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Abstract: Articulated movements are fundamental in many human and robotic tasks. While humans can learn and generalise
arbitrarily long sequences of movements, and particularly can optimise them to fit the constraints and features of their body, robots
are often programmed to execute point-to-point precise but fixed patterns. This study proposes a new approach to interpreting and
reproducing articulated and complex trajectories as a set of known robot-based primitives. Instead of achieving accurate reproductions,
the proposed approach aims at interpreting data in an agent-centred fashion, according to an agent’s primitive movements. The method
improves the accuracy of a reproduction with an incremental process that seeks first a rough approximation by capturing the most
essential features of a demonstrated trajectory. Observing the discrepancy between the demonstrated and reproduced trajectories, the
process then proceeds with incremental decompositions and new searches in sub-optimal parts of the trajectory. The aim is to achieve
an agent-centred interpretation and progressive learning that fits in the first place the robots’ capability, as opposed to a data-centred
decomposition analysis. Tests on both geometric and human generated trajectories reveal that the use of own primitives results in
remarkable robustness and generalisation properties of the method. In particular, because trajectories are understood and abstracted
by means of agent-optimised primitives, the method has two main features: (1) reproduced trajectories are general and represent an
abstraction of the data, and (2) the algorithm is capable of reconstructing highly noisy or corrupted data without pre-processing thanks
to an implicit and emergent noise suppression and feature detection. This study suggests a novel bio-inspired approach to interpreting,
learning and reproducing articulated movements and trajectories. Possible applications include drawing, writing, movement generation,
object manipulation and other tasks where the performance requires human-like interpretation and generalisation capabilities.

Keywords: Movement primitives, Learning, Pattern matching, Trajectory decomposition.

1 Introduction

Humans and animals are capable of learning, perfecting
and reproducing complex trajectories that allow them to
perform a variety of tasks, from coordinated body move-
ments to catching, and particularly in humans, object ma-
nipulation, writing and drawing. The mechanisms under-
lying motor skills, from the learning of basic primitives to
their organisation in higher-level cognitive structures, are
fundamental in understanding how humans accomplish ad-
vanced motor skills [1]. Object manipulation, skilful move-
ments and generalised trajectories are considered funda-
mental in the evolution of intelligence and modern technol-
ogy [2]. The autonomous learning of robotic movements and
their organisation are an increasingly important research fo-
cus.

Object manipulation and precise movements are imple-
mented in industrial robots for manufacturing and produc-
tion processes. However, a considerable limitation in such
movements is that trajectories are often pre-programmed
and executed point-to-point, therefore lacking a general and
symbolic representation of the movement, as well as the ca-
pability of adapting and improving.

One solution to point-to-point representations are move-
ment primitives, short movement or strokes that repre-
sent elementary building blocks for more complex move-
ments. Motor primitives represent a biological hypothesis
on how complex movements are formed in human and an-
imals [3, 4, 5]. One intrinsic feature of motor primitives is
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that they generate basic and general movements that can
then be combined to compose arbitrary long and convoluted
trajectories. While biological studies continue to reveal the
neurological bases of motor primitives [6, 7], computational
models provide examples of computer generated primitives.
Among those, Dynamic Movement Primitives (DMP) [8, 9],
Gaussian Mixture Models (GMM) [10, 11], feedforward neu-
ral networks [12] and Recurrent Neural Networks (RNN)
[13, 14] have gained considerable attention as mathematical
tools to generate simple primitive-like movements.

Fundamental questions that arise with the use of prim-
itives are: what are the features of a set of primitives?
How are primitives composed to perform articulated move-
ments? And what role do they play in interpreting, cod-
ing and learning complex movements? Some approaches
start by analysing the demonstrated trajectory employ-
ing polynomial decomposition [15], Hidden Markov Mod-
els [16], Non-Negative Matrix Factorisation [17], detection
of critical points [18] and Guassian Observation Model [19].
Other methods employ reinforcement learning to refine
an approximation over time by means of reward signals
[20, 21, 22, 23, 24]. Finally, methods have been proposed to
join segments to achieve natural-looking trajectories by
blending [25, 26] and co-articulation [27, 28]. Algorithms
that combine primitive or shape-identification, trajectory
segmentation and on-line learning have also be proposed
[29, 18, 24] to integrate various subproblems in more capable
learning algorithms.

Most algorithms attempt to learn simultaneously both
primitives and their use in the decomposition of long trajec-
tories. In contrast, the present method focuses entirely on
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the decomposition, assuming that primitives are previously
learnt and already available to an agent. This separation
between learning of primitives and decomposition of demon-
strations implies that existing and established methods for
learning and executing primitives (e.g. Dynamic Movement
Primitives (DMP) [8, 9], Stable Estimator of Dynamical Sys-
tems (SEDS) [11], Extreme Learning Machine [12, 30]) can
be employed in combination with the current algorithm. In
other words, any set of primitives can be chosen and used
in combination with the proposed decomposition method.
This ensures that existing robotic platforms and primitives
can be enhanced with the current algorithm to decompose
and reproduce articulated trajectories.

The agent-centred approach [31] implies that, as opposed
to other approaches [16, 17, 18], the algorithm does not anal-
yse directly the demonstrated trajectory to find features,
e.g. inflection points, points of discontinuous derivative,
critical points, etc. The demonstrated trajectory is approxi-
mated instead by means of a process of learning-by-doing in
which the performance, or the accuracy of a reproduction,
is improved over time with increasingly refined decomposi-
tions. Avoiding the analysis of demonstrated data results
in two main features of the algorithm. The first is that a
reproduction of a demonstration is biased by the agent’s
set of primitives. In this respect, the reproduction repre-
sents an interpretation of a demonstration. In other words,
any demonstration, which was generated by an unknown
process, is being fitted with the agent’s fixed primitives.
While this may appear as a limitation, it also means that no
assumptions on the demonstrated trajectory are required.
The agent attempts to achieve a best approximation with
its current primitives used a tool to interpret input data.
A second feature is that the algorithm may take as input
highly noisy and corrupted data and displays implicit noise
suppression and feature detection.

One fundamental aspect of the proposed method is that,
similarly to [32], the decomposition initiates as a rough ap-
proximation based on one single movement primitive. Inter-
estingly, a complex trajectory with many convoluted parts
is not likely to be adequately represented by one single
stroke. Yet, by adopting this counter-intuitive approach,
a fundamental step in an iterative process can be achieved
towards further and more precise decompositions. Points of
decomposition are progressively discovered during the itera-
tive process. At each iteration, the part of the reproduction
with the maximum discrepancy with the demonstrated tra-
jectory is considered for improvement. Thus, segmentation
points are introduced with the simple but effective heuristic
of observing the point of maximum error. Decomposition
points can also be later suppressed if more general primi-
tives are discovered to fit a part of the demonstration. The
deletion of segmentation points is a bio-inspired search that,
once some main features of a demonstration are captured, it
relaxes constraints to find better solutions and overcome lo-
cal optima. Such an approach is inspired by the early/later
practice phases in motor learning [3]. Finally, combining
primitives as symbolic entities supports biological theories
on the construction of motor skills as mental representa-
tions of existing building blocks [1].

It is important to note that the present algorithm only
focuses on geometrical properties of the trajectories, while

is agnostic to the velocity profiles. This apparent limita-
tion in reality allows for a more flexible interpretation of
trajectories, which may not be necessarily determined by
the velocity profile used during generation. Once more, no
assumption on the demonstration implies that any demon-
stration can be observed, decomposed and reproduced with
the proposed algorithm.

The algorithm is an extension of that proposed in [33]. In
the version in this paper, the algorithm uses one additional
set of primitives learnt from human data. This test is es-
sential to confirm the claim that the algorithm can perform
well with very diverse sets of primitives. Various criteria to
compare trajectories are proposed to underline that trajec-
tory matching may vary according to specific domains and
requirements. Additionally, tests are extended particularly
to assess the capability of reconstructing noisy data, and
the performance is verified on an extended set of exemplary
trajectories.

The proposed decomposition algorithm lends itself to
promising extensions including learning trajectories from
multiple examples, hand-writing recognition, decomposi-
tion of complex movement patterns for manipulation and
combination of skills. The method is tested only in simu-
lation. Tests on robotic platforms, e.g. the iCub humanoid
robot [34] or the KUKA lightweight robot arm [35], are
promising extensions.

The decomposition algorithm is explained in detail in
the next section. Decomposition tests from simple to com-
plex trajectories are shown in Sec. 3. The implications and
possible extensions are then discussed in Sec. 4 before the
conclusion in Sec. 5.

2 Search, decomposition and interpre-
tation of trajectories

This section explains the algorithm in all its parts, moti-
vates the bio-inspired approach and illustrates all the steps
to reproduce the method.

2.1 Sets of primitives as decomposition
tools

The decomposition algorithm requires a set of pre-learnt
primitives that can be freely chosen and generated by means
of a variety of methods. This feature is particularly im-
portant to integrate the proposed algorithm with the well
established methods for primitive generations cited above.
The performance of the algorithm in the decomposition
varies in accuracy and approximation according to the set
of primitives, as later tests show. Nevertheless, the method
can decompose even with very poor sets of primitives.

To show the possible use of different sets of primitives,
the current study considers three sets: two sets generated
with the Minimum-Jerk Model (MJM) [36] and one with
a feedforward network (Extreme Learning Machine) [12, 30]

that was trained to reproduce a set of human drawn tra-
jectories. One MJM set is composed of seven symmetric
primitives (Fig. 1A), and a more complex set has 51 primi-
tives with symmetric and asymmetric shapes (Fig. 1B). The
ELM-set has 6 primitives (Fig. 1C). Details are provided in
the Appendix 5. Experiments can be extended to include
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Figure 1 Sets of primitives. (A) This small set of primitives was generated with the Minimum-Jerk Model (MJM) [36] and contains
one straight line and six curved lines. It is referred to as the MJM 7-set. (B) This larger set of primitives was generated with the
minimum-jerk model and contains 51 primitives both with symmetric and asymmetric geometry (MJM 51-set). (C) This set, composed
of only five primitives, was learnt from human demonstrations using an Extreme Learning Machine (ELM) [12], further details on the
use of ELM are provided in the Appendix 5.2. Primitives are rotated and scaled to be fitted to the starting and ending point of a
demonstration.

further sets.

2.2 Trajectory matching and iterative de-
composition

Regardless of the length and complexity of a given tra-
jectory (demonstration), the counter-intuitive position in
this study is that only the start and end points are ini-
tially considered as extremities of one single primitive. The
agent searches among its own primitives a best match. It
is assumed that a primitive can be rotated and scaled to
connect the initial (I) and final (F) points of the demon-
stration. If the demonstration is long and articulated, the
first match is inevitably a gross approximation. Four nu-
merical criteria to compare trajectories were considered in
the current study: (1) a maximum point-wise error (MPE),
(2) a point-wise mean square error (PMSE), (3) the area A
between the demonstration and the reproduction, and (4)
a measure of parallelism Θ. The four criteria are computed
by the following equations:

MPE = max(||x(i)− x̂(i)||) (1)

PMSE = 1
MN

∑N
i=1

∑M
j=1 (xi

j − x̂i
j)

2 (2)

A =
∑N−1

i=1 F (x(i), x(i + 1), x̂(i), x̂(i + 1)) (3)

Θ = 1
N

∑N−1
i=1

x(i+1)−x(i)
||x(i+1)−x(i)|| ·

x̂(i+1)−x̂(i)
||x̂(i+1)−x̂(i)|| (4)

where x(i) is a two dimensional coordinate point of the
demonstration, x̂(i) a coordinate point of the reproduced
trajectory, M is the dimensionality of the data (2 in the
current study), N the number of samples, and F gives the
area of the Tetragon specified by the input arguments. The
data points x are obtained by cubic splines interpolation of
the original sampling to ensure that their normalised dis-
tance and N are equal.

Eqs. 1-4 can be used independently or linearly combined
to assess how similar two trajectories are. Eqs. 1-3 are null
for perfectly matching trajectories, while Eq. 4 is equal to
1 for matching trajectories. Visual observation over many
examples revealed that deriving a measure of similarities be-
tween two different trajectories is not immediate. In effect,
evaluating similarities between trajectories may be domain-
dependent or even subjective. The focus of the study is not
to compare the performance of Eqs. 1-4, nor to propose
a best criterion. Different matching criteria are proposed

here as alternatives which can be chosen to work with the
present algorithm. The tests in the current study use by de-
fault Eq. 2 because it produced predictable segmentations
on a large variety of demonstrations. Eqs. 1 and 3 are also
employed in tests to show the robustness of the method.

Once a best matching primitive is identified, the point
x∗ that returns the maximum error in Eq. 1 on the demon-
stration D

x∗ : MPE = max(||x(i)− x̂(i)||), ∀i ∈ D (5)

is chosen as candidate segmentation point. Thus, the first
approximation is used to identify a first decomposition
point along the demonstration, i.e. a first point to use in
an iterative process of further decompositions. Once x∗ is
identified, each sub-trajectory to the left and to the right is
matched with a best primitive. Two cases are now possible:
(1) the reproduction with x∗ as segmentation point brings
an improvement with respect to the matching criteria ex-
pressed by Eqs. 1-4; (2) the segmentation does not bring
an improvement. In the first case, the candidate segmen-
tation point is promoted to established segmentation point
and the iterative process can continue on each segment. In
the second case, the segment is labelled as final and no fur-
ther segmentation is considered. Fig. 2 illustrates the first
four steps of the iterative process on an trajectory.

The heuristic that identifies candidate segmentation
points is not based on an optimality measure, which is dif-
ficult to infer in an iterative process. The attempt is in-
stead that of identifying potentially appropriate points to
improve further a reproduction. The underlying idea is that
the furthest point on the demonstration from the current
reproduction lays potentially in a part of the demonstration
that is not correctly represented by the reproduction, and
thus requires further segmentation. This simple heuristic
proves effective as demonstrated later in simulations.

2.3 From sequences of points to sequences
of primitives

When decomposed finely, any trajectory can be repre-
sented as a sequence of close points united by straight
lines. A decomposition that reproduced exactly the demon-
stration in such a way minimises the reproduction error.
However, such a decomposition merely copies a demon-
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Figure 2 Graphical illustration of the iterative decomposition
process. Iteration 1 begins by selecting one single primitive as
approximation of the global trajectory between the initial (I)
and end (E) points. The primitive is chosen applying one of
the criteria expressed by Eqs. 1-4. On the demonstration, a
candidate segmentation point is chosen according to Eq. 1. In
Iteration 2, two better fitting primitives are identified, as well as
a new point of maximum error. Iteration 3 and 4 show further
steps of the iteration. The algorithm may continue to improve
locally the approximation until stop criteria are satisfied.

strated trajectory without generalising the overall shape
of a movement. The problem is effectively both a classi-
fication problem (finding the best matching primitive) and
an optimisation problem (reducing the number of segmen-
tation points). A trade-off between generality, with few
decomposition points, and precision, with many segmenta-
tion points, is desired and sought [37]. As a rule, general-
ity of one solution is accompanied by a residual error with
one particular demonstration. The implication is that de-
composing a trajectory to minimise the error may lead to
a high number of segmentation points. Most algorithms
use a error threshold below which the segmentation is con-
sidered satisfactory. This problem derives also form the
arguable assumption that trajectories have a length but di-
mensionless thickness. In robotic and real world scenarios,
trajectories are both executed and perceived with a certain
tolerance. Accounting for such an aspect is a key aspect to
avoid over-fitting, unnecessary computation and excessing
segmentation.

The method in this study attempts to mimic a trajectory
with given primitives that guarantee generality and may be
devised to guarantee also efficiency, optimality, or to con-
form to particular robotic requirements, without necessary
minimising an error measure. For example, the minimum-
jerk model used in the current experiments guarantees en-
ergy minimisation and is biologically plausible [36], while the
ELM-set uses a neural learning paradigm that reproduces
human drawn trajectories.

2.3.1 Precision of primitives and intersections

Instead of considering the error between demonstration
and reproduction as stopping criterion, the current algo-

A

B

primitives best matching

demonstration

primitive

precision

demonstration

non intersecting part
reproduction

intersection

Figure 3 Best fitting and intersections. (A) Three primitives
are shown in the attempt to match a demonstrated trajectory.
The best matching primitive is not a perfect reproduction, but
rather a general abstraction of the demonstration. (B) A demon-
stration is matched to a straight primitive in which the second
dimension, or precision, is shown. The left-most part of the tra-
jectory, although not perfectly straight, does not intersect the
two-dimensional primitive, suggesting that no further features
are present in the demonstration. The right-most part of the
trajectory instead clearly intersects the primitive, indicating the
utility of further decompositions.

rithm looks at whether the demonstration and the repro-
duction have intersections. If they have at least one inter-
section, the demonstration is assumed to have further fea-
tures that need decomposing. If there are no intersections,
the current primitive is assumed to be the best approxima-
tion: further decompositions may reduce the error but also
reduce generality.

Intersections are intended as two trajectories crossing
each other: however, two noisy and overlapping trajectories
have many local intersections that would not be considered
such by a human observer. Thus, to detect significant inter-
sections, the algorithm associates a precision value to the
primitives. Such a precision is an index of how thin a tra-
jectory may be with respect to its length. In effect, this
parameter may encode the precision of a mechanical arm,
or may be adjusted to account for the variance of many
samples, if those are executed by imprecise human move-
ments. In short, the precision parameter is a necessary
element in the interpretation of an observed trajectory. It
answers the questions: what are the agent’s perception and
execution capabilities? What is a realistic precision to be
implemented when reproducing a demonstration?

The case is illustrated in Fig. 3 in which the primitive
is shown with an associated thickness. If the demonstrated
and performed trajectories do not intersect, the algorithm
infers that there are no further prominent features in the
demonstration that need to be reproduced with further seg-
mentations. Non-intersecting trajectories can be somehow
distant, but the matching criterion (Eqs. 1-4) ensures that
this distance is minimised. No interactions mean effectively
that the reproduction and the demonstration are as close as
possible given the current set of primitives. One exception
is when the demonstration exists the reachable area of all
primitives. This is for example the case of a circle drawn
with a nearly overlapping start and end point. When the
demonstration exists the reachable area of the primitives,
further segmentations are enforced.
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In the experiments of this paper, the smaller sets (MJM
and ELM) have a precision value p = 20 = 1/0.05, where
0.05 is the thickness of the primitive normalised to the
shortest side of the drawing area. The more accurate 51-
primitive set has a precision p = 100 = 1/0.01, i.e. the thick-
ness of a primitive is 1% of the drawing area. A thickness of
0 corresponds to infinite precision, a concept that does not
describe real data from a demonstration and clearly under-
lines the importance of considering thickness values higher
than 0. Higher precision values can be adopted when the
demonstration is known to be very accurate. Intersections
are detected analytically by computing the cross products
between the direction of the primitive and the error vectors
of all points: if the cross products have different signs and
the error vectors are greater than the line thickness, then
an intersection is detected.

The intersection criterion attempts to capture features of
the demonstration that are observable with set of primitives
used. It is nevertheless possible to use a more traditional
stopping criterion, for example requiring that the maximum
error is decreased below a certain threshold. Such an ap-
proach may be used when more emphasis on minimising
the error is necessary and an approximation that respects
an error constraint is desired. This variation was experi-
mented in the current algorithm and is easy implementable
by letting the algorithm continue the segmentation until
the maximum error falls under a threshold. A similar vari-
ation may also include, for example, a measure of how par-
allel two trajectories are (i.e. Eq. 4). The algorithm may
be required to continue segmenting until a certain thresh-
old is reached. These variations of the algorithm require
more human supervision in setting such an error threshold
and understanding what matching criteria are needed in a
particular scenario. In some cases, introducing additional
matching measurements and stopping criteria may lead to
reproductions that are perceived visually as better approx-
imations.

2.3.2 Deleting segmentation points

The iterative process implies that the interpretation of
the demonstration (i.e. the solution) varies and improves
at each further decomposition. One question is whether
decomposition points that were found initially during the
process are still good segmentation points later as the ac-
curacy improves. Inspired by theories of motor learning
in humans [3], the proposed method introduces a type of
search that releases early constraints when a new segment
is added. At the insertion of a new decomposition point,
primitives are searched to the left and to the right of the
candidate point. The search may go beyond the immediate
left and right segments. It is possible to search further left
and further right, thereby attempting larger generalisations.
Neighbouring decomposition points are eliminated if more
general primitives without intersections are discovered.

This check guides the search to avoid local optima, and at
the same time it helps reduce the number of overall segmen-
tation points, thereby achieving more general solutions. Re-
leasing constraints implies more computation while search-
ing larger primitives that may skip segmentation points.
This type of search is nevertheless far from exhaustive: the
further exploration relies on the current segmentation. It
represents an attempt to reorganise parts of the trajectory
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Figure 4 Flow charts describing the various phases and iterative
nature of the algorithm. The numbers that identify each block
are used as references in the text to describe each phase.

according to new knowledge that was gathered during the
iterative segmentation process.

2.4 The iterative algorithmic procedure

It is now possible to introduce a flow chart to explain
in detail the overall procedure. Fig. 4 helps follow the
detailed explanation below. The algorithm is also repro-
ducible with the Matlab code provided as support material
to this paper and available for download at http://www.cor-
lab.de/decomp.

The algorithm starts selecting one primitive that best
matches the demonstrated trajectory (Fig. 4, blocks 1 and
2). The best match is obtained comparing all primitives
with the demonstration and choosing the primitive that
minimises a measure of discrepancy (Eqs. 1 and 3) or max-
imises a measure of similarity (Eq. 4). In the next step
(block 3), the algorithm finds the point of maximum error
between the demonstration and the reproduction (Eq. 5).
This is a candidate segmentation point and is located in a
part of the demonstration that is poorly approximated. Ini-
tially there is only one segment. As the iterations proceed,
more segments are created. When created, each segment is
labelled as non-finalised, meaning that further decomposi-
tions are possible. The point of maximum error is sought
on a non-finalised segment (blocks 3 and 4). The algorithm
now checks whether the primitive intersects the demonstra-
tion or not (block 5). As illustrated in Figs. 3A and B,
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Seg. Primit. Start Scaling Angle Final

1 number xy coor. factor angle y/n

2 .. .. .. .. ..

Table 1 Representation of a trajectory as a sequence of primi-
tives. Segments (i.e. rows in the table) are added and occasion-
ally removed during the iterative process. For each segment, it
is necessary to specify which primitive is used (2nd column), the
starting point (3rd column), the scaling and angle (4th and 5th
column) and whether the segment can be further decomposed
(6th column).

an intersection suggests the presence of a relevant feature
that can be captured with further decompositions. If the
best matching primitive does not intersect the demonstra-
tion (block 5), the demonstration may be laying outside
the reachable area of the primitives (block 6). This case, or
the case in which there is an intersection, mean that there
are additional features in the demonstration that need to
be captured. Therefore, the algorithm proceeds with the
segmentation (block 7). Otherwise, the current segment is
finalised (block 10). The search in block 7 is carried out
by exploring primitives that approximate the left and right
parts of the demonstration from the candidate segmenta-
tion point. Such a search involves also the elimination of
older segmentation points when better approximations are
found. The search for better primitives in block 7 may
or may not result in an improvement of Eqs. 1-4. If no
improvements can be achieved, the segmentation point is
rejected and that segment is label as finalised (blocks 8 and
10). If an improvement is found, the segmentation point
and the left and right primitives are promoted as part of
the current segmentation (block 9).

Throughout the process, the representation of a demon-
stration is updated. Table 1 shows how the primitive-based
symbolic trajectory is described. At the first iteration, only
one row is present. Further segmentations add more rows
describing primitives, start point, scaling and angle, and
whether the segment is finalised.

3 Simulation Results

The current section reports the simulation results of the
algorithm applied to a variety of demonstrated trajectories,
from simple to complex.

3.1 Reconstructing short demonstrations

The decomposition algorithm is applied here on human
and machine generated trajectories affected by noise. These
basic examples have the purpose of showing how the algo-
rithm interprets and reconstructs short noisy trajectories.
Fig. 5 shows the application of the algorithm to three dif-
ferent demonstrations after they were corrupted with noise.
The method favours elegant decompositions with few prim-
itives, resulting in some cases in a residual error between
demonstrated and reproduced trajectories. The discrep-
ancy stems from the more general trajectories chosen by
the agent with respect to the irregular human generated
data. The decomposition with the MJM set of 51 primitives
appears more accurate in comparison with the decomposi-
tion from the 7-set. The small set of 7 primitives instead

A B

C D

Figure 6 Examples of reconstruction from a noisy machine gener-
ate trajectory. (A) The original demonstration affected by noise.
(B) The first step of the decomposition. (C) The third step of
the decomposition (D) Fourth and final step of the decomposi-
tion. The algorithm found the original primitives that were used
to draw the demonstration before noise was applied.

captures the main features of the demonstrated trajectories
favouring straight lines, effectively achieving a higher level
of abstraction. The implication is that in front of complex
demonstrations, agents or robots with few primitives can
nevertheless utilise the algorithm to decompose a demon-
stration according to their basic skills. The ELM-set, de-
spite having only five primitives, performed very well. The
reason is because the ELM-primitives were trained on the
same trajectory later presented for reconstruction. There-
fore, the ELM-set contains primitives that match well the
demonstrated trajectory. Nevertheless, it must be noted
that the demonstrations are not exactly the same as the
primitives and, moreover, the data seen by the algorithm is
the corrupted data in the second row in Fig. 5.

From this first test it emerges one important and bio-
inspired feature of the algorithm. The method appears to
reconstruct, in a way to recognise, those trajectories that
are similar to the known primitives. The reconstruction by
the MJM 51-set in the third row is more abstract and less
similar to the original than the reconstruction by the ELM-
set, despite the considerably larger library of primitives in
the 51-set. However, while the ELM-set performed well
in this particular test, the 51-set is more generic and is
likely to perform better on other trajectories with arbitrary
geometry.

Further tests were performed on automatically generated
trajectories with additional high level of noise. Fig. 6 illus-
trates the capability of the algorithm in reconstructing cor-
rupted data. The demonstration was created with the same
primitive set used for the reconstruction, which in part ex-
plains the correct matching. Nevertheless, this approach
appears biologically plausible because humans too tend to
recognise in imprecise images objects and shapes that were
previously learnt [38]. As hypothesised also in [39], the recon-
struction and reproduction are closely coupled: the present
algorithm shows that noisy data are recognised with or fitted
to the known primitives.

The primitives are executed sequentially without ad-
ditional procedure to join them. Therefore, points of
discontinuous derivative are noticeable where primitives
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Figure 5 Examples of decompositions of short demonstrations. (First row) A hand-written W (first column) is first corrupted with
noise (second column). The noisy data is used to run the algorithm with the 7-set (third row) and with the 51-set (fourth row). Finally,
the fifth column shows the interpretation and decomposition with the ELM-set of primitives. The rows below show similar plots for
different demonstrations.

A
B

C

Figure 7 Testing the decomposition on machine generated trajec-
tories. (A) One hundred machine-generated trajectories as this
one in the example are used for the extensive performance test.
(B) Reproduced trajectory with the small 7-primitive sets. (C)
Reproduced trajectory with the large 51-primitive set.

join. Smoothing a trajectory requires the understanding
of whether a point is a cuspid, i.e. the trajectory has a
discontinuous derivative, or it can be rounded with a co-
articulation algorithm [28, 26]. As this particular problem
was not the focus of the present algorithm, all primitives
are joined without blending or coarticulation.

A further test was executed to assess the performance of
the algorithm on different trajectories without noise. One
hundred trajectories were constructed with sequences of
three primitives from the 51-primitive set, applying random
primitive lengths and rotations. One example is shown in
Fig. 7. Similarly to the results in Fig. 5, the decomposition
with the 7-primitive set produced schematic and abstract
interpretations as that in Fig. 7B. A straight primitive was
frequently used to approximate a demonstration with a low
curvature. Alternatively, a combination of a straight and
a curved primitive was used to interpret an unknown cur-
vature as in the lower left part of Fig. 7B. The analysis
revealed that, although the demonstrations are exact and

without noise, the algorithm could not always find the exact
primitives that were used to create the demonstration: sim-
ilar primitives could occasionally be used to create good but
not exact reproductions. This is an expected consequence
of the fact that the algorithm does not minimise the error
between demonstration and reproduction. The test shows
that the algorithm expresses its full potential in reconstruct-
ing corrupted data (Fig. 5) rather than reproducing precise
demonstrations.

3.2 Decomposition of hand writing

The decomposition of human-generated writing trajecto-
ries is a task in which the symbolic aspect is more important
than the exact geometry. In other words, global features in
a trajectory are fundamental in distinguishing different let-
ters more than the precise geometry of the trajectory. The
proposed algorithm was shown in the previous section to be
suited to extract high level representations from noisy data.
It is natural to ask whether this feature may be of use as
a step towards abstracting human hand writing. Note that
the experiment in this section decomposes and represents
hand writing as a set of primitives, but it does not interpret
or map trajectories to letters.

Two examples of human writing data were analysed. A
first word “Hello” was decomposed as shown in Fig. 8. The
first row (Fig. 8A) is the original trajectory. Fig. 8B is
the first approximation, i.e. one single primitive. Fig. 8C
shows the representation after 7 steps. The algorithm has
identified some of the main features of the demonstration.
Fig. 8C illustrates the 9th step, demonstrating how each
step is functional in discovering further features. The letter
’h’ and one ’l’ are already readable after 9 steps. Fig. 8E
shows the final reproduction.

The decomposition proved robust with respect to differ-
ent trajectory matching criteria (Eqs. 1-3) and precision pa-
rameters. Fig. 9 shows the final decomposition of the word



8 Preprint accepted for publication in the International Journal of Automation and Computing (2013)

−60

−40

−20

0

y 
(m

m
)

0 50 100 150 200

−60

−40

−20

0

x (mm)

y 
(m

m
)

−60

−40

−20

0

y 
(m

m
)

−60

−40

−20

0

y 
(m

m
)

−60

−40

−20

0

y 
(m

m
)

A

B

C

D

E

Figure 8 Decomposition of the word “Hello”. (A) The demon-
strated trajectory. (B) First iteration: the complete trajectory
is approximated by one single stroke, i.e. one primitive chosen
in the MJM-51 set. (C) Iteration 7: the algorithm has identified
main features in the demonstration. (D) Iteration 9: at each
further step, more features are captured and represented. (E)
The final decomposition and representation.

“Hello” with various criteria. Fig. 9A uses Eq. 3 as match-
ing criteria (i.e. the area between trajectories). Fig. 9B is
a decomposition with trajectory matching criterion Eq. 1.
And finally, Fig. 9C is a decomposition with Eq. 2 and a
lower precision p = 20. The reproductions in Fig. 9 are sim-
ilar but not identical; also compare with Fig. 8E in which
Eq. 2 and precision p = 40 were used. It can be inferred
that different matching criteria and precision parameters af-
fect the decomposition but do not change significantly the
capability of the algorithm to represent a demonstration.

Fig. 10 illustrates the decomposition process for the word
“Amarsi”, whose original hand writing is plotted in Fig.
10A. Fig. 10B and C show iterations two and four dur-
ing decomposition with the 51-primitive set. Also in this
case the algorithm begins by reproducing the most rele-
vant features of the demonstrated trajectory. Note that
the way the algorithm proceeds is determined by the tenta-
tive segmentation points discovered with the criterion of the
maximum error between demonstration and reproduction.
The hypothesis is that this criterion, although trivial and
of simple implementation, is nevertheless effective in finding
progressively prominent features of a demonstration. The
illustration of the step-wise iteration demonstrates exactly
that. A video showing the complete decomposition process
is provided as support material. Fig. 10D shows the final
approximation with the large 51-primitive set. Fig. 10E
shows the reproduced trajectory as it was decomposed by
the 7-primitive set. In this case, the approximation appears
less accurate and straight lines are frequently used. How-
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Figure 9 Decomposition of the word “Hello” with different set-
tings. (A) Final decomposition with Eq. 3 as matching criterion
(area between trajectories). (B) Final decomposition with Eq. 1
(maximum error). (C) Final decomposition with Eq. 2 and pre-
cision p = 20. The decompositions are slightly different in each
case, however, the capability of decomposing and representing
the demonstration appear robust with respect to different match-
ing criteria and precision of primitives.

ever, the main features of the demonstration are captured
indicating that the smaller set of primitives resulted in a
more abstract representation. It is interesting to note that
the decomposition with the larger primitive set results in
better approximation with fewer parts. Although this fact
appears intuitive, these experiments show that the current
method achieves this trade-off that emerges autonomously
when the set of primitives changes. It can be concluded
that the proposed method adapts autonomously to exploit
the specific primitives, i.e. the available skills, of the agent
or robotic platform that performs the movements.

The reconstruction capabilities, already proven earlier
with the test in Fig. 5, are preserved also when decompos-
ing and reconstructing longer trajectories. A decomposition
was run on the data-set in Fig. 10A, corrupted by the ad-
dition of ±1% noise to each sampling point. The decompo-
sition proceeds on this noisy data-set similarly to the case
without noise. Fig. 11 shows that the reproduced trajec-
tory is an interpretation of the noisy data. This simulation
proves that the proposed algorithm employs its generalisa-
tion capabilities to filter noise and detect relevant features
in the demonstrated trajectory.

4 Discussion

The original idea in the proposed algorithm is to decom-
pose an arbitrarily complex trajectory using the agent’s pre-
learnt primitives during an iterative process of learning-by-
doing. The process starts with a rough approximation of
the demonstrated trajectory and learns step by step the
features of the input data by a progressive decomposition.
Segmentation points are discovered simply by a criterion
of maximum error between demonstration and reproduc-
tion. Such a trivial criterion that ignores features of both
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Iteration 4

Final decomposition (51-prim set)

Demonstration

Final decomposition (7-prim set)

Figure 10 Decomposition of the hand-written trajectory
“Amarsi”. (A) The demonstrated trajectory recorded from hand-
writing. (B) Iteration 2 during the composition with the large
51-primitive set in Fig. 1B. (B) Iteration 4 during the decompo-
sition. (C) The final decomposition and approximation using the
set of 51 primitives. The demonstration was decomposed in 18
parts (D). The final decomposition and approximation using the
set of 7 primitives in Fig. 1A. The algorithm decomposed the tra-
jectory in 21 parts. Although the accuracy with the 7-primitive
set is lower than with the larger set, the reproduction appears
readable and to some extent a more abstract representation of
the demonstration.

Demonstration
affected by 
noise

Primitive−based
interpretation

Figure 11 Detail of the decomposition of a noisy version of the
hand-written trajectory “Amarsi”. (Left) Noisy demonstration.
(Right) Reconstruction using the 51-primitive set.

demonstration and reproduction proved nevertheless sur-
prisingly effective and robust. The final result is a sequence
of primitives that is in effect an intelligent reading of a
demonstrated trajectory represented as a general and ab-
stract concept. The strength of the algorithm lies in the
primitive-centred and progressive search, which uses exist-
ing skills and implicitly solves data-induced problems like
noise and discontinuous derivatives.

Finding segmentation points and fitting sub-trajectories
is potentially an intractable problem if considered exhaus-
tively. The proposed method suggests candidate segmen-
tation points taking advantage of progressive approxima-
tions. The computation required to generate a reproduc-
tion increases with the number of iterations and the num-
ber of available primitives. The removal of constraints, i.e.
the search of primitives that bypass segmentation points,
is done at a the computational cost of matching the locally
segmented demonstration with primitives. However, remov-
ing segmentation points results in more general solutions,
which justify the additional computation. The removal of
constraints is effectively a search procedure to avoid local
minima in a highly dimensional search landscape.

For simplicity, the current study considers finite sets of
primitives in which each primitive has a fixed geometry. An
alternative approach consists in using primitives with vari-
able geometry that use one parameter to change certain
features as, for example, the curvature. The use of infinite-
set primitives requires a different representation, but does
not increase the computational complexity of the search.
In fact, a larger variety of geometries can be implemented
with fewer tuneable primitives. The extension of the algo-
rithm to infinite-set primitives is promising particularly in
the cases where high precision and compact representations
are required.

The algorithm appears to have generalisation capabilities
even if it decomposes trajectories from one single demon-
stration. The generalisation capability, noticeable particu-
larly in Fig. 5 (rows 1 and 3), derives from the interpre-
tation of the demonstration according to the agent’s set of
primitives, and less emphasis on the original data. The re-
construction from noisy data in particular shows the gener-
alisation capability in reconstructing straight lines, identify
correct curvatures, as well as maintaining cuspids, as clearly
shown in Fig. 11.

The criteria upon which the algorithm is constructed
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(Sec. 2) represent the intelligence of the decomposition,
which is intended to mimic loosely human processes of un-
derstanding, acquiring and reproducing articulated move-
ment or trajectories. For this reason, the proposed algo-
rithm focuses less on the input data itself and more on the
quality of the procedure applied to interpret it. The use of
primitives implies inevitably the classification of imprecise
and noise-affected demonstration into well defined trajec-
tories. Therefore, such a process causes the loss of accu-
racy from the demonstrated data. However, such an accu-
racy may not be descriptive of features of the demonstra-
tion. Abstract representations are more compatible with
hypotheses on how humans and animals represent and exe-
cute movements.

The precision parameter, encoding the second dimen-
sion or thickness of a primitive, determines effectively to
which level small details in the demonstration need to be
reproduced. As a consequence, high precision means that
a noisy demonstration is reproduced accurately down to
small details, while low precision means that the trajectory
is more heavily interpreted according to the agent’s primi-
tives. It is important to note that a low precision parameter
is not equivalent to high noise filtering. In fact, cuspids and
prominent features of the demonstrations are nevertheless
captured as shown in Fig. 11.

The method is tested here using one demonstration only
for each trajectory. A promising extension is to use multi-
ple demonstrations of the same trajectory to increase the
generalisation properties of the algorithm. In particular,
more observations of one demonstration are likely to have
variations but retain relevant features. One extension is to
increase its capability of generalising trajectories by finding
one decomposition of a set of similar demonstrations.

The algorithm uses primitives and demonstration in a
two dimensional space. The method can be extended and
applied to a 3D scenario because primitives and matching
functions can be equally generated and computed in 3D
space. The increased dimensionality implies also a larger
search space, extended sets of primitives and more com-
putation required. It is conceivable that primitives in a
3D space may nevertheless lay on a two-dimensional plane,
and that truly 3D trajectories like a helix are relatively rare.
The extension presents challenges but is a promising venue
for reproducing fully-fledged robotic movements in space.

The trajectories considered in this study were only deter-
mined by the geometry without velocity profiles. In effect,
releasing the constraints on velocity allows agents to repro-
duce complex demonstrations by freely choosing from their
own primitives with given velocities representing their own
capabilities. Extensions of the algorithm could include ve-
locity profiles. The addition of kinematics may imply that
velocity cannot drop to zero at segmentation points, intro-
ducing strict constraints to the search. In effect, whereas
kinematics are essential in dynamics movements such as
walking, they become less stringent in object manipulation
and marginal in drawing and writing. As the respect of
kinematics constraints depends heavily on the precise field
of application, tailored algorithms may be required.

The proposed method focuses on the decomposition of
trajectories and does not consider the learning of new prim-
itives. The results in this paper showed that the set of prim-

itives is important to achieve particular required perfor-
mance, and in particular is crucial in interpreting noisy or
corrupted data. It is natural to ask how the algorithm can
be adapted to extend the available set of primitives while
decomposing. A promising research direction is that of in-
tegrating the current method in a more powerful algorithm
that learns additional primitives with experience. Addition-
ally, certain sequences of primitives that repeat themselves
frequently could be assimilated as a new longer primitive,
thereby accelerating the search in future occurrences of the
given sequence.

The variety of tasks in which simple movements are com-
bined to achieve complex movements extends to numerous
scenarios. The proposed method can be applied to those
scenarios in which imprecisely perceived movements need
to be decomposed, learnt and reproduced. In particular,
robots with different dimensions, joint structures and de-
gree of freedom can attempt to perform complex movements
according to their own features and capabilities. The im-
plication is that the current method, by adopting an agent-
centred and iterative approach to decomposition, is suited
to a large variety of robotic platforms, particularly animal-
like and humanoid robots that are required to perform a
large variety of tasks, not all of them perfectly fitting their
anatomical features.

5 Conclusion

A new approach to decompose and reconstruct complex
trajectories is proposed. The method starts decomposing
a complex trajectory with one initial single primitive and
progressively increases the accuracy of the approximation
through an iterative process. This approach allows for an
initial reduction of the search space with the identification
of prominent features of a demonstrated trajectory. Sub-
sequently, the iterative search makes use of newly found
segmentation points to search locally better solutions and
escape local optima. The agent-centred process offers a new
way of interpreting data as function of the agent’s skills,
which may represent various optimal primitives generated
with established methods. The algorithm proves robust and
displays remarkable generalisation and feature extraction
capabilities. In particular, the algorithm is suited to recon-
structing trajectories from corrupted and noisy data. Di-
verse robotic platforms with different degrees of accuracy
and motor patterns could benefit from this method while
learning progressively and autonomously the decomposition
of complex trajectories. Promising extensions of the algo-
rithm include the applications to a variety of tasks such
as imitation learning, learning of complex motor patterns,
gestures, object manipulation, software-based and robotic
hand-writing.
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Appendix

5.1 Generating the primitives with the
minimum-jerk model (MJM)

The minimum-jerk model (MJM) [36] is used in the cur-
rent study to generate two primitives sets (compare Fig. 1A
and B) and sample trajectories for the testing in Section 3.1.
This model plans a trajectory starting from a given start-
ing point to a given end-point through a via-point. The
constraint for planning the trajectory is to be as smooth
as possible (minimum jerk). In the generated data-sets the
via-point is located at the maximum of each shape, which
is reached at t = 0.5 of the movement duration.

5.2 Generating trajectories with ELM

A point-to-point motion is driven by a vector field (i.e.
a mapping from position x to vector v) represented by a
data driven learning method called Extreme Learning Ma-
chine (ELM). The ELM is a feedforward neural network
[40] that comprises three different layers of neurons: the
input layer x ∈ RI , the hidden layer h ∈ RR, and the out-
put neurons v ∈ RI . The input is connected to the hidden
layer through the input matrix W inp ∈ RR×I that is un-
changed after random initialisation. A supervised learning
schema [41] was adopted to compute the output weight ma-
trix to generate stable movements. Each new primitive is
learnt from at least three human demonstrated trajecto-
ries. The sequence of motion can be computed by discreti-
sation of ẋ = v̂(x), where x(0) ∈ Rd denotes the starting
point. Different movements can be generated depending on
the starting point relative to the target. The mean start-
ing point xms of all demonstration was used to learn each
primitive. Using such a starting point, the learn primitive
is likely to be similar to the average demonstration. The
movement is then normalised such that the start point is
at xms → xS = (−1, 0) and the end point at xT = (0, 0).
The normalised primitives are used in the algorithm with
correct rotations and scaling accordingly to the initial (I)
and final (F) points as described in the paper.
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