38 research outputs found

    Building Robust Distributed Infrastructure Networks

    Get PDF
    Many competing designs for Distributed Hash Tables exist exploring multiple models of addressing, routing and network maintenance. Designing a general theoretical model and implementation of a Distributed Hash Table allows exploration of the possible properties of Distributed Hash Tables. We will propose a generalized model of DHT behavior, centered on utilizing Delaunay triangulation in a given metric space to maintain the networks topology. We will show that utilizing this model we can produce network topologies that approximate existing DHT methods and provide a starting point for further exploration. We will use our generalized model of DHT construction to design and implement more efficient Distributed Hash Table protocols, and discuss the qualities of potential successors to existing DHT technologies

    Towards a Framework for DHT Distributed Computing

    Get PDF
    Distributed Hash Tables (DHTs) are protocols and frameworks used by peer-to-peer (P2P) systems. They are used as the organizational backbone for many P2P file-sharing systems due to their scalability, fault-tolerance, and load-balancing properties. These same properties are highly desirable in a distributed computing environment, especially one that wants to use heterogeneous components. We show that DHTs can be used not only as the framework to build a P2P file-sharing service, but as a P2P distributed computing platform. We propose creating a P2P distributed computing framework using distributed hash tables, based on our prototype system ChordReduce. This framework would make it simple and efficient for developers to create their own distributed computing applications. Unlike Hadoop and similar MapReduce frameworks, our framework can be used both in both the context of a datacenter or as part of a P2P computing platform. This opens up new possibilities for building platforms to distributed computing problems. One advantage our system will have is an autonomous load-balancing mechanism. Nodes will be able to independently acquire work from other nodes in the network, rather than sitting idle. More powerful nodes in the network will be able use the mechanism to acquire more work, exploiting the heterogeneity of the network. By utilizing the load-balancing algorithm, a datacenter could easily leverage additional P2P resources at runtime on an as needed basis. Our framework will allow MapReduce-like or distributed machine learning platforms to be easily deployed in a greater variety of contexts

    The use of computational geometry techniques to resolve the issues of coverage and connectivity in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) enhance the ability to sense and control the physical environment in various applications. The functionality of WSNs depends on various aspects like the localization of nodes, the strategies of node deployment, and a lifetime of nodes and routing techniques, etc. Coverage is an essential part of WSNs wherein the targeted area is covered by at least one node. Computational Geometry (CG) -based techniques significantly improve the coverage and connectivity of WSNs. This paper is a step towards employing some of the popular techniques in WSNs in a productive manner. Furthermore, this paper attempts to survey the existing research conducted using Computational Geometry-based methods in WSNs. In order to address coverage and connectivity issues in WSNs, the use of the Voronoi Diagram, Delaunay Triangulation, Voronoi Tessellation, and the Convex Hull have played a prominent role. Finally, the paper concludes by discussing various research challenges and proposed solutions using Computational Geometry-based techniques.Web of Science2218art. no. 700

    セルラ分散MU-MIMO通信システムの干渉制御

    Get PDF
    Tohoku University博士(工学)thesi

    optimización da planificación de adquisición de datos LIDAR cara ó modelado 3D de interiores

    Get PDF
    The main objective of this doctoral thesis is the design, validation and implementation of methodologies that allow the geometric and topological modelling of navigable spaces, whether inside buildings or urban environments, to be integrated into three-dimensional geographic information systems (GIS-3D). The input data of this work will consist mainly of point clouds (which can be classified) acquired by LiDAR systems both indoors and outdoors. In addition, the use of BIM infrastructure models and cadastral maps is proposed depending on their availability. Point clouds provide a large amount of environmental information with high accuracy compared to data offered by other acquisition technologies. However, the lack of data structure and volume requires a great deal of processing effort. For this reason, the first step is to structure the data by dividing the input cloud into simpler entities that facilitate subsequent processes. For this first division, the physical elements present in the cloud will be considered, since they can be walls in the case of interior environments or kerbs in the case of exteriors. In order to generate navigation routes adapted to different mobile agents, the next objective will try to establish a semantic subdivision of space according to the functionalities of space. In the case of internal environments, it is possible to use BIM models to evaluate the results and the use of cadastral maps that support the division of the urban environment. Once the navigable space is divided, the design of topologically coherent navigation networks will be parameterized both geometrically and topologically. For this purpose, several spatial discretization techniques, such as 3D tessellations, will be studied to facilitate the establishment of topological relationships, adjacency, connectivity and inclusion between subspaces. Based on the geometric characterization and the topological relations established in the previous phase, the creation of three-dimensional navigation networks with multimodal support will be addressed and different levels of detail will be considered according to the mobility specifications of each agent and its purpose. Finally, the possibility of integrating the networks generated in a GIS-3D visualization system will be considered. For the correct visualization, the level of detail can be adjusted according to geometry and semantics. Aspects such as the type of user or transport, mobility, rights of access to spaces, etc. They must be considered at all times.El objetivo principal de esta tesis doctoral es el diseño, la validación y la implementación de metodologías que permitan el modelado geométrico y topológico de espacios navegables, ya sea de interiores de edificios o entornos urbanos, para integrarse en sistemas de información geográfica tridimensional (SIG). -3D). Los datos de partida de este trabajo consistirán principalmente en nubes de puntos (que pueden estar clasificados) adquiridas por sistemas LiDAR tanto en interiores como en exteriores. Además, se propone el uso de modelos BIM de infraestructuras y mapas catastrales en función de su disponibilidad. Las nubes de puntos proporcionan una gran cantidad de información del entorno con gran precisión con respecto a los datos ofrecidos por otras tecnologías de adquisición. Sin embargo, la falta de estructura de datos y su volumen requiere un gran esfuerzo de procesamiento. Por este motivo, el primer paso que se debe realizar consiste en estructurar los datos dividiendo la nube de entrada en entidades más simples que facilitan los procesos posteriores. Para esta primera división se considerarán los elementos físicos presentes en la nube, ya que pueden ser paredes en el caso de entornos interiores o bordillos en el caso de los exteriores. Con el propósito de generar rutas de navegación adaptadas a diferentes agentes móviles, el próximo objetivo intentará establecer una subdivisión semántica del espacio de acuerdo con las funcionalidades del espacio. En el caso de entornos internos, es posible utilizar modelos BIM para evaluar los resultados y el uso de mapas catastrales que sirven de apoyo en la división del entorno urbano. Una vez que se divide el espacio navegable, se parametrizará tanto geométrica como topológicamente al diseño de redes de navegación topológicamente coherentes. Para este propósito, se estudiarán varias técnicas de discretización espacial, como las teselaciones 3D, para facilitar el establecimiento de relaciones topológicas, la adyacencia, la conectividad y la inclusión entre subespacios. A partir de la caracterización geométrica y las relaciones topológicas establecidas en la fase anterior, se abordará la creación de redes de navegación tridimensionales con soporte multimodal y se considerarán diversos niveles de detalle según las especificaciones de movilidad de cada agente y su propósito. Finalmente, se contemplará la posibilidad de integrar las redes generadas en un sistema de visualización tridimensional 3D SIG 3D. Para la correcta visualización, el nivel de detalle se puede ajustar en función de la geometría y la semántica. Aspectos como el tipo de usuario o transporte, movilidad, derechos de acceso a espacios, etc. Deben ser considerados en todo momento.O obxectivo principal desta tese doutoral é o deseño, validación e implementación de metodoloxías que permitan o modelado xeométrico e topolóxico de espazos navegables, ben sexa de interiores de edificios ou de entornos urbanos, ca fin de seren integrados en Sistemas de Información Xeográfica tridimensionais (SIX-3D). Os datos de partida deste traballo constarán principalmente de nubes de puntos (que poden estar clasificadas) adquiridas por sistemas LiDAR tanto en interiores como en exteriores. Ademáis plantease o uso de modelos BIM de infraestruturas e mapas catastrais dependendo da súa dispoñibilidade. As nubes de puntos proporcionan unha gran cantidade de información do entorno cunha gran precisión respecto os datos que ofrecen outras tecnoloxías de adquisición. Sen embargo, a falta de estrutura dos datos e a seu volume esixe un amplo esforzo de procesado. Por este motivo o primeiro paso a levar a cabo consiste nunha estruturación dos datos mediante a división da nube de entrada en entidades máis sinxelas que faciliten os procesos posteriores. Para esta primeira división consideraranse elementos físicos presentes na nube como poden ser paredes no caso de entornos interiores ou bordillos no caso de exteriores. Coa finalidade de xerar rutas de navegación adaptadas a distintos axentes móbiles, o seguinte obxectivo tratará de establecer unha subdivisión semántica do espazo de acordo as funcionalidades do espazo. No caso de entornos interiores plantease a posibilidade de empregar modelos BIM para avaliar os resultados e o uso de mapas catastrais que sirvan de apoio na división do entorno urbano. Unha vez divido o espazo navigable parametrizarase tanto xeométricamente como topolóxicamene de cara ao deseño de redes de navegación topolóxicamente coherentes. Para este fin estudaranse varias técnicas de discretización de espazos como como son as teselacións 3D co obxectivo de facilitar establecer relacións topolóxicas, de adxacencia, conectividade e inclusión entre subespazos. A partir da caracterización xeométrica e das relación topolóxicas establecidas na fase previa abordarase a creación de redes de navegación tridimensionais con soporte multi-modal e considerando varios niveis de detalle de acordo as especificacións de mobilidade de cada axente e a súa finalidade. Finalmente comtemplarase a posibilidade de integrar as redes xeradas nun sistema SIX 3D visualización tridimensional. Para a correcta visualización o nivel de detalle poderá axustarse en base a xeometría e a semántica. Aspectos como o tipo de usuario ou transporte, mobilidade, dereitos de acceso a espazos, etc. deberán ser considerados en todo momento

    Emergency rapid mapping with drones: models and solution approaches for offline and online mission planning

    Get PDF
    Die Verfügbarkeit von unbemannten Luftfahrzeugen (unmanned aerial vehicles oder UAVs) und die Fortschritte in der Entwicklung leichtgewichtiger Sensorik eröffnen neue Möglichkeiten für den Einsatz von Fernerkundungstechnologien zur Schnellerkundung in Großschadenslagen. Hier ermöglichen sie es beispielsweise nach Großbränden, Einsatzkräften in kurzer Zeit ein erstes Lagebild zur Verfügung zu stellen. Die begrenzte Flugdauer der UAVs wie auch der Bedarf der Einsatzkräfte nach einer schnellen Ersteinschätzung bedeuten jedoch, dass die betroffenen Gebiete nur stichprobenartig überprüft werden können. In Kombination mit Interpolationsverfahren ermöglichen diese Stichproben anschließend eine Abschätzung der Verteilung von Gefahrstoffen. Die vorliegende Arbeit befasst sich mit dem Problem der Planung von UAV-Missionen, die den Informationsgewinn im Notfalleinsatz maximieren. Das Problem wird dabei sowohl in der Offline-Variante, die Missionen vor Abflug bestimmt, als auch in der Online-Variante, bei der die Pläne während des Fluges der UAVs aktualisiert werden, untersucht. Das übergreifende Ziel ist die Konzeption effizienter Modelle und Verfahren, die Informationen über die räumliche Korrelation im beobachteten Gebiet nutzen, um in zeitkritischen Situationen Lösungen von hoher Vorhersagegüte zu bestimmen. In der Offline-Planung wird das generalized correlated team orienteering problem eingeführt und eine zweistufige Heuristik zur schnellen Bestimmung explorativer UAV-Missionen vorgeschlagen. In einer umfangreichen Studie wird die Leistungsfähigkeit und Konkurrenzfähigkeit der Heuristik hinsichtlich Rechenzeit und Lösungsqualität bestätigt. Anhand von in dieser Arbeit neu eingeführten Benchmarkinstanzen wird der höhere Informationsgewinn der vorgeschlagenen Modelle im Vergleich zu verwandten Konzepten aufgezeigt. Im Bereich der Online-Planung wird die Kombination von lernenden Verfahren zur Modellierung der Schadstoffe mit Planungsverfahren, die dieses Wissen nutzen, um Missionen zu verbessern, untersucht. Hierzu wird eine breite Spanne von Lösungsverfahren aus unterschiedlichen Disziplinen klassifiziert und um neue effiziente Modellierungsvarianten für die Schnellerkundung ergänzt. Die Untersuchung im Rahmen einer ereignisdiskreten Simulation zeigt, dass vergleichsweise einfache Approximationen räumlicher Zusammenhänge in sehr kurzer Zeit Lösungen hoher Qualität ermöglichen. Darüber hinaus wird die höhere Robustheit genauerer, aber aufwändigerer Modelle und Lösungskonzepte demonstriert

    Network analysis and algorithm solutions in critical emergency scenarios

    Get PDF
    Critical emergency scenarios in network communication, mobile wireless sensor networks and Smart Grids. Network recovery after massive disruption, algorithms for damaged networks, protocols for damaged networks, progressive monitoring of a damaged network, progressive flow restoration of a damaged network. Analysis of the vulnerabilities of the deployment algorithm for Mobile Wireless Sensor Netowkrs in human hostile environment, Algorithms for Mobile Wireless Sensor Networks under attack. Analysis of the cascading failures phenomenon in the Smart Grids, Prevents Large Blackout in the Smart Grids, Reduce the energy demand on the Smart Grids using the Internet of Things

    Self Assembly Problems of Anisotropic Particles in Soft Matter.

    Full text link
    Anisotropic building blocks assembled from colloidal particles are attractive building blocks for self-assembled materials because their complex interactions can be exploited to drive self-assembly. In this dissertation we address the self-assembly of anisotropic particles from multiple novel computational and mathematical angles. First, we accelerate algorithms for modeling systems of anisotropic particles via massively parallel GPUs. We provide a scheme for generating statistically robust pseudo-random numbers that enables GPU acceleration of Brownian and dissipative particle dynamics. We also show how rigid body integration can be accelerated on a GPU. Integrating these two algorithms into a GPU-accelerated molecular dynamics code (HOOMD-blue), make a single GPU the ideal computing environment for modeling the self-assembly of anisotropic nanoparticles. Second, we introduce a new mathematical optimization problem, filling, a hybrid of the familiar shape packing and covering problem, which can be used to model shaped particles. We study the rich mathematical structures of the solution space and provide computational methods for finding optimal solutions for polygons and convex polyhedra. We present a sequence of isosymmetric optimal filling solutions for the Platonic solids. We then consider the filling of a hyper-cone in dimensions two to eight and show the solution remains scale-invariant but dependent on dimension. Third, we study the impact of size variation, polydispersity, on the self-assembly of an anisotropic particle, the polymer-tethered nanosphere, into ordered phases. We show that the local nanoparticle packing motif, icosahedral or crystalline, determines the impact of polydispersity on energy of the system and phase transitions. We show how extensions of the Voronoi tessellation can be calculated and applied to characterize such micro-segregated phases. By applying a Voronoi tessellation, we show that properties of the individual domains can be studied as a function of system properties such as temperature and concentration. Last, we consider the thermodynamically driven self-assembly of terminal clusters of particles. We predict that clusters related to spherical codes, a mathematical sequence of points, can be synthesized via self-assembly. These anisotropic clusters can be tuned to different anisotropies via the ratio of sphere diameters and temperature. The method suggests a rich new way for assembling anisotropic building blocks.Ph.D.Applied Physics and Scientific ComputingUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91576/1/phillicl_1.pd
    corecore