn from the uniform distribution in [−1,1]. The regularization
parameter is set to ε = 10−5. The parameterized Lyapunov candidate function is adapted to the training
data according to Eq. (3.14). The set of constraints U consists of samples drawn from the region Ω =
[−0.5,2.1]× [−1.1,2.5], which covers the relevant region of the task space. Fig. 3.6(a) illustrates an
example of learning the S-like trajectories by an ELM without the usage of explicit stability constraints.
In the areas close to the demonstrations, the trajectories converge to an attractor next to the target. In
other regions of the space, they either converge to spurious attractors or diverge. In contrast, Fig. 3.6(b)
shows the same network setup but trained with the stabilization method using Eq. (3.13) with metric
P chosen according to Eq. (3.14). Note that in the left upper corner of the local workspace, shown
in Fig. 3.6(b), the dynamics can leave the controlled workspace. In Fig. 3.6(c) constraints are added
to restrict the dynamics to the local region workspace Ω. The generated trajectories converge to the
target, because the learning process enforces asymptotic stability at target x∗. This ensures that the
target is reached, if the movement is started from any point in the workspace Ω. The adopted Lyapunov
candidate enables the accurate modeling of the dynamics. In the following a systematic evaluation of
the new stability mechanism is conducted using two performance measures.

The first measure is the root mean square error Etr =
√

1
Ntr

∑k ‖v(k)− v̂(x(k))‖2 evaluated on the
training data, which quantifies the ability to approximate the training data. The second and third measure
quantify the stability of the dynamical system numerically. For these measures, the motion generation is
simulated by choosing Ns = 100 starting points uniformly drawn in Ω and iterate the dynamical system
for Nmax time steps with step size ∆t = 0.1. If the end-point x(Nmax) of the reproduced trajectory is in
the vicinity of the desired attractor x∗ = 0, the learned dynamics are rated as converged to the target (i.e.
‖x(Nmax)−x∗‖< δ = 1), otherwise as diverged. The distance dist = ‖x(Nmax)−x∗‖ of the end-point to
the attractor for each converged trajectory constitutes the second measure. The amount of the converged
trajectories S divided by the number of starting points Ns quantifies the stability of the system as a third
measure. In addition, the CPU time used for training conducted on a x86 64 linux machine with at least
4 GB of memory and a 2+ GHz intel processor in matlab R2010a3 is recorded. All results are averaged
over 10 different network initializations.

2The dataset was collected at the LASA institute at EPFL.
3MATLAB. Natick, Massachusetts: The MathWorks Inc., 2010.
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Streamlines
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Reproduced data
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Fig. 3.6: The impact of the incorporation of asymptotic stability into the learning. Visualized dynamics
of a network trained without stability constraints Fig. 3.6(a) and the same network trained with con-
straints for stabilization Fig. 3.6(b). A network where constraints are sampled only in a half of the task
space Fig. 3.6(c).

The results of the experiments for networks with and without stabilization for different regularization
parameters ε are shown in Tab. 3.1. The performance of implementing the desired attractor is given
by the Euclidean distance (dist). The ratio S/Ns shows how many motions generated according to the
discretization of the dynamics are close to the desired target. Note that S/Ns = 1 holds for all constrained
networks. The results show that the stability ratio increases with increasing regularization ε for networks
trained without constraints. This reveals a trade-off between stability and accuracy for the unconstrained
networks. For the explicitly stabilized ELMs, the trade-off is resolved, because all networks converge
to the target independent of the regularization while the network can still approximate the training data
accurately for less regularization. Thus, the target attractor is imprinted close to the desired attractor (cf.
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without constraints
lgε dist S/Ns Etr CPU time [s]
−8 .431±.067 .686±.053 .21±.0006 0.22 ± 0.001
−6 .431±.018 .813±.031 .22±.0008 0.21 ± 0.001
−4 .401±.013 .917±.053 .24±.0027 0.22 ± 0.001
−2 .382±.010 .965±.044 .30±.0028 0.20 ± 0.001

with constraints
lgε dist S/Ns Etr # U1 # U2 CPU time [s]
−8 .049±.014 1 .26 ± .0008 52.1 ± 6.1 47.8 ± 8.4 638.6 ± 184.2
−6 .043±.016 1 .28 ± .0011 32.7 ± 5.9 26.4 ± 4.7 249.1 ± 80.4
−4 .055±.014 1 .31 ± .0014 23.3 ± 4.4 12.4 ± 4.6 139.2 ± 44.9
−2 .020±.012 1 .38 ± .0015 8.5 ± 0.7 13.6 ± 3.6 59.4 ± 18.6

Tab. 3.1: Network learning with and without constraints compared for different regularization parame-
ters ε averaged over 10 trails. Additional information about the learning time and the amount of derived
constraints (#U1) from the Lyapunov candidate Lq and from the workspace constraint (#U2) is given.
S/Ns is the ratio of converged motions.

Sampled

Unsampled

2

1

3
Fig. 3.7: The impact of sampling
stability constraints for the learning
only in one half of the workspace.
The workspace is divided into two
sub-spaces where one is subject
to constraint sampling (samples are
shown in green). Three interesting
regions can be seen. (1) illustrates
a spiral repeller, (2) stable dynamics
and (3) generalized stable dynamics.

dist in Tab. 3.1).
The successive implementation of the constraints is computationally more costly (this is strongly

depending on the number of constraint samples #U1 and #U2 that are used for training ) but can be
reduced by increasing regularization. The main reason for this effect is that the generalization of the
constraint becomes easier with lower model complexity (i.e. by increasing ε). Note that the positioning
of the samples is non-uniform, because the samples are only placed in regions that are more prone to
instability with respect to the Lyapunov candidate and the border of the workspace Ω.

3.5.1 Flexible distribution of stability-constraints

Fig. 3.7 demonstrates the locality of the proposed approach, please compare to Fig. 3.6. In this experi-
ment, only the region below the black stroke is subject to constraint sampling and no border constraint is
considered. Three regions in this experiment are interesting: the spiral repeller in region 1 is still active
since the data close to this region forces the dynamics to this behavior. The spiral and spurious attractor
in region 2, that appears in Fig. 3.6(a), is deleted due to the sampling of constraints. Region 3 shows
that the stability constraint can be generalized towards regions not subject to sampling, since no data is
present in this region, thanks to the strong model bias induced by the stability constraints.

This example shows that the locality of this approach is no disadvantage. Instead, it emphasizes that
locality adds high flexibility to the approach: The application of different constraints in selected regions
is possible.
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Fig. 3.8: Investigation on 20 motion shapes of the LASA dataset [Khansari-Zadeh, 2012a]. Evaluation
of the violation measure M on each motion (Fig. 3.8(a)) comparing the quadratic Lyapunov candidate
Lq with the parameterized version LP. The following plots show the results using LP and different
regularizations ε . In Fig. 3.8(d) show the the training errors. In Fig. 3.8(b) and Fig. 3.8(c) the amount of
samples is shown, used for learning without and with border constraints. At last in Fig. 3.8(e) the CPU
time is shown during learning when using Lp with both types of constraints.
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JShape Sharpc Sshape Cshape Line

Pshape Rshape Sine Zshape Khamesh

Trapezoid Spoon
Angle

Bump
Wshape

Fig. 3.9: The figure shows 15 examples from the LASA benchmark dataset. The black lines represent
the training data and the red lines are the reproduced movements. The learned vector fields are depicted
in blue.

3.5.2 Lyapunov candidate versus training data

The experiments described in this section, evaluate the learning process with respect to the used Lya-
punov candidate and the training data.

Fig. 3.8 shows an investigation of several measures on each of the twenty motion shapes separately.
The plot in the upper part of the figure shows the value for M defined in Eq. (3.17) for each shape of
the dataset. It is revealed that the simple quadratic Lyapunov candidate Lq = x2 strongly violates the
training data for some of the shapes (see Fig. 3.8(a)). This violation can be relaxed by introduction of
the matrix P. Some of the shapes are not violated to a high degree anymore after optimization - e.g. the
sharp-C shape. These results support the idea that optimized Lyapunov candidates enhance the class of
accurately learn able shapes. The plot in Fig. 3.8(b) and Fig. 3.8(c) shows the number of samples drawn
in the learning phase until implementation of asymptotic stability. The plot summarizes the results for
networks with different regularization parameters. Two results can be deduced from this experiment.
First, there is a clear correlation between “difficult” shapes - in the sense of M - and the number of
applied samples: difficult shapes need more samples for implementation of stability. Second, networks
with stronger regularization need less constraints for enforcing stability. This is advantageous, because
it significantly reduces the time needed for learning. Note, that the number of samples for some shapes
could be reduced significantly by increasing the regularization parameter from ε = 10−8 to ε = 10−2.

Fig. 3.8(d) shows the training error obtained in this experiment. It can be seen that the training
error is high for shapes which also produce a high value of violation M. This is expected because
the networks are forced to implement the Lyapunov candidate, i.e. the constraints have a higher priority
then the data. Thus, if the Lyapunov candidate violates the training data, the network predictions will not
accurately reproduce the demonstrations. It is also revealed that the training error is decreasing for lower
regularization parameters ε . The additional experiments show that the regularization parameter is still
important to tune. However, the stability of the resulting estimate is mainly influenced by the sampling
scheme, and consequently also the time needed for training (compare Fig. 3.8(a) and Fig. 3.8(e)).

Fig. 3.9 shows movements learned from demonstrations (black) with the reproduced trajectories
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A-shape Time [s] M Evelo Etraj

SEDS 22.1±1.3 0.008 .113± .0029 .0168± .0004
Lq 9.2±0.9 0.008 .106± .0006 .0081± .0003
LP 7.8±0.8 0.000 .096± .0015 .0053± .0002

LELM 50.5±4.6 0.000 .103± .0023 .0066± .0004
J-2-shape Time [s] M Evelo Etraj

SEDS 23.0±1.4 0.198 .119± .0008 .0338± .0001
Lq 49.8±3.5 0.198 .093± .0015 .0298± .0032
LP 36.4±2.7 0.147 .143± .0011 .0241± .0004

LELM 55.2±4.8 0.000 .069± .0013 .0079± .0004
LASA all Time [s] M Evelo Etraj

SEDS 22.6±1.3 0.0582 .109± .0020 .0169± .0003
Lq 14.3±1.5 0.0582 .114± .0003 .0218± .0005
LP 15.9±2.3 0.0180 .110± .0004 .0177± .0003

LELM 52.4±4.0 0.0001 .103± .0006 .0145± .0004

Tab. 3.2: Results for A-shape, J-2-shape, and the entire dataset.

(red) and the surrounding vector field (blue). Note that all networks produce stable and accurate move-
ments which converge to the given target point attractor due to the combination of optimized Lyapunov
candidate and constrained learning.

3.5.3 Comparisons of all gained Lyapunov candidates

This section extends the evaluation of the proposed approach to experiments performed on the entire
LASA dataset of handwriting motions.

In the previous sections, three different Lyapunov candidates Lq, LP, and LELM are suggested for
learning. The performance of these candidates in comparison to SEDS4 are further evaluated on a
library of 20 human handwriting motions from the LASA dataset [Khansari-Zadeh, 2012a]. The local
accuracy of the estimate is measured according to [Khansari-Zadeh and Billard, 2011]:

Evelo =
1

Nds

Ntraj

∑
i=1

Ni

∑
k=1

(
r
(

1− vi(k)T v̂(xi(k))
‖vi(k)‖‖v̂(xi(k))‖+ ε

)2

+ q
(vi(k)− v̂(xi(k)))T (vi(k)− v̂(xi(k)))

‖vi(k)‖‖vi(k)‖+ ε

) 1
2

,

(3.21)

which quantifies the discrepancy between the direction and magnitude of the estimated and demonstrated
velocity vectors for all training data points5. The accuracy of the reproductions is measured according
to:

Etraj =
1

T ·Nds

Ntraj

∑
i=1

Ni

∑
k=1

min
l
‖x̂i(k)−xi(l)‖ , (3.22)

where x̂i(·) is the equidistantly sampled reproduction of the trajectory xi(·) and T denotes the mean
length of the demonstrations. Nevertheless, it is believed that the trajectory error is a more appropriate
measure than the velocity error to quantify the quality of the dynamical estimate.

The results for each shape are averaged over 10 network initialization. Each network used for esti-
mation of the dynamical system comprises R = 100 hidden layer neurons, εRR = 10−8 as regularization

4The publicly available SEDS software by Khansari-Zadeh et al. [Khansari-Zadeh, 2013] is used.
5Measure and values (r = 0.6, q = 0.4) taken from [Khansari-Zadeh and Billard, 2011]. The regularization parameter is set

to ε = 10−6.



Impact of stability-constraints on the resulting dynamical systems 27

 

 

Target

Demonstrations

Lyapunov Candidate

No constraints
 

 

Lq
 

 

Lp
 

 

LELM
 

 

SEDS

 

 

Target

Demonstrations

Reproductions

Dynamic Flow

 

 

 

 

 

 

 

 

Fig. 3.10: Estimates of the J-2-shape and respective Lyapunov candidates. The J-2-shape approximated
without explicit stabilization (first column), with Lq (second column), LP (third column), LELM as Lya-
punov candidate (fourth column). The SEDS estimate (fifth column, first row). The stability conditions
in SEDS are derived based on a quadratic energy function [Khansari-Zadeh, 2012b] (fifth column, sec-
ond row).

parameter, and NC = 105 samples for learning. The networks for Lyapunov candidate learning also
comprise R = 100 neurons in the hidden layer and εRR = 10−8 as regularization parameter. The SEDS
models where initialized with K = 5 Gaussian functions in the mse mode and trained for maximally 500
iterations. Two movements from the dataset are taken to analyze the performance of the methods in de-
tail: A-shape and J-2-shape. This demonstrations are shown in Fig. 3.3 (left) and Fig. 3.10, respectively.
The experimental results are provided in Tab. 3.2. The table contains the time used for computation in
seconds, the measure of violation M, the velocity error according to Eq. (3.21), and the trajectory error
defined in Eq. (3.22). All experiments have been accomplished on a x86 64 linux machine with at least
4 GB of memory and a 2+ GHz intel processor in matlab R2010a. The overall results for the LASA
dataset are collected in Tab. 3.2 (last tabular). Fig. 3.10 visualizes the estimation of the J-2-shape and
the respective Lyapunov candidates.

The numerical results in Tab. 3.2 show that the function used for implementation of asymptotic sta-
bility has a strong impact on the approximation ability of the networks. The A-shape (see first tabular)
was accurately learned by all models. The reason is that the demonstrations do not violate the respective
Lyapunov candidates to a high degree which is indicated by small value of M. The J-2-shape (see second
tabular of Tab. 3.2) is one of the most difficult shapes among the shapes in the LASA dataset. The ex-
periments reveal that the networks trained with LELM candidate stabilization have the best velocity and
trajectory error values. This is due the high flexibility of the candidate function which eliminates the vi-
olation of the training data. The third tabular in Tab. 3.2 shows the results for the whole dataset. It shows
that the differences in the velocity error are marginal in comparison to the values for the trajectory error.
The networks trained with the quadratic Lyapunov candidate Lq perform the worst because the function
cannot capture the structure in the data. SEDS performs in the range of the quadratic functions due the
conservative stability constraints. The method using LELM has the lowest trajectory error values which
is due to the high flexibility of the candidate function. Methods which cannot avoid the violation of the
training data are, in principle, not able to approximate a given dataset accurately while providing stable
dynamics. The experiments thus reveal that a flexible, data-dependent construction and application of a
Lyapunov candidate is indispensable to resolve the trade-off between stability and accuracy.

In addition to the experiments, Fig. 3.10 shows the estimations of the J-2-shape and their respec-
tive Lyapunov candidates. The left column of the figure contains the estimation result obtained for an
ELM without any prior knowledge to stability. Obviously, even reproductions starting in the vicinity of
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Fig. 3.11: Kinesthetic teaching of iCub. The tutor moves iCub’s right arm from the right to the left side
of the small colored tower.

the demonstrations are prone to divergence. The second column of Fig. 3.10 illustrates the results for
networks trained with respect to Lq. It is shown that this Lyapunov candidate introduces a very strict
form of stability, irrespective of the demonstrations. The reproductions are directly converging towards
the attractor. This is due to the high violation of the demonstrations by Lq close to the start of the
demonstrations. Column three of Fig. 3.10 shows the results for LP. This Lyapunov candidate is data-
dependent but still too limited to capture the full structure of the J-2 demonstrations. The fourth column
of the figure illustrates the performance of the networks trained by LELM. The Lyapunov candidate is
strongly curved to follow the demonstrations closely (first row, fourth column). The estimate leads to
very accurate reproductions with good generalization capability. The results for SEDS are shown in the
fifth column of the figure. As mentioned, SEDS is subject to constraints corresponding to a quadratic
Lyapunov function Lq. The results are very similar to the results for the networks applying Lq or LP as
Lyapunov candidate.

3.6 Learning from kinesthetic teaching

The presented Lyapunov approach is applied to a real world scenario involving the humanoid robot
iCub [Tsagarakis et al., 2007]. Such robots are typically designed to solve service tasks in environments
where a high flexibility is required. Robust adaptability by means of learning is thus a prerequisite for
such systems. The experimental setting is illustrated in Fig. 3.11. A human tutor physically guides
iCubs right arm in the sense of kinesthetic teaching using a recently established force control on the
robot [Fumagalli et al., 2011]. The tutor can thereby actively move all joints of the arm to place the
end-effector at the desired position. The tutor first moves the arm, beginning on the right side of the
workspace, around the obstacle on the table and touches its top. The guided movement proceeds then
towards the left side of the obstacle and stops. This procedure is repeated three times.

The recorded demonstrations comprise between Ntraj = 542 and Ntraj = 644 samples. The hidden
layer of the networks estimating the dynamical system consists of R = 100 neurons and the regression
parameter is εRR = 10−5 in the experiment as well as for the network used for LELM. The weights and
biases of the network are initialized randomly from a uniform distribution in the interval [−10,10] due
to the low ranges of the movement. The results of the experiment are visualized in Fig. 3.12. The figure
Fig. 3.12(a) shows the impact of the different Lyapunov candidates on the estimation of the dynamics.
The estimation of the networks trained by the quadratic function Lq is not able to capture the complex
shape of the dynamics. The networks trained with the LP function provides a better performance. The
networks using the LELM function yields a good estimate.

The second plot in Fig. 3.12(b) illustrates the robustness of the learned dynamics against spatial
perturbations. Therefore, N = 75 starting points are randomly drawn from a uniform distribution in
Ω = [−0.05,0.1]× [−0.5,0.25]× [−0.05,0.2]. Even the trajectories which start far away from the
demonstrations converge to the target attractor and thus underline the robustness of the proposed learn-
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Fig. 3.12: Results of the iCub teaching experiment. Reproduction of the learned trajectories in meter
according to the Lyapunov candidates Lq, LP, and LELM (Fig. 3.12(a)). Reproductions according to LELM
subject to random spatial perturbations (Fig. 3.12(b)).

ing method.
In Tab. 3.3 the important parameters are summarizes, which are set before the learning process starts.

Note that only three additional parameters are added (top) to the standard ELM parameters (bottom).
The Lyapunov candidate L is the most important variable to reach good performance in approximating
the training data. The size of the workspace is mostly task dependent and needs to be determined
accordingly. The amount of samples NC drawn from this region is a crucial parameter with respect to
computation time, but does not need much tuning. If too few samples are drawn, the probability to
implement asymptotic stability decreases, because regions for which the learner violates the stability
constraints maybe overlooked. Thus, this parameter needs to be linked to the size of the workspace Ω.

Important parameters for learning
L Suitable Lyapunov candidate to draw constraints from
Ω Workspace to implement constraints
NC Amount of samples drawn from region Ω used in Alg. 3.1
ε Regression parameter
R Number of neurons in the hidden layer

Winp Initialization range of the input weight matrix (input scaling)
a,b Initialization ranges of the nonlinearity see Eq. (3.5)

Tab. 3.3: Important parameters which need to be set by the user before network learning. The last set of
parameters are needed already for the standard ELM approach. The first part of the table gives the new
parameters important for inducing stability.

3.7 Discussion

The learning methodology described in this chapter ensures that the adapted dynamical systems are
asymptotically stable in a predefined local workspace. The main advantage of the proposed approach
is the inherently decoupled process of finding a proper Lyapunov candidate and implementing the dy-
namical systems itself. In principal this allows the implementation of arbitrary Lyapunov candidates and
can thus lead to flexible, robust, and accurate dynamical systems learned from sparse data. However, to
allow a good performance in approximating the training data, it is essential that the Lyapunov function
does not contradict the training data. Therefore, finding a suitable Lyapunov candidate is one of the key
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steps in this approach. The standard quadratic energy functions are for many motions too restrictive and
results in poor reproduction of the targeted dynamics.

The learning process uses constraints that are generated by a sampling strategy. The proposed sam-
pling strategy finds potential unstable regions and uses them to constructively build stability into the
adapted dynamics. The locality of the approach permits to choose desired regions for the implementa-
tion of constraints. This flexibility is advantageous if a variety of such constraints has to be satisfied.
They can appear in several bounded regions in possibly lower dimensional sub-regions of the input
space. They can be defined only at certain discrete points or in continuous regions. Also, multiple at-
tractors can be implemented with this approach. Although, the locality of this approach prevents a direct
stability guarantee for a previously defined basin of attraction, asymptotic stability can be effectively
proven ex-post, if needed. This is possible, because the neural network allows analytically differenti-
ation. This approach exploits the linear dependency on the learning parameters and uses a worst case
approximation by means of Taylor polynomials (see [Neumann et al., 2013b]).

Scaling the approach to higher dimensions depends on the number of samples needed to implement
stability. The presented results show that the required number of samples and thus the time for train-
ing can be significantly reduced by increasing the regularization parameter of the ELM. Although, one
cannot limitless increase the regularization parameter without reducing the approximation ability which
results in a trade-off between accuracy and computational time. It relies on the sampling-based evalua-
tion of stability constraints which makes the system computationally intractable in higher dimensions.

The guarantee of global asymptotic stability is an important point in related approaches. The main
advantage of global stability is that the size of the workspace is unconstrained. However, the relevant
region of the task space in which the dynamical system shall be able to generalize and perform motions
is in many applications bounded and known in advance. In case of a strong perturbation, which pushes
the state of the dynamical system outside of the stable region, a high-level controller can react and apply
counter measures (e.g. emergency stop of the robot or switch to another motion module). Another
possibility is to detect the current position outside of the local region and project the position to the
border of the workspace. All velocities on the border are pointing inside of the workspace according
to Eq. (3.12). Using this approach the stability can be generalized to the global region, because the
constraints defined by the Lyapunov theory, described in Sec. 3.3.1, hold for all positions.

3.8 Concluding remarks

In this chapter a novel learning approach is proposed to learn vector fields from sparse data for motion
generation. Stability assumptions inspired from Lyapunov’s stability theory are exploited to shape the
vector fields. Due to this strong model bias the generalization abilities are enhanced and stable motion
generation becomes possible.

In extensive evaluations in this chapter it is shown that the new learning approach is sufficient to im-
plement asymptotic stability from only a few trajectory demonstrations which leads to stable dynamical
systems. The learning scheme principally incorporates linear inequality constraints in discrete points
of the workspace derived from a so-called Lyapunov candidate efficiently by quadratic programming.
Despite the fact that the constraints are only satisfied in discrete points by construction, they can be gen-
eralized towards a continuous region by using a sophisticated sampling strategy. This sampling strategy
permits to choose desired regions for the implementation of constraints because of the locality of the
approach. This flexibility can be advantageous due to the large variety of such constraints. They can
appear in several bounded regions in possibly lower dimensional subregions of the input space, they can
be defined only at certain discrete points or in continuous regions.

Additional experiments demonstrated the role of regularization in relation to the number of samples
needed for implementation of the constraints and in relation to the obtained approximation performance.
The accuracy of the estimates were enhanced by using a more flexible Lyapunov candidate function
which were adapted to the training data. This new form of Lyapunov candidates relaxed the constraints
such that more datasets could be learned with adequate accuracy. Interestingly, it is possible to imple-
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ment even more complex candidate functions which might be superior to the already used functions. To
tackle this question is left open for future work. Finally, it was demonstrated that the learning scheme
can cope with data obtained by kinesthetic teaching of the humanoid robot iCub and that it generates
smooth and accurate reproductions of the learned demonstrations in a three-dimensional task.

The learning approach is able to estimate vector fields applied in a autonomous dynamical system for
movement generation. The method is based on the idea of separating the learning into two main steps: i)
learning of a highly flexible Lyapunov candidate from data and ii) implementation of asymptotic stability
by means of this obtained function. This approach strongly reduces the trade-off between stability and
accuracy, which allows robust and complex movement generation in robotics.
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CHAPTER 4

COMPARISONS OF MOVEMENTS UNDER
BENCHMARK CONDITIONS

In Chapter 3 a possible learning approach is introduced to create dynamical systems suited for represent-
ing movement primitives. It is one example out of many movement primitive representations that have
been introduced within the past decade (see Sec. 2.2). Each modeling approach has its own strengths
and weaknesses, which can be reliably identified with systematic comparisons. To provide systematic
comparisons standardized evaluation and tasks are essential.

In this chapter a benchmark framework and methodologies for systematically testing and evaluation
of different movement primitive representations are described. The design of the benchmark is highly
influenced by the advent of a new generation of humanoid robots that need to perform a wide variety
of tasks in human daily lives. It is essential that humanoid robots can move similar to human beings
for social acceptance as discussed e.g. in [Oztop et al., 2005; Chaminade et al., 2005]. However, from
the robotics perspective each movement primitive need to have motion generation techniques that can
cope autonomously with changing situations. These situations may be corrupted with various sources of
perturbations and other uncertainties. Therefor, two main criteria need to be evaluated in this benchmark
which is the human-likeness of the motion generation and also the robustness of the motion generation.

Participation in the proposed benchmark is a valuable addition to the research in this field and find-
ings could lead to greater understanding of the differences in the various movement primitive represen-
tations. At [Khansari et al., 2013], this benchmark framework was first introduced and discussed, where
first benchmark users presented their preliminary results. The conceptual ideas are also published in
[Lemme et al., 2015].

4.1 Design of a systematic comparison

In general, designing benchmarks is a common approach for providing systematic comparisons in many
research fields, e.g. supercomputers [Bailey and Barton, 1985], hardware design [Gaj et al., 2010],
or optimization software [Dolan and More, 2002]. This motivates to propose a benchmark software
framework, where motion generation algorithms are considered that model point-to-point reaching or
drawing motions with the help of dynamical systems as discussed in Sec. 2.2.

In most previous works regarding movement primitives, an extensive performance and generaliza-
tion evaluation is missing. Success is illustrated mostly by displaying only a few number of example
motions. However, there is a large number of possible training datasets, generalization tasks and mea-
sures that could potentially be useful for evaluation. This provides a substantial challenge for designing
a respective benchmark. It needs to provide a rich set of training-data and to evaluate a specific, stan-
dardized set of performance measures on significant tasks. These tasks should be reasonably diverse
and challenging. In particular, it is not sufficient to evaluate only the accuracy of reproducing a given
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(set of) demonstrations. On the contrary, for actual applications on real robots, it is essential to evaluate
motion generation methods on how robust they are against disturbances and uncertainties. Therefore,
disturbances or uncertainties like e.g. ’perturbations applied to the end-effector’ or ’changes in the goal
state’ are applied during the execution of motions in the described benchmark.

The decision on which performance measures are used depends on the desired properties for motion
generation. In this chapter, it is argued that robots must be (i) precise in the execution of the task,
(ii) robust to perturbations, which may occur during execution and (iii) robots need to move similar to
humans to improve the acceptance of robots in human environments. Following this argumentation, the
benchmark framework comprises of ten different evaluation criteria. It includes measures derived from
the investigation of human motions in order to measure human-likeness using typical features like power
laws [Viviani and Cenzato, 1985] or the minimum jerk model [Hogan, 1984; Flash and Hogan, 1985;
Todorov and Jordan, 1998]. Whereas the control principles underlying these regularities are disputed in
movement science [Flash et al., 2013], this work does not emphasize a particular theory.

The idea is to propose measures that evaluate particular features, strength or respective weaknesses
and seek to develop a multi-faceted benchmark system. Consequently, the benchmark offers means for
statistical evaluation and many diverse measures. Due to the fact that the focus of each user is maybe
different, it is refrained to provide an automatically generated single number for the performance ranking
of different methods and leaves the ranking to the user. This benchmark framework considers only the
motion generation of already trained modules, therefore, does not consider the learning process during
training (e.g. time needed for learning etc.).

The contribution of this chapter is to provide a benchmark software framework, which allows to
execute a standardized testing for systematic comparisons of motion generation models that are able
to learn from demonstrations. Evaluation methods from the robotics and the motor control community
are utilized to evaluate precision of execution and human-likeness of the delivered performance of each
movement primitive approach.

4.2 Benchmark system for human-like motion generation methods

In this benchmark system, the motion generation task is to reproduce learned point-to-point motions
under occurrence of perturbations. In this section an overview of the benchmark system is given. The
benchmark system according to Fig. 4.1 is described to clarify what is delivered by the software frame-
work and what needs to be delivered by the participant.

Participants need to prepare their algorithms according to a software interface and a training dataset
available in this framework. In the benchmark system, it is assumed that a prescribed set of trained
models (see below) is provided corresponding to each motion in the considered dataset.

Trained modules are represented in a class structure, which holds the learned representation of a move-
ment and the control algorithm. This provides the functionality on how to process the trained mod-
ules. In the software module interface it is required that each module is represented as a first order
dynamical system mapping positions x to velocity vectors v. Motion generation is conducted by
integrating velocities over time t:

xt+1 = xt +∆t ·v(xt), (4.1)

where ∆t is a time constant for discretization of the continuous dynamics and is set according to
the ground truth dataset.

Datasets are an important factor in context of this benchmark, since it presents the ground-truth for
comparisons and provides the initial conditions for the motion generation schemes. The initial
conditions are given by the start points and target points from each demonstrated trajectory. Also
the parameter ∆t is extracted from the dataset. A dataset is provided in this benchmark and is
described in Sec. 4.3.
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Fig. 4.1: Schematic illustration of the benchmark architecture logic. A default ’Dataset’ and ’Bench-
mark scenarios’ are provided. According to the used ’Dataset’ the participants need to provide ’Trained
modules’. The core of this benchmark system is the ’Simulation’ function. It combines all information
about initial conditions and uncertainties of the perturbations and executes the ’Trained modules’ in the
test environment. The ’Evaluation’ is evaluating the reproduced trajectories according to the defined
measures and the demonstrated trajectories which are the baseline for the systematic comparisons. The
results of the evaluations can be utilized by each participant to produce a ranking using a combination
of scores.

Benchmark scenarios specify the uncertainties and perturbation types, which can occur during motion
generation (e.g. a displacement of the predicted position). An overview of the available scenarios
is given in Sec. 4.4.

The simulation function receives the initial start and target points from a given dataset and the pertur-
bation specifications for each benchmark scenario. Given these initial start conditions, the trained
modules should generate a trajectory to a given target point. The system provides feedback on
the current position of the target and end-effector, the current velocity and the current time step.
The simulation stops if either the module indicates that the motion generation is finished or if the
generation process exceeds a maximum execution time allowed for the motion.

The evaluation is done by a standard set of measures which identify properties from the delivered re-
produced trajectory and are used to compare it to the demonstrated trajectory given by the ground-
truth dataset. The provided measures are introduced in Sec. 4.5.

The ranking , if multiple measures are used, is a difficult task, especially, if the focus is not completely
known. The result of this benchmark is a variable set of statistical evaluations. This allows for
each participant to chose between the evaluations and generate a solid basis for the comparison of
his interest. This issue is further elaborated in Sec. 4.6.

4.3 A dataset of human handwriting demonstrations

The ability to encode a wide variety of movement shapes is an essential feature of the considered move-
ment primitive modules. For this purpose, the proposed benchmark uses the LASA human handwriting
library [Khansari-Zadeh, 2012a] as a benchmark dataset. This library was first introduced in [Khansari-
Zadeh and Billard, 2010a,b] and extended in [Khansari-Zadeh, 2012b; Khansari-Zadeh and Billard,
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Fig. 4.2: The library of LASA handwriting motions [Khansari-Zadeh, 2012a]. This library is composed
of 30 two-dimensional point-to-point motions.

2014] to compare the reproduction performance of different regression techniques. It has also been
adopted in several works as the baseline for performance comparison [Neumann et al., 2013a; Lemme
et al., 2014a; Gómez et al., 2012] and comprised of data from handwriting motions collected from pen
input using a Tablet-PC. For each desired movement shape, the human subject was asked to draw seven
demonstrations of each shape, by starting from different initial positions and to the same final point. The
initial points are close to each other, which results in demonstrations that may intersect each other but
represent the desired movement shape with approximately the same size and rotation. The recorded li-
brary contains 26 sets of human handwriting motion and four additional sets. The additional sets include
more than one movement shape in one set (called Multi Models). Without losing generality, the target
(final) point is by definition set to (0,0) for all movement (shapes) in this library. All demonstrations
of the different shapes are presented in Fig. 4.2. In particular, this dataset displays a large variety of
motions, which represents suitable ground-truth data for the benchmark evaluation for precision criteria
and human-likeness.

One major question is what is the right response to perturbations? Due to the property of human-
likeness it is expected from the movement primitive modules to react to perturbations in a similar way as
humans do. The performance of human subjects under perturbations were examined before [Shadmehr
and Mussa-Ivaldi, 1994; Gandolfo et al., 1996; Conditt et al., 1997; Karniel and Mussa-Ivaldi, 2002]
and could also be included in this benchmark. However, in these studies the considered tasks are to
generate point-to-point straight motions, which are not very challenging for motion learning, but the
results could provide interesting insights of each motion generation approach regarding perturbation
handling compared to human performances. At this point, however, the evaluation process is simplified
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start target
(a) change start position (b) discrete push

(c) continuous push (d) change target position

Fig. 4.3: Four different benchmark scenarios used in the benchmark software framework to test the gen-
eralization capabilities. The blue trajectory is the demonstrated motion, whereas the red trajectory is the
perturbed motion generated in the simulation. The black arrow indicate the direction and amplitude of
the applied perturbation. In Fig. 4.3(a), the initial start point is changed, which is a standard generaliza-
tion test. In Fig. 4.3(b), a sudden displacement of the current position is simulated. A continuous change
to the current position is shown in Fig. 4.3(c), which simulates a guiding of the end-effector of the robot
by e.g. a human teacher. In Fig. 4.3(d), the target jumps in one direction at some point in time during
the motion generation (indicated by the green ’*’).

and adhere to the robotic side, by deciding that the perturbation should be compensated for w.r.t. the
different criteria.

4.4 Benchmark scenarios

In this benchmark, the motion generation is done under benchmark scenarios where different perturba-
tions are applied. Four scenarios are identified that specify the majority of perturbation types that may
occur during motion generation. They are used to evaluate the ability of the different motion generation
algorithms to cope with perturbations during motion execution and show their generalization capabili-
ties: (i) Initialization with different starting points, which is the standard generalization test; (ii) push
of the end-effector, realized as sudden displacement of the current position; (iii) continuous push of the
end-effector; (iv) changes of goal position during the motion execution. These four perturbation types
are visualized in Fig. 4.3.

4.4.1 Generalization to different initial conditions

The initial starting point of the motion generation is perturbed (see Fig. 4.3(a)), which is the most
common generalization test in this field. The displacement of the end-effector is applied at time t = 0
with amplitude a and direction v, where the systematic variations use combinations a,v of the parameters
as specified below:
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Amplitude: Consider the length span of motion l along both x and y axes. Then, the amplitude of the
perturbation a can be drawn from a normal probability distribution according to:

a = N (µ,σ), (4.2)

where µ = 0.1 l and σ = 0.05 l.

Direction: The direction of the perturbation vp. The vector v ∈Rn is drawn from a uniform distribution
in interval [−0.5,0.5] ∈ N to determine a random direction where the vector is pointing at. This
vector is normalized and multiplied by the amplitude to obtain the actual perturbation vector
vp = a v

||v|| .

4.4.2 Discrete push

In this benchmark scenario, a sudden displacement of the current position is applied during motion
generation (see Fig. 4.3(b)). This simulates a hit against the end-effector at a particular point in time
resulting in a displacement of the current position of the end-effector. This perturbation appears with
varying timing tp, direction v and amplitude a. The start and target points remain fixed.

Direction and amplitude are chosen as described before in Sec. 4.4.1.

Timing: It specifies the point in time tp when the trajectory will be perturbed. The benchmark dataset
consists of multiple motion shapes, where each shape is demonstrated multiple times. For each
set of demonstrations the mean motion duration τ is calculated. The perturbation start time tp is
then given by tp = tsτ , where ts is drawn uniformly in [0,1] ∈ N.

4.4.3 Continuous push

In this benchmark scenario (see Fig. 4.3(c)), motion generation is continuously perturbed during a spe-
cific time interval. This simulates e.g. a teaching scenario in which a human tutor is correcting the
movement for a certain duration. As previously, perturbations appear at varying times, directions and
amplitudes. The target point remains fixed.

Timing and direction are chosen as described in Sec. 4.4.2.

Amplitude: The amplitude of the perturbation (in millimeters/second). The samples for amplitude are
drawn from a normal probability distribution (see Eq. (4.2)) with mean µ = 0.5v̄ and standard
deviation σ = 0.25v̄. The parameter v̄ corresponds to the mean speed of all demonstrations across
all motions in the library.

Duration: The duration of the perturbation τd (in seconds) is given by τd = tdτ , where td is drawn from
a uniform distribution in [0.1,0.3] ∈ N. τ is again the mean motion duration given by each set of
demonstrations per motion shape.

4.4.4 Target displacement

The ability of the trajectory generators to track and reach moving targets (see Fig. 4.3(d)) is quantified by
this benchmark scenario. The target motion starts with different timing and lasts over a certain duration.
Also the amplitude and direction of the target motion can be changed.

The parameters are equally chosen as in the Continuous Push benchmark only applied to the target
point. The same probability distributions are applied.
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4.4.5 Possible extensions

Four different types of perturbations are implemented in these benchmark scenarios, but one could think
of more sophisticated scenarios like e.g. obstacle avoidance. This scenario can quantify the ability of the
motion generation approach to avoid obstacles as smooth as possible without colliding with the obstacle.
However, this would require an additional mechanism to respond to the obstacle in a meaningful way,
e.g. move around the object without contact with a smooth trajectory.

A possible extension to spatial perturbations is to also perturb the inner clock of the benchmark since
some motion generation methods are using an explicit representation of time. It is of course difficult to
guaranty that the user is using the clock of the system and not an internal clock inside of the model.
A possible implementation of such a perturbation is to add noise to the ∆t variable to simulate signal
delays from the sensor array, which again effectively results in a spatial displacement of the predicted
position.

Further investigations are required in order to provide systematic means for performance evaluation
in the above four scenarios, and is thus left for possible future extensions.

4.5 Evaluation and performance measures

In the following the evaluation of the perturbed reproduced trajectories is described. All trajectories are
scaled in time by a parameter τ (dτ ∝ dt) in order to have standardized duration. This allows to inspect
motion kinematics independently of the total movement duration. The geometric and kinematic accuracy
of the reproductions are inspected separately and in combination. To retain only the shape relevant
geometrical information called path, all trajectories are parametrized according to their Euclidean arc
length, i.e. the result is a resampled motion trajectory with constant speed which provides only the path
information of the motion. The applied measures are described in the following.

4.5.1 Measures on the geometric level

In this section, two measures that are applied to evaluate the geometric features are shown.

Path accuracy

The distance between the reproduced path ωrepro and demonstrated path ωdemo is measured by either the
R2 measure Eq. (4.7) or the point wise root mean squared error (RMSE).

RMSEpos =

√
1
M ∑

i
||ωdemo(i)−ωrepro(i)||2, (4.3)

where || · || specifies the L2-norm and M is the number of discrete points in each path.
Perturbed movements cannot deliver a perfect match, however, it is still interesting to evaluate how

close the methods can stay to the demonstrated path.

Target position error

The target position error is necessary to evaluate the accuracy performance, because some robotic tasks
have the necessity of high precision e.g. pic and place tasks. The precision in reaching the target point
is given by the distance of the last recorded position to the target. Due to robotic tasks such as pick and
place of objects, it is interesting to evaluate how precise the end point is implemented in the movement
primitive modules.

4.5.2 Measures on the kinematic level

The following measures are specialized to evaluate the performance on velocity or speed profiles.
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Velocity accuracy

The reproduced and demonstrated velocity vector profiles are compared using the RMSE:

RMSEvel =

√
1
M ∑

i
||vdemo(i)− vrepro(i)||2, (4.4)

where vdemo and vrepro is the first derivative of the trajectories xdemo and xrepro with length M.

Speed accuracy

The speed profiles of the demonstrated and reproduced trajectories with standardized duration are com-
pared using the R2 measure,

R2
speed = 1− ∑i (||vdemo(i)||− ||vrepro(i)||)2

∑i (||vdemo(i)||− ||v̄demo||)
, (4.5)

where ||v̄demo|| is the standardized speed profile (e.g. [Sternad and Schaal, 1999; Pollick et al., 2009;
Bennequin et al., 2009]).

The R2 measure compares the predictions of the trained movement generation model against those
of the simple model of constant speed motion, where a value of R2 = 1 indicates a perfect agreement.
The constant speed model is better than the reproductions at explaining the data of the demonstrations
if R2 ≤ 0. In the evaluation process the R2 measure is not only used for the speed profiles, but also e.g.
scoring the reproduced paths and trajectories of motion.

Target velocity error

This is a task relevant measure, because in reaching tasks stopping at the target is necessary for safe
human robot interaction. Therefore, it is checked if the last velocity generated by the model is close to
zero taking the L2-norm of the velocity vector.

Movement duration

The movement duration of the reproduction and the corresponding demonstration are compared. Let us
denote the movement duration of the demonstration and the movement duration of its reproduction by
t f
d and t f

r , respectively. Then the movement duration error is computed according to:

εmovement−duration(t
f
d , t

f
r ) = |1.0−

t f
r

t f
d

| (4.6)

This measure is difficult to interpret if perturbations occur during the motion, but it delivers still in-
teresting information about the motion generation together with other measures. For example if the
method does need long to reach the target due to accuracy constraints then the motion generation will
take significantly longer than it was demonstrated.

4.5.3 Measures using geometric and kinematic levels

In the motor control community laws of motions are observed and extensively discussed, but it is not
clear what drives the human motor system per se. This work does subscribe to any theory that claims to
know what specific laws of motion are used. However, it is shown that several of these regularities tend
to agree with optimal performances for human drawing like motions.

Ample research has been devoted towards the tendency of humans to produce stereotypical motor
behavior [Lashley, 1951; Bernstein, 1967; Abend et al., 1982; Flash, 1983; Hogan, 1984; Harris and
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Wolpert, 1998; Mussa-Ivaladi and E., 2000; Bizzi et al., 2000; Flash and Hochner, 2005]. One key
observation is that point-to-point motions tend to be straight and their speed profiles bell-shaped regard-
less of the direction and end-point locations of the generated trajectories. A theoretical account for this
invariance is suggested by the minimum jerk model [Hogan, 1984; Flash and Hogan, 1985]. The pre-
dictions of this model were originally tested for tasks involving via points [Flash and Hogan, 1985] and
also curved movements (see the constrained minimum jerk model [Todorov and Jordan, 1998]).

Another regularity is that hand movements tend to slow down if the shape of the trajectory becomes
curved. This tendency is quantified by the two-thirds power law [Lacquaniti et al., 1983], which predicts
the hand’s speed to be proportional to the curvature of the path of the movement raised to the power of
minus one third (see Eq. (4.9)). Numerous studies have analyzed the persistence of this rule, mainly in
drawing motions [Viviani and Cenzato, 1985] but also for other modalities such as eye pursuits [Viviani
and deSperati, 1997]. In this evaluation measures are applied that evaluate the geometrical and also the
kinematic information of the reproduction versus the demonstration.

Trajectory accuracy

The trajectories, xrepro, xdemo, are compared using the following R2 measure,

R2
trajectory = 1− ∑i (xdemo(i)− xrepro(i))

2

∑i (xdemo(i)− x̄demo)
, (4.7)

Perturbed trajectories cannot be deliver a perfect match, however, it is still interesting to evaluate
how close the methods can stay to the demonstrated trajectory.

Minimum jerk trajectories

The minimum jerk model predicts that human trajectories minimize the following functional,

I(r) =
∫ T

0

∣∣∣∣ d3

dt3 r
∣∣∣∣2 dt,

where r(t) is any end-effector’s trajectory. Then the root of the mean squared derivative (RMSD) of a
trajectory r(t) is determined,

RMSD(r) =

√
1
T

∫ T

0

∣∣∣∣ d3

dt3 r
∣∣∣∣2 dt,

(4.8)

To use this measure also for the perturbed trajectory is not directly possible, because the perturbation
apply jerk to the movement. The time when the perturbation occur is known, which allows to ignore this
part of the trajectory for this evaluation.

The 2/3 power law

The 2/3 power law predicts the speed profile of a trajectory, ds
dt , based on its curvature κ(t),

ds
dt

= ακ(t)β , (4.9)

where α and β are segment-wise constants. The parameter β is usually close to a value of −1
3 for

drawing motions and α is a gain factor (see [Endres et al., 2013] for the use of this law for complex 3D
tasks).

The curvature-speed power laws defined by Eq. (4.9) are prominent features of human drawing
movements. The procedure described in this section focuses only on the average compliance with the
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law rather than on the temporal features of this compliance. The temporal features could be used to
infer movement segments as discussed in [Sternad and Schaal, 1999], however, the question of human
segmented control is not addressed in this chapter.

To avoid explicit segmentation, sliding windows are used for each demonstration by regressing the
R2 measure for the following linear relation between the logarithm of speed and logarithm of curvature
[Viviani and Cenzato, 1985],

log
ds
dt

= logα +β logκ(t), (4.10)

This model is fitted to the data with linear regression which determines the parameters α and β . For the
linear regression to find α and β , all trajectories are low-pass filtered and the beginning and the ending
of the trajectories are trimmed based on the first and last sample that reaches half of the median speed.
In addition, the parts of the trajectory where the curvature is below its 30 percentile are discarded.
These procedures are necessary since curvature-speed power laws are not satisfied at the beginning
and end of a movement where the speed is low, neither at low curvature portions where according to
(Eq. (4.10)) the speed becomes singular. The procedure examines the duration of segments from the set
τw ∈ {0.2,0.3, ...,2}, measured in seconds.

How well the model approximate the data is computed with the fitness R2 and is used for further
analysis. The R2 scores are averaged across all sliding windows Wn for each demonstration demoi and
window duration τw. This averaged score is:

Sdemoi(Wn) = E[R2].

The scores Sdemoi(Wn) are averaged across demonstrations only for the segmentation durations for which
all scores are larger than a predefined threshold (R2 = 0.35),

S(Wn) = Ei[Sdemoi(Wn)].

This threshold is used here in order to identify the segment durations that highly comply with the power
law. The segment durations for which not all demonstrations resulted in high score are accordingly
discarded. Therefore, after this step, only segment durations for which the respective segments comply
in average with the power law are used to evaluate the reproductions. The set of scores {S(Wn)} is
referred to as the “ground-truth” compliance of the task’s demonstrations with the power law. The same
procedure is carried out to obtain the score of each reproduction, Sreproi(Wn) where only the “ground-
truth” segment durations are used for comparison.

For each segment duration, the power law compliance in the reproductions are compared against the
power law compliance in the demonstrations as described below. The deviation of each reproduction
from the ground-truth score is calculated for each window duration and then averaged over all durations.
For each reproduction, a relative score is used which determines the change in the power law fitness
from the demonstration’s fitness,

F(reproi) = En

[
Sreproi(Wn)−S(Wn)

S(Wn)

]
,

A threshold ∆R2 = F(reproi) > 0 is applied which indicates that the power law competence in the
reproduction is as good as the averaged power law competence of the demonstrations.

4.5.4 Implemented model properties

Besides of the motion generation performance delivered by the tested module, it is also interesting to
look at the resource management, which can give some insights on the complexity in motion generation
methods.

The processing time provides an estimation of the computational complexity of the motion generator
algorithm. It corresponds to the amount of time (in millisecond) for the algorithm to provide the next
desired state based on the current state of motion.
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Category Property Measure Threshold Scope

Geometric
path RMSE - global
distance to goal L2-norm 1mm local

Kinematic

velocity profile RMSE − global
speed profile R2 80% global
velocity at goal position L2-norm − local
movement duration see Eq. (4.6) 0.1 global

Kinematic & Geometric
trajectory R2 95% global
power law ∆R2 > 0 global
minimum jerk RMSD − global

Software model processing time ms − global

Tab. 4.1: Overview of the different categories of measures used in the evaluation of the performance of
each participant of the benchmark.

4.6 Statistical analysis of benchmark results

For each benchmark scenario, 100 parameter vectors are drawn from the specified probability distribu-
tions, which are described in the previous sections. In Tab. 4.1, an overview of the defined measures
is given. Note that all scores whose optimal values may potentially be attained by a good reproduction
are equipped with an optimality threshold. For example, all end positions that are in the vicinity of
1mm of the target positions are classified as optimal. However, doing so for the mean squared jerk is
artificial and meaningless since an optimal attainable jerk threshold is unknown and only second order
time polynomials attain the optimal value of zero mean squared jerk [Polyakov et al., 2009].

4.6.1 Standardized scores and ranking

In the benchmark, normalized scores are chosen such that they can be used for the comparison between
either among the methods in the benchmark or across shapes in each method. If multiple criteria are
used in the performance evaluation the challenge is to avoid that a minority of measures dominate the
results. This is tackled by standardized scores to reduce the sensitivity of the scoring system to noise
and digitization. In addition a non-parametric method called Kruskal-Wallis test is applied for testing
if samples originate from the same distribution is used as a statistical tool to evaluate the performance.
Also the parametric equivalent of the Kruskal-Wallis test, the one-way analysis of variance (ANOVA),
is available in the benchmark analysis tool. With the help of this tool, each participant can generate stan-
dardized plots described to in the following. Fig. 4.4 provides a compact overview of the performance in
each measure of every model over all the given benchmark conditions and each condition individually
taking also the thresholds into account. For each parameter set, the delivered performance is categorized
into high (white), common (gray) and low (black) performance. Each square of this figures summarizes
the mean performance over all shapes and over all 100 parameters run in the benchmark. Beginning
from this overview one can generate more detailed plots.

4.6.2 Transparency of results

One major requirement for this benchmark is the transparency of the results, which means that all partici-
pants should be able to redo all experiments on their own computer to consolidate the results. Therefore,
the benchmark software with the benchmark parameters and the first evaluated modules are free for
download on: http://www.amarsi-project.eu/benchmark-framework.

http://www.amarsi-project.eu/benchmark-framework
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(a) Generalization

C
LF−D

M

D
M
P1

D
M
P2

N
iVF−LL

N
iVF−Q

LG

ProM
P

TpG
M
M

tr
aj
ec
to
ry
−p
os
iti
on
−e
rr
or

tr
aj
ec
to
ry
−v
el
oc
ity
−e
rr
or

R
2

R
2−
sp
ee
d

m
ea
n−
je
rk

M
ea
nC
om

pu
ta
tio
nT
im
e

no
rm
al
iz
ed
Fi
na
lT
im
e

PL
−R
2

ta
rg
et
−p
os
iti
on
−e
rr
or

ta
rg
et
−v
el
oc
ity
−e
rr
or

(b) Discrete push
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(c) Continuous push
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(d) Target

Fig. 4.4: General overview of the results from the different benchmark conditions. On the x-axis the
names of the different approaches are given. On the y-axis the different measures are listed. Each square
can have three different colors indicating either high performance (white), common performance (gray)
or low performance (black) in comparison to each other.
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4.7 Comparison with focus on NiVF

Five different models are processed for comparison: First a Task-parameterized Gaussian Mixture Model
(TpGMM)[Calinon et al., 2013], which implements a virtual spring damper system with variable stiff-
ness and damping. Second, a probabilistic approach called Probabilistic Movement Primitives (ProMP)
[Paraschos et al., 2013]. The approach approximates the distribution over the demonstrated trajecto-
ries and implements a stochastic feedback controller. Both approaches use internally a second order
dynamical system representation, whereas the next approaches are first order dynamical systems. The
third approach is called Control Lyapunov Function-based Dynamic Movements (CLF-DM) [Khansari-
Zadeh and Billard, 2014]. This approach builds an estimate of an energy function generalized from
user demonstrations, which is used during runtime to ensure global asymptotic stability of nonlinear
dynamical systems at the target. Furthermore, two variations the Neural imprinted Vector Field (NiVF)
(introduced in Chapter 3) are evaluated. The first NiVF version uses a parameterized quadratic Lyapunov
candidate LP and the second version uses a learned Lyapunov candidate LELM to ensure a stable dynam-
ical system. All models were implemented and provided by the corresponding authors of these models.

Additionally, the dynamic movement primitives approach (DMP) is evaluated. The DMP model is
implemented by the author of this thesis and follows the original design of the DMP algorithm described
in [Schaal et al., 2005; Ijspeert et al., 2013] and is described in Eq. (2.3). The variation ’DMP2’ uses the
transformation system proposed in [Park et al., 2008] and is described in Eq. (2.5).

Applied parameters for NiVF learning
L Lyapunov candidate LP LELM

Ω Workspace 40%
NC # samples drawn from region Ω (Algorithm 3.1) 5000
ε Regression parameter 10−8

R Number of neurons in the hidden layer 100
Winp Initialization range of the input weight matrix (input scaling) [-1,1]

a Initialization of slopes see Eq. (3.5) 1
b Initialization ranges of biases see Eq. (3.5) [-1,1]

Tab. 4.2: Important parameters which need to be set by the user before network learning. The last set
of parameters are needed already for the standard ELM approach. The first part of the table gives the
additional parameters important for inducing stability.

4.7.1 Learning and motion generation setup of NiVFs

For each shape in the dataset described in Sec. 4.3 two trained NiVF are provided. The first NiVF de-
noted as NiVF QLG implements constraints from the parameterized Lyapunov function LP as described
in Sec. 3.4.1 and the second NiVF is denoted as NiVF LL and uses the learned Lyapunov function LELM

as described in Sec. 3.4.2. The applied learning parameters are given in Tab. 4.2. The workspace is 40%
bigger that the area covered by training dataset.

The control function used in the benchmark simulation is described in Algorithm 4.3. This function
receives the feedback information and incorporates the target movement by correcting the current posi-
tion accordingly as indicated in Algorithm 4.3 line 1. In case the current position x is outside of the pre-
defined workspace Ω, the current position is projected to the border δΩ of the workspace. The projected
position x̂ is then used to approximate the next velocity command v̂ (compare Algorithm 4.3 line 2-5).
The projection to the border of the workspace generalizes the stability constraints to the global space,
because on δΩ all velocities are pointing inwards of the workspace given by Eq. (3.12) and inside the
Ω the given stability constraints are ensured. The motion generation stops if the produced velocity v̂ is
smaller than a tolerance ε = 1. To avoid stopping directly at the start of the motion, this condition is
only considered after 40 timesteps.
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Algorithm 4.3 Motion generation with NiVF

Require: current position x(t), target position g(t), accuracy tolerance ε , timestep t
Require: trained model f

1: Compute x̂← x(t)−g(t)
2: if not x̂ ∈Ω then
3: x̂← project x̂ on δΩ

4: end if
5: Compute v̂← f (x̂) using Eq. (3.2.2)
6: if (||v̂||< ε) and (t > 40) then
7: return v̂← 0 and STOP motion
8: else
9: return v̂

10: end if
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Fig. 4.5: Results of the benchmark comparing five different models over all shapes and benchmark
conditions showing the mean computational time during the benchmark tests.

4.7.2 Systematic comparison

The systematic comparison is designed to find comparative results to (i) the robustness of the motion
generation (ii) approximation abilities and (iii) human-likeness. The statistical comparisons can be
approached from different angels. As aforementioned in Fig. 4.4 the general overview of the results is
given and are discussed in more detail.

A general result, where the mean computational time is evaluated summarizing all benchmark sce-
narios over all shapes is shown in Fig. 4.5. The interesting point here is not which model has the fastest
computational time, because this is also dependent on the coding of the control function. However, the
interesting point is to look at the variances. From all participated modules the ’CLF-DM’ has the biggest
variance which indicate that the computational effort is depending on the perturbations.

Robustness against perturbation

The first question is if the NiVF is robust against perturbation. The overview given in Fig. 4.4 shows in
each of the four plots in the first row the trajectory end velocity of the models. All NiVF models have
white squares indicating that the optimal zero end velocity is reached (see Sec. 4.5.2), which is only the
case if the motion generation has deliberately stopped.

Motion generation accuracy

The ability to generalize the demonstrated path to different initial positions can be analyzed with the
’generalization’ scenario of the benchmark shown in Fig. 4.4(a). First the reproduction error of the geo-
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Fig. 4.6: Results of the benchmark comparing five different models over all shapes for the generalization
benchmark condition. Fig. 4.6(a) and Fig. 4.6(b) show the shape reproduction performance of the shape
and the speed profile respectively according to the R2 measure.
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Fig. 4.8: Results of the benchmark comparing five different models over all shapes and benchmark
conditions showing the mean jerk of all produced trajectories of each model.

metric shape measured with R2 on the path information and also the approximation ability to reproduce
the speed profile for all participating models is shown in Fig. 4.6. In Fig. 4.6(a) the results indicate
that the ’DMP2’ and the ’TpGMM’ models are particularly well in approximating the shape in terms
of different initial start positions. The ’DMP2’ is invariant to the start and goal position as discussed
in Sec. 2.2.3. Also the ’TpGMM’ model is parameterized with time and spatial information to repro-
duce the learned demonstrations. Both models are also non-autonomous dynamical systems. On the
other side there are the autonomous dynamical systems given by the NiVF versions and the ’CLF-DM’.
The latter uses an online correction term to react to the perturbations such that the trajectory generation
returns to the learned trajectory. In Fig. 4.6(b), a surprising result is that the ’ProbDMP’ does change
the speed profile drastically compared to the demonstrations. All other methods are approximating the
speed profile more accurate.

In Fig. 4.7, the comparison of the reproduction error according to the trajectory R2 measure is shown
between the four different benchmark scenarios for the NiVF with constraints from the quadratic Lya-
punov candidate (Fig. 4.7(a)) and with the learned Lyapunov function in Fig. 4.7(b). One can see in
both plots that they perform worst in the perturbation type ’generalization’. The perturbation types ’tar-
get’ and ’cont-push’ have similar performance, which is plaussible because the target change is used
to perturb the current position (see Algorithm 4.3 line 1) and becomes a continuous perturbation to the
end-effector.

As discussed in Chapter 3 the parameterized quadratic Lyapunov candidate (NiVF QLG) allows
less complex dynamics than the Lyapunov candidate learned by the ELM (NiVF LL). Compared to the
provided evaluation in Chapter 3 the starting points are more diverse and thus are further away from the
training data. Depending on the shape, the vector field cannot generalize this motion to arbitrary starting
points, but it does generate a smooth trajectory to the target point. In addition, depending on the size
of the workspace, some of the requested starting points can be outside of the workspace. Both NiVF
variants have the same stability constraints on the border of the workspace which can be the reason
why the performance in the generalization scenario are similar. Because if the start point is outside of
the workspace a smooth trajectory is generated to the predefined workspace and then the movement is
proceeded depending on the shape of the learned vector field.

Human-likeness

To evaluate the human-likeness of all models, two different analysis are applied. First, the general
features of smoothness are evaluated by the jerk measure (compare Fig. 4.8) and second the comparisons
against the original demonstrated training data with the power law measure. In the comparison all
models of the participants generate similar smooth motions.

The speed profile of each tested method is shown in Fig. 4.6(b). The compliance of the reproduced
trajectories to the power law is selected to evaluate the human-likeness. In Fig. 4.9, the results for each
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Fig. 4.9: Results of the benchmark scenario ’generalization’ comparing all models regarding the approx-
imation ability of the relation of curvature and speed from the demonstration (power law Eq. (4.10)).

shape for the generalization benchmark scenarios are shown.
All methods have scores bigger that zero which means that the delivered performance of the methods

is even more compliance to the power law than the human demonstrations. Regarding the NiVF models
one can see that the lower percentiles are close to zero which indicate a similar level of complaints
to the power law as evaluated in the human demonstrations. However, due to the fact that the models
are not invariant to start and goal positions it is plausible that the higher percentiles are far away from
zero, because although the trajectories are complaint to the power law, they do not show the same
characteristics as the human demonstrations.

Summary

The analysis shows that (i) the module is robust to perturbations and reliably reaches the target. Regard-
ing the (ii) approximation abilities it became clear that the demonstrated path was not always reproduced.
The reason for this behavior is the fact that the NiVF is not invariant to the start and goal state, which
can be easily approached by adding an affine transformation to compensate for the change in the start
goal relation. However, motion shapes are actually smoothly adopted across the workspace. At last, (iii)
the human-likeness of the generated trajectory is indicated by a smooth motion generation and a good
compliance to the movement power law.

4.8 Conclusion

This benchmark framework was developed to compare state-of-the-art movement primitive represen-
tations that cover human reaching motions. It offers to the community standardized and systematic
comparisons for the increasing variety of the different approaches. This benchmark evaluates these me-
thods on a dataset of human motions based on criteria such as ’level of similarity to human motions’,
’accuracy in reaching the goal state’, ’adaptability to changes in dynamic environments’, ’robustness to
perturbations’, etc.

The contribution of this work is threefold. First, four different scenarios for motion generation in
a 2D drawing task are proposed in which specific and controlled perturbations are simulated during
the motion generation. Second, a set of different scores evaluating specific features of the motion are
suggested. The specific features are chosen to evaluate kinematic, geometric and a mixture of both prop-
erties. By dividing the evaluation into these different categorical properties, one can reveal weaknesses
and strengths of different movement primitive representations. At last, first comparisons of state-of-the-
art movement primitive representations with focus on the NiVF are provided.



CHAPTER 5

ADAPTIVE SEQUENCING OF MOVEMENT
PRIMITIVES WITH NEURAL NETWORKS

In the previous chapters, the representations and learning methods are focused on only one single move-
ment primitive. The important properties are identified which specify what features need to be imple-
mented in these movement primitive representations for robotic motion generation.

In this chapter, a movement primitive library for sequencing stored movement primitives to com-
pose complex motions is considered. The movement primitive library is designed as one single neural
network with the functionality to learn multiple movement primitives and also the activation sequence
of the learned primitives for complex motions. This new approach is not limited to sequencing move-
ment primitives but can be used also for parallel blending of movement primitives. Results show that
complex motions can be composed from single motion primitives efficiently in one single feed-forward
neural network.

5.1 Generation of complex movements from movement primitives

In the recent years, the creation of motion primitive libraries became considerably important in robotics.
The issue of sequencing movement primitives to compose complex trajectories is usually discussed
separately from the problems of how to represent movement primitives and learn generic motion skill in
a full architecture.

Learning of movements consists in storing the sequential activation of each specific movement prim-
itive [Kulic et al., 2008a]. Rhodes et. al. [Rhodes et al., 2004] discussed the possibility of short sequences
organized as task specific chunks, which can be activated during cognitive operations to allow rapid pro-
cessing. In [Luksch et al., 2012a,b] continuous-time recurrent neural networks (CTRNNs) are used to
model conditioned selections of primitives dependent on sensory data. This control scheme uses acti-
vation patterns which describe either the execution of primitives one after the other or with continuous
blending. This approach can be used in addition to the proposed monolithic architecture to include a
reactive behavior, if perturbations occur. This becomes possible because each neuron of the CTRNN rep-
resents one of the movement primitives controlled by the activation dynamics. In [Murata et al., 2013],
a stochastic continuous-time recurrent neural network (S-CTRNN) is introduced. The S-CTRNN is able
to learn and reproduce trajectories by extracting the stochastic structures hidden in the demonstrated
training trajectories. One advantage of this method is that learning and smooth blending of multiple
time series is combined in one single network. However, the parameterization of the learned time series
are encoded in so called context parameters, which are generated in an unsupervised fashion. These
parameters are not constant for one time series, which makes it difficult to use this method in a larger
architecture.
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Fig. 5.1: This figure illustrates
a holistic neural network ar-
chitectures, which represent a
single network solution that
is able to learn a sequence
of starting points ul and ad-
dresses φ together with a mo-
tion primitive representation.
The addresses coded in φ are
used to select a respective mo-
tion pattern.
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In all approaches based on dynamical systems, a minimum control logic for sequencing motion prim-
itives has to (i) index the primitives to be able to address them in a larger architecture and (ii) parametrize
the execution by the starting point and the goal. Encoding of sequences of motion primitives requires to
store the sequence of starting points (in absolute or relative coordinates) together with an identification
specifying the learned motions in the library. It could e.g. be realized either with brute force by memo-
rizing respective data or by learning a respective sequence with any method for sequence learning (see
[Amit and Matari, 2002; Kulic et al., 2008a]). In this thesis an architecture based on a neural network is
proposed to represent both the motion primitives and the temporal sequence of primitives.

In this chapter, the general assumption is that there can be multiple primitives starting at the same
point relative to the goal, but following different motion patterns. The ELM-based neural network with
output feedback (described in Sec. 5.2) is used to store movement primitives and their sequence of
activation in a single shared representation. Additionally, this shared representation is exploited to blend
two learned movement primitives.

5.2 Holistic neural learning architecture

This section describes the neural network architecture that stores movement primitives together with
the activation sequence. The idea to generate complex movements from movement primitives with one
neural network architecture requires to solve two tasks: (i) the motion primitive representation itself and
(ii) to store the activation sequence of each movement primitive together with all necessary parameters.
In Fig. 5.1, a possible combination of motion primitive representation and sequencing is shown. These
mappings, which are usually considered separately, operate here on a shared hidden representation h.

5.2.1 Representation of movement primitives

In Chapter 3 and Chapter 4, different representations of movement primitives are discussed by focus-
ing on the requirement for stability in the underlying dynamical systems. One example of data-driven
learning of dynamical systems with stability constraints is discussed in Chapter 3. In this chapter, the
movement primitives are considered to be Dynamic Movement Primitives (DMPs) (compare Sec. 2.2.3)
as described in the following.
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Spring damper system of DMPs

The DMP approach uses a transformation system to address the stability concerns

τ üt = K(g−ut)−Du̇t −Ks(g−u0)+K f (s), (5.1)

coupled with a canonical system:

ṡt =−
1

Mmp
, (5.2)

where K,D are stiffness and damping constants with D = 2
√

K to generate a critical damped system
[Park et al., 2008]. A linear canonical system is used and after the specified number of time steps
Mmp the motion generation will stop. The stability of this dynamical system is ensured in case that the
perturbation f becomes zero at the end of the movement, which results in a linear convergence to the
goal point. The transformation system given in Eq. (5.1) is a variation of the original formulation of
the DMP approach proposed in [Ijspeert et al., 2003]. The major difference is that the transformation
system described in Eq. (5.1) is invariant to the relative position of the start and goal position. In [Park
et al., 2008], the properties of this transformation system are described in more detail.

The transformation system is a linear dynamical system which is perturbed by a non linearity func-
tion f to represent arbitrarily shaped and smooth reaching motions. Typically, the function f can be
approximated by a set of Gaussian basis functions. In the following the proposed DMP model uses an
ELM to learn f . The data to train the ELM is given by rewriting Eq. (5.1) such as:

f (s) =−(g−ut)+
D
K

u̇t + s(g−u0)+
1
K

üt . (5.3)

The generation of movement primitives is performed in a normalized space, where the goal point is
always the origin. This allows to shift the movement to any location by adding an offset to the whole
generated trajectory.

Neural network dynamics

In a single neural architecture it is also beneficial to use this normalized space because then learning
requires only the initial start point relative to the goal point of the demonstrated trajectories as additional
parameters for each movement primitive to reproduce the demonstration. In the proposed architecture
illustrated in Fig. 5.1, the function f (s) is approximated by the upper part of the architecture.

The representation of movement primitives can be modeled by ELM architectures (see Fig. 5.1 top
section). The following ELM network dynamics are considered for the proposed learning architecture,
if a movement is generated:

h(k) = σ(W inp
1 s(k)+W inp

2 ul +Winp
3 φ +b), (5.4)

f̂(k) =W out
1 H(k), (5.5)

where h∈RR gives the hidden state and φ ∈RI , ul ∈Rd denote the constant input of the network. These
constant inputs are respectively connected to the hidden layer through the input matrices W inp

3 ∈ RR×I

and Winp
2 ∈ RR×d , where I is the expected number of movement primitives stored in this network and

d is the dimension of the normalized movement primitive space. The bias of the hidden layer neurons
is denoted by b and both input weight matrices remain fixed after random initialization. The activa-
tion function σ(x) = 1/(1+exp(−x)) is applied to each neuron in the hidden layer. The hidden layer is
connected to the output through the output matrix W out

1 ∈ Rd×R and gives the approximation f̂ of the per-
turbation of the transformation system given in Eq. (5.1). At the beginning of the movement generation
the input is s = 1 and decreases to s = 0 which corresponds to the end of the motion (see Eq. (5.2)).
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5.2.2 Organization of movement primitives in a sequence

The task of the sequencer (bottom part in Fig. 5.1) is to activate a number of movement primitives in a
coordinated way. Two conditions need to be met in order to implement such behavior.

First a movement primitive needs to be found in the library, which requires an address that uniquely
identifies the chosen movement primitive. Note that the address does not necessarily need to have any
semantics. The address is an identifier and could even be chosen randomly, however, in the following a
one-of-K-coding vector φ is chosen. Second, the initial conditions of the movement primitive need to
set e.g. start and goal point. The considered normalized movement primitive space forces the goal point
to be constant at the origin. Therefore, only the start point ul in the normalized space is needed for the
initial condition of the chosen movement primitive.

The representation of a sequence of movement primitives can be modeled by ELM architectures with
output feedback (see the sequencer in Fig. 5.1 bottom section). The ELM has two inputs to incorporate
the information coding the sequence of the identification and start parameters of the movement primitives
participating a complex movement. The following ELM network dynamics are considered, if a sequence
is recalled:

h(k+1) = σ(Winp
2 ul(k)+Winp

3 φ(k)+b), (5.6)

φ(k+1) = W f db
φ

h(k), (5.7)

ul(k+1) = W f db
u h(k), (5.8)

where f̂ is equal to Eq. (5.5). The hidden state is given by h ∈ RR and φ ∈ RI , ul ∈ Rd denote again
the inputs of the network. The inputs are connected to the hidden layer through the input matrices
Winp

3 ∈ RR×I and Winp
2 ∈ RR×d , where I is the expected number of movement primitives stored in this

network and d is the dimension of the normalized movement primitive space. The phase variable s
is connected to the hidden layer by Winp

1 ∈ RR×1. The bias of the hidden layer neurons is denoted
by b and both input weight matrices remain fixed after random initialization. The activation function
σ(x) = 1/(1+ exp(−x)) is applied to each neuron in the hidden layer. The hidden layer is fed back to
the inputs through matrices W f db

φ
∈ RI×R and W f db

u ∈ Rd×R.
Note that these dynamics are activated only if the input of the upper part of the proposed architecture

is s = 0. During the movement generation i.e. s > 0 the input of the lower part stays fixed. Fixing the
inputs effectively cuts of the recurrence in the lower part, which means Eq. (5.7) and Eq. (5.8) are
not applied. This parametrizes the particular movement primitive, because of its unique impact on the
hidden layer representation.

5.3 Learning methodology

The movement primitives and the sequencer are learned in a supervised manner. In the following, the
training data for each learning task is introduced.

5.3.1 Training data

Before the learning methodology is introduced, the training data is specified: (i) for the movement
primitive representation and (ii) the sequence of activations.

Movement primitive

The training data for learning movement primitives is specified by the address φ and at least one demon-
stration. Each demonstration is normalized before learning such that the goal point is set to the origin
of the normalized space. The input s is given by a decreasing linear function from s = 1 to s = 0
in Mmp steps, where Mmp is the amount of samples in the demonstrated trajectory. Again the φ and
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starting point of the normalized training trajectory ul are given and the input (φ ,ul) stays fixed dur-
ing the learning of the DMP. The hidden layer states are obtained from S and collected in the matrix
H(S( j)) = (h(s(1)), . . . ,h(s(Mmp))), where j ∈ [1 . . .Mmp] is the current time-step. The corresponding
targets are given by T( j) = ( f (s(1)), . . . , f (s(Mmp))), where f is given by Eq. (5.3).

Sequence of addresses

The sequence of parametrization (φ ,ul) is learned by closing the loop (e.i. Eq. (5.7) and Eq. (5.8) are
applied) after training to replay the respective sequence of starting points and addresses. In a standard
approach it leads to a hierarchical setup, where the (neural) sequencer provides the parametrization. An
additional control scheme is required to retrieve the respective primitive and execute the movement until
it is converged to the (intermediate) goal point.

The input at iteration k in the sequence is given by x(k) = (ul(k),φ(k)) and the corresponding target
t(k) = (ul(k+1),φ(k+1)). If Mtr gives the length of the sequence training data then a sequence is given
by S = (X,T) = (x(n), t(n)) : n = 1 . . .Mtr.

5.3.2 Efficient online learning

In this section, supervised learning schemes for the read-out layers are introduced. In principle any
supervised learning rule could be applied. For the sake of simplicity, only the two learning rules utilized
in this thesis are discussed comprising a standard offline learning scheme based on regularized linear
regression and an efficient online learning rule. The training data is considered to be organized as
follows: the matrix H(X) = (h(x(1)), . . . ,h(x(Ntr))) collects the hidden layer states obtained from a
given dataset D=(X,T)= (x(n), t(n)) : n = 1 . . .Ntr for inputs X and the corresponding output targets T.
The task is to minimize the error between the targets T and the estimations from the learning network
(W ·H(X)) with respect of the read-out weights W.

Wout = argmin
W

(‖W ·H(X)−T‖2 + ε‖W‖2) (5.9)

where large weights are penalized by ε‖W‖2. The factor ε > 0 is used to regularize the read-out weights
Wout . In the following two possible solutions to the minimization problem Eq. (5.9) are introduced.

The ELM training uses learning schema of online sequential ELM (OS-ELM [Liang et al., 2006]).
This allows to additionally learn primitives or refine the movement primitives if new training data is
available. The initial learning phase and a sequential learning phase are explained in the following.

1. The first primitive is used in the initial learning phase with k = 0:

Wout
k = PkHT

k Tk, (5.10)

Pk = (HT
k Hk + ε1)−1, (5.11)

where ε is again the regression parameter and 1 is the identity matrix.

2. Each additional primitives can be added in the sequential learning phase:

Pk+1 = PkHT
k+1(1+Hk+1PkHT

k+1)
−1Hk+1Pk, (5.12)

Wout
k+1 = Wout

k +Pk+1HT
k+1(Tk+1−Hk+1Tk). (5.13)

Note that, for the initial phase, the first demonstration hat to include at least so many training samples
as the number of hidden neurons in the ELM.

5.4 Composition of complex trajectories

In this section, a qualitative evaluation of the neural network is described that combines sequencing
and movement primitive representation. For each motion pattern in the LASA dataset one primitive is
learned and is stored in the network.
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5.4.1 Recall of an activation sequence with start parameters

In this section, training of the sequencing part (bottom part in Fig. 5.1) is evaluated. The task of the
sequencer is not only to sequence the φs in the right order but also to give the parameterization, which is
in this context the starting point ul of the motion relative to the end point. An update of the sequencing
part according to Eq. (5.6) generates a new starting point to parametrize a new primitive and an index
to select the respective primitive. In any case, the input is s = 0 and therefore the sequencing part can
be trained independently of the movement primitive part. An example of a reproduced learned initial
point sequence is given in Fig. 5.2. Here we used εSeq = 1 for adapting the feedback weights W f db

∗ .
Note that no preprocessing of the starting points (see Fig. 5.2(circles)) is necessary for learning. After
learning the network generates a mean starting point (see Fig. 5.2(cross)) corresponding to the primitive
φs (indicated as numbers in Fig. 5.2).
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Fig. 5.2: Reproduction of the learned sequence of starting points (in mm). Red circles mark the starting
points in the training data and the blue cross marks the reproduced starting point associated with the φ

noted below the points. Note that primitive three and five almost share a common starting point relatively
to the goal point.

5.4.2 Memory capacity and reproduction accuracy

In this experiment, the combination of a sequencer and the DMP approach to represent motions in this
monolithic approach (Fig. 5.1) is considered.

After learning, the memory capacity of the network is evaluated, where the reproduction perfor-
mance of the motion generation depending on the size of the hidden layer is measured. In total M = 20
motion patterns are learned, where each motion pattern is specified by N demonstrations. The order in
which the motion patterns are presented is randomized. The reproduction performance of the monolithic
approach over k = 10 network initialization for the hidden layer size of hdim ∈ {40, . . . ,200} is evalu-
ated. The input matrices and biases bi are initialized randomly from uniform distributions in [−10,10]
and [−1,1] respectively. The DMP transformation system is initialized with K = 200 (see Eq. (5.1)).
The motion starts with the initialized canonical system where s = 1 and stops if the phase variable s < 0.
The reproduction error is measured by the point wise root mean square error (RMSE) over all motion
patterns learned by the network:

RMSE =
1
N ∑

N

√
1

Ntr

Ntr

∑
i
||un(i)− ûn(i)||2,

where u is the position at time-step i and û is the corresponding reproduction. For this experiment the
ability to store a number of movement primitives is considered, therefore no sequences are implemented
but the φ address of the desired primitive is set manually in the input layer, i.e. feedback is cut off, thus
no update of the input (φ ,ul) is readout by W f db

∗ .
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In Fig. 5.3 the RMSE is illustrated. Note that the performance is robust over the number of neurons
in the hidden layer. These results indicate that for learning 20 motion patterns, the hidden layer performs
best with at least 140 or more neurons.
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Fig. 5.3: Learning of M = 20 motion patterns in ELMs using different hidden layer size. The x-axis
show how many neurons are used in the hidden layer.

5.4.3 Combined sequencing and motion generation

After training seven primitives and an activation sequence of these primitives, the network can be ex-
ploited with a minimal overhead of additional “control”. Only two simple operations have to be per-
formed. While executing the movement primitive, the feedback from the network to the sequencing part
is inhibited i.e. Eq. (5.7) and Eq. (5.8) are not applied, until the movement primitive is finished. After the
motion generation (i.e. s = 0) the Eq. (5.7) and Eq. (5.8) are applied and a new φ and ul can be recalled
from the network. The inhibition could be implemented neurally by means of a gating neuron which is
excited by the motion primitive input and allows for an update step of the sequencer only if the state s
of the motion primitive input reaches zero. Then, an update of the lower sequencing loop is performed
and the newly created offset position ul needs to be copied to the state of the primitive. Finally the next
motion primitive can start, as selected through the newly updated index. In Fig. 5.4, a complex trajec-
tory is shown which is composed of seven movement primitives generated by the proposed method. The
complex movement is repeated three times with the three different initial positions (see Fig. 5.4 zoomed
area upper right corner). The overall sequence structure repeats itself, because a cyclic loop was trained
for the sequencer. It is interesting to note that after the first primitive (’sine wave’), the next primitive
(’Sshape’) all three repetitions of the complex motions are aligned (see Fig. 5.4 zoomed area bottom
left corner). This indicates that the sequencer has learned the parameterization very robustly and can
handle noise in the initial ul . A pseudo code of the complex motion generation with stored movement
primitives is provided in Algorithm 5.4. The movement primitive generation is given in lines 8-12 and
the sequencer code is wrapped around in lines 4-7 and lines 13-15.

5.4.4 Blending of two movement primitives

Due to the one-of-K coding scheme only one neuron in the identification vector φ is active represent
each learned movement primitive. In this experiment two motion primitives are triggered in parallel.
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Fig. 5.4: Complex trajec-
tory composed of seven se-
quenced movement primi-
tives. The sequence is re-
peated twice. Note that the
complete sequence is started
from three different starting
points (see zoomed display
at the beginning of the com-
plex motion).

Algorithm 5.4 Execute complex motions

Require: initial start point u(0) and first movement primitive given by φ(0)
1: set k = 0
2: set ELM input s = 0, ul = u(k), φ = φ(k)
3: update hidden state Eq. (5.6)
4: repeat
5: set ELM input s = 1
6: update hidden state Eq. (5.6)
7: set DMP start point u0 = ul and goal point g = 0
8: repeat
9: read out f̂ (s) following Eq. (5.5)

10: update DMP transformation system Eq. (5.1) with f̂
11: update input s with DMP canonical system Eq. (5.2)
12: until s < 0
13: set ELM input s = 0
14: update hidden state Eq. (5.6)
15: read out φ(k+1) and ul(k+1) following Eq. (5.7) and Eq. (5.8)
16: k← k+1
17: until Complex motion is complete
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Fig. 5.5: Two motions are learned in one network. One is the original ’Angle’ shape from the LASA
dataset and the other is the mirrored version of this motion pattern. The two learned motions (left) and
the smooth blending (right). We show the training data (blue) and the reproduction (red).

The assumption is that if two neurons get activated, the global representation creates a mixture of the
original learned motions, which is called blending.

The input is given by the phase variable s, which is initially set to one, and the φ vector of the
chosen primitive (φ1 = (1,0) and φ2 = (0,1)). The parameter εMP = 10−5 is used for leaning the motion
shape (i.e. Wout

1 ) and εSeq = 1 is used for learning the sequencer (i.e. W f db
∗ ). Note that the regression

parameters are very differently due to the complexity of the different tasks. The movement primitive
representation requires more model complexity, thus a small ε is used. All other variables are initialized
as described in the previous section. Seven new φs are generated linearly spaced between φ1 and φ2.
The ’Angle’ shape (φ1) from the LASA dataset is used and the same shape mirrored with respect to the
x-axis (φ2) is used as training data to show the blending behavior.

The demonstrated (blue dashed line) and reproduced movements (red) can be seen in Fig. 5.5(left),
if solely φ1 or φ2 are fed to the network’s input. The blended movements are shown in Fig. 5.5(right).
Note that the movement primitives φ1 and φ2 are reproduced accurately and that a smooth transition
from φ1 or φ2 is possible in this architecture simply by changing the input linear from φ1 to φ2.

5.5 Discussion and perspectives

In this chapter a monolithic neural network approach is proposed in which a number of different move-
ment primitives can effectively be learned within a single shared representation and can be sequenced
by applying the respective input for parameterization.

The number of movement primitives one wants to store in the architecture has to be known a priory
due to the chosen one-of-K encoding, because only one neuron is active per learned movement primitive.
All other neurons in the one-of-K encoding are zero and do not contribute to the hidden representation.
In order to solve this problem the idea is to enlarge dynamically the φ vector as new movement primitives
are required to be stored.

Although a shared hidden representation is used, one can decouple the learning of the motion prim-
itives and the sequencing part. This is possible because of the assumption that the sequencer is only
activated if the last motion primitive has finished i.e. the input s is always zero. One could argue that,
technically, this shown combination of learned generic sequencing of movement primitives is providing
a semantic hierarchy: the ’upper level’ sequencer controls the ’lower level’ movement primitives. The
implementation, however, uses a single shared representation and training scheme for both skills. Note
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that this shared representation is beneficial for blending two motions, which is not a trivial matter if
sequencing and movement primitives operate separately.

In future work the used non-recurrent hidden representations in the neural network could be ex-
panded to a recurrent hidden representation. These are reasonable options: if the presentation of training
data is ordered along the demonstrated trajectories, possibly online, then the temporal memory provided
by a reservoir is useful and helps learning as e.g. shown in earlier work (e.g.[Rolf et al., 2009]); if data
is randomized, which is also feasible because the underlying mapping to be learned is static in nature,
then recurrence in the hidden layer is not essential and a simpler model that is not recurrent in the hidden
layer can be used. Such a model has been very recently introduced in the context of learning inverse
kinematics and attractor based motion generation in [Reinhart and Steil, 2011] and is discussed in depth
in [Reinhart, 2012].

5.6 Conclusion

A single movement primitive is understood to be a small entity with limited approximation ability, but
the combination of several such building blocks leads to complex motions that emerge from the execu-
tion of a sequence of these primitives. The contribution of this chapter is threefold: First, a monolithic
neural network approach is described that stores efficiently movement primitives. This network can
produce smooth complex movements by sequencing the learned movement primitives. Second, the
memory capacity of this monolithic approach is evaluated extensively. And the third contribution is that
the global representation in this approach is exploited to blend two known movement primitives to gen-
erate new intermediate movements without additional control overhead. The algorithms of this section
elicit further work to address the problem of autonomous sequencing of complex motions.



CHAPTER 6

CREATION AND REFINEMENT OF
MOVEMENT PRIMITIVES BY

CO-ARTICULATION

In the previous chapter, the ELM approach is emphasized to be beneficial in the DMP motion generation
paradigm, if either multiple motion patterns need to be stored in one representation or superposition of
known primitives is necessary. The means to store and execute movement primitives are established,
but the learning is organized in a supervised fashion following strictly the imitation learning paradigm.
That means each movement primitive is selected directly from the demonstration and implemented in
the motion generation method.

In this chapter, a concept to create new movement primitives and to refine a movement primitive is
introduced. This is achieved by a semi-supervised learning method which uses self-generated training
data for further learning steps. The learning approach utilizes a global encoding together with signal
depending output noise to refine the movement primitive over multiple learning steps. The learning
process is shown on via-point tasks and the results are compared to the minimum jerk model. It turns
out that human-like motion features are incorporated into the learned movement primitives. Early ideas
of this work were presented in [Lemme et al., 2012].

6.1 Notion of co-articulation

In our daily lives, people perform tasks that require complex motions such as drawing or handwriting.
These abilities are acquired over the years and get more and more refined, if these skills are used on
a regular basis (i.e. training and practice). In [Breteler et al., 2003; Sosnik et al., 2004, 2007] human
drawing motions were analyzed and the notion of co-articulation was described, where a new movement
primitive can emerge with extensive training. This process may start with simple straight motions,
which are eventually substituted with more complex, curved primitives. Co-articulatory effects are not
only known in drawing movements but also in speech production [Fowler and Saltzman, 1993], where
overlapping neighboring phonemes are observed. The question is if such co-articulation effects can be
modeled and be used in a movement learning process with the emphasized motion learning methods.

A typical approach to optimize movement primitives with respect to certain criteria are often dis-
cussed in the field of reinforcement learning [Schaal et al., 2003b; Peters and Schaal, 2008; Stulp and
Schaal, 2011]. Multiple roll-outs are used to explore the state space and minimize specific cost functions
modeling the desired behavior. A roll-out defines the process of applying the motion generation model
with the current parameter configuration to the task. The trajectory data is recorded and is used for
further optimization.
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Fig. 6.1: Conducted via-point task with human participants. The motion starts at point A and connects
B C D (left). The via-points are B and D. The corresponding speed profile is shown to the right. Note
that the via-point B is passed at timestep t = 59 and the via-point D at timestep t = 140.

From a biological point of view there is evidence that motor control is affected due to predominant
noise signals in the nervous system as shown in [Schaal and Schweighofer, 2005]. This noise signal
seems to be dependent on the distribution of the neuron activities. In [Harris and Wolpert, 1998; Wolpert
and Ghahramani, 2000; Tresch et al., 2006], the task optimization in the presence of a signal-dependent
noise model is proposed. This approach predicts an optimal feed-forward trajectory under the condition
of motor commands plus noise and minimizes the target error constraint with zero velocity at the start
and end point. In [Stulp and Schaal, 2011], a hierarchical reinforcement learning approach is proposed,
which uses multiple uncertainty distributions to optimize the shape properties and target point location,
accordingly to a given cost function.

The contribution of this chapter is to propose a flexible learning setup using semi-supervised learning
techniques to model co-articulation effects. The concept of semi-supervised learning or self-learning is
mainly known in the classification and object detection domain [Nigam and Ghani, 2000; Rosenberg
et al., 2005], where e.g. a classifier is trained at first with a small training data set. Then this classifier
labels new data samples, which are used again to train the same classifier. This learning setup is able
to generate biologically plausible motions by incrementally learning from multiple roll-outs, based on
co-articulation of basic movement primitives. The influence of simple signal-dependent output noise
is investigated and the resulting learning behavior is shown in [Sosnik et al., 2007]. It is shown that
the desired behavior can be modeled by using a global encoding represented by an extreme learning
machine (ELM).

6.2 Noise-induced learning process for Dynamic Movement Primitives

The learning progress of a human subject that has been training for three days is shown in Fig. 6.11.
Fig. 6.1(a) shows the setup of via-points and the produced trajectories from day one and three. In
Fig. 6.1(b) the corresponding speed profiles are shown. Note that at the first day the produced motion
is stopping at each via-point, but if training proceeds the via-points B and D are passed with non zero
velocity.

1Many thanks to Ronen Sosnik, who provided the data from [Sosnik et al., 2007], which is used to generate this plot.
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Initialization Learning Execution
1 2 3

DMP

Fig. 6.2: The semi-supervised learning
process starts with the initial data set
of two articulated trajectories (1). This
initial training data is used to create
a DMP representation (2). In (3) the
learned DMP is used to generate fur-
ther training data which is again used
in (2) to refine the same DMP.

6.2.1 Dynamical movement primitives with signal depending noise

The representation of a movement primitive is modeled with two different variations of the DMP ap-
proach. The difference of the two variations is how to approximate the perturbation f , which is added to
the spring damper system according to Eq. (5.1). Two different encoding methods are considered for this
learning problem: First a local encoding is used represented by a set of Gaussian basis functions (GBFs).
Second is the global encoding represented by ELM as used in Chapter 5. For both learning approaches
the regression problem can be solved with the OS-ELM learning technique using a initial learning phase
and a sequential learning phase as explained in Eq. (5.10) - Eq. (5.12) to determine Wout after each new
batch k of training data. The training data-set Dk is given by Dk = (Sk,Yk) = (s(n),y(n)) : n = 1 . . .Ntr
for inputs S and the corresponding output targets Y. The matrix Hk(Sk) = (h(s(1)), . . . ,h(s(Ntr))) col-
lects the hidden layer states obtained from Dk.

The state representation h for the GBFs and the output ŷ is given by:

fi(s) = ŷi =
∑

R
j=1 Φ j(s)Wout

i j

∑
R
j=1 Φ j(s)

= (h(s)Wout
i ), (6.1)

with Φi(x) = exp(−li(x− ci)
2) representing the original used non linearity in the DMP approach. ci

and li are usually fixed by the designer for all i = 1, . . . ,d, where d is the output dimension. A linear
distribution of c between 1 and 0 in the experiments is chosen. Due to linear dependence of f on
Wout ∈ Rd×R it allows to apply any linear regression technique. The ELM network is again given by:

h(s) = ϕ(winps+b), (6.2)

f (s) = ŷ = h(s)Wout , (6.3)

where b are the activation of the bias neurons and ϕ(x) = 1/(1+ exp(−x)) denotes the activation func-
tion applied to each neuron in the hidden layer with size R. The input is connected to the hidden layer
through the input matrix winp ∈ RR which remains fixed after random initialization.

The standard regression model y= g(x)+ε does assume that the random noise parameter ε is chosen
from an independent distribution. In the proposed movement learning paradigm, a signal depending
noise model is suggested. The noise distribution is linked directly to the input distribution by measuring
the neuron’s activity. To incorporate signal depending noise the state harvest is organized as follows:

ĥ(s) = h(s)+ ε(s) (6.4)

where ε is a random vector drawn from a multi-normal distributions with zero mean and standard devi-
ation θ ∈ RR, with θ = σstd(Hk(Sk)). The function std() gives the standard deviation per neuron and
σ scales the amount of signal depending noise.

6.2.2 Semi-supervised learning process

The artificial semi-supervised learning process is separated into three different phases as illustrated in
Fig. 6.2. In Fig. 6.2(1), the initialization uses a movement primitive that produces straight lines to con-
nect the three points in the order AB and BC for M roll-outs. The used set of straight motions have a
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Fig. 6.3: Initial execution phase of two straight lines connecting AB and BC in this via-point task. The
reproduced trajectories (blue) are shown together with their respective speed profile.

bell shaped velocity profile which can be seen in Fig. 6.3. There are different possible motion genera-
tion models capable of producing such straight motions with the described features, however, because
of consistency the DMP is chosen to represent the motion as a dynamical system. The DMP transfor-
mation system is given in Eq. (5.1) and is coupled with a canonical system Eq. (5.2) where initially no
perturbations are applied to generate a straight line. In a next step a new movement primitive is formed
with initial training data Fig. 6.2(2). The training data is represented by a concatenated trajectory of two
straight lines AB and BC. Each trajectory consists of t = 100 time steps.

After the learning phase an exploration phase (Fig. 6.2(3)) is applied, where the trained DMP is used
to generate M roll-outs. Each roll-out connect A and C, because it is only one DMP representing the mo-
tion the via-point is encoded intrinsically. These trajectories are recorded and used in the next learning
phase (Fig. 6.2(2)). One epoch comprises one learning phase and one exploration phase (Fig. 6.2(2,3)).
Each roll-out of the dynamical system is constrained to have a constant motion duration.

6.3 Co-articulation in a via-point task
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Fig. 6.4: Task with single via-point B.
The points need to be connected in the or-
der ABC.

The first setup is inspired by the setup shown in Fig. 6.1(a),
but simplified. It is assumed that only one primitive is
emerging from this task. This setup allows to conduct an
indirect qualitatively comparison of the learned new primi-
tives to velocity profiles from human data by using the min-
imum jerk model as baseline. In the generated data-sets the
via-point is located at the extrema of each shape, which is
reached approximately at τ = 0.5 of the motion duration.
The simplified task setup is shown in Fig. 6.4.

6.3.1 Baseline comparison for evaluation

The minimum jerk model (MJM) [Flash et al., 1992] plans
a trajectory starting from a given start point A to a given
end point C through a via-point B with specific timing con-
straints. The constraint for planning the trajectory is to be
as smooth as possible (minimum jerk), start and end with
zero speed and a specific time when to pass through the
via-point. To plan a 2D minimum jerk motions this cost
function is minimized representing the rate of change of
acceleration integrated over the full motion:

Cost = 1/2
∫ t2

t1

[(
d3x
dt3

)2

+

(
d3y
dt3

)2
]

dt, (6.5)
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Fig. 6.5: Via-point task conducted with feed-forward neural network ELM by using signal depending
noise. The reproduced trajectories (blue) are shown together with their respective speed profile. For
comparisons reason the minimum jerk trajectory is given (red) with motion duration t = 100 and the
constraint that the trajectory needs to pass through the via-point at t = 50. The fist row shows the result
after 10 iterations. The last two rows show the results after 500 and 10000 iterations. Note that the
variation of the trajectories per iteration is reduced over the learning process.

where x and y are the Cartesian coordinates and t2− t1 is the motion duration. It is shown that the trajec-
tories modeled by the minimum jerk match the empirical observed features of the human movements,
which result from human training process [Sosnik et al., 2007]. However, the MJM does not model the
learning process itself.

6.3.2 Properties of newly learned primitives in a single via-point task

In the following experiments constant values for the DMP transformation system (see Eq. (5.1)) are used
with the stiffness parameter K = 7 and the damping parameter D = 2.6458. The GBFs are initialized
with a linear distribution of ci ∈ [1,0] where i = 1, . . . ,R with R = 15. The Gaussian variance is 0.1
for each kernel. During the iterative learning process the trajectories are monitored while the learning
proceeds and the trajectory evolution is compared to the planned MJM. The ELM is initialized with
R= 15 neurons in the hidden layer. The biases bi and components of winp are initialized randomly drawn
from the uniform distribution on [−1,1]. The first experiment is evaluating the long term properties of
the learning process. A three point task with start-point A = (−1,0), end-point C = (0,0) and via-point
B = (0.6510,−0.4276) is applied. Fig. 6.5 shows the iterative learning dynamics of the movement
primitive over 10000 epochs, where each epoch used M = 10 roll-outs. As can be seen in Fig. 6.3 the
single trajectories (blue) connecting A, B and C in straight lines, become one single smooth motion
shown in Fig. 6.5, which indicates the typical co-articulation effect. The same behavior can be observed
in the speed profiles in Fig. 6.5(right column). The result of this experiment is not intuitive because, first,
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Fig. 6.6: Learning behavior over 1000 epochs and using M = 10 roll-outs per epoch. The reproduced
trajectories are compared to the minimum jerk model trajectory by the R2 measure (Top). Note that
R2 = 1 would be a perfect match. The second plot shows the distant to the target point C. Each plot
shows the learning result for four different output noise levels σ . The last two plots show the same
learning process only learned with GBFs.
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Fig. 6.7: Result of the evaluation processes after 100 iterations for different via-points (circles). The
used output noise level σ = 0.005 hidden layer size 15 regression parameter 10−10.

the resulting shape is converged to one single solution and second the via-point position is preserved and
the timing of passing through this point varies only marginal.

Fig. 6.6 shows a quantitative presentation of the learning process for DMP with ELM and GBFs,
evaluating the shape compared with the MJM and the target distance at the end of the motion. The
iterative learning process using the ELM converges close to the minimum jerk motion with up to R2 =
98%, whereas the learning process using GMMs seems to diverge from this solution. In the beginning of
each learning process the target accuracy is low, however, as learning proceeds the accuracy increases,
but it reaches the target point C not perfectly due to the noise induced into the system. Note, that
the convergence of the DMP with ELM approach converges close to a minimum jerk motion, which
indicates the co-articulation effect of the learning process in this movement primitive representation.

In Fig. 6.7, the learning process is systematically tested for a grid of the via-point locations. A grid
of 100 via-points located in Ω = [0.5,−1.5]× [0.95,−0.95] is used and measured the similarity of the
evolved motion to the minimum jerk model with the R2 criteria. The ELM is initialized with 15 neurons
in the hidden layer and a regression parameter of 10−10. The learning result illustrated in Fig. 6.7 is after
100 iterations and the mean of 5 trails. In the chosen area all of the learned motion explain over 96% of
the minimum jerk model. It shows that via-point setup has only little effect on the learning process that
leads to the co-articulation effect.

The difference in the learning process between GBF and ELM is interesting and is worth to look at
it closer to identify the reason behind the difference. In this experiment 1000 epochs are executed using
M = 10 roll-outs in each epoch. First the focus is at the timing information of the two approaches. The
closest point of the trajectory to the via-point B is measured and is defined as “estimated” via-point.
Tab. 6.1 shows the timing information when the via-point is passed in relation of the whole motion
duration for each tested noise level σ ∈ 0.05,0.01,0.005,0.001. Overall tested noise levels the DMP
with ELM can approximate the intended timing of when to pass the via-point, whereas the DMP with
GBF is faster at the via-point with as intended.
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6.3.3 Scaling to multi-via-points

In the literature, standard via-point tasks are available, which are used to test the movement behavior of
humans under various conditions. Two settings are used to test if the proposed approach can scale to
more than one via-point.

The initial data-set consists of M = 10 roll-outs, where each roll-out is a sequence of straight lines
connecting the start point A and end point A through the three via-points B,C and D (i.e. AB,BC,CD and
DA). The stiffness parameter is set to K = 7 and the damping parameter to D = 2

√
K = 5.2915. The

ELM is initialized with R = 15 neurons in the hidden layer. Fig. 6.8 shows the resulting trajectories and
speed profiles depending on the noise level. Again 1000 epochs are used where ten roll-outs per epoch
are executed. Three noise levels are tested: σ = [0.01,0.001,0.0001]. From this experiment it becomes
clear that the noise level is a significant factor controlling the trade-off between the smoothness of the
trajectories and the accuracy.

6.4 Discussion

Learning motions is always difficult, if the task is unknown. This problem is known as the “what to
imitate” problem [Nehaniv and Dautenhahn, 2000]. A typical way of how to handle these issues is
solved by incorporating prior knowledge. This can be achieved either by human robot interaction as it
is done in many imitation learning scenarios or by incorporating constraints like accuracy to the target
and shape or even more complex task encoding cost functions as done in reinforcement learning for
various tasks.

In this work a semi-supervised learning paradigm is used, which uses self-generated trajectories to
optimize the movement primitive representation. It is known that this kind of learning can have major
downsides, if e.g. ambiguities are in the solution space. An example for this behavior is learning
the inverse kinematics of robots [Sanger, 2004]. One way to solve this problem, at least for inverse
kinematics, is goal babbling [Rolf et al., 2011], which uses specific assumptions for the exploration
to prevent the learning to suffer from non-convex solution sets and drifting redundancy resolutions.
The interesting fact is that in this proposed bootstrapping setup, this form of drifting is not observed if
signal depending noise is used. This is surprising, because the learning does not have any additional
information about the via-point or the desired shape, however, it still converges to a good solution.

The co-articulation effect observed in Sosnik et al. [Sosnik et al., 2007] is bound to certain conditions
which need to be fulfilled. For example, it is crucial that the accuracy to pass through the via-points needs
to be relaxed, otherwise the human subjects fall back to straight lines to connect the points. Therefore, it
can not be claimed that this learning method represents the only mechanism which does optimization in
the motion learning apparatus. Especially, if visuo-motor coordination is taken into account, a combined
control strategy seems to be plausible and furthermore interesting to look at in future work.

Model / Noise σ = 0.05 σ = 0.01 σ = 0.005 σ = 0.001

DMP + ELM 0.45±0.004 0.45±0.003 0.46±0.005 0.46±0.005
DMP + GBF 0.43±0.053 0.35±0.006 0.35±0.006 0.36±0.006

Tab. 6.1: Timing information specifying when the trajectory passes through the via-point B, for both
approaches DMP with ELM and GBF. Note that the timing is not significantly different over the different
noise levels, however, the DMP approach using GBF reaches the via-point earlier. The initial timing is
set to 0.5.
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Fig. 6.8: Learning behavior over 1000 epochs and using M = 10 roll-outs per epoch. Results after
learning with three different noise parameters. The spatial trajectory is illustrated in the left column and
the speed profile in the right column. (The noise level is in the bottom row σ = 0.01, in the second
row σ = 0.001 and in the top row σ = 0.0001. Note that by increasing the noise level in the learning
paradigm the resulting trajectory becomes more smooth but less accurate according to the via-points.

6.5 Conclusion

In this chapter a novel semi-supervised learning process is presented to model a similar learning process
of humans specified by the notion of co-articulation. The learning behavior is demonstrated in different
via-point tasks. Given an initial set of straight motions, the learning proceeds creating a new movement
primitive, which is used for movement exploration to further evolve the new primitive.

A variation of the DMP representation is used together with an OS-ELM network (described in
Chapter 5) to learn the movement primitive. The learning method is extended to use biological plausible
signal-dependent noise. Using signal-dependent noise is beneficial for iterative learning. It converges
to a minimum jerk trajectory. In a systematic comparison of the DMP using the ELM encoding with
the DMP approach using GBFs, it is shown that the global encoding of the ELM is necessary for con-
vergence of the iterative learning process. Additionally, the learning process is evaluated for different
locations of the via-point to demonstrate the robustness of the learning paradigm. Also the learning
scenario is extended from a one via-point task to a multi via-point task.

The results presented in this chapter establish the necessary basis for further investigations in larger
skill architectures where motion primitives need to be refined.
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CHAPTER 7

PERCEIVING KNOWN MOVEMENT
PRIMITIVES IN COMPLEX MOVEMENTS

In Chapter 3 and Chapter 4, the differences of state-of-the-art motion generation algorithms suitable
for movement primitive representations are discussed. The descriptions were focused on plausibility to
human generation performance and on safety issues regarding real world robot applications in form of
stability features.

Articulated movements are fundamental in many human and robotic tasks. While humans can learn
and generalize arbitrarily long sequences of movements, and particularly can optimize them to fit the
constraints and features of their body, robots are often programmed to execute precise but fixed point-
to-point patterns. In this chapter, a novel approach is proposed to interpret and reproduce articulated
and complex trajectories as a set of known movement primitives. Instead of achieving accurate repro-
ductions, the proposed approach aims at interpreting data in an agent-centered fashion, according to an
agent’s movement primitives. In particular, because trajectories are understood and abstracted by means
of agent-optimized primitives, the method has two main features: (i) reproduced trajectories are gen-
eral and represent an abstraction of the data, and (ii) the algorithm is capable of reconstructing highly
noisy or corrupted data without pre-processing thanks to an implicit and emergent noise suppression
and feature detection. This study suggests a novel bio-inspired approach to interpreting, learning and
reproducing articulated movements and trajectories. The conceptional ideas and results of this chapter
are also published in [Soltoggio et al., 2012; Soltoggio and Lemme, 2013].

7.1 Using the agent’s own movement capabilities for perception

Humans and animals are capable of learning, perfecting and reproducing complex trajectories that al-
low them to perform a variety of tasks. Following the concept of motor resonance it motivates that
using the own motion representation to perceive and represent observed motion behavior becomes plau-
sible, which is shown even in human infant learning behavior (see [Berthier, 1996] and [Paulus, 2014]
for a review).

As shown in the previous chapters a good representation for motions in robotics are movement
primitives. One intrinsic feature of motion primitives is that they generate basic and general movements
that can then be combined to compose arbitrary long and convoluted trajectories. While biological
studies continue to reveal the neurological bases of motion primitives [d’Avella et al., 2003b; Hart and
Giszter, 2010], computational models provide examples of computer generated primitives as discussed
in Chapter 2. Fundamental questions that arise with the use of primitives are: what are the features of a
set of primitives? How are primitives composed to perform articulated movements? And what role do
they play in interpreting, coding and learning complex movements?

Two categories of decomposition approaches can be identified. First, the data-centered approaches,
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which analyze the data to find features, e.g. inflection points, points of discontinuous derivative, crit-
ical points,etc. And second, the agent-centered approach [Atkeson and McIntyre, 1986] implies that
the algorithm does not analyze directly the demonstrated trajectory as opposed to other approaches
[Kohlmorgen and Lemm, 2001; Hellbach et al., 2009; Mohan et al., 2011]. Instead, the demonstrated
trajectory is approximated by means of a process of learning-by-doing in which the performance, or the
accuracy of a reproduction, is improved over time with increasingly refined decompositions. Avoiding
the analysis of demonstrated data results in two main features of the algorithm. The first is that a repro-
duction of a demonstration is biased by the agent’s set of primitives. In this respect, the reproduction
represents an interpretation of a demonstration. In other words, any demonstration, which was gener-
ated by an unknown process, is being fitted with the agent’s fixed primitives. While this may appear as
a limitation, it also means that no assumptions on the demonstrated trajectory are required. The agent
attempts to achieve a best approximation with its current primitives used as a tool to interpret input data.
A second feature is that the algorithm may take as input highly noisy and corrupted data and displays
implicit noise suppression and feature detection. In Sec. 2.3.2, related approaches are summarized that
try to identify motion primitives in trajectories.

The aim of this work is to achieve an agent-centered interpretation and progressive adapting that
fits in the first place the robots’ capability, as opposed to a data-centered decomposition analysis. One
interesting aspect of the proposed method is that, similarly to [Wada and Kawato, 1995, 2004; Rohrer
and Hogan, 2003], the decomposition of complex trajectories initiates as a rough approximation based
on one single movement primitive. Interestingly, a complex trajectory encompassing many convoluted
parts, e.g. a handwritten long word, is unlikely to be adequately represented by one single stroke. Yet,
by adopting this counter-intuitive approach, a fundamental step in an iterative process can be achieved
towards further and more precise decompositions. Points of decomposition are progressively discovered
during the iterative process. At each iteration, the part of the reproduction with the maximum discrep-
ancy with the demonstrated trajectory is considered for improvement. Thus, segmentation points are
introduced with the simple but effective heuristic of observing the point of maximum error. Decom-
position points can also be later suppressed if more general primitives are discovered to fit a part of
the demonstration. The deletion of segmentation points is a bio-inspired search that, once some main
features of a demonstration are captured, it relaxes constraints to find better solutions and overcome
local optima.

It is important to note that the present algorithm only focuses on geometrical properties of the tra-
jectories, while is agnostic to the velocity profiles. This apparent limitation in reality allows for a more
flexible interpretation of trajectories, which may not be necessarily determined by the velocity profile
used during generation. Once more, no assumption on the demonstration implies that any demonstration
can be observed, decomposed and reproduced with the proposed algorithm. Tests on both geometric and
human generated trajectories reveal that the use of own primitives results in remarkable robustness and
generalization properties of the method.

7.2 Methodology for decomposing and interpreting trajectories

This section describes the proposed decomposition algorithm in all its parts, motivates the bio-inspired
approach and illustrates all the steps to reproduce the method.

7.2.1 Movement primitive libraries as decomposition tools

The decomposition algorithm requires a set of pre-learned primitives that can be freely chosen and gen-
erated by means of a variety of methods. This feature is particularly important to integrate the proposed
algorithm with the well established methods for primitive generations cited above. The performance of
the algorithm in the decomposition varies in accuracy and approximation according to the movement
primitive library, as later tests show. Nevertheless, the method can decompose complex trajectories even
with very poor movement primitive libraries.
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Fig. 7.1: Movement primitive libraries. (A) This small set of primitives was generated with the
Minimum-Jerk Model (MJM) [Flash and Hogan, 1985] and contains one straight line and six curved
lines. It is referred to as the MJM 7-set. (B) Shows also MJM trajectories. This set, contains 51 prim-
itives both with symmetric and asymmetric geometry (MJM 51-set). (C) This set, composed of only
five primitives, was learned from human demonstrations using an Extreme Learning Machine (ELM)
[Huang et al., 2004]. Primitives are rotated and scaled to be fitted to the starting and ending point of a
demonstration.

To show the influence of different movement primitive libraries, the current study considers three
sets: two sets generated with the minimum-jerk model (MJM) [Flash and Hogan, 1985] and one is
generated by using a feed-forward network (Extreme Learning Machine) [Huang et al., 2004], which
is the NiVF (see Chapter 3) without the additional stability constraints. Stability constraints are not
necessary here because no perturbations are applied. The networks were trained to reproduce a set of
human drawn trajectories. One minimum-jerk model (MJM) set is composed of seven symmetric prim-
itives (Fig. 7.1A), and a more complex set has 51 primitives with symmetric and asymmetric shapes
(Fig. 7.1B). The ELM-set has 6 primitives (Fig. 7.1C). Experiments can be extended to include fur-
ther sets.

7.2.2 Trajectory matching and iterative decomposition

Regardless of the length and complexity of a given trajectory (demonstration), the counter-intuitive
position in this study is that only the start and end points are initially considered as extremities of
one single primitive. The agent searches among its own primitives a best match. It is assumed that a
primitive can be rotated and scaled to connect the initial (I) and final (F) points of the demonstration.
If the demonstration is long and articulated, the first match is inevitably a gross approximation. Four
numerical criteria to compare trajectories were considered in the current study: (1) a maximum point-
wise error (MPE), (2) a point-wise mean square error (PMSE), (3) the area A between the demonstration
and the reproduction, and (4) a measure of parallelism Θ. The four criteria are computed by the following
equations:

MPE = max(||x(i)− x̂(i)||) (7.1)

PMSE = 1
MN ∑

N
i=1 ∑

M
j=1 (x

i
j− x̂i

j)
2 (7.2)

A = ∑
N−1
i=1 F(x(i),x(i+1), x̂(i), x̂(i+1)) (7.3)

Θ = 1
N ∑

N−1
i=1

x(i+1)−x(i)
||x(i+1)−x(i)|| ·

x̂(i+1)−x̂(i)
||x̂(i+1)−x̂(i)|| (7.4)

where x(i) is a two dimensional coordinate point of the demonstration, x̂(i) a coordinate point of the
reproduced trajectory, M is the dimensionality of the data (M = 2 in the current study), N the number
of samples, and F gives the area of the tetragon specified by the input arguments. The data points x are
obtained by cubic splines interpolation of the original sampling to ensure that their normalized distance
and N are equal.

Eq. (7.1)-Eq. (7.4) can be used independently or linearly combined to assess how similar two trajec-
tories are. Eq. (7.1)-Eq. (7.3) reach zero for perfectly matching trajectories, while Eq. (7.4) is equal to
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Fig. 7.2: Graphical illustration of the
iterative decomposition process. Itera-
tion 1 begins selecting one single prim-
itive as approximation of the global tra-
jectory between the initial (I) and end
(E) points. The primitive is chosen ap-
plying one of the criteria expressed by
Eq. (7.1)-Eq. (7.4). On the demonstra-
tion, a candidate segmentation point is
chosen according to Eq. (7.1). In It-
eration 2, two better fitting primitives
are identified, as well as a new point of
maximum error. Iteration 3 and 4 show
further steps of the iteration. The algo-
rithm may continue to improve locally
the approximation until stop criteria are
satisfied.
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1 for matching trajectories. Visual observation over many examples revealed that deriving a measure of
similarities between two different trajectories is not immediate. In effect, evaluating similarities between
trajectories may be domain-dependent or even subjective (as also discussed in Chapter 4). The focus of
the study is not to compare the effect on the performance of Eq. (7.1)-Eq. (7.4), nor to propose a best
criterion. Different matching criteria are proposed here as alternatives which can be chosen to work with
the present algorithm. The tests in the current study use by default Eq. (7.2) because it produced pre-
dictable segmentations on a large variety of demonstrations. Eq. (7.1) and Eq. (7.3) are also employed
in tests to show the robustness of the method. Once a best matching primitive is identified, the point x∗

that returns the maximum error in Eq. (7.1) on the demonstration D

x∗ : MPE = max(||x(i)− x̂(i)||),∀i ∈ D (7.5)

is chosen as candidate segmentation point. Thus, the first approximation is used to identify a first
decomposition point along the demonstration, i.e. a first point to use in an iterative process of further
decompositions. Once x∗ is identified, each sub-trajectory to the left and to the right is matched with a
best primitive. Two cases are now possible: (1) the reproduction with x∗ as segmentation point brings an
improvement with respect to the matching criteria expressed by Eq. (7.1)-Eq. (7.4); (2) the segmentation
does not bring an improvement. In the first case, the candidate segmentation point is promoted to
established segmentation point and the iterative process can continue on each segment. In the second
case, the segment is labeled as final and no further segmentation is considered. Fig. 7.2 illustrates the
first four steps of the iterative process on an trajectory.

The heuristic that identifies candidate segmentation points is not based on an optimality measure,
which is difficult to infer in an iterative process. The attempt is instead that of identifying potentially
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appropriate points to improve further a reproduction. The underlying idea is that the furthest point on
the demonstration from the current reproduction lays potentially in a part of the demonstration that is not
correctly represented by the reproduction, and thus requires further segmentation. This simple heuristic
proves effective as demonstrated later in Sec. 7.3.

7.2.3 From sequences of points to sequences of primitives

Any trajectory can be represented as a sequence of close points united by straight lines, if decomposed
finely. A decomposition that reproduced exactly the demonstration in such a way minimizes the repro-
duction error. However, such a decomposition merely copies a demonstrated trajectory without gener-
alizing the overall shape of a movement. The problem is effectively twofold: a classification problem
(finding the best matching primitive) and an optimization problem (reducing the number of segmenta-
tion points). A trade-off between generality, with few decomposition points, and precision, with many
segmentation points, is desired and sought [Edelman and Flash, 1987]. As a rule, generality of one
solution is accompanied by a residual error with one particular demonstration. For example, a straight
line drawn by a human subject is not exactly straight. But even a precise straight line, if observed by
means of an analog process like vision, is encoded as a noisy data set which, unless is pre-processed
with an arbitrary noise suppression, is not a perfectly aligned sequence of points. Therefore, a residual
error between observed and demonstrated trajectory must be accounted in realistic scenarios. The impli-
cation is that decomposing a trajectory to minimize the error may lead to a high number of segmentation
points. Most algorithms use a error threshold below which the segmentation is considered satisfactory.
This problem derives also form the arguable assumption that trajectories have a length but dimensionless
thickness. In robotic and real world scenarios, trajectories are both executed and perceived with a certain
tolerance. Accounting for such an aspect is a key aspect to avoid over-fitting, unnecessary computation
and excessing segmentation.

The method in this study attempts to mimic a trajectory with given primitives that guarantee gen-
erality and may be devised to guarantee also efficiency, optimality, or to conform to particular robotic
requirements, without necessary minimizing an error measure. For example, the minimum-jerk model
used in the current experiments guarantees energy minimization and is biologically plausible [Flash
and Hogan, 1985], while the ELM-set uses a neural learning paradigm that reproduces human drawn
trajectories.

Precision of primitives and intersections

Instead of considering the error between demonstration and reproduction as stopping criterion, the cur-
rent algorithm looks at whether the demonstration and the reproduction have intersections. If they have
at least one intersection, the demonstration is assumed to have further features that need decompos-
ing. If there are no intersections, the current primitive is assumed to be the best approximation: further
decompositions may reduce the error but also reduce generality.

Intersections are intended as two trajectories crossing each other: however, two noisy and overlap-
ping trajectories have many local intersections that would not be considered such by a human observer.
Thus, to detect significant intersections, the algorithm associates a precision value to the primitives.
Such a precision is an index of how thin a trajectory may be with respect to its length. In effect, this pa-
rameter may encode the precision of a mechanical arm, or may be adjusted to account for the variance of
many samples, if those are executed by imprecise human movements. In short, the precision parameter
is a necessary element in the interpretation of an observed trajectory. It answers the questions: what are
the agent’s perception and execution capabilities? What is a realistic precision to be implemented when
reproducing a demonstration?

The case is illustrated in Fig. 7.3 in which the primitive is shown with an associated thickness.
If the demonstrated and performed trajectories do not intersect, the algorithm infers that there are no
further prominent features in the demonstration that need to be reproduced with further segmentations.
Non-intersecting trajectories can be somehow distant, but the matching criterion (Eq. (7.1)-Eq. (7.4))
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Fig. 7.3: Best fitting and intersections. (A) Three
primitives are shown in the attempt to match a
demonstrated trajectory. The best matching prim-
itive is not a perfect reproduction, but rather a
general abstraction of the demonstration. (B) A
demonstration is matched to a straight primitive
in which the second dimension, or precision, is
shown. The left-most part of the trajectory, although
not perfectly straight, does not intersect the two-
dimensional primitive, suggesting that no further
features are present in the demonstration. The right-
most part of the trajectory instead clearly intersects
the primitive, indicating the utility of further decom-
positions.
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ensures that this distance is minimized. No intersections mean effectively that the reproduction and the
demonstration are as close as possible given the current set of primitives. One exception is when the
demonstration exists the reachable area of all primitives. This is for example the case of a circle drawn
with a nearly overlapping start and end point. When the demonstration exists the reachable area of the
primitives, further segmentations are enforced.

In the experiments of this paper, the smaller sets (MJM and ELM) have a precision value p = 20 =
1/0.05, where 0.05 is the thickness of the primitive normalized to the shortest side of the drawing area.
The more accurate 51-primitive set has a precision p = 100 = 1/0.01, i.e. the thickness of a primitive
is 1% of the drawing area. A thickness of 0 corresponds to infinite precision, a concept that does not
describe real data from a demonstration and clearly underlines the importance of considering thickness
values higher than 0. Higher precision values can be adopted when the demonstration is known to
be very accurate. Intersections are detected analytically by computing the cross products between the
direction of the primitive and the error vectors of all points: if the cross products have different signs
and the error vectors are greater than the line thickness, then an intersection is detected.

The intersection criterion attempts to capture features of the demonstration that are observable with
set of primitives used. It is nevertheless possible to use a more traditional stopping criterion, for example
requiring that the maximum error is decreased below a certain threshold. Such an approach may be used
when more emphasis on minimizing the error is necessary and an approximation that respects an error
constraint is desired. This variation was experimented in the current algorithm and is easy implementable
by letting the algorithm continue the segmentation until the maximum error falls under a threshold. A
similar variation may also include, for example, a measure of how parallel two trajectories are (i.e.
Eq. (7.4)). The algorithm may be required to continue segmenting until a certain threshold is reached.
These variations of the algorithm require more human supervision in setting such an error threshold and
understanding what matching criteria are needed in a particular scenario. In some cases, introducing
additional matching measurements and stopping criteria may lead to reproductions that are perceived
visually as better approximations.

Deleting segmentation points

The iterative process implies that the interpretation of the demonstration (i.e. the solution) varies and
improves at each further decomposition. One question is whether decomposition points that were found
initially during the process are still good segmentation points later as the accuracy improves. Inspired by
theories of motor learning in humans [Bernstein, 1967], the proposed method introduces a type of search
that releases early constraints when a new segment is added. At the insertion of a new decomposition
point, primitives are searched to the left and to the right of the candidate point. The search may go
beyond the immediate left and right segments. It is possible to search further left and further right,
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Seg. Primit. Start Scaling Angle Final
1 number xy coor. factor angle y/n
2 .. .. .. .. ..

Tab. 7.1: Representation of a trajectory as a sequence of primitives. Segments (i.e. rows in the table)
are added and occasionally removed during the iterative process. For each segment, it is necessary to
specify which primitive is used (2nd column), the starting point (3rd column), the scaling and angle (4th
and 5th column) and whether the segment can be further decomposed (6th column).

thereby attempting larger generalizations. Neighboring decomposition points are eliminated if more
general primitives without intersections are discovered.

This check guides the search to avoid local optima, and at the same time it helps reduce the number
of overall segmentation points, thereby achieving more general solutions. Releasing constraints implies
more computation while searching larger primitives that may skip segmentation points. This type of
search is nevertheless far from exhaustive: the further exploration relies on the current segmentation. It
represents an attempt to reorganize parts of the trajectory according to new knowledge that was gathered
during the iterative segmentation process.

7.2.4 The iterative algorithmic procedure

It is now possible to introduce a flow chart to explain in detail the overall procedure. Fig. 7.4 helps follow
the detailed explanation below. The algorithm is also reproducible with the MATLAB code available for
download at http://www.cor-lab.de/decomp.

The algorithm starts selecting one primitive that best matches the demonstrated trajectory (Fig. 7.4,
blocks 1 and 2). The best match is obtained comparing all primitives with the demonstration and choos-
ing the primitive that minimizes a measure of discrepancy (Eq. (7.1) and Eq. (7.3)) or maximizes a
measure of similarity ( Eq. (7.4)). In the next step (block 3), the algorithm finds the point of maximum
error between the demonstration and the reproduction ( Eq. (7.5)). This is a candidate segmentation
point and is located in a part of the demonstration that is poorly approximated. Initially there is only
one segment. As the iterations proceed, more segments are created. When created, each segment is
labeled as non-finalised, meaning that further decompositions are possible. The point of maximum error
is sought on a non-finalised segment (blocks 3 and 4). The algorithm now checks whether the primitive
intersects the demonstration or not (block 5). As illustrated in Fig. 7.3A and B, an intersection suggests
the presence of a relevant feature that can be captured with further decompositions. If the best matching
primitive does not intersect the demonstration (block 5), the demonstration may be laying outside the
reachable area of the primitives (block 6). This case, or the case in which there is an intersection, mean
that there are additional features in the demonstration that need to be captured. Therefore, the algorithm
proceeds with the segmentation (block 7). Otherwise, the current segment is finalized (block 10). The
search in block 7 is carried out by exploring primitives that approximate the left and right parts of the
demonstration from the candidate segmentation point. Such a search involves also the elimination of
older segmentation points if better approximations are found. The search for better primitives in block
7 may or may not result in an improvement of Eq. (7.1)-Eq. (7.4). If no improvements can be achieved,
the segmentation point is rejected and that segment is labeled as finalized (blocks 8 and 10). If an im-
provement is found, the segmentation point and the left and right primitives are promoted as part of the
current segmentation (block 9).

Throughout the process, the representation of a demonstration is updated. Tab. 7.1 shows how the
primitive-based symbolic trajectory is described. At the first iteration, only one row is present. Further
segmentations add more rows describing primitives, start point, scaling and angle, and whether the
segment is finalized.

http://www.cor-lab.de/decomp
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Fig. 7.4: Flow charts describing the various phases and iterative nature of the algorithm. The numbers
that identify each block are used as references in the text to describe each phase.
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Fig. 7.5: Examples of decompositions of short demonstrations. (First row) A hand-written W (first
column) is first corrupted with noise (second column). The noisy data is used to run the algorithm with
the 7-set (third row) and with the 51-set (fourth row). Finally, the fifth column shows the interpretation
and decomposition with the ELM-set of primitives. The rows below show similar plots for different
demonstrations.

7.3 Decomposing complex trajectories with a movement primitive library

This section reports the simulation results of the algorithm applied to a variety of demonstrated trajec-
tories, from simple to complex. A fundamental aspect of the proposed decomposition algorithm is that
it utilizes a pre-learned movement primitive library. In the following the impact of different movement
primitive libraries for a variation of complex trajectories is demonstrated.

7.3.1 Reconstructing short demonstrations

The decomposition algorithm is applied here on human and machine generated trajectories affected by
noise. These basic examples have the purpose of showing how the algorithm interprets and reconstructs
short noisy trajectories. Fig. 7.5 shows the application of the algorithm to three different demonstrations
after they were corrupted with noise. The method favors elegant decompositions with few primitives,
resulting in some cases in a residual error between demonstrated and reproduced trajectories. The dis-
crepancy stems from the more general trajectories chosen by the agent with respect to the irregular
human generated data. The decomposition with the MJM set of 51 primitives appears more accurate
in comparison with the decomposition from the 7-set. The small set of 7 primitives instead captures
the main features of the demonstrated trajectories favoring straight lines, effectively achieving a higher
level of abstraction. The implication is that in front of complex demonstrations, agents or robots with few
primitives can nevertheless utilize the algorithm to decompose a demonstration according to their basic
skills. The ELM-set, despite having only five primitives, performed very well. The reason is because
the ELM-primitives were trained on the same trajectory later presented for reconstruction. Therefore,
the ELM-set contains primitives that match well the demonstrated trajectory. Nevertheless, it must be
noted that the demonstrations are not exactly the same as the primitives and, moreover, the data seen by
the algorithm is the corrupted data in the second row in Fig. 7.5.

From this first test it emerges one important and bio-inspired feature of the algorithm. The method
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A B

C D

Fig. 7.6: Examples of reconstruction from a noisy machine generate trajectory. (A) The original demon-
stration affected by noise. (B) The first step of the decomposition. (C) The third step of the decompo-
sition (D) Fourth and final step of the decomposition. The algorithm found the original primitives that
were used to draw the demonstration before noise was applied.

appears to reconstruct, in a way to recognize, those trajectories that are similar to the known primitives.
The reconstruction by the MJM 51-set in the third row is more abstract and less similar to the original
than the reconstruction by the ELM-set, despite the considerably larger library of primitives in the 51-
set. However, while the ELM-set performed well in this particular test, the 51-set is more generic and is
likely to perform better on other trajectories with arbitrary geometry.

Further tests were performed on automatically generated trajectories with additional high level of
noise. Fig. 7.6 illustrates the capability of the algorithm in reconstructing corrupted data. The demon-
stration was created with the same primitive set used for the reconstruction, which in part explains the
correct matching. Nevertheless, this approach appears biologically plausible because humans too tend
to recognize in imprecise images objects and shapes that were previously learned [Edelman, 1998]. As
hypothesized also in [Wada et al., 1995], the reconstruction and reproduction are closely coupled: the
present algorithm shows that noisy data are recognized with or fitted to the known primitives.

The primitives are executed sequentially without additional procedure to join them. Therefore,
points of discontinuous derivative are noticeable where primitives join. Smoothing a trajectory requires
the understanding of whether a point is a cuspid, i.e. the trajectory has a discontinuous derivative, or it
can be rounded with a co-articulation algorithm [Sosnik et al., 2004; Kulvicious et al., 2012]. As this
particular problem was not the focus of the present algorithm, all primitives are joined without blending
or co-articulation.

A further test was executed to assess the performance of the algorithm on different trajectories with-
out noise. One hundred trajectories were constructed with sequences of three primitives from the 51-
primitive set, applying random primitive lengths and rotations. One example is shown in Fig. 7.7.
Similarly to the results in Fig. 7.5, the decomposition with the 7-primitive set produced schematic and
abstract interpretations as that in Fig. 7.7B. A straight primitive was frequently used to approximate a
demonstration with a low curvature. Alternatively, a combination of a straight and a curved primitive
was used to interpret an unknown curvature as in the lower left part of Fig. 7.7B. The analysis revealed
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A
B

C

Fig. 7.7: Testing the decomposition on
machine generated trajectories. (A)
One hundred machine-generated tra-
jectories as this one in the example
are used for the extensive performance
test. (B) Reproduced trajectory with
the small 7-primitive sets. (C) Re-
produced trajectory with the large 51-
primitive set.

that, although the demonstrations are exact and without noise, the algorithm could not always find the
exact primitives that were used to create the demonstration: similar primitives could occasionally be
used to create good but not exact reproductions. This is an expected consequence of the fact that the
algorithm does not minimize the error between demonstration and reproduction. The test shows that the
algorithm expresses its full potential in reconstructing corrupted data (Fig. 7.5) rather than reproducing
precise demonstrations.

7.3.2 Decomposition of handwriting

The decomposition of human-generated handwriting trajectories is a task in which the symbolic aspect
is more important than the exact geometry. In other words, global features in a trajectory are funda-
mental in distinguishing different letters more than the precise geometry of the trajectory. The proposed
algorithm was shown in the previous section to be suited to extract high level representations from noisy
data. It is natural to ask whether this feature may be of use as a step towards abstracting human hand-
writing. Note that the experiment in this section decomposes and represents handwriting as movement
primitive library, but it does not interpret or map trajectories to letters.

Two examples of human handwriting data were analyzed. A first word “Hello” was decomposed as
shown in Fig. 7.8. The first row (Fig. 7.8A) is the original trajectory. Fig. 7.8B is the first approximation,
i.e. one single primitive. Fig. 7.8C shows the representation after 7 steps. The algorithm has identified
some of the main features of the demonstration. Fig. 7.8C illustrates the 9th step, demonstrating how
each step is functional in discovering further features. The letter ’h’ and one ’l’ are already readable
after 9 steps. Fig. 7.8E shows the final reproduction.

The decomposition proved robust with respect to different trajectory matching criteria (Eq. (7.1)-
Eq. (7.3)) and precision parameters. Fig. 7.9 shows the final decomposition of the word “Hello” with
various criteria. Fig. 7.9A uses Eq. (7.3) as matching criteria (i.e. the area between trajectories).
Fig. 7.9B is a decomposition with trajectory matching criterion Eq. (7.1). And finally, Fig. 7.9C is a
decomposition with Eq. (7.2) and a lower precision p = 20. The reproductions in Fig. 7.9 are similar
but not identical; also compare with Fig. 7.8E in which Eq. (7.2) and precision p = 40 were used. It can
be inferred that different matching criteria and precision parameters affect the decomposition but do not
change significantly the capability of the algorithm to represent a demonstration.

Fig. 7.10 illustrates the decomposition process for the word “Amarsi”, whose original handwriting
is plotted in Fig. 7.10A. Fig. 7.10B and C show iterations two and four during decomposition with the
51-primitive set. Also in this case the algorithm begins by reproducing the most relevant features of
the demonstrated trajectory. Note that the way the algorithm proceeds is determined by the tentative
segmentation points discovered with the criterion of the maximum error between demonstration and
reproduction. The hypothesis is that this criterion, although trivial and of simple implementation, is
nevertheless effective in finding progressively prominent features of a demonstration. The illustration
of the step-wise iteration demonstrates exactly that. Fig. 7.10D shows the final approximation with
the large 51-primitive set. Fig. 7.10E shows the reproduced trajectory as it was decomposed by the 7-
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Fig. 7.8: Decomposition of the word
“Hello”. (A) The demonstrated trajec-
tory. (B) First iteration: the complete
trajectory is approximated by one sin-
gle stroke, i.e. one primitive chosen in
the MJM-51 set. (C) Iteration 7: the
algorithm has identified main features
in the demonstration. (D) Iteration 9:
at each further step, more features are
captured and represented. (E) The final
decomposition and representation.
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Fig. 7.9: Decomposition of the word
“Hello” with different settings. (A)
Final decomposition with Eq. (7.3) as
matching criterion (area between tra-
jectories). (B) Final decomposition
with Eq. (7.1) (maximum error). (C)
Final decomposition with Eq. (7.2) and
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primitive set. In this case, the approximation appears less accurate and straight lines are frequently used.
However, the main features of the demonstration are captured indicating that the smaller set of primitives
resulted in a more abstract representation. It is interesting to note that the decomposition with the larger
primitive set results in better approximation with fewer parts. Although this fact appears intuitive, these
experiments show that the current method achieves this trade-off that emerges autonomously when the
movement primitive library changes. It can be concluded that the proposed method adapts autonomously
to exploit the specific primitives, i.e. the available skills, of the agent or robotic platform that performs
the movements.

The reconstruction capabilities, already proven earlier with the test in Fig. 7.5, are preserved also
when decomposing and reconstructing longer trajectories. A decomposition was run on the dataset in
Fig. 7.10A, corrupted by the addition of±1% noise to each sampling point. The decomposition proceeds
on this noisy dataset similarly to the case without noise. Fig. 7.11 shows that the reproduced trajectory
is an interpretation of the noisy data. This simulation proves that the proposed algorithm employs its
generalization capabilities to filter noise and detect relevant features in the demonstrated trajectory.

7.4 Discussion

In the proposed algorithm the idea is to decompose an arbitrarily complex trajectory using the agent’s
pre-defined primitives during an iterative process of learning-by-doing. The process starts with a rough
approximation of the demonstrated trajectory and approximates step by step the features of the input data
by a progressive decomposition. Segmentation points are discovered simply by a criterion of maximum
error between demonstration and reproduction. Such a trivial criterion that focuses only on geometrical
features proved nevertheless surprisingly effective and robust. The final result is a sequence of primitives
that is in effect an intelligent reading of a demonstrated trajectory represented as a general and abstract
concept. The strength of the algorithm lies in the primitive-centered and progressive search, which uses
existing skills and implicitly solves data-induced problems like noise and discontinuous derivatives.

Finding segmentation points and fitting sub-trajectories is potentially an intractable problem if con-
sidered exhaustively. The proposed method suggests candidate segmentation points taking advantage
of progressive approximations. The computation required to generate a reproduction increases with the
number of iterations and the number of available primitives. The removal of constraints, i.e. the search
of primitives that bypass segmentation points, is done at a the computational cost of matching the lo-
cally segmented demonstration with primitives. However, removing segmentation points results in more
general solutions, which justify the additional computation. The removal of constraints is effectively a
search procedure to avoid local minima in a highly dimensional search landscape.

For simplicity, the current study considers finite movement primitive libraries in which each primi-
tive has a fixed geometry. An alternative approach consists in using primitives with variable geometry
that use one parameter to change certain features as, for example, the curvature. The use an infinite-set
of primitives requires a different representation, but does not increase the computational complexity of
the search. In fact, a larger variety of geometries can be implemented with fewer tune-able movement
primitives. The extension of the algorithm to infinite-set of primitives is promising particularly in the
cases where high precision and compact representations are required.

The algorithm appears to have generalization capabilities even if it decomposes trajectories from
one single demonstration. The generalization capability, noticeable particularly in Fig. 7.5, derives from
the interpretation of the demonstration according to the agent’s movement primitive library, and less
emphasis on the original data. The reconstruction from noisy data in particular shows the generalization
capability in reconstructing straight lines, identify correct curvatures, as well as maintaining cuspids, as
clearly shown in Fig. 7.11.

The criteria upon which the algorithm is constructed (Sec. 7.2) represents the intelligence of the
decomposition, which is intended to mimic loosely human processes of understanding, acquiring and
reproducing articulated movement or trajectories. For this reason, the proposed algorithm focuses less
on the input data itself and more on the quality of the procedure applied to interpret it. The use of move-
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Fig. 7.10: Decomposition of the hand-written trajectory “Amarsi”. (A) The demonstrated trajectory
recorded from handwriting. (B) Iteration 2 during the composition with the large 51-primitive set in
Fig. 7.1B. (B) Iteration 4 during the decomposition. (C) The final decomposition and approximation
using the set of 51 primitives. The demonstration was decomposed in 18 parts (D). The final decom-
position and approximation using the set of 7 primitives in Fig. 7.1A. The algorithm decomposed the
trajectory in 21 parts. Although the accuracy with the 7-primitive set is lower than with the larger set, the
reproduction appears readable and to some extent a more abstract representation of the demonstration.
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Demonstration
affected by 
noise

Primitive−based
interpretation

Fig. 7.11: Detail of the decomposition of a noisy version of the hand-written trajectory “Amarsi”. (Left)
Noisy demonstration. (Right) Reconstruction using the 51-primitive set.

ment primitives implies inevitably the classification of imprecise and noise-affected demonstration into
well defined trajectories. Therefore, such a process causes the loss of accuracy from the demonstrated
data. However, such an accuracy may not be descriptive of features of the demonstration. Abstract
representations are more compatible with hypotheses on how humans and animals represent and execute
movements.

The precision parameter, encoding the second dimension or thickness of a movement primitive,
determines effectively to which level small details in the demonstration need to be reproduced. As a
consequence, high precision means that a noisy demonstration is reproduced accurately down to small
details, while low precision means that the trajectory is more heavily interpreted according to the move-
ment primitive library. It is important to note that a low precision parameter is not equivalent to high
noise filtering. In fact, cuspids and prominent features of the demonstrations are nevertheless captured
as indicated in Fig. 7.11.

The method is tested by using one demonstration only for each trajectory. A promising extension
is to use multiple demonstrations of the same trajectory to increase the generalization properties of the
algorithm. In particular, more observations of one demonstration are likely to have variations but retain
relevant features. One extension is to increase its capability of generalizing trajectories by finding one
decomposition of a set of similar demonstrations.

The algorithm uses primitives and demonstration in a two dimensional space. The method can
be extended and applied to a 3D scenario because primitives and matching functions can be equally
generated and computed in 3D space. It is conceivable that primitives in a 3D space may nevertheless
used in a piece-wise planar fashion [Sternad and Schaal, 1999], and that truly 3D trajectories like a
helix are relatively rare. The extension presents challenges but is a promising venue for reproducing
fully-fledged robotic movements in space.

The trajectories considered in this study were only determined by the geometry without velocity
profiles. In effect, releasing the constraints on velocity allows agents to reproduce complex demonstra-
tions by freely choosing from their own primitive library with given velocities representing their own
capabilities. Extensions of the algorithm could include also the velocity profiles. The addition of kine-
matics may imply that velocity cannot drop to zero at segmentation points, introducing strict constraints
to the search. In effect, whereas kinematics are essential in dynamics movements such as walking, they
become less stringent in object manipulation and marginal in drawing and writing. As the respect of
kinematics constraints depends heavily on the precise field of application, tailored algorithms may be
required.

The proposed method focuses on the decomposition of trajectories and does not consider the learning
of new movement primitives. The results in this chapter indicate that the movement primitive library is
important to achieve particular required performance, and in particular is crucial in interpreting noisy
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or corrupted data. It is natural to ask how the algorithm can be adapted to extend the available set of
primitives while decomposing. A promising research direction is that of integrating the current method
in a more powerful algorithm that learns additional primitives with experience, which is discussed in
depth in Chapter 8. Additionally, certain sequences of primitives that repeat themselves frequently
could be assimilated as a new longer primitive as discussed in Chapter 6, thereby accelerating the search
in future occurrences of the given sequence.

7.5 Conclusion

A new approach to decompose and reconstruct complex trajectories by means of a movement primitive
library is proposed. The method starts decomposing a complex trajectory with one initial single prim-
itive and progressively increases the accuracy of the approximation through an iterative process. This
approach allows an initial reduction of the search space with the identification of prominent features of
a demonstrated trajectory. Subsequently, the iterative search makes use of newly found segmentation
points to search locally better solutions and escape local optima. The agent-centered process offers a
new way of interpreting data as a function of the agent’s skills, which may represent various optimal
primitives generated with established methods. The algorithm proves robust and displays remarkable
generalization and feature extraction capabilities. In particular, the algorithm is suited for reconstructing
trajectories from corrupted and noisy data. Diverse robotic platforms with different degrees of accuracy
and motor patterns could benefit from this method while learning progressively and autonomously the
decomposition of complex trajectories. Promising extensions of the algorithm include the applications
to a variety of tasks such as imitation learning, learning of complex motion patterns, gestures, object
manipulation, software-based and robotic handwriting.



CHAPTER 8

BOOTSTRAPPING OF MOVEMENT
PRIMITIVES

The concepts discussed until now described issues of how to represent motion primitives in Chapter 3
and Chapter 4, how to combine them to one complex trajectory in Chapter 5 and how to refine existing
movement primitives in Chapter 6. In Chapter 7 a decomposition approach is described that are suit-
able for segmenting complex trajectories with a movement primitive library. Based on these concepts
one motion skill architecture is designed in this chapter. It learns starting from only one basis straight
movement primitive and creates new movement primitives which will be refined with further training.
This new modular framework maintains a suitable movement primitive library which is used to perceive
known movement primitives in a complex trajectory. It creates new movement primitives autonomously
and refines existing movement primitives with a semi-supervised learning approach. The learning be-
havior of this learning cycle is evaluated in one toy example and real world applications. Additionally,
the learning cycle is applied in a full skill learning architecture, which is used to teach the humanoid
robot iCub. The work described in this chapter is also published in [Lemme et al., 2014b].

8.1 Learning cycle of movement primitives

Single motion primitives are typically small entities, which exert their whole motion generation power
only in combination with several. This behavior needs to be coordinated in a larger learning architecture,
which can trigger each primitive in context of the given task. A prerequisite to coordinate this stream, is a
connection between the perception and actions space. The actions are then given by the set of primitives
and the perception is able to identify possible primitives in the task. However, the main question in such
an learning architecture is: what kind of primitives are needed in the task?

The issue of identifying and extracting movement primitives autonomously from complex trajec-
tories using a MPL has been addressed in [Meier et al., 2011, 2012; Grave and Behnke, 2012]. The
decomposition is accomplished by maximizing the likelihood that the demonstrated trajectory can be
approximated by a sequence of movement primitives from the library. If no primitive exceeds a given
threshold for the likelihood, a new MP is learned from the demonstration. In [Lee and Ott, 2010], an in-
cremental learning scheme is proposed to sequentially learn a MPL. The library is represented by hidden
Markov models (HMMs), which allow recognition of the movement primitives from an on-line stream
of control commands. Another stochastic learning approach used in an incremental learning scenario
is introduced in [Kulic et al., 2008b, 2009, 2011]. HMMs are used to represent movement primitives
and also to obtain stochastic segmentations of complex motions into known primitives. In all these men-
tioned approaches segments of the demonstration which are not known in the MPL are used to learn new
movement primitives as proposed in the programming by demonstration paradigm. In other approaches,
segmentation points are solely defined by geometrical or kinematic features, e.g. critical points [Mo-
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Fig. 8.1: Flow chart describing the bootstrapping cycle of the library. First is the decomposition (1) of
the observed complex trajectories. The result is used to self-generate trajectory chunks (2) for the next
learning step. Learning consists of two operations, either adding (3) or refining (4) movement primitives.
At last the library is consolidated by deleting (5) old and unused movement primitives.

han et al., 2010], zero velocity [Reinhart et al., 2012], spatio-temporal features [Jenkins and Mataric,
2002], or general motion laws believed to underly human motion generation, e.g. two-thirds power law
[Endres et al., 2013], minimum jerk [Rohrer and Hogan, 2003]. These methods can be characterized as
approaches where predesigned motion features directly determine the structure of the MPL.

A general approach to solve this issue is, by using a decomposition algorithm which identifies in-
variant features in the perceived trajectory and implement these features in a primitive representation.
The downside of this approach is that one is imitating the seen demonstration, which may is beyond the
capabilities of the robot motion apparatus. An alternative approach provides the reinforcement learn-
ing community, where optimization methods are found which can be used to change the features of the
learned primitive to be more suitable for both the robot and the task.

In this chapter a open-ended learning paradigm is proposed using an autonomous learning architec-
ture, where primitives are again represented as dynamical systems and organized in a library structure.
This library of motion primitives is used to compose complex motions which can represent the task as a
sequence of motion primitives. The main idea is that the available primitives are used to represent every
task demonstrated by the tutor with its own motion capabilities and evolve further by repeating the task
multiple times.

A MPL is bootstrapped by using the motion capabilities currently available, starting from only one
straight MP embedded into the propose autonomous learning architecture. The MPL is used to compose
and decompose complex trajectories by sequencing primitives from the library. The main contribution is
to bootstrap new movement primitives by concatenating frequently used movement primitives to more
complex ones. This is done by using self-generated training data, based on the notion of co-articulation
[Sosnik et al., 2004] found in the human motion training process and is used also in Chapter 6 to develop
a learning method.

That is, demonstrations do not serve as immediate training targets. Instead, reproduced trajectories
generated with the current MPL are used for semi-supervised learning of new movement primitives. The
MPL is further refined during multiple repetitions of a task without the prior selection of specific motion
features. The concept of semi-supervised learning or self-learning is mainly known in the classification
and object detection domain [Nigam and Ghani, 2000; Rosenberg et al., 2005], where e.g. a classifier
is trained at first with a small training data set. Then this classifier labels new data samples, which are
used again to train the same classifier.
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8.2 Semi-supervised bootstrapping of movement primitives

In this proposed learning architecture the concepts introduced during the last chapters of this thesis are
applied. The core idea of the proposed approach is to combine three major steps. The first step is
the processing, where the existing MPL is used to decompose a complex trajectory and generate new
training data for the MP learning. The second step comprises learning, where the new training data is
organized in training data sets for creating new or refine existing movement primitives. The third step
consolidates the MPL by deciding which MP needs to be deleted.

Fig. 8.1 illustrates the steps of one such bootstrapping cycle obtained from decomposition. The
sequence of movement primitives (see Fig. 8.1(1)) is used to self-generate articulated trajectory chunks
(see Fig. 8.1(2)) as is described in more detail in Sec. 8.2.1. These chunks are used either to create new
movement primitives (Fig. 8.1(3)) or to refine existing movement primitives (Fig. 8.1(4)) as described
in detail in Sec. 8.2.2. The MPL holds additional information for each MP, e.g. how frequently a MP
was used for decomposition and for how long it has been part of the library. After the learning phase,
unused primitives are deleted (Fig. 8.1(5)). Due to the autonomous decomposition, it is not necessary to
involve a human designer or teacher, who organizes training data before learning.

Movement primitives are represented by the alternative DMP approach using the ELM to learn the
correction forces, as introduced in Chapter 5.

8.2.1 Processing of complex trajectories

The processing step tackles two tasks. First is the decomposition of the complex trajectory w.r.t.
the known MPL (see Fig. 8.1(1)). Second is the preparation of training data for the learning step
(see Fig. 8.1(2)).

Decomposition with respect to a known movement primitive library

In order to decompose arbitrarily complex 2D trajectories w.r.t a given MPL the decomposition algo-
rithm as described in Chapter 7 is applied. The algorithm considers a MPL where movement primitives
are represented by a collection of discrete shapes. This allows to use any MP representation.

The iterative process of the decomposition starts with a rough approximation of the demonstrated
trajectory by a single MP and approximates step-by-step the geometric features of the trajectory. Seg-
mentation points are discovered simply by a heuristic of maximum error by comparing the demonstration
with the current best approximation.

Self-generating training data

The bootstrapping cycle starts with only one single MP in the MPL, which is a straight line generated
by the spring-damper system Eq. (5.1) with constant f = 0. The self-generating of new training data is
based on the concept of co-articulation illustrated in Fig. 8.2:

a) The process starts with an initial decomposition of a given demonstration (see Fig. 8.2(a)).

b) Each used primitive (see Fig. 8.2(b) straight lines) and two consecutive primitives from the repro-
duced trajectory (see Fig. 8.2(b)(1,2)) are used.

c) and add these extracted trajectories (compare Fig. 8.2(c)) to the training data (see Fig. 8.1(2)).

If a number of segments J are used for the decomposition, then N = 2J−1 new trajectory chunks Ωchunk =
{ω1

chunk, . . . ,ω
N
chunk} are sent to the learning step as illustrated in Fig. 8.1 and described in the following.
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8.2.2 Semi-supervised learning

The processing step described in the previous section delivers chunks of trajectories Ωchunk as shown in
Fig. 8.2 which are used as training data. Each MP in the MPL is represented by a normalized trajectory
ΩMP = {ω1

MP, . . . ,ω
M
MP}, where M is the number of the currently available movement primitives. The

normalization keeps the length ratio ratio and the angle between the articulated movement primitives.
To determine if a MP is already in the MPL, each trajectory in Ωchunk is compared to each MP in the
ΩMP. The focus in the comparison is on the geometrical shape called ”path” of the trajectory. Therefore,
each trajectory ω∗ ∈ ΩMP,Ωchunk is resampled with Tnorm equidistant points representing only the path
x̂∗ of the trajectory ω∗. The resampling is done by cubic spline interpolation. Two paths x̂chunk and x̂MP

are compared by the R2 metric:

R2 = 1− ∑i (x̂MP(i)− x̂chunk(i))
2

∑i
(
x̂MP(i)− ¯̂xMP

) , (8.1)

where x̂MP is the path represented by a MP stored in the MPL and x̂chunk is the new path from the training
data. A perfect match is indicated by R2 = 1.

With this similarity measure the training data can be organized and assign each trajectory ωchunk ∈
Ωchunk to the training data set corresponding to the MP represented by ωMP. A similarity threshold
Θ, which is chosen between 0� Θ < 1 is used to determine if ωchunk and ωMP are similar. Now two
different cases can be identified: (A) no x̂MP is similar to the observed x̂chunk. Then, x̂chunk becomes
a x̂MP (i.e. a representative trajectory in the MPL for a DMP which does not exist yet) and ωchunk is
added to the corresponding training data set as the first trajectory. Note that the number of MP in ΩMP is
growing in this case, although no DMP representation is learned for this specific MP. However, by using
this schema all follow up trajectories in Ωchunk are compared also to this representative of the new MP.
(B) a DMP representation already exists with a similar path x̂MP. Then the trajectory xchunk is added to
the training data set of the corresponding MP.

After the organization of the training data into training data sets the learning is triggered. To cope
with the two possible cases (A) and (B), the on-line variant of the ELM denoted by on-line sequential
ELM (OS-ELM) [Liang et al., 2006] is applied. Learning is organized in an initial learning phase and a
sequential learning phase as explained in the following.

(a) Initial decomp. (b) Co-articulation

3×

1×

1×

ω
3−5
chunk

ω2
chunk

ω1
chunk

(c) New training data

Fig. 8.2: Toy example which illustrates the self-generation of new training data. The initial decom-
position is shown in Fig. 8.2(a), where the segmentation points are indicated in magenta points and the
reproduced trajectory produced by the primitives in green straight lines (i.e. consider that the library con-
sists only of one straight line MP initially). This sequence of segments are then used to create new MP
candidates by articulating two consecutive segments as shown in Fig. 8.2(b). These trajectory chunks
are normalized and used as training data for learning. Fig. 8.2(c) illustrates the normalized training data.
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(A) the training data set can contain one or more trajectories and is used in the initial learning phase of
a new DMP representation with k = 0 :

Pk = (HT
k Hk +λ1)−1, (8.2)

Wout
k = PkHT

k Yk, (8.3)

where 1 is the identity and λ > 0 a regularization parameter. The matrix Hk =(h(s(1)), . . . ,h(s(Ntr)))
harvests the hidden states for each input s(l) : l = 1 . . .Ntr in the training data set.

(B) A DMP representation already exists and needs to be refined with the new training data set:

Pk+1 = PkHT
k+1(1+Hk+1PkHT

k+1)
−1Hk+1Pk, (8.4)

Wout
k+1 = Wout

k +Pk+1HT
k+1(Yk+1−Hk+1Yk). (8.5)

8.2.3 Consolidation

After the learning step, the library is searched for primitives which have not been used for the decom-
position. To this aim each MP receives a life counter γ when it is created. The counter decreases if this
primitive is not used. Otherwise it is incremented. If γ < 1, then the MP gets deleted from the library.
The straight MP is an exception and is not deleted. A large γ results in a big number of movement prim-
itives especially in the first iterations of the bootstrapping cycle. If γ is set too small the bootstrapping
of primitives is limited. In general this parameter is necessary to avoid a over-complete library, which
would result in a slower bootstrapping cycle.

8.3 Learning process of the bootstrapping cycle from 2D trajectories

In this section, the general learning process of the proposed bootstrapping cycle is evaluated. In Tab. 8.1,
an overview of the necessary free parameters is given, which need to be specified before starting the
bootstrapping cycle and also how they are set for the following experiments.

8.3.1 Proof of concept

As a first example to display the learning behavior of the new approach, a trajectory in form of three
concatenated parabola shapes with different scaling and orientation is chosen as illustrated in Fig. 8.3.

Experiment reference Sec. 8.3 Sec. 8.4
Decomposition

ε Error margin 0.025 0.075
δ Challenge seg. points 2

Extreme learning machine
λ Regression parameter 1e−10
R Number of hidden neurons 15

winp,b Input weights & biases uniform in [−1,1]
Dynamic Movement Primitive

K Stiffness parameter 200
D Damping parameter 2

√
K

τ Time-steps 200
Clustering

θ Threshold to add new movement primitives 0.98
γ Threshold to delete old movement primitives 1

Tab. 8.1: Important parameters which need to be set by the user.



92 Bootstrapping of Movement Primitives

−2 −1.5 −1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

X

Y

 

 

Demonstration

Reproduction

Segmentation point

Start

End

(a) Reproduction

static oldest

newest

ω1
MP ω2

MP ω3
MP

ω4
MP

(b) Library

(c) Evaluation

Fig. 8.3: A toy example to illustrate the learning process. The decomposition after 20 iterations of the
learning cycle is shown in Fig. 8.3(a). The learned library ΩMP is shown in Fig. 8.3(b). The movement
primitives ω2

MP,ω3
MP and ω4

MP are used in the 20th iteration. The number of used primitives in the de-
composition during the learning process and the number of primitives in the MPL is shown in Fig. 8.3(c)
together with the approximation error (RMSE), over 10 trails and 20 iterations.

The learning cycle for executed for G= 20 iterations. The result is shown in Fig. 8.3. The approximation
of the complex trajectory is shown in Fig. 8.3(a) and the learned library is shown in Fig. 8.3(b). It
contains seven different shapes, beginning with the straight MP in the upper left corner. Note that
besides the straight line and the movement primitives used in Fig. 8.3(a), three more primitives are in
the MPL. Those additional primitives can be categorized into two different groups. First, there are old
primitives which have not yet been deleted. Second, there are new movement primitives which have
been added in the last iteration of the bootstrapping cycle, e.g. the bottom MP shaped like the letter ’m’.

The number of primitives is evaluated during 10 trials of the bootstrapping cycle. In Fig. 8.3(c), the
used number of primitives over time is illustrated. Note that in the beginning of the learning process the
total number of movement primitives in the library is growing quickly. After five iterations, however, the
number of movement primitives starts decreasing due to the deletion of unused primitives. The number
of primitives, which have 1� γ and are available for the decomposition is also shown in Fig. 8.3(c).
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Fig. 8.4: A recorded handwritten demonstration is used for bootstrapping a MPL. The decomposition
after 100 iterations of the bootstrapping cycle and 10 trails is shown in Fig. 8.4(a). In Fig. 8.4(b), all
movement primitives in the MPL after 100 iterations are shown. Note that the bootstrapping found
complex primitives representing complex shapes like an ’s’, ’n’ or the first part of an ’a’. The number
of used primitives in the decomposition during the learning process and the number of primitives in the
library are shown in Fig. 8.4(c) together with the approximation error (RMSE).

After the fifth iteration, the number of used primitives is almost constant and varies only marginally,
which means that the bootstrapping is finished.

8.3.2 Learning from handwriting

After the proof of concept, a more complex trajectories from human handwriting are considered. A
human subject demonstrated four handwriting motions of the word ”Amarsi” on a tablet (see Fig. 8.5(a)).
The same parameters from Sec. 8.3.1 are used (see Tab. 8.1). In Fig. 8.4, the reproduction, evaluation
and the MPL after G = 100 iterations is shown.

In this complex scenario, the qualitative results from the proof of concept are reproduced. In
Fig. 8.4(c), the characteristic increase of the number of movement primitives in the library persists
longer than in the example shown in Fig. 8.3. In all trials, the number of primitives is drastically reduced
before the 20th iteration. This behavior can be modified by increasing the parameter γ , which will result
in a slower decay of the number of movement primitives. In comparison to the example from Sec. 8.3.1,
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Fig. 8.5: Demonstrated trajectories in Fig. 8.5(a). Amarsi 1 is the used for the learning cycle and Amarsi
2-4 is used for the test set. Generalization error (RMSE) statistics for four ”Amarsi” handwriting motions
in Fig. 8.5(b). Solid lines depict RMSEs averaged over 10 trials of the bootstrapping cycle. The shaded
areas depict standard deviations.

the complexity of the movement primitives in the library is increased. The bootstrapping cycle based
on co-articulation results in complex movement primitives, which approximate distinct shapes e.g. ’s’,
’n’ or the first part of an ’a’ (see Fig. 8.4(b)). To evaluate the performance the point wise root mean
square error (RMSE) between the demonstration and the recomposed motion is used. Note that after
the 20th iteration the RMSE and the number of used movement primitives in the reproduction is almost
constant. However, the number of movement primitives in the library is still varying. This indicates
that the bootstrapping cycle is still adding new primitives, but these are not used in the decomposition
of the complex trajectory and are deleted again. The amount of variation, depends on the ability to (i)
approximate the new shapes and (ii) be able to identify it again in the complex trajectory. If a perfect
solution for (i) and (ii) is found, the bootstrapping cycle would end with one MP in the MPL which can
approximate the full complex trajectory and the variation would be zero.

In Fig. 8.5, the generalization performance of the learned library to new demonstrations is illustrated.
Learning is conducted only on one ”Amarsi” demonstration, whereas three more demonstrations serve
as a test set. The test demonstrations are decomposed with the learned MPL. Fig. 8.5(b) clearly shows
that the generalization to new demonstrations is possible with similar reproduction performance as on
the training demonstration.

8.3.3 Static primitive set versus bootstrapped primitives

In this section, a comparison is conducted, where the approximation ability of a static and bootstrapped
primitive libraries are compared. The static primitive set applied in this task is the same library of
minimum jerk trajectories introduced in Chapter 7 with 51 different movement primitives. The task is to
perceived the hand designed word ’Hello’ (see Fig. 7.8) and represent this complex trajectory with the
respective movement primitive library. The bootstrapping algorithm learns for G = 100 epochs using
the parameter set given in Tab. 8.1. The learning process is repeated 10 times.

In Tab. 8.2, the comparison of both approaches according to the reproduction accuracy in form of
the point-wise mean square error (PMSE) is shown. Next to the PMSE the table shows the number of
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primitives in the library, iterations necessary in the decomposition algorithm until the representation is
found and the number of used via-points.

The results indicate a very compact movement primitive representation is found by the bootstrapping
algorithm. It does not only optimize the approximation ability but also reduces the time necessary in the
decomposition of the complex trajectory. Note, that the number of primitives in the bootstrapped move-
ment primitive library are also around 51 primitives. However, this is just a snapshot of the movement
primitive libraries after learning for G iterations. Longer learning could change the number of stored
movement primitives.

8.4 Robotic application

Fig. 8.6: Kinesthetic teaching of the fishing
motion skill with iCub. iCub holds a fishing
rod in its right hand and tracks the marker at
the fishing hook by moving his head. The fish
is indicated with a marker for visual tracking.
The fishing hook is also static in orientation.

The bootstrapping of movement primitives is of course
an important factor, however, it is not enough in a
robotic scenario to actual represent a complete skill,
which a robot can perform. This section gives a mo-
tion skill learning architecture and points out where the
learning needs to be performed and where the learning
cycle can be found in this architecture.

The bootstrapping cycle is demonstrated in a
robotic scenario with the humanoid robot iCub. A
human teacher demonstrates in a physical interaction
with iCub (i.e. kinesthetic teach-in) how to catch a
“fish” with a toy fishing rod (see Fig. 8.6). This sec-
tion demonstrates the application of semi-supervised
bootstrapping of the MPL in a larger motion skill ar-
chitecture.

8.4.1 iCub Learns How to Fish

The MPL is bootstrapped from complete demonstra-
tions of a skill in an unsupervised fashion without pre-
designed or manual segmentation. Both the tool kine-
matics as well as the MPL can be re-learned and refined
over the course of repeated demonstrations, i.e. are
subject to open-ended learning which is also reflected
on an architectural level in terms of a changing set of
movement primitives.

In Fig. 8.7, the experimental setup for learning the fishing skill is illustrated. To indirectly be able to
track the fishing hook, the robot is equipped with a 3D marker tracker in order to perceive the position of
the fishing hook slightly below the marker. iCub cameras located in the head and the Image Component
Library (ICL) available from here [Elbrechter et al., 2013] are used for 3D tracking of the marker.

Comparisons
PMSE #Primitives #Iterations #Via-points

static set 6.9984 51 25 21
learned set 3.65±1.92 52.10±11.59 16.9±1.66 14.2±1.4

Tab. 8.2: Comparison between the representation of complex motions using a fixed set of primitives and
the bootstrapped set of primitives is presented. The bootstrapped set of primitives is achieved after 100
iterations and the bootstrapping process is repeated 10 times.
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Fig. 8.7: Robotic setup. The teacher guides the right arm of iCub, such that the fishing hook catches
the fish. Thereby, iCub tracks the marker attached at the fishing rod by means of head motions. Tactile
sensors help in the human-robot interaction by (de-)activating the impedance control mode.

Note, however, that the robot is not able to control the tool in the beginning, i.e. to position the fishing
hook at a target, nor does it have a representation of a complex motion which is necessary to hook up
the fish successfully. Both issues of learning the tool kinematics and the formation of a compact MP
representation of the tool-tip motion are addressed in the skill architecture.

The following representational levels are shown in Fig. 8.7:

• Movement Primitive Sequence: Motions of the fishing hook are encoded as a sequence of move-
ment primitives, which are formed previously by the proposed bootstrapping cycle. The motions
are defined in a two-dimensional space which is sufficient to explain the considered fishing mo-
tions. Elements of this space are denoted by u and describe the projected 3D position of the
marker attached to the fishing hook. The projection is performed by a principal component anal-
ysis (PCA).

• Task Expansion: The task expansion maps the current target from the compact movement space
u to an explicit task formulation, i.e. end effector position and orientation of the right arm. For
this purpose, the 2D target u generated by the current MP is first projected back to a 3D position
by the PCA. Then, this 3D position of the fishing hook is mapped to the end effector position and
orientation of the robot arm by means of a trained feed-forward neural network. The learning of
task expansions has been addressed before in [Reinhart et al., 2012].

• Inverse Kinematics: The inverse kinematics controller available in the iCub software repository
[Pattacini et al., 2010] is used to control the right arm of the iCub according to the targets provided
by the task expansion.

In the following, the formation of the MPL from a demonstration of the fishing skill is presented.
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(a) Decomposition with straight lines.
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(b) Decomposition with MP library.

Fig. 8.8: Decomposition of a demonstration according to [Soltoggio et al., 2012; Soltoggio and Lemme,
2013] using the bootstrapped MPL. Fig. 8.8(a) shows the initial decomposition, where the library con-
sists only of one straight line primitive. Fig. 8.8(b) shows the accurate and compact decompositions
using more sophisticated primitives.
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Fig. 8.9: Library of movement primitives found by
the bootstrapping cycle. Note that the number and
shape of the primitives is changing over time.

8.4.2 Learning how to fish

In the kinesthetic teaching phase, the human teacher can move the robot’s arm while it holds the fishing
rod. The controller for the right arm is switched to joint impedance mode using the force control imple-
mentation from the iCub software repository [Fumagalli et al., 2011; Parmiggiani et al., 2009], such that
the arm is compliant to the external forces applied by the teacher.

After teaching, the recorded trajectories from the marker and joint angles are used for learning
the tool kinematics and PCA. Then, the MPL is bootstrapped. In Fig. 8.8, the original demonstration
(trajectory of the marker projected onto a plane) of the fishing skill is illustrated in blue. In Fig. 8.8(a)
the initial decomposition (green) with the MPL containing only the straight line is shown. Segmentation
points found by the decomposition algorithm are indicated by magenta circles. Note that almost the
same parameters are used as in the previous experiments (compare Tab. 8.1) only the error margin ε is
slightly increased to cope with the noise in the data.

After 4 iteration of the bootstrapping cycle, the decomposition shown in Fig. 8.8(b) is obtained. Note
that the jerky demonstration is represented by smooth and well-formed movement primitives, which
shows the robustness of the learning process against noise in the demonstration. The corresponding
MPL is depicted in Fig. 8.9. A compact encoding of the skill is formed autonomously by the bootstrap-
ping cycle.

The autonomous forming of a motion primitive library is demonstrated in a robotic scenario with
the humanoid robot iCub. iCub is taught by a human teacher how to angle a fish with a fishing rod in
a human robot interaction scenario, (kinesthetic teaching). The learning architecture to represent such
a complex skill is introduced in this section. Multiple representations, which are connected to process
the necessary information for each learning task is presented. The skill is represented by a set of motion
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primitives and the necessary information pipeline, which allows to sent suitable robot commands. The
motion primitive library is bootstrapped from complete demonstrations of a skill in an unsupervised
fashion starting from an initial primitive (straight line). Therefore, the number of motion primitives has
not to be defined a priori. Both, the inverse tool kinematics as well as the motion primitive library can
be re-learned and refined over the course of repeated demonstrations, i.e. are subject to open-ended
learning which is also reflected on an architectural level in terms of a changing set of motion primitives.

8.5 Concluding remarks

In this chapter a learning architecture to bootstrap new movement primitives is introduced. The boot-
strapping cycle integrates decomposition and composition of movement primitives to model complex
trajectories. Movement primitives are learned semi-supervised and evolve from a single straight line
primitive through co-articulation and refinement. The result is a compact movement primitive library
which generalizes to novel complex trajectories. The bootstrapping of the movement primitive library
addresses both segmentation and representation in a coherent framework solely based on the available
movement primitives. Thus, motion features for segmentation and learning have not to be predefined.

In the current proposed architecture the decomposition algorithm is limiting the complex trajectories
to be in 2D task space. However, every other decomposition algorithm can be used in this architecture
as long it can use a movement primitive library to decompose the complex trajectory. Future work
will address detailed evaluation of the bootstrapped movement primitives with focus on the emerging
kinematic properties. Furthermore, the impact of different movement primitives representations and
different decomposition methods on the bootstrapping cycle are interesting research questions.
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CONCLUSION

In this thesis, a learning architecture for bootstrapping new movement primitives from complex trajecto-
ries is proposed. Success of learning in this architecture crucially depends on the different concepts that
lead to complex behavior of a robot agent. The learning cycle (depicted in Fig. 9.1) uses a movement
primitive library, which is initially only one movement primitive. The movement primitive library is
used to bootstrap task dependent new movement primitives. At any time in the learning process move-
ment primitives are available, which can be used to perceive complex trajectories. The decomposed
segments corresponding to primitives is used to self-generate new training data. This exploration behav-
ior leads to new primitives or refines old ones. The semi-supervised learning of primitives is inspired by
the developmental learning behavior of humans.

In Chapter 3, an extreme learning machine (ELM) approach is proposed that is suited for imitation
learning tasks, denoted as Neural imprinted Vector Field (NiVF). The main contribution in this chapter is
a methodology on how to incorporate stability constraints into the learning of an autonomous dynamical
system such that robust motion generation becomes possible. Additionally, the accuracy of the learning
is improved by providing a learning method able to approximate Lyapunov functions compliant to the
training data.

In Chapter 4, a benchmark software framework is proposed, in which new methods for motion
generation can be evaluated and compared to the state-of-the-art methods. The contribution is a bench-
mark framework with standardized evaluation criteria to evaluate the strong points and weak point of
the motion generation methods which focus on accuracy criteria, but also on human-likeness. In this
benchmark framework a set of realistic benchmark scenarios is provided, where robust generalization
capabilities are necessary to solve the task. These benchmark scenarios are equipped with standardized
perturbation parameters and a systematic way of an evaluation. This evaluation can be analyzed by the
integrated tools of the benchmark software. This allows each user to compare their methods with stan-
dardized analysis and visualization. The first comparison with focus on the NiVF approach (introduced
in Chapter 3) was conducted comparing seven different approaches.

After the discussion of implementing a vector field in a neural network used in a autonomous dynam-
ical system, another movement primitive representation using a non-autonomous dynamical system is
introduced in Chapter 5. An interesting application of the extreme learning machine is shown in context
of the dynamic movement primitive learning paradigm. Multiple movement primitives can be learned
in one global representation of the task given by the ELM. The main contribution of this network is to
approach the issue of smoothly blend between shapes and to learn a sequence of primitives within one
share hidden representation, which only needs a minimal control overhead.

After describing movement primitives and their representations for movement shapes and possible
ways on composing these primitives, the focus in Chapter 6 changes to a refinement schema for dy-
namic movement primitives combined to extreme learning machines and signal depending noise. The
contribution is a semi-supervised learning approach, which models a similar learning process of humans
specified by the notion of co-articulation. The semi-supervised learning is applied to single and multi-
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Fig. 9.1: Motion skill learning is a
complex process discussed in this the-
sis. The endeavor starts in Chapter 3,4,
where movement primitives represen-
tations are in focus of research. How to
compose these movement primitives to
create complex motions are introduced
in Chapter 5,6. To find the considered
movement primitives again in the com-
plex movement is described in Chap-
ter 7. In the process cycle of the com-
position and decomposition can be ex-
ploited for learning motion skills and is
evaluated in Chapter 8.
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via point tasks and is extensively evaluated and compared to trajectory predictions of the minimum jerk
model. Additionally, the impact of a global representation versus a local representation for the learning
process is evaluated.

In Chapter 7, a perception method is introduced which uses a priory known movement primitive
library to decompose complex trajectory. This chapter contributes a heuristic method for (i) noise re-
duction, (ii) feature extraction depending on the primitive library. One of the appealing feature of this
method is that the movement primitives processed as stereotypical shapes, which allows to use any
movement generation method to generate the actual movement primitive.

Finally, a skill learning framework is introduced in Chapter 8 which uses all learning concepts and
methodologies previously described. An important step towards learning new movement primitives and
how to produce complex motion in a autonomous learning schema. It demonstrates that the system
learns specified movement primitives, which allows to generate smooth and efficient task dependent
complex motions and can also be used in other tasks, if necessary. In contrast to standard imitation
learning strategies, a simple copying of the demonstrated motion is avoided. On the contrary the move-
ment capabilities of the robot agent are used to represent the task trajectory. The limitation to only
2D trajectories is mainly due to the decomposition algorithm. However, each specific module in this
learning circle can be substituted with other state of the art methods. This thesis introduced different
concepts which allows to setup a learning circle that is able to efficiently learn new primitives according
to the task.



CHAPTER 10

APPENDIX

Related references by the author

Contributions to conferences

[Reinhart et al., 2012] In this paper a bi-manual skill learning architecture is proposed. In this ar-
chitecture movement primitives are represented as vector fields learned by the extreme learning
machine without stability constraints. All authors contributed to the research design. This work
contributes to the objective to the new learning methodology for the extreme learning machines
with stability constraints described in Chapter 3.

[Lemme et al., 2012] This poster submission, presents first conceptual ideas for co-articulation of straight
motions with one artificial neural network. All authors contributed to the research design. This
work contributes to Chapter 6. I presented the poster at NCM in Venice, Italy.

[Lemme et al., 2013] This paper proposes a learning methodology to model dynamical systems with
neural networks from sparse trajectory data. The paper is joint work of the European project
”AMARSi” and the leading-edge cluster “IT’s OWL”. This paper received the best student paper
award at ESANN 2013 in Bruges, Belgium. All authors contributed to the research design. The
concepts and results of this paper contribute to Chapter 3.

[Neumann et al., 2013a] This paper proposes a learning approach to extend the flexibility in approxi-
mating vector fields for stable dynamical systems. All authors contributed to the research design.
I was involved in designing the robotic experiment and integration of the learning concepts for
movement primitives. This paper related to Chapter 3.

[Soltoggio et al., 2012] In this paper the first conceptual ideas of the used decomposition algorithm are
presented. All authors contributed to the research design. This paper contributes to Chapter 7.

[Khansari et al., 2013] The benchmark framework was first introduced and discussed in this workshop,
and first preliminary results were presented by the first benchmark participants. M.S. Khansari-
Zadeh, Y. Meirovitch, and myself were manly involved in developing the latest version of the
benchmark software framework. I contributed in organizing the half-day workshop. I conducted
the workshop and presented the conceptual ideas of this work in Atlanta, USA. This work con-
tributed to Chapter 4.

[Lemme et al., 2014b] In this work the semi-supervised learning cycle to bootstrap new primitives form
complex trajectories is introduced. All authors contributed to the research design. The concepts
and results of this paper build the basis for Chapter 8.
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Journal publications

[Soltoggio and Lemme, 2013] We extended the work introduced in [Soltoggio et al., 2012] and added
more detailed experimental evaluations and an extended discussion. Both authors contributed
equally to the research design. This paper contributes to Chapter 7.

[Lemme et al., 2014a] This paper extend the research done in [Lemme et al., 2013]. The results ac-
quired in [Lemme et al., 2013] are now extensively discussed and additional experiments with the
robotic platform iCub were conducted. All authors contributed to the research design. This paper
is published in the special issue of ESANN 2013 conference. The concepts and results of this
paper build the basis for Chapter 3.

[Lemme et al., 2015] This paper describes the concepts of the benchmark framework introduced and
discussed in [Khansari et al., 2013]. All authors contributed to the research design. The concepts
of this paper build the basis for Chapter 4.
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