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Ernesto Fŕıas Nores

DOCTORAL DISSERTATION

Optimised scan planning for LiDAR data
acquisition towards 3D indoor

understanding

Supervised by:
Dra. Lućıa Dı́az Vilariño

Dr. Henrique Lorenzo Cimadevila

2022

“International Mention”



  

 

 
PROGRAMA DE DOUTORAMENTO 

XEOTECNOLOXÍAS APLICADAS Á 
CONSTRUCIÓN, ENERXÍA E INDUSTRIA 

 
 

 

Lucía Díaz Vilariño e Henrique Lorenzo Cimadevila,  

 

FAN CONSTAR  

 

Que o presente traballo OPTIMISED SCAN PLANNING FOR LIDAR DATA ACQUISITION 

TOWARS 3D INDOOR UNDERSTANDING foi elaborado por D. Ernesto Frías Nores baixo a 

súa supervisión, como requisito para a obtención do título de Doutor dentro do 

programa de doutoramento interuniversitario en XEOTECNOLOXÍAS APLICADAS Á 

CONSTRUCIÓN, ENERXÍA E INDUSTRIA polas Universidades de Vigo e Salamanca 

 

En Vigo, a 8 de novembro de 2022 

 

Os directores, 

 

 

Lucía Díaz Vilariño    Henrique Lorenzo Cimadevila 

 

A Comisión Académica do programa GEOCEI 

 

 

Coordinador: Henrique Lorenzo Cimadevila 
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Abstract

Changing habits are leading people to spend more time indoors. This
fact is aggravated in older people who are more prone to suffer from some
kind of impairment that affects their mobility and orientation. Advances
in positioning systems, smart phones and tablets, together with access to
semantic building models have stimulated interest in the development of ap-
plications for assisted indoor navigation. Since BIM models provide rich geo-
metric and semantic information, they are an interesting option to provide
contextual support for navigation. However, these models are not always
available, may be outdated and their flexibility to changes in the environ-
ment is limited.

In contrast, indoor mapping systems can generate a highly accurate 3D
model in the form of a point cloud. Despite data acquisition is considered a
fast process, scanning large and complex sites can became a time-consuming
task if the scanning is not properly planned beforehand. Raw point clouds
provided by scanning systems do not contain semantic information, which
makes their use in indoor navigation challenging. Fortunately, with the
development of Artificial Intelligence techniques, promising results are be-
ing obtained in extracting semantic information from point clouds in an
automated way. The semantic information of buildings is essential for the
interpretation of the indoor space in order to provide support for a safe and
accurate indoor navigation oriented to the user’s context.

In This Doctoral Thesis, different methods with the objective of imple-
menting path planning for contextual indoor navigation from point clouds
are presented. The developed methods address the three global procedures
that have been identify as necessary to achieve the objective of this Doctoral
Thesis: Data acquisition, indoor understanding and indoor navigation. The
methods developed in the first part of the thesis propose solutions for scan
planning problem with the aim to optimise data acquisition in terms of time
ensuring the quality and completeness of the data. Room segmentation and
classification methods were implemented to extract semantic information
from raw point clouds addressing indoor understanding problem. Semantic-
ally enriched point clouds are exploited to partition the indoor on basis
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different contexts deriving in a hierarchical path planning that supports the
efficient computation of precise routes oriented to the agent’s context.

All the proposed methods in this Doctoral Thesis were tested in real
case studies obtaining encouraging results. The methods and results were
presented as a compendium of six scientific articles, five of them have been
published in international journals with high impact factor and another one
is in peer-review process. Three articles were published in international
journals indexed on the Journal Citation Report (JCR), and two papers
were presented in international conferences.
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Chapter 1

Introduction

1.1. Context

People spend more and more time inside buildings, specially people liv-
ing in cities, where the average time is around 90%. This circumstance is
more prevalent in older population, whose growth is expected to continue to
accelerate in the coming decades, doubling the number of people over 60 by
2050 [1]. Advancing age leads to the loss of physical, sensory and cognitive
abilities that adversely affect mobility and orientation for navigation. Even
non-disabled people find difficulties in reaching their destination when they
first visit public buildings such as airports, hospitals or shopping centres.
Therefore, the development of applications for assisted navigation is gaining
interest both at scientific and commercial scales.

Technological advances in acquisition sensors [2, 3], 3D modelling [4],
indoor positioning systems [5] and smart devices are enabling the imple-
mentation of accurate, safe and guided indoor navigation applications. The
increasing availability of standardized 3D models, among which BIM and
IndoorGML stand out, containing detailed geometrical, semantic and topo-
logical information of indoors enables to obtain meaningful spatial represent-
ation, which is essential to carry out efficient indoor navigation. Therefore,
indoor spatial representation is receiving attention in indoor modelling and
mapping fields [6].

Traditionally, indoor spatial analysis oriented to navigation applications
was carried out on 2D plans lacking semantics and precise geometrical in-
formation. Already two decades ago, Building Information Modelling (BIM)
was proposed as a methodology in the Architecture, Engineering and Con-
struction/Facility Management (AEC/FM) domain with the aim of saving
costs in the design, construction and maintenance of buildings [7]. From
the perspective of indoor modelling, BIM provides not only 3D geometrical
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2 CHAPTER 1. INTRODUCTION

building models, but also semantic, topological and contextual information
can be supplied. However, these attractive building models for indoor mod-
elling usually do not reflect the most recent changes in the environment,
which results in an outdated representation. In contrast, point clouds de-
rived for indoor mapping systems have been shown to be an alternative
or/and complement to BIM models.

The use of LiDAR-based acquisition systems has been consolidated for
non-contact surveys providing highly accurate and dense point clouds. Con-
trasting with photogrammetry, the main drawbacks of laser scanning con-
sist of portability, time consuming, highest cost and noise [8] which have led
community efforts to develop systems and methodologies that improve these
gaps. Technological advances have enabled the rapid evolution of scanning
systems, particularly, in the development of more portable devices. On the
basis of stationarity, the acquisition mode of mapping systems can be re-
ferred as static or dynamic. While static acquisition requires the system
stays in place during acquisition, dynamic systems can be moved during
acquisition leading to faster acquisition. Terrestrial Laser Scanning (TLS)
is the most known static acquisition technique, where the laser is commonly
mounted into a tripod capturing data with millimeter-level precision. The
major disadvantages of TLS are low portability, presence of occlusions in the
data and the need for post-processing to align point clouds obtained from
different locations. These limitation are alleviated in Mobile Laser Scanning
(MLS), primarily implemented by acquisition systems mounted on vehicles
to mapping road surroundings and recently extended to indoor mapping by
mainly the development of reliable Simultaneous Localization and Mapping
(SLAM) methods. Indoor Mobile Mapping Systems (IMMSs), depending
on the platforms on which the laser scanner is mounted, can be classified
as trolley, backpack or handheld [2]. More recently, laser scanners have
been integrated on smart devices (iPhone, iPad) making them accessible to
general population [9].

The growing supply of acquisition systems has widened their range of
application to cultural heritage recording [10], bridge surveys [11], forest
mapping [12], measurement of construction progress [13]and indoor mapping
and modelling [14, 15]. In many of these applications, scanning and BIM
technologies are used in complementary way. Although the use of BIM have
been increasing in the AEC industry, enriched semantic models of many
existing buildings as well as heritage sites are not available. Furthermore,
if such a model exist, it may be out-of-date and does not represent as-
is conditions of the building. Therefore, researcher’s efforts have focused
on the development of methods to produce BIM models from point clouds
based on the technique referred as Scan-to-BIM. Further, the possibility
of obtaining as-is models aroused interest in using them to automate the
assessment of the progress and the quality of buildings in construction phase
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by comparing as-is model to as-planned one. Beyond Scan-to-BIM that can
detect and recognise objects, Scan-vs-BIM technique is also able to identify
them, which makes its use more suitable for the monitoring of construction
elements [16].

Scanning mapping systems produce an accurate geometric model in the
form of a set of points basically defined by XYZ coordinates and, depending
on the characteristics of the system, other information such as intensity,
colour, normal vector or timestamp may be provided. In contrast to BIM
models, no semantic information can be directly extracted from raw point
clouds. Therefore, point clouds have to be processed to extract information
about structural elements, objects and meaningful spaces generally by using
classification, recognition or segmentation processes which are related to so-
called scene understanding in the computer vision field [17]. The increase of
public point cloud datasets, together with the successful results attained in
object image classification by using deep learning algorithms outperforming
traditional methods, has made point cloud understanding one of the most
active topics in both computer vision and remote sensing disciplines. The
rapid progress on this topic has led to encouraging results towards automatic
extraction of semantics from point clouds.

Until recently, indoor navigation was mainly addressed in the field of
robotics. The main objective was based on obtaining a route to reach a
predefined destination in the building while avoiding obstacles of the sur-
roundings. The emergence of new sensors, smart devices, location systems
and detailed semantic models has opened up the range of application of
indoor navigation to other agents (people, drones) or to more advanced
applications, for instance, guided navigation for impairment people [18] or
emergency evacuation [19]. Therefore, models and point clouds enriched
with contextual information are mandatory for safe and accurate guided
navigation considering the agent conditions.

From the above, three processes have been clearly identified as neces-
sary for the implementation of path planning to support contextual indoor
navigation from point clouds:

Data acquisition.

Indoor understanding.

Indoor navigation.

This Doctoral Thesis arises with the purpose of designing and imple-
menting methods that address the previously identified problems with a
high degree of automation. In the following sections each problem is presen-
ted in detail including the state-of-the-art.
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1.2. Data acquisition

The use of LiDAR-based mapping systems have been consolidated for
applications in different areas as they can produce an accurate 3D model
quickly. The selection of the system in applications requiring millimetre pre-
cision, like quality assessment or construction control, is restricted to TLS.
As mentioned above, the measurements with TLS are conducted in a static
way in the sense that the device remains stationary during operation time.
The quality of the data collected from laser scanning may be compromised
due to undesired effects such as occlusions and noise, hence, the placement
of the laser device is determinant to carry out a high quality acquisition in
terms of completeness and accuracy. Generally, mapping system will have
to be placed in several locations in order to acquire the whole scene, which
makes the scanning process time-consuming, especially in large and complex
scenarios. For these cases, acquisition time can be reduced by performing
a scan planning that determines the locations from which to scan covering
the whole scene.

In literature, methods addressing the scan planning problem are grouped
into non-model-based, if there is no prior knowledge of the scene, and model-
based methods, which exploit an available model of the scene to determine
the scanning positions. Non-model-based scan planning is generally ap-
proached as the Next Best View (NBV) problem closely related to the nav-
igation strategy of autonomous mobile robots or drones. The scanning po-
sitions are calculated sequentially seeking to maximise the level of coverage
acquired. Commonly, a heuristic function is defined to calculate the best
next scanning position from the information of the scene acquired in the
previous scans.

For model-based methods, scan planning takes advantage of the avail-
ability of a scene model (floor plan, CAD, BIM) to be acquired for the
calculation of optimal scanning positions. Because the problem is gener-
ally approached in 2D, it can be formulated as a variant of the well-studied
computational geometry problem art gallery problem [20] that states the fol-
lowing: given a gallery ,represented by a polygon, determine the minimum
number of guards required to watch over the entire gallery. The computa-
tional complexity NP of the problem leads to apply constraints to obtain
approximate solutions in a reasonable time. Generally, the problem is dis-
cretised to be formulated as a Set Covering Problem [21]. Discretisation
usually consists in partitioning the continuous space where scanning system
can be located into a finite number of smaller spaces, each one represented
by a position. Thus, the possible locations of the scanning system are lim-
ited to a finite set composed of candidate locations representing the spaces.
Candidate generation is a key point of scan planning since a low number of
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candidates can lead to poor solutions, whereas a high number of candidates
involves an increase in computing time because a computationally expensive
visibility analysis is usually performed from each candidate. Accordingly, a
compromise between solution accuracy and efficiency needs to be found in
scan planning problem.

Many previous works have used a grid-based approach to partition space
into equally size squares generating evenly spaced positions [22, 23]. The
number of candidates generated depends directly on the grid resolution (in-
versely proportional to the length of square side) and may be insufficient to
cover narrow areas if the resolution is low or inefficient if a high resolution
is used on large scenes. With the aim of improving the efficiency of grid-
based distribution, [24] generated candidates in a hierarchical way from a
low global resolution to finer local resolution in two large outdoor scenes.
For indoor scenes, [25] proposed an indoor partition adaptable to different
types of sensors and applications. Initially, the space is partitioned into
triangular faces that are subsequently grouped based on sensor constraints.
Then, linear binary programming is used to solve the SCP on the partitions
resulting from the grouping.

Most of methods neglect route planning for the scanning process, how-
ever, lack of planning can significantly increase scanning time, particularly,
in large complex sites. This fact is more critical for MLS since specific
constraints such as maximum acquisition time or closed loops may be re-
quired. While inexperienced operators of MLS devices typically receive a
basic training in the use of the device and some recommendations to avoid
data loss during the scanning process, skilled operators are guided by their
knowledge, which can lead to incomplete or redundant data acquisition [26].
Nevertheless, to the best of my knowledge, automated scan planning specific
to MLS has not been addressed in remote sensing field.

1.3. Indoor understanding

Once scan has been completed, the point clouds collected from different
scans have to be aligned in the same coordinate system to obtain a compre-
hensive model of the whole scene [27]. Despite the fact that scanning systems
provide accurate geometric representation, this lacks semantic information
which is essential to carry out contextual navigation. Therefore, raw point
clouds require further processing in order to enrich the point clouds with
meaningful semantics. Segmentation, semantic segmentation and classifica-
tion processes are some of the most commonly used to obtain context from
point clouds.

The process of grouping points endowing them a meaningful according
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to predefined features is known as point cloud segmentation. Unlike classi-
fication and semantic segmentation, segmentation does not directly provide
the class of each segment: however, segmenting the point cloud before clas-
sification or semantic segmentation can help them to improve their results
and to alleviate the computational costs. In particular, partitioning an in-
door model (2D ,CAD, BIM, point cloud) into segments corresponding to
rooms is a widely used process in the robotics and AEC fields, known as
room segmentation.

In robotics, room segmentation has been a widely studied problem in or-
der to obtain useful semantic information for numerous applications. In this
field, room segmentation has generally been performed on 2D discrete maps
[28]. Room segmentation has also attracted a lot of interest in 3D indoor
modelling due to the potential of room-level semantic information providing
the context of building spaces enclosed by walls and the adjacency relation-
ships between rooms through doorways. The valuable information obtained
from room segmentation is profited in indoor modelling for reconstruction
tasks as well as for indoor navigation applications by generating a naviga-
tional graph representing topological relations between rooms.

Many of state-of-the-art room segmentation methods for point cloud
focus on extract planar patches to subsequently analyse and determine which
of them correspond to walls [29, 30, 31, 32]. The detected walls are generally
projected to 2D as lines arranged in a cell complex structure from which
a planar graph can be constructed on basis specific criteria. Then, room
segmentation is often formulated as an energy minimisation problem which
is solved in different ways. This family of methods is strongly dependent
of structural elements detection (walls, floor, ceiling) and requires laborious
reasoning.

Door detection is also an important process in room segmentation be-
cause doors are an interesting element for both indoor reconstruction and
indoor navigation. Doors are commonly detected by analysing previously
identified walls and then the doors are considered to conduct room seg-
mentation. Recent methods exploit trajectory provided by MLS systems to
detect doors and other openings on walls [33]. [34] succeeded in perform-
ing room segmentation based on the location of doors that were determined
on trajectory positions by analysing the variation of ceiling height without
requiring wall detection.. These methods have proved the potential of tra-
jectory information from mobile mapping systems in room segmentation,
however, trajectory data is not always available, which limits the applicab-
ility of the methods.

Among the methods using a different approach, [35] proposed a method
that does not require prior detection of structural elements or trajectory
information. Basically, the method consists in detecting gaps between the
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walls of adjacent rooms on one-dimensional histograms along the x, y and
z axes. Although the method is simple and effective, Manhattan world and
axis-aligned walls assumptions strongly limit its applicability to real cases.
A morphological approach was used by [36] to segment indoor point clouds
by rasterising the point cloud and performing morphological processing on
2D floor map. The method also relies heavily on the wall detection and
requires a laborious analyse of the walls detected on the floor map. After a
preliminary detection of the structural elements, [37] uses a 3D morphology-
based approach for room segmentation. The proposed method depends on
the trajectory to detect doors and to discard outside spaces.

The valuable semantics provided by room segmentation makes it an act-
ive topic in the community leading to the development of more robust and
simpler alternative methods. However, context-based navigation requires
more detailed semantic information, which can be obtained by classification
methods and semantic segmentation.

The classification task consists in determining the class of a point cloud
object between a predefined set of classes; thus, all points composing the
object are classified with the same class. Whereas, semantic segmentation
assigns a label to each point individually, hence all objects in a scene can
be labelled without prior object individualisation. Clearly, semantic seg-
mentation is a more complex task and, although there have been significant
advances [38] with promising results, they are still far from the performance
achieved in classification.

Point cloud segmentation by using traditional methods based on math-
ematical models and geometric reasoning is limited because noise, occlusions
and sparse density in point clouds make it difficult to find accurate geometric
primitives to parameterise complex scenes [39]. Therefore, machine learning
techniques have been explored for both classification and semantic segment-
ation attaining higher performance in identifying complex objects. However,
the quality and accuracy of segmentation provided by conventional machine
learning techniques rely on the skills and experience in the domain to layout
a feature extractor. This drawback has been outperformed by using deep
learning techniques which are able to extract features on their own without
relying on human skills to extract them . The main limitation to employing
supervised deep learning techniques is the requirement of a large amount of
classified data to train the neural networks.

The outstanding results attained in object classification in 2D images,
particularly by Convolucional Neural Networks CNNs, has aroused interest
in the use of deep learning for point cloud classification and semantic seg-
mentation. Unlike images, point clouds are unstructured 3D data that can-
not be directly processed by 2D CNNs and the availability of labelled point
clouds is scarce, which may lead to overfitting classification models. These
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limitations can be mitigated by using Transfer-Learning [40] and Data Aug-
mentation [41] techniques that have already applied in the imagery domain.

The basics of Transfer Learning is to exploit the knowledge acquired in
a broader domain by using it in a more specific domain related with the
source domain. Taking into account the higher yield obtained by 2D CNNs
on imagery domain, some works have proposed to produce meaningful im-
ages from point clouds to carry out classification or semantic segmentation
of point clouds by using a neural network pre-trained in 2D domain, a tech-
nique coined network-based transfer learning. In the scope of semantic seg-
mentation, [42] generated georeferenced orthoimages in the same coordinate
system of point cloud to segment building façades by using the well-known
Res-Net neural network. Transfer Learning was also conducted by [43], im-
ages representing features extracted from point clouds that were acquired
by Airbone Laser Scanning (ALS) were taken as input to a 2D Deep Neural
Network for outdoor segmentation.

Point cloud projection to 2D images was also used for object classifica-
tion [44, 45]. Despite the loss of spatial information caused by the reduction
of one dimension, multi-view approach that consists in generating multiple
images of a 3D object from different perspectives has outperformed 3D ap-
proaches [46, 47]. Classification has generally been evaluated on flawless
points clouds synthetically generated from the popular dataset ModelNet40
[48] achieving an overall accuracy of over 90%. However, real point clouds
are affected by undesired effects such as noise or occlusions, therefore, per-
formance decreases drastically when perturbed real point clouds are classi-
fied, which implies that the classification of real point clouds is still an open
problem [49].

1.4. Indoor navigation

With the emergence of portable location and positioning systems not de-
pendent on satellite coverage, indoor navigation has attracted the interest
of technology companies and researchers. The spread of smartphones has
expanded the interest of indoor navigation from robotics to multiple user-
guidance applications. For such applications, finding a route to reach a
desired destination accurately and safely is the main objective, being the
generation of an appropriate representation of the indoor space a key prob-
lem in indoor navigation. The way in which indoor space is represented
is strongly linked to how it has been structured in a previous space divi-
sion process. Therefore, the spatial subdivision of indoor space is of key
importance for path planning in indoor navigation [50].

Spatial subdivision consists in partitioning the indoor space into sub-
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spaces which hold meaning with the target application, e.g. the room seg-
mentation presented in section 1.3. There are a variety of methods that have
been adopted for the division of indoor space. According to the classifica-
tion presented in [51, 50], the methods that have been employed for indoor
partitioning are based on either geometric or topological representations.

Topological methods derive directly in a skeleton representation of build-
ing space. The simplest representation is obtained by applying Point Caré
Duality proposed by [52]. This strategy consists in creating a graph, known
as dual graph, where each sub-space (cell) is represented by a node and
edges are defined from the walls shared by sub-spaces, which generally cor-
respond to the rooms. This method was adopted by IndoorGML standard
[53] to generate topological representations of indoor models. Although ad-
jacency relations between sub-spaces are provided by this representation,
the derived graphs are not suitable for precise navigation due to their high
level of abstraction. For the particular case of large sub-spaces as corridors
connecting to several rooms, Medial-Axis-Transform (MAT) and centerlines
algorithms have been used to subdivide large sub-spaces into finer ones. [19]
proposed a MAT-based algorithm to subdivide corridors taking into account
door locations.

Within geometric methods, tessellations perform a complete partition-
ing of the space into non-overlapping regular or irregular cells. The simplest
and most commonly used regular tessellation, especially in robot navigation,
divides space into uniformly distributed squares covering the whole space,
also known as grid-based partitioning. The grid resolution is determined by
the cell length which allows highly accurate representations. Nevertheless,
high-resolution partitions lead to increased computational resource costs.
To alleviate this downside, quadtree structure was proposed for a more ef-
ficient representation, although its flexibility is limited [54]. From a grid
structure, a graph can be easily generated for path planning by representing
the centroid or corners of cells as nodes. Furthermore, the grid structure
can be extended to volumetric representations by using 3D cube-shaped cells
called voxels, but the efficiency bottleneck remains. Inspired in quadtrees,
octrees [55]can be used for more efficient management of voxels.

Most existing methods do not consider semantics for partitioning or only
use basic semantics such as rooms and doors. The absence of semantic makes
such an indoor representation not adequate for context-based navigation,
which is considerably limited by the fact of using 2D floor plans. The need
to supply semantic information about indoor spaces for reliable context-
based navigation has emphasised the value of BIM models. A 3D approach
to extract the empty space from BIM models was proposed by [56]. Starting
from such a model, sub-spaces corresponding to rooms are directly extracted
as 3D cells and then, the space occupied by bounding boxes of the furniture
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objects is removed from empty space. The topological representation is ob-
tained by considering the openings such as doors and windows. Although
the empty space is effectively extracted, semantic information provided by
BIM models was not used for partitioning the empty space. [57] presented
a framework to perform space partitioning based on semantic information
provided by enriched 3D models such as BIM. For this purpose, an object
classification is proposed on the basis on its mobility resulting in static, mo-
bile and semi-mobile objects. From the classified objects, empty space is
categorised into occupied, functional and navigable. Functional sub-spaces
are those where mobile objects (people, autonomous robots, drones, etc) car-
ried out their activities and/or interact generally with semi-mobile objects
(tables, chairs, etc). Unlike previous approaches, the proposed partition is
performed according to the context of objects which enables the generation
of a meaningful graph for context-based navigation.

Despite the fact that the use of semantically enriched models has been
increasing over the last decades, in most cases they are not available, which
limits the scope of application for context-based navigation. In addition,
as-planned models may not contain any objects or the status of the objects
may be out-of-date. Alternatively, an accurate and up-to-date model is
provided by points clouds because LiDAR-based mapping systems are able
to collect the building geometric in a short time. As a counterpart, raw
point clouds supplied by mapping systems do not provide any semantics,
therefore, post-processing is necessary to extract semantic information. Ad-
vances in segmentation, classification and semantic segmentation techniques
outlined in section 1.3 enable more and more accurate and detailed semantic
information to be available.

From point clouds, [58] proposed a method to obtain obstacle-free walk-
able paths. Several height thresholds are set to classify floor, walls and the
remaining objects by analysing both horizontal and vertical raster. The
navigable floor is obtained by removing walls and objects to further com-
pute walkable paths by applying a morphological thinning to the navigable
floor. From the resulting paths, pixels where two paths interlink are taken
as nodes while the pixels between nodes form the graph edges.

A grammar rule-based approach to generate a hierarchical representation
from point clouds was proposed by [59]. First, indoor space is subdivided
into cuboids defined by the vertices extracted from the peaks of a histogram
along X and Y axes. Topology of indoor space is established on the basis
of the relations defined as adjacency, connectivity and containment. Fur-
ther the common topological relations between rooms connected by doors,
the method manages to partition rooms into sub-spaces corresponding to
the cuboids contained in the room. However, as cuboids are defined on
histograms, no detailed semantic information is considered for spatial par-
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titioning.

Starting from a voxelized multi-story point cloud, [60] used a region
growing algorithm to identify the sub-spaces of rooms, doors, stairs and
slopes. For topological representation, each sub-space was represented by
one node in the resulting graph, which is too abstract for accurate naviga-
tion.

More recently, coloured RGB point clouds were used by [13] to classify
indoor elements into ceiling, floor, vertical, doors and others by using deep
learning algorithms. Then, walls are used to perform room segmentation
in 2D space and doors are considered to set adjacency relations between
rooms to derive a graph. The method was evaluated in a Manhattan world
case study and the semantic used for partitioning was limited to rooms and
doors.

Although point clouds provide accurate and up-to-date geometric data,
there is a limited supply of works that employs point clouds to structure in-
door space for the purpose of implementing context-based navigation. The
lack of semantic information from raw point clouds makes their use challen-
ging, however, advances in indoor understanding make it possible to extract
semantic information from point clouds to be exploited in favour of contex-
tual navigation.

1.5. Contribution of the Thesis

The contribution of this Doctoral Thesis, presented as a compendium of
articles, is supported by six scientific manuscripts: Three of them have been
published in journals indexed on Journal Citation Report(JCR) ranked in
the first and the second quartile (Q1, Q2). Two articles have been presen-
ted in international congresses, specifically, in the GEORES 2019 and 3D
Geoinfo 2020 editions promoted by ISPRS foundation. The sixth article is
in the process of peer review in an international journal ranked in the second
quartile.

According to the regulation of the University of Vigo, the inclusion of
each article and the relationship between them should be discussed. The
articles are organised thematically by chapters that are divided into sections
corresponding to the articles. The structure of the Doctoral Thesis, with a
brief summary of the articles in Spanish, is presented as follows:

Chapter 3: Optimised scan planning for LiDAR data acquisi-
tion

This chapter collects the articles related to data acquisition focusing on
tackling the scan planning problem. Methods for both static and dynamic
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acquisition with laser-based mapping systems are proposed and evaluated
in different types of environments. The chapter is composed of three manu-
scripts, two published in scientific journals and a conference paper:

Section 3.1 Scan planning optimization for outdoor archaeolo-
gical sites

Because TLS provides dense and highly accurate point clouds in a fast
way, this technique is particularly suitable for the documentation of cul-
tural heritage. However, outdoor archaeological sites often extend over large
areas resulting in scanning being a time consuming and labourious opera-
tion. Planning the scan in advance can reduce both the time and effort
required for the acquisition of the complete site. A critical point of scan
planning is determining the candidate positions where laser can be placed.
Many of previous works generate candidates by using a grid distribution
leading a massive positions in large scenarios. To alleviate this drawback,
a scan planning method Delaunay triangulation for candidate generation is
presented and compared to grid-based candidate generation. The method
was tested in two real case studies proving that triangulation-based distri-
bution reduces significantly execution time of scan planning.

This work has been carried out with the international collaboration of
members specialised in non-contact inspection applications, 3D modelling
and reconstruction from the Department of Architecture, Built Environment
and Construction Engineering of the Politecnico di Milano.

Section 3.2 From BIM to Scan Planning and Optimization for
Construction Control

Discrepancies between the as-planned and real state of building in con-
struction phase result in significant losses for the construction industry.
Monitoring controls to save cost have traditionally been carried out by visual
inspection, which leads to errors-prone assessments. A highly accurate as-
built model can be obtained with TLS and compared with the increasingly
used in the AEC industry BIM models to automate the monitoring and con-
trol of the construction site in an efficient way. The scan planning allows to
automate and ensure the quality of the model and to reduce the acquisition
time. In this work, a method that exploits the semantic information of BIM
models for scan planning in construction environments is presented. In ad-
dition, the problem of route planning oriented to a laser scanner mounted
on an autonomous mobile robot following a stop&go strategy is addressed.
The method was tested on simulated and real cases with different conditions
and structural elements.

This work is part of the project New Technology for Data Capture in In-
terior Environments and Processing Algorithms for BIM Integration (AUTO-
BIM) funded by the Ministry of Economy and Competitiveness of the Gov-
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ernment of Spain and with the participation of the universities of Vigo and
Salamanca, the metallurgical research centre of the northwest (AIMEN) and
the companies Vı́as y Construcciones S.A. BAC Engineering Consultance
Group S.L., Aplicaciones de CAD CAM y GIS S.L. and Aplitop S.L. The
main objective of the project was to develop algorithms and optimisation
strategies for data capture in indoor environments and processing algorithms
for BIM integration (AUTO-BIM). A BAC Engineering Consultance Group
S.L., Aplicaciones de CAD CAM y GIS S.L. and Aplitop S.L. The main ob-
jective of the project was to develop algorithms and optimisation strategies
for data capture in construction site environments using LiDAR technology.
In addition, for this project a prototype application with a graphical inter-
face has been developed for use by non-expert users. The application has
been tested in the pilot case study of the project on a real construction site
environment in the city of Badalona (Spain).

Section 3.2 Optimal Scan Planning for Surveying Large Sites
with Static and Mobile Mapping Systems

Proposed scan planning methods have focused on TLS, however, MLS
with centimetre accurate is more adequate to other applications since enables
a quicker acquisition process while occlusions can be significantly reduced.
To address scan planning for MLS, specific constraints of mobile system have
to be considered such as maximum acquisition time or closed trajectories
requirement. In this work, a balanced-clustering method for graph parti-
tioning providing planned trajectories is proposed. The method was tested
in four real case studies, 3 indoor and 1 outdoor of almost 40,000 square
metres of area.

The idea for this work arose from the collaboration with the Politecnico
di Milano section 3.1 in . These collaborations has allowed me to continue to
extend my knowledge in data acquisition with laser scanners. The outcome
of this collaboration is the publication of this article in a high impact journal.

Chapter 4: Segmentation and classification of indoor point
clouds towards indoor understanding

Data collected by a LiDAR-based mapping systems are provided in form
of point cloud composed of XYZ coordinates, even extra information as
intensity, normals or colours depending on the system can be obtained. In
view of contextual indoor navigation, meaningful spatial data can be extrac-
ted from raw point clouds to enrich semantically it by using traditional and
modern techniques of segmentation and classification. This chapter includes
two works: one is a proceeding presented in an international congress ad-
dressing point cloud room segmentation process exposed in section 1.3. The
second work consists of a journal paper that proposes a method to generate
point clouds from BIM objects for further classification using deep learning.
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Section 4.1 Point cloud room segmentation based on indoor
spaces and 3D mathematical morphology

Room segmentation is a key topic in both 3D indoor reconstruction and
3D indoor navigation. Most of previous methods extract and model the
structural elements of the buildings to perform room segmentation. This
work arises with the aim to segment rooms avoiding modelling structural
elements. Unlike previous works, room segmentation is approached on the
indoor empty space while 3D morphological operations and connectivity
relations are used to segment empty space into rooms. The method was
evaluated in two real case studies with encouraging results.

Section 4.2 Exploiting BIM objects for synthetic data genera-
tion towards indoor point cloud classification using deep learning

This work explores Data Synthesis and Transfer-Learning techniques for
the classification of perturbed point cloud objects. BIM objects provide by
manufacturers from web databases are used to generate synthetic point cloud
objects with noise and occlusion perturbations. A deep learning framework
was implemented to perform object classification using images generated
from synthetic point cloud on the basis of a multi-view approach. From com-
bination of orthographic and perspective projections with binary occupancy
images and greyscale images representing surface curvature, four types of
images were produced to evaluate image generation influence. Experiments
were conducted with synthetic and real data proving the significantly impact
of perturbations for object classification.

This work was developed with the international collaboration of members
of the LIAAD laboratory integrated in INESC TEC (Porto) where I stayed
for three months within the cooperation and exchange programme between
the Euroregion of Galicia and the North of Portugal IACOBUS. At LIAAD
they are experts in Artificial Intelligence and Decision Support techniques.
The knowledge on image generation and classification acquired during this
stay has been decisive for the development of this work.

Chapter 5: From semantically enriched point cloud to hierarch-
ical path planning

Once the point clouds are segmented and classified, semantic information
can be extracted for indoor spatial partitioning. Depending on the semantic
information used to carry out the partitioning, indoor space is structured
according to a context. Based on the semantic information available, various
partitions with different contexts can be performed and a navigation graph
can be generated for each of them. This chapter consists of an unpublished
journal article addressing the spatial partitioning of indoor point clouds to
implement hierarchical path planning that can support contextual indoor
navigation.
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Section 5.1 A variable-scale partitioning schema for spatial
subdivision of indoors from point clouds to hierarchical path plan-
ning

A method to implement a hierarchical path planning from indoor point
clouds with the aim to perform efficient accurate route computation in large
buildings is presented in this work. Point cloud is partitioned at three dif-
ferent scales based on room, functional and geometric criteria. Topological
representation derived from each partition is used to implement a three-
level graph to drive efficient path planning. The reliability of the method
was evaluated in a large furnished building composed of 5 rooms and 1
corridor obtaining safe and accurate routes.
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Chapter 2

Research objectives

The scope of this Doctoral Thesis encompasses the complete process to-
wards the implementation of contextual path planning for indoor navigation
starting from data acquisition with LiDAR-based mapping systems. As de-
scribed in Chapter 1, to conduct the main objective, three phases have been
identified and exposed in detail in sections 1.2, 1.3 and 1.4 for which the
following aspects should be considered:

i Ensuring data quality in terms of completeness and accuracy in data
acquisition phase.

ii Extracting meaningful information from point clouds that provide con-
text to indoor scenes.

iii Exploiting semantically enriched point clouds to provide context for in-
door navigation.

The first step consists in acquiring high quality data with LiDAR-based
mapping systems that is addressed in Chapter3 covering the major emphasis
of this Doctoral Thesis. The main objective of this topic is the design and
implementation of methods leading an effective and efficient scan planning
satisfying condition I. Towards achieving this objective, the following sec-
ondary goals should be conducted:

1.a) Development of scan planning methods for different application areas
such as construction control, archaeological sites recording or indoor
modelling. Optimal solutions involve finding the minimal scanning po-
sitions that are necessary to carry out the acquisition of the scene
complying with the pre-defined requirements. This is a geometrical
computational problem of complexity NP-hard hence, hypothesis, heur-
istics and other alternatives should be analysed to reach an affordable
solution in a reasonable computing time.

17
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1.b) Design of flexible algorithms regarding specific acquisition system con-
straints in accordance with the field of application. Depending on
whether the acquisition technique consists in TLS or MLS, data ac-
quisition is performed in static or dynamic way requiring to considerate
specific characteristics of each mode as well as the system used. Most of
existing scan planning methods focus on static acquisition, particularly
to TLS, whereas a scan planning adapted to mobile systems acquiring
data in a dynamic way have not been addressed in depth. Because
portable indoor mobile mapping systems reduce acquisition time and
the occlusion level, their use is increasing rapidly, which raises the need
to supply a customised scan planning.

1.c) Planning of routes for performing an efficient data acquisition. Beyond
determining the optimal scanning positions, the trajectory travelling to
reach all scanning locations can have a significant impact on time ac-
quisition or even in data completeness in the case of mobile mapping
systems. The problem of calculating the shortest route passing by all
scanning locations only once can be stated as the well-known Travel-
ling Salesman Problem of NP-hard complexity. In order to find sub-
optimal solutions, simplification of the problem or the use of heuristic
algorithms should be considered.

Indoor understanding is the second key topic addressed in this Doctoral
Thesis covered in Chapter 4. The general objective of this topic consists
in extracting the meaningful semantic information from raw point clouds to
provide context to further indoor navigation. Related specific objectives are
defined as follows:

2.a) Development of methods for room segmentation from raw point clouds
alternative to the strategies commonly employed. Point cloud segmenta-
tion into rooms is a widely implemented process due to the potential of
resulting segmentation for reconstruction and navigation applications.
In robotics area, segmentation is usually approached on 2D floor plans
while most of 3D room segmentation methods require modelling struc-
tural elements. New approaches should be explored with the aim of
advancing the state of the art.

2.b) Development of automated methods for indoor object classification based
on Artificial Intelligence. Deep learning techniques have outperformed
conventional segmentation methods providing the state-of-the-art in
image classification. In contrast image classification, the amount of
available labelled point clouds is scarce and not enough for training
neural network without over-fitting. Both Transfer-Learning and Data
Synthesis are two techniques that are gaining attention to tackle the
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shortage of labelled point clouds. Flawless point cloud objects have
been classified with high performance, however, it decreases signific-
antly with real-world objects arising the need to develop new methods.

Chapter 5 is intended to address route planning, which completes the
planned flow diagram. The main objective of this chapter is the imple-
mentation of route planning for context-based indoor navigation. For this
purpose, the following specific objectives have been proposed:

3.a) Partitioning and structuring of indoor navigable space on basis of con-
textual information extracted from point clouds. How the navigable
space is structured has a high impact in the efficiency and reliability of
indoor navigation. Geometrical partitions can become computationally
expensive and incoherent with agent’s conditions. Spatial partitioning
based on agent’s context lays the groundwork towards an effective con-
textual indoor navigation. Partitions based on contextual information
have been proposed for BIM models, but its implementation with point
clouds is still a challenge. The use of point clouds instead of BIM mod-
els has the advantage of providing more update information about the
current state of indoor.

3.b) Generation of indoor navigation graphs for different scales of spatial in-
formation. For each partition, a different space structuring is obtained
from which a graph should be generated to support indoor navigation.

3.c) Implementation of hierarchical path planning exploiting the graphs gen-
erated from different spatial structures. Graphs generated from parti-
tions provide relations with different contexts and their densities can
range considerably. Hierarchical path planning can be helpful in calcu-
lating accurate routes in an efficient way.
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Chapter 3

Optimised scan planning for
LiDAR data acquisition

3.1. Scan Planning Optimization for Outdoor Ar-
chaeological Sites

Optimización de la planificación del escaneo de yacimientos ar-
queológicos en exteriores

Resumen

La protección y la gestión de los yacimientos arqueológicos requieren de
una profunda documentación y análisis, y aunque la medición y documen-
tación manual es la forma más barata de recopilar datos, el escáner láser se
ha ido integrando gradualmente para la captura de datos geométricos, ya
que las nubes de puntos tienen una gran calidad en términos de exactitud,
precisión y resolución. Aunque la adquisición con escáner láser se considera
un proceso rápido, la planificación del escaneo es de gran relevancia cuando
se trata de sitios arqueológicos en exteriores debido a su gran extensión y
complejidad. En este trabajo se propone una metodoloǵıa automática para
optimizar el número y la localización de los escaneos con el fin de obtener
una nube de puntos de alta calidad en términos de integridad de los datos.
El objetivo de la metodoloǵıa es minimizar el número de escaneos, minimi-
zando al mismo tiempo el tiempo estimado de escaneo y la cantidad de datos
redundantes adquiridos. Los candidatos para el escaneo se generan utilizan-
do una distribución basada en cuadŕıcula y otra basada en triangulación,
y los resultados muestran que el análisis es más rápido cuando se utiliza la
triangulación. La metodoloǵıa se prueba en dos casos de estudio reales de
Italia y España mostrando la aplicabilidad de la planificación del escaneo en
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sitios arqueológicos.
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ABSTRACT: 

 

The protection and management of archaeological sites require from a deep documentation and analysis, and although hand 

measuring and documentation is the cheapest way for collecting data, laser scanner has been gradually integrated for the geometrical 

data capture since point clouds have a high quality in terms of accuracy, precision and resolution. Although acquisition with laser 

scanner is considered a quick process, scan planning is of high relevance when considering outdoor archaeological sites because of 

their large size and complexity. In this paper, an automatic methodology to optimize the number and position of scans in order to 

obtain a point cloud of high quality in terms of data completeness is proposed. The aim of the methodology is to minimize the 

number of scans, minimizing at the same time the estimated surveying time and the amount of repetitive acquired data. Scan 

candidates are generated by using a grid-based and a triangulation-based distribution, and results show a faster analysis when 

triangulation is implemented. The methodology is tested into two real case studies from Italy and Spain, showing the applicability of 

scan planning in archaeological sites.  

 

 

1. INTRODUCTION 

Archaeological sites especially those outdoor sites are 

vulnerable to changing weather patterns and other 

environmental hazards, and their protection and management 

includes a deep characterization and analysis. The full 

characterization of archaeological sites using conventional 

techniques is a long process. The traditional hand measuring 

documenting method is the cheapest way of collecting data. 

However, this is documenting strategy is generally time 

consuming, inaccurate, subjective, and having no coordinate 

reference (Barsanti et al., 2012). For this reason, in the recent 

years, laser scanner has been proposed for the geometrical data 

capture since point clouds have a high quality in terms of 

accuracy, precision and resolution. Laser scanning has already 

proved their impact and the potential on the excavation (Doneus 

and Neubauer, 2005) and the post-excavation phase (Forte at al., 

2012), increasing the quality of the archaeological 

documentation and enhancing the understanding of the 

archaeological sites (Remondino and Campana, 2014). 

Additionally, 3D laser technology contributes to the production 

of three-dimensional models (Balletti et al., 2015), animations 

and illustrations for presentation in virtual museums (Barbieri et 

al., 2018), as well as on the web. The non-contact nature of laser 

scanning allows recording excavated surfaces that are too 

vulnerable to be surveyed by other strategies. For example, laser 

scanning can be fruitfully used to document fragile mosaics, 

organic material and other surfaces that can be damaged by 

contact measurements. In the post-excavation phase laser 

scanning data can be effectively used for different kind of 

purposes and may involve different experts. Indeed, an 

archaeologist might be interested in understanding how one 

feature in the landscape relates to another. For example, 

Entwistle et al. (2009) presents an integration strategy between 

high-resolution 3D site model derived with terrestrial laser 

scanning and soil chemical data obtained from an abandoned 

settlement site to make hypothesis on settlement layout and 

activity. On the other hand, conservators might want to know 

how quickly feature changes. Kincey et al. (2017) and Previtali 

et al. (2018) present a strategy for archaeological site erosion 

monitoring comparing terrestrial laser scans acquired at 

different epochs.  

Since the use of 3D laser scanner in archaeological application 

many have such a large variety of purposes the specific aim of 

the survey is fundamental to define acquisition requirements. 

Measurement accuracy is affected not only by the scanner’s 

typology (e.g., time of flight, phase shift or triangulation based) 

and specifications, but also the scanning configuration and 

conditions. For example, scanning geometry, i.e. the relative 

location and orientation of the TLS with respect to the scanned 

surface, significantly influence the local incidence angle and 

consequently not only the local point density of the laser points 

but also measurement accuracy (Boehler et al., 2003). In many 

cases, a major concern in the scanning procedure is the quality 

in terms of data completeness and the cost in terms of time, 

especially for big archaeological sites. For those reason a good 

planning of the scan location is of primary importance for a 

successful survey. The main aim of scan planning is to define 

the scan positioning in a way that can satisfy the requested level 

of detail and data coverage. Constraints and task requirements 

such as full coverage, overlap ratio, point density, and incidence 

angle are considered in the view planning process. This problem 

has mainly addressed in the case of indoor scan planning and 

robot navigation (Fujimoto et al., 2008). The problem of scan 

optimization was also addressed in more general cases of indoor 

or outdoor environments. Low (2006) presents a specific metric 

for plan optimization in the case of indoor environment. Blaer 

and Allen (2006) present a two-step procedure. In the first step a 

2D map is used to plan a set of initial acquisition. Those 

acquisitions are then used to refine the scan location. Nagatani 

et al. (2010) focus on outdoor scan planning of large buildings 

by using a mobile robot. However, none of those methods is 

specifically designed for acquisition or archaeological sites. 

Instead, Ahn and Wohn (2016) are addressing the issue of scan 

planning optimization for cultural heritage recording, mainly 

buildings. The proposed method is an interactive one and 
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integrates some heuristics. The developed tools support the user 

defining the next best position in a feasible region. 

This paper proposes the implementation of a methodology to 

optimize the number and position of scans in order to obtain a 

point cloud of high quality in terms of data completeness and 

density, and thus, optimizing surveying time.  

The rest of the paper is structured as follows. Section 2 presents 

the methodology implemented. The results of the application of 

the methodology are presented in Section 3. And finally, 

Section 4 is devoted to conclude the work 

 

2. METHODOLOGY 

The methodology implemented in this work is based on 

previous results obtained for building indoors and presented in 

(Díaz-Vilariño et al, 2018). Figure 1 represents the general 

workflow of the methodology.  

 

 
 

Figure 1. Workflow of the methodology.  

 

2.1 Delineation to CAD and Discretization to create 

Occupancy Maps 

Scan planning for big outdoor archaeological sites starts with 

the analysis of aerial orthoimages showing the extension and 

elements to acquire. The methodology is designed for the 

analysis of CAD – Computer Aided Design- files in which the 

elements of interest are represented in layers organized by 

element type. This organization of elements by semantics is 

used in future steps for planning the acquisition according to 

specific elements of interest. Therefore, the first step of this 

methodology is the manual delineation of orthoimages to CAD. 

In addition to the representation of archaeological elements such 

as walls, or columns, one layer is specifically devoted to 

represent the extension of the archaeological site, that is the 

exterior boundary of the navigable space.  

Because geometric elements are represented in CAD by a small 

set of parameters, i.e. a line is represented by a starting point 

and an ending point, they need to be discretized into equally 

distributed points to facilitate further analysis, specially 

visibility analysis (Section 2.3.). Next a binary occupancy map 

is created to determine the space occupied by archaeological 

elements and the space that would be free to position the scan in 

order to capture the scene, what we further call ‘navigable 

space’.  

 

2.2 Space Discretization 

Space discretization consists on distributing the navigable space 

into candidate scan positions, known as those theoretical places 

in which the scan can be placed. This step is critical in terms of 

processing time since visibility analysis (Section 2.3.) is highly 

influenced by the number of positions to analyse, and the effect 

is more pronounced as bigger is the area of study. The 

distribution of candidate positions can be carried out using 

different patterns such as grids, triangulations or tessellations. 

When the space is discretized in a grid, spatial resolution has to 

be defined. This parameter depends on the parameters of 

acquisition given by the sensor, such as laser range, and the 

point cloud density we want to obtain (Figure 2).  

 

 
 

Figure 2. Schema of the discretization process when using a 

grid-based structure.  

 

Complex floorplans usually require from high-density grids, but 

the analysis is very time consuming. Therefore, in this work a 

procedure based on the Delaunay triangulation is implemented. 

For this purpose, the vertices of lines defining elements of 

interest (i.e. lines and polylines depicting walls) and centres of 

circles such as in case of columns, are used as input points for 

the triangulation. When the line has a size higher than a certain 

threshold, dmax, the line is subdivided in order to generate points 

acting as input points in addition to vertices (Figure 3). In this 

way, the geometry of the elements of interest is taken into 

account for distributing the navigable space, but the number of 

candidate scan positions are much lower.  

 
 

Figure 3. Schema of the discretization process when using a 

triangulation-based structure.  

 

The limits of the navigable space are defined by the polyline 

representing the extension of the archaeological site and the 

archaeological elements themselves. According to the 

dimensions of the platform in which the laser scanner is going 

to be placed (i.e. a tripod a robot, etc.), a security distance is 
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taken into account to discard those candidate positions too close 

to the limits of the navigable space and vertical elements.  

 

 

2.3. Visibility analysis and Optimization.  
 

Once candidate scan positions are determined, visibility analysis 

is performed to determine the theoretical area of the 

archaeological site that would be scanned. For this purpose, a 

ray-tracing algorithm is implemented (Figure 4). The algorithm 

is designed to perform the study within the neighbouring space 

(laser influence zone) in order to decrease computing time.  

 

 
 

Figure 4. The principle of the ray-tracing algorithm (Díaz-

Vilariño et al, 2018). 

 

Most of elements of the scene are visible for more than one 

candidate position. Consequently, scan positions have to be 

selected in a way that acquisition is optimal. In this work, 

optimization is performed to minimize the number of scan 

positions taking into account a certain coverage as stopping 

criteria. A back tracking algorithm is used to obtain the optimal 

scan positions.  

 

3. EXPERIMENTAL SECTION 

The methodology is tested in two real case studies. The first 

case study corresponds to the Roman Site “Aquis Querquennis” 

placed in the autonomous region of Galicia (Spain), and the 

second case study is the Roman City “Herdonia” in the province 

of Foggia (Italy). 

 

3.1 Case study 1. The Roman Site “Aquis Querquennis” 

(Bande, Spain) 

“Aquis Querquennis” was a military camp from Roman times, 

in Bande (Galicia, Spain), on the banks of the Limia river. Its 

occupation dates from the last quarter of the first to the middle 

of the second centuries. The encampment was likely built to 

monitor the construction of the roads communicating the cities 

of Bracara Augusta (Braga, Portugal) and Asturica Augusta 

(Astorga, Spain) (Puente et al, 2018). 

As it can be observed in Figure 5, the settlement presents a 

classic layout with a rectangular shape and two main orthogonal 

paths and the area of study occupies 3 hectares. 

The elements of interest are discretized into points using a 

separation distance (dl) of 100 mm for linear elements and a 

separation distance da = dl/radio for angular elements. 

Afterwards, the navigable space is distributed into candidate 

positions by using a triangulation-based procedure because of 

the high dimension of the case study (3 hectares). As it is shown 

in Table 1, triangulation enables a faster processing since less 

candidate positions are generated. For the generation of input 

points, dmax is considered 2.5 m meaning that lines or segments 

with higher dimension to dmax are subdivided to increase the 

density of vertices used as input points.  

 

 
 

Figure 5. Situation of the Roman site ‘Aquis Querquennis’ in 

Bande (Spain) (Source: Google Maps).  

 

From the ortoimage, the archaeological site has been delineated 

to CAD in hich walls and columns are organized in separated 

layers according to four zones depicted in Figure 6 with 

different colours.   

 

 
 

Figure 6. Distribution of ‘Aquis Querquennis’ in layers 

according to semantics.   

 

Taking into account a security distance of 0.5 m, 1559 candidate 

positions have been generated. Next, visibility is analysed for 

all candidate positions considering a laser range of 10 m. Before 

visibility analysis, the scene is rotated with an angle of 51º 

clockwise to orientate elements in a way that they are parallel to 

x and y axes as much as possible.  

After optimization, 208 scan positions were obtained for an 

90% of coverage considering the whole scene (Figure 7). From 

a practical point of view, if we consider 30 mins and 10.9x106 

points per scan (assuming a configuration of Faro Focus x330), 

the complete acquisition of case study 1 will involve 104 hours 

and will result into 2267.2x106 points. This estimation 

highlights the importance of acquisition planning in 

archaeological sites.  
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Figure 7. Candidate positions (in grey), scanning positions (in 

red) and scanned points (in green).  

 

Since the elements of interest are distributed in layers according 

to semantics, the analysis can be directed to a specific zone. In 

order to show the differences between applying a grid-based or 

a triangulation-based discretization, Zone B is processed (Figure 

8 and 9).  

The results for applying a grid-based structure are shown in 

Figure 8. In Figure 8.a, all candidate positions are visualized in 

red. They were obtained by applying a 1.0 m spatial resolution 

to the navigable space and considering a security distance to 

building elements of 0.5 m. After visibility analysis (10 m of 

laser range) and optimization (90% of coverage), 42 scan 

positions were obtained (Figure 8.b.). The theoretical area to be 

acquired by the selected scan positions is represented in green.  

 
 

Figure 8. a) Candidate positions following a grid-based 

structure and b) scan positions after visibility analysis and 

optimization.  

 

The results obtained for a triangulation-based discretization are 

shown in Figure 9. The input parameters in terms of security 

distance, laser range coverage are the same as in the grid-based 

test. However, in this case, the number of candidate positions is 

much lower and consequently, the processing time is fewer. The 

results show a number of scan positions higher to fulfil the 

coverage condition.  

 

In Table 1, a summary of quantitative results is shown for the 

zone represented in Figures 8 and 9. It is prominent the higher 

number of candidates and processing time for a grid-based 

structure.  

 

Table 1. Comparison of results for a grid-based and a 

triangulation based discretization for the zone represented in 

Figures 8 and 9.   

 

 Grid-based 

structure 

Triangulation-

based structure 

Candidate positions 1392 239 

Scan positions 42 46 

Processing time for 

candidate generation (s) 

63.4 3.34 

Processing time for 

visibility analysis (s) 

198.92 26.87 

 
 

Figure 9. a) Candidate positions following a triangulation-based 

structure and b) scan positions after visibility analysis and 

optimization. 

 

3.2 Case study 2. The Roman City “Herdonia” (Foggia, 

Italia) 

“Herdonia” is a Roman city placed in the province of Foggia 

(Italy). Although the ruins of Herdonia were discovered after 

the Second World War, nowadays they are just partially 

excavated (Figure 10). The city reached its maximum 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W11, 2019 
GEORES 2019 – 2nd International Conference of Geomatics and Restoration, 8–10 May 2019, Milan, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W11-489-2019 | © Authors 2019. CC BY 4.0 License.

 
492



 

development from the first to the fourth centuries due to the 

construction of the Via Traiana and Via Herdonitana. At that 

time, the city was an important transit and commercial centre.  

 

 
 

Figure 10. Situation of the Roman site ‘Herdonia’ in Foggia 

(Italy) (Source: Google Maps).  

 

Next, as in the first case study, the Roman site ‘Herdonia’ has 

been delineated to a CAD file, and layers have been discretized 

into points for enabling the visibility analysis (Figure 11).   

 

 
 

Figure 11. a) ‘Herdonia’ case study after delineation and 

discretization, b) a visualization of a small area to observe the 

discretization.  

 

‘Herdonia’ case study was processed using the same parameters 

as in ‘Aquis Querquennis’ case study: element discretization of 

100 mm, 10 m of laser range, 0.5 m of security distance, and 

90% of acquisition as stopping criteria. In this case, the scene 

was processed without rotation.  

As a result, a total of 3025 candidates were generated, and from 

them, 128 positions were selected as final scan positions (Figure 

12). Assuming an acquisition with Faro Focus x330 (488/2X), 

and estimating 30 mins and 10.9x106 points per scan, the 

complete acquisition will involve 64 hours of work, and 

1395.2x106 points.  

 

 
 

Figure 12. Candidate positions (in grey), scanning positions (in 

red) and scanned points (in green) for the case study. 

 

 

4. CONCLUSIONS 

In this paper, an automatic methodology to optimize the number 

and position of scans for the surveying large archaeological 

sites is proposed. The methodology aims to optimize the 

number of scans in an order to obtain a point cloud of high 

quality in terms of data completeness.  

Although the problem of scan planning has been mostly 

considered for indoors, the planning of an acquisition for 

archaeological sites is of special interest because of the big area 

they cover and because of the complexity of archaeological 

remains.  

The methodology is tested in two real case studies: ‘Aquis 

querquennis’ in Galicia (Spain) and ‘Herdonia’ in Foggia 

(Italia). Results depend on several parameters such as laser 

range and security distance, that can be configurable depending 

on the sensor and platform considered for the planning. In 

addition, two different configurations for discretizing the 

navigable space into candidate positions are evaluated. From the 

results, we can conclude that a triangulation-based distribution 

is more suitable for large areas of study since the number of 

candidate scan positions is lower, and consequently, the 

processing time is faster, especially for visibility analysis.  

Since the objective of the implementation is to optimize the 

acquisition by minimizing the number of scan positions, and 

consequently, minimizing the scanning time and the amount of 

data, overlapping between scan positions is not ensured. In this 

context, manual registration could be difficult when the real 

position and orientation of scans is not known. In case of using 

a robotic platform to implement and Stop & Go acquisition, and 

in which the navigation is performed by using SLAM, the 

position and orientation given by the robotic platform would 

enable a rough registration that could be refined next (Díaz-

Vilariño, et al, 2018).  

In addition to minimize the number of scans, for future work, 

optimization will consider the maximization of the uniformity 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W11, 2019 
GEORES 2019 – 2nd International Conference of Geomatics and Restoration, 8–10 May 2019, Milan, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W11-489-2019 | © Authors 2019. CC BY 4.0 License.

 
493



 

of point cloud density. Combination of terrestrial and aerial 

point cloud acquisitions will also be explored for large 

archaeological sites. And efforts in this line will be directed to 

develop automatic methodologies to process and extract useful 

information from the data.  
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3.2. From BIM to Scan Planning and Optimiza-
tion for Construction Control

Del BIM a la planificación y optimización del escaneo para el
control de la construcción

Resumen

La planificación del escaneo de los edificios en construcción es una cues-
tión clave para una evaluación eficaz del progreso de las obras. Este tra-
bajo presenta un método automático destinado a determinar las posiciones
óptimas de escaneo y la ruta óptima basándose en el uso de Modelos de
Información de Edificios (BIM) y considerando la completitud de los datos
como criterio de parada. El método se plantea para un Escáner Láser Te-
rrestre montado en un robot móvil siguiendo un procedimiento de stop&go.
El método comienza extrayendo planos del modelo BIM según el estado de
construcción previsto, incluyendo la geometŕıa y la semántica de los elemen-
tos del edificio considerados para el control de la construcción. El espacio
navegable se define a partir de un mapa binario considerando una distancia
de seguridad a los elementos del edificio. Después, una distribución basada
en grid y una distribución basada en triangulación son implementadas para
generar candidatos de posición de escaneo, un análisis de visibilidad se lleva
a cabo para determinar el número y la posición óptimos de los escaneos.
La ruta óptima para visitar todas las posiciones de escaneo se aborda me-
diante un algoritmo probabiĺıstico de optimización de colonia de hormigas.
El método se ha probado en edificios simulados y reales en condiciones y
elementos estructurales de construcción muy dispares. Se evalúan los dos
enfoques para la generación de posiciones de escaneo candidatas Los resul-
tados muestran que la distribución basada en triangulación es el enfoque
más eficiente en términos de procesamiento y tiempo de adquisición. espe-
cialmente para edificios de gran tamaño.

Palabras clave:

BIM, control de ejecución, scan-vs-BIM, planificación de rutas, visibili-
dad, análisis espacial, geometŕıa computacional
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Abstract: Scan planning of buildings under construction is a key issue for an efficient assessment
of work progress. This work presents an automatic method aimed to determinate the optimal
scan positions and the optimal route based on the use of Building Information Models (BIM) and
considering data completeness as stopping criteria. The method is considered for a Terrestrial Laser
Scanner mounted on a mobile robot following a stop & go procedure. The method starts by extracting
floor plans from the BIM model according to the planned construction status, and including geometry
and semantics of the building elements considered for construction control. The navigable space is
defined from a binary map considering a security distance to building elements. After a grid-based
and a triangulation-based distribution are implemented for generating scan position candidates, a
visibility analysis is carried out to determine the optimal number and position of scans. The optimal
route to visit all scan positions is addressed by using a probabilistic ant colony optimization algorithm.
The method has been tested in simulated and real buildings under very dissimilar conditions and
structural construction elements. The two approaches for generating scan position candidates are
evaluated and results show the triangulation-based distribution as the more efficient approach in
terms of processing and acquisition time, especially for large-scale buildings.

Keywords: BIM; control of execution; scan-vs-BIM; path planning; visibility; spatial analysis;
computational geometry

1. Introduction

The evolution of sensor technology in recent decades has made possible the acquisition of 3D
data in an accurate and quick way. This has stimulated interest in its use in different fields, especially
in Architecture, Engineering and Construction (AEC). Within these disciplines, Image-Based and
Time-of-Flight-Based technologies have been the two major technologies used to acquire spatial data [1].

Light Detection and Ranging (LiDAR) sensors such as both Terrestrial and Mobile Laser Scanners
(TLS and MLS) provide highly accurate geometric data in point cloud format. While data acquisition
process by TLS is statically realized from specific locations, MLS dynamically captures spatial data
along a trajectory [2]. Increasing 3D spatial acquisitions with LiDAR devices has raised an interest
in automated processing of point clouds in researchers of remote sensing, computer vision and
robotic communities.

The availability of geometric information of the construction elements “as is” with high accuracy
has motivated the use of TLS in the construction industry. This information, known as as-built data,
is of great value for construction site monitoring [3]. Traditionally, the assessment of construction
elements was done manually—both the data collection process and the data review process—that
meant to inaccurate and error-prone evaluations. Since the 2000s, several researchers have pointed to
the need to automate the processes of monitoring and control of the progress of the construction in
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order to overcome the inaccuracies of manual methods [4,5]. In line with this, some methods have
been proposed [6,7].

While TLS provides accurate 3D data, in many instances planned drawings consist of 2D plans
that makes the quality control of constructed building elements difficult. Fortunately, the growing use
of Building Information Models (BIM) makes 3D drawings available [8], and what is more important,
the organization of information according to the planned construction status. Several studies have
indicated that the use of BIM technology in construction projects improves the construction quality
control process because the availability of BIM models is essential to accurately compare as-designed
and as-built building components [9,10].

The increased use of BIM models, together with the use of scanning lasers in civil engineering,
has awakened interest in the integration of both in recent decades. Many efforts have focused on
the automatic generation of BIM models from 3D point clouds acquired as-built for the purpose of
obtaining models of real structural elements with an accuracy of a few millimeters [11]. This technique,
coined as scan-to-BIM, continues to be studied in order to optimize the entire process through the
development of applications that allow BIM models to be generated automatically and efficiently [12].
However, this technique is not suitable for tracking the progress of construction elements, as the
unambiguous identification of objects is not guaranteed. Scan-vs-BIM approach is conceived as the
comparison of scan data and BIM model by aligning 3D point clouds in the same coordinate system as
the BIM model [13].

Generally, scanning is a time-consuming task, so minimizing the number of scanning operations
is essential for efficient scanning planning. In addition, data acquisition must be successful in terms of
integrity. Determining the next position in which the scanner should be placed is known as the Next
Best View (NBV) problem, and is widely addressed in the areas of 3D recognition and reconstruction of
both objects and environments. Usually, scan positions known as viewpoints are calculated beforehand,
and then an estimate is made of the parts of the scene that would be acquired from each viewpoint.
Many methods have been proposed to solve this problem, most of them without prior knowledge of
the scene [14,15]. If data acquisition is done in indoors, 3D scene data can be simplified to 2D map,
which implies a significant reduction in computational requirements [16].

In this work, a method to determinate the optimal scan positions and the optimal route followed
by a stop & go system based on the use of BIM models, and considering data completeness as stopping
criteria, is presented. BIM models are used to extract floor plans according to the planned construction
status considered for construction control. The well-known DXF standard containing geometric
information of the building elements is used to calculate candidates to scan positions, which are
subsequently submitted to a visibility analysis using a ray-tracing algorithm. Next, scan positions are
optimized based on visibility and data completeness as stopping criteria, and a probabilistic ant colony
optimization algorithm is implemented to obtain a suboptimal route in a reasonable time. The output
data of the algorithm is used by a robotic unit, where a TLS is mounted, to conduct an autonomous
building acquisition. This work specifically addresses the following specific objectives:

• To compare two methods of scan position distribution (grid-based and triangular-based) and
select the one that shows the most robust behavior.

• To design a method adapted to the building complexity.
• To consider acquiring vertical elements, such as beams, from a two-dimensional perspective.
• To implement a route calculation and optimization method that joins scan positions

avoiding obstacles.

The remainder of the document is structured as follows. Section 2 collects the work related to the
problems present in our method which is described in Section 3. The experiments and results shown in
Section 4 demonstrate the applicability of the method. Finally, Section 5 is dedicated to concluding
the work.
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2. Related Work

This section deals with the review of the recent literature on scan planning in indoor environments
mostly for control of execution, followed by a review of methodologies addressing the distribution of
the navigable space.

2.1. Scan-Planning in Indoor Environments

The planning of 3D data acquisition task is a typical issue in computer vision. Generally, a sensor
is used to collect geometric data of close objects in the environment. The quality of the acquired data
is highly dependent on the position where the sensor is located with regard to the target. Hence,
determining the best positions to carry out data acquisition is a key issue in scan-planning.

Scan-planning can be classified as model-based or non-model-based whether previous knowledge
of the scene is available or not available, respectively [17]. If the scene is previously known, optimal
scan positions are selected from the analysis of the scene, so that scan positions are determined before
of the scanning process. If the scene is not known, the problem is generally formulated as an NBV (Next
Best View) problem by which the next best scan position is determined after each scan, considering
just the partially acquired scene.

Several methodologies address scan-planning of buildings assuming previous knowledge of the
scene. Although this issue is well-known in computational geometry as the art-gallery-problem, a
realistic solution should consider certain properties of both the sensor and the objects to be acquired.
A variant of the art-gallery problem, taking into account laser constraints such as range and incidence
angle, is proposed by González-Baños [18]. A 2D map composed by polygons representing the
navigable space and holes assumed as obstacles influencing visibility. The navigable space is randomly
sampled to generate an arbitrary number of candidate positions. Then, a ray-sweep algorithm is
proposed to obtain a visibility polygon of every candidate position and the selection of scan positions is
approached as a set cover problem. This methodology is extended by including more laser constraints
such as the minimum and maximum range and angle [19]. A similar solution is proposed by
Soudarissanane et al. [16], but in this case, the navigable space is gridded to generate the candidate
positions and the visibility analysis of all positions can be time-consuming when dealing with large
facilities. Jia et al. [20] propose a more efficient approach to candidate generation. A coarse grid is used
for obtain a first set of positions, their suitability for acquisition is evaluated for a proposed Weighted
Greedy Algorithm (WGA). A hierarchical strategy is carried out to densify the network distribution in
order to achieve a comprehensive scan of the scene by evaluating the smallest number of candidates.
The method is geared to outdoors environments and only walls are considered. Biswas el al. [21]
also employ a grid to generate candidate positions. Nevertheless, visibility analysis is carried out
in the 3D space and semantic information of building elements is obtained from the input model to
direct the capture just to structural elements. The input model is a BIM and the approach is validated
in a simple scene with circular columns uniformly distributed. Another recent approach is the one
presented by Elzaiady [22] in which polygons are extracted from an occupancy grid map (input).
Boundaries of polygons represent surfaces whose geometrical features should be collected by sensor.
Occlusions along the line of sight of sensor are taken into account for the visibility analysis but the
presence of holes on floors and the occlusions caused by the existence of horizontal structural elements
such as beams are not addressed. An approach aimed at scanning planning in large construction
environments is proposed by Zhang et al. [23]. Scanning positions are calculated from a set of manually
determined input points of interest called point goals. The optimization of process is conducted by a
“divide-and-conquer” strategy that groups point goals according to required level of detail (LOD) and
visibility. The method is tested and compared with scan plans created by experts in a real case from
outside the building.

Almost all model-based approaches provide blanket coverage; in other words, they do not take
advantage of semantic information from planned layouts, and more specifically, building horizontal
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elements such as beams or slabs are not taken into account. This information is relevant to direct the
scan acquisition to specific elements, such as, in the case of construction control and execution.

The recent developments in robotics and laser scanner technology have increased the attractiveness
for indoor acquisition, especially when scenes are big and traditional acquisition would be very time
consuming, and also in the case of unsafe environments such as industrial environments and electrical
substations. When data collection is conducted autonomously, the scan planning is commonly
formulated as the aforementioned NVB problem.

Although most of the recent methods are based on discretizing the space using 3D grids, some
methods have proposed the simplification of the problem into the 2D space. Surmann et al. [24]
simplify the geometry of a room to a 2D map, where horizontal lines represent walls and are labelled
as seen or unseen lines. A polygon is generated connecting seen lines and the navigable space is
determined by the boundaries of the polygon. Candidate positions are randomly generated and
evaluated by laser beam simulation varying incidence angle. Strand et al. [25] propose an approach
also based on projecting 3D data to a 2D map. In this case, each cell of the map has information about
occupancy. Empty cells are considered as candidate positions and a simulation of the laser beam is
performed from each of them.

The concept of a 3D occupancy map has been highly explored to solve the NBV problem.
Potthast et al. [26] propose a method based on observation probability. Using a ray-tracing algorithm,
the observation probability of each cell is assigned according to Markovian observability. The method
is tested in real case studies and large virtual cluttered environments.

In contrast to the previous work in which a binary map is generated, Adán et al. [27] label
the space into occupied, empty and occluded units. For this purpose, the scene is voxelized and
ceiling and floor are extracted to determine the boundary of scene. Next, a ray-tracing algorithm is
implemented to label the voxels into occupied, empty and occluded. Next, the voxel space is projected
to a 2D image with labelled pixels, and the next scanning position corresponds to the empty pixel from
which the largest number of occluded pixels are observable. Quintana et al. [28] extend the previous
work in a way that the NBV problem is devoted to completing the acquisition of building structural
elements, and consequently, floors, walls, columns and ceilings are recognized in successive scans.
Prieto el al. [29] also consider the automatic 3D scanning of walls, ceilings and floors in furnished
buildings. The accumulated spatial data is registered using an ICP (Iterative Closest Point) algorithm,
and an obstacle map is constructed. Voxels are classified and evaluated by probabilistic decision
function from a set of candidate positions within the obstacle map. The next scan position is chosen
according to the probabilities calculated in the previous step. González-de Santos et al. [30] extend
previous approaches to also consider windows and doors, which are identified through a visibility
analysis. In this way, once acquisition is completed for one room, the existence of doors determines
subsequent next best scans.

With regard to previous approaches, this work focuses on the selection of optimal scan positions
and the calculation of the optimal route that connects them. Since the method uses a BIM as input, the
environment and the types of elements that compose it are known. The authors have opted for a 2D
approach for two reasons: the TLS is positioned at a fixed height in the robotic unit, and processing time
is improved by eliminating one spatial dimension. Route planning is typically ignored in scan-planning
approaches. In this work, a probabilistic ant colony optimization algorithm is implemented considering
the building geometry. The subsequent registration process between scans is not part of the present
work, although it has been considered an option to place scanning positions on the doors to facilitate
the overlap between scans. The method is tested in real and complex scenarios with satisfactory results.

2.2. Discretization of the Navigable Space

Scan planning requires an initial evaluation of accessibility to scan positions for the acquisition
system. To accomplish this, the knowledge of space through which the system can move free of
collisions is essential. The distribution, structuration or discretization of this space, commonly defined
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as navigable space, is a key process in scan planning. The challenge of this process comes from the
continuous nature of the navigable space and the influence of the result on the computational cost of
subsequent steps, especially in complex scenes. The discretization of the navigable space should be
carried out in a way that it is represented by the minimum number of units satisfying the accuracy
required by the application. Detailed reviews of how indoor space can be represented have already
been published in recent years [31,32].

The simplest representation of an indoor navigable space is the adopted by standards such as
IndoorGML to depict the connectivity relations between rooms. One node represents one room and
topology between rooms is represented by using the dual graph [33]. However, this representation is
often too simple to be representative of a real path, especially for large scenes [34].

Methods based on Medial-Axis-Transformation (MAT) are used frequently to represent indoor
environments (rooms, corridors, etc.) in order to stablish topological relations between spaces [35,36].
Lee [35] proposes a MAT-based method for generating skeleton structures of simple polygons from
geometric information only; the algorithm was named Straight-MAT. Another approach based on
centerline algorithm and considering previous semantic knowledge is used by Meijers et al. [36] to
represent corridors.

In contrast to previous methods, grid-based representations provide a dense and uniform
structuration of the navigable space [37]. However, the trade-off between resolution and computational
effort is an inherent issue in regular grid techniques. A fine-grained grid entails a high consumption of
computational resources especially in the processing of large environments models [31].

Due to their simplicity, grid-based representations are widely used in robotics for the creation of
occupancy maps. These representations can be addressed from a 2D [38–40] or 3D [41] point of view.
For example, Li et al. [40] structure the navigable space as 2D squared cells represented by one node
and identified by an attribute according to the building element they represent. Bemmelen et al. [38]
extend the latter structure adding nodes at sides of squares with the goal to enable more directions
between adjacent cells during space navigation. Joo et al. [42] generate a topological grid-map by
means door detection from grid occupancy map. Equivalent three-dimensional grid discretization is
known in literature as “voxelization” and the unit basic of this structure is a voxel.

To enhance efficiency of operations with high density grid representations,
hierarchical-organization structures such as quadtrees [42] and octrees [43,44] are commonly
employed in 2D and 3D spaces respectively. Detailed representation is obtained by means of the
recursive subdivision of cells or voxels.

Voronoi diagrams are also one of the most fundamental data structures in computational
geometry [45]. The plane is partitioned in polygonal regions called Voronoi regions from a set of
points. The generalization of Voronoi Diagrams (VD) allows the space partition not only from a
set of points but also from line segments [45]. Based on VD, Wallgrün [46] proposes a hierarchical
network graph for mobile robot navigation. Vertex of Voronoi Diagram are labelled with information
of distance and angles related to seed points that correspond to obstacles boundaries. Length of edges
and relative position of nodes are also taken into account. Next, this information is used to determinate
the relevance of each vertex in the navigational network.

Boguslawski et al. [47] use VD to create the proposed Variable Density Network (VDN). First, each
subspace (such as rooms and corridors) is represented by a cell and abstracted as a node. Adjacency of
subspaces is represented by linking their respective nodes with an edge. Then, VD is generated from
door nodes and concave corners of the previous structure. An iterative process of re-densification is
carried out considering two arbitrary parameters. New points are added to the original VD for those
cases in which segments are longer than a certain threshold. The number of iterations is limited.

Many navigational approaches are based on a dual representation of VD known as Delaunay
Triangulation (DT). This technique consists in the union of initial sites of adjacent Voronoi regions
generating a partition composed of triangles. In navigational network construction it is common
to impose restrictions to the segments that form the triangles, this variant of the method is called
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Constrained Delaunay Triangulation (CDT). Lamarche et al. [48] structure virtual complex environments
into convex cells applying a two-step division process. First, narrowness in navigable space are
detected by using a modified CDT. Then, resulting space division is simplified grouping triangles into
convex cells.

Space navigable division is also carried out in two phases by Krūminaitė et al. [49]. In the first
stage, the space is classified as navigable and non-navigable according to previously defined patterns of
human behavior. The second step consists of the division of navigable space by means a CTD. Centroids
of triangles obtained in the previous step are calculated and joined to design a navigation network.

A recent method considers a classified point cloud as a model itself for navigational purposes [50].
Segments of point clouds corresponding to floor elements, previously classified as ramps, steps, etc., are
downsampled, considering a minimum distance between points, and resulting points are considered
the nodes of the navigational graph [49].

With regard to previous approaches, it has been observed that the grid-based algorithm presents
an unwanted behavior in large and complex floor plans. For this reason, together with the grid-base
method, a triangulation-based method has been implemented to give the end user the option to choose
the most appropriate distribution for their case study. Both methods have been compared in terms of
density and distribution of scan positions, which is a critical issue in large and complex scenes. When
delimiting the navigable and accessible space by the robotic unit, its parameters have been considered
in order to delimit these spaces correctly.

3. Methodology

The general workflow of the method is represented in Figure 1. The input of the method is a BIM
model in which building information is managed according to an execution plan, and outputs are the
optimal scan positions and the optimal route for visiting all scan positions once.
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Figure 1. General workflow of the method.

3.1. From 3D to 2D

As this method is planned for large-scale buildings, 3D BIM elements are converted to a 2D
plane in order to lighten computational effort [16]. Scan process is planned for an acquisition system
considering the plane XY. For this purpose, BIM elements are exported to DXF according to the planned
construction status that is considered for control of execution. Semantic information regarding the
nature of the building elements is preserved as layer names, what enables the direct acquisition process
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to relevant elements. Then, geometric elements referred as entities in CAD (i.e., lines, polygons, arcs
and circles) are discretized as equidistant points E to be used for further steps (Figure 2).Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 26 
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equidistant points.

In the case of linear elements represented by vertices, such as lines and polygons, the number of
points E of each straight line is determined as the minimum number of segments of length ddis needed
to represent the entire line. In elements represented geometrically by a central point and radius, such
as circles and arcs, the discretization points E are generated according to the angular resolution defined
by the following equation:

resang =
ddis

radius
(1)

3.2. Discretization of the Navigable Space

The space through which the acquisition system can move free of collisions is considered as the
navigable space. Consequently, it can be easily defined by the boundary of floors, considering the
space occupied by vertical building elements and a security distance dsec determined by the robotic
unit dimensions. The distance dsec is defined by the user as the minimal distance between central point
of the platform and the nearest obstacle. In case of rooms connected by doors, the door width must
ensure accessibility.

The continuous nature of the navigable space requires a discretization in a way that is it distributed
into candidate scan positions, known as those theoretical places, in which the scan can be placed.
The number of scan positions highly influences the computational cost of the process. Therefore,
discretization should be performed in a way that navigable space is correctly represented by the
minimum number of points.

Contour of the navigable space is represented as the boundaries of a polygon P (Figure 3a).
Polygons are defined by a set of vertices organized in counterclockwise direction V = {v1, . . . , vn}.
In case of the existence of holes in the navigable space, vertices are defined clockwise. This representation
is typical from early stages of the construction process in which rooms are not still constructed, and holes
are caused by the planning of stairs, elevators, pipes, etc. If rooms are represented, P is decomposed in
smaller navigable polygons Pn (Figure 3b). This subdivision only indicates when constructed walls
separate different spaces. In which case, polygons define navigable space P = {P0, . . . , Pr}, where Pi

with i = 0, . . . , r corresponds to the polygon that represents the room i. As well as P, each Pi can be
defined by its vertices Vi = {Vi1, . . . , Vim}, where m is the number of vertices each room/corridor.
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3.2.2. Triangulation-Based Distribution 
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Figure 3. Geometric representation of navigable space (a) in case of the existence of holes and columns
(blue lines), (b) in case of the existence of rooms.

3.2.1. Grid-Based Distribution

The implemented grid-based method consists in a regular tessellation that provides a partition
of the space in regular squared cells Pn = {Cn1 ∪Cn2 ∪ . . .∪Cnm} Pn (Figure 4a). If rooms Pn are
represented in the DXF, the space partition is carried out separately by each room. A local coordinate
system is adopted to distribute the candidate scan positions and grid resolution is adjusted to room
size (Figure 4b).
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systems are represented.

The vertices of cells Vc, that compose the grid Cn = {Vcn1, Vcn2, Vcn3, Vcn4} constitute the candidate
positions Scand = Vc. Grid-based methods yield uniform and dense space divisions. However, the size of
candidate positions obtained from this distribution may involve higher computational costs, especially
in larger scenes. The existence of holes H and a security distance dsec defined by the robotic unit are used
for filtering final candidate scan positions {Scand : Scand ∩H} ← ∅ and {Scand : |Scand, E| < dsec} ← ∅ ,
those in which the system can be placed to perform acquisition (Figure 4).

3.2.2. Triangulation-Based Distribution

Complex floorplans usually require high-density grids, but the analysis is very time consuming.
In order to overcome the limitations of grid-based distribution, a triangulation distribution based on
the well-known Delaunay Triangulation is implemented (Figure 5).
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Figure 5. Workflow of the triangulation process.

Before applied Delaunay Triangulation, seed points Se are necessary to generate a Voronoi
diagram. Vertices V of lines defining building elements (i.e., walls) and centers of circles C (i.e., circular
cross-section columns) are used as seed points for Voronoi process Se ← {V, C} . In case the distance
between input points is higher than dmax, new seed points Se are generated. The Euclidean distance d of
each segment is calculated and compared with a distance dmax. Segments d > dmax are split generating
new evenly spaced points. Figure 6 shows a schema of the seed generation approach. In the case of an
early stage of the construction, in which the floor plan is not divided into rooms, floor contour vertices
and column centers are considered as seed points. In the case of an indoor scene divided into rooms
Pi, each room is individually processed, analogue to Section 3.2.1. In the Voronoi process, new seed
Si points in the interior of the room are generated. Se and Si are used as input for the discretization
process based on a Delaunay Triangulation. This step is essential for a good distribution of candidate
scan positions, especially in big rooms with simple geometry.
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with side < dmin and (c) polygon with side < dmin.

Once seed points {Se, Si} are obtained and Delaunay Triangulation is implemented, candidates
to scan positions Scand are filtered in order to discard those candidates out of the navigable space or
representing low-interest areas (Figure 7). In the first case, triangles whose centroid are outside of the
navigable space are removed from the selection. This happens mainly in concave spaces. In the second
case, triangles with very small angles and sides are discarded considering by angle αmin Equation (2),
being lmin the minor side of the triangle. Also, the candidate positions must fulfil with the constrains of
dimension and mobility of the robotic unit.

sin(αmin) =
lmin
6lmin

(2)
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polygon that contains navigable space may be concave, some positions obtained after the division
can fall out of navigable space (orange). Small triangles are discarded according the parameters lmin

and αmin (yellow). (b) A filtering process is conducted to retrieve positions are inside navigable space
(points generated by Voronoi process are included). Subsequently, points near obstacles are discarded
(red) according to the defined security distance.

One weaknesses of candidate position generation by using a triangulation method is that the
density of candidate positions may be insufficient to provide a good coverage. Density is defined as the
ratio between the number candidate positions Scand and the polygon area containing them. In order to
ensure an acceptable density, triangulation is iterated for those rooms with density inferior to densmin,
generating new candidates.

3.3. Visibility Analysis

In order to evaluate the suitability of each candidate scan position and to determinate the coverage
of the scene, a visibility analysis is performed for all candidates Scand. This process is based on a ray
tracing algorithm that simulates the laser beam and establishes the surface theoretically acquired by a
laser scanner taking into account scanner range r and field of view v.

For this purpose, the implemented method (Figure 8a) is similar to Diaz-Vilariño et al. [51].
Candidate positions are located in a binary occupancy map I = (Ix,Iy). Then, the cells crossed by rays
simulated between laser position and target cells (all cells in the field of view and range of the laser)
are calculated by Bresenham´s line algorithm [52]. After this step, visible cells for each candidate to
scan position are obtained Iv.

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 26 

 

 
Figure 7. Navigable space is partitioned by applying Delaunay triangulation process. (a) Since the 
polygon that contains navigable space may be concave, some positions obtained after the division can 
fall out of navigable space (orange). Small triangles are discarded according the parameters lmin and 
αmin (yellow). (b) A filtering process is conducted to retrieve positions are inside navigable space 
(points generated by Voronoi process are included). Subsequently, points near obstacles are discarded 
(red) according to the defined security distance. 

One weaknesses of candidate position generation by using a triangulation method is that the 
density of candidate positions may be insufficient to provide a good coverage. Density is defined as 
the ratio between the number candidate positions Scand and the polygon area containing them. In 
order to ensure an acceptable density, triangulation is iterated for those rooms with density inferior 
to densmin, generating new candidates. 

3.3. Visibility Analysis 

In order to evaluate the suitability of each candidate scan position and to determinate the 
coverage of the scene, a visibility analysis is performed for all candidates Scand. This process is based 
on a ray tracing algorithm that simulates the laser beam and establishes the surface theoretically 
acquired by a laser scanner taking into account scanner range r and field of view v.  

For this purpose, the implemented method (Figure 8a) is similar to Diaz-Vilariño et al [51]. 
Candidate positions are located in a binary occupancy map I=(Ix,Iy). Then, the cells crossed by rays 
simulated between laser position and target cells (all cells in the field of view and range of the laser) 
are calculated by Bresenham´s line algorithm [52]. After this step, visible cells for each candidate to 
scan position are obtained Iv.  

Visibility analysis by Bresenham´s line algorithm can lead to errors in visibility estimation when 
vertical elements are not perpendicularly aligned with X and Y axes in a Cartesian Coordinate System 
(Figure 8b). For this reason, the DXF plane must be rotated to align principal elements with XY axes. 

 
Figure 8. Bresenham algorithm is used to determinate the map cells that are crossed by simulated 
beam (gray) in visibility analysis. (a) target cell (red) is wrongly classified as visible since it is not 

Figure 8. Bresenham algorithm is used to determinate the map cells that are crossed by simulated beam
(gray) in visibility analysis. (a) target cell (red) is wrongly classified as visible since it is not occluded by
other cells representing building elements, (b) target point (green) is correctly classified as occluded in
the ray-casting process.
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Visibility analysis by Bresenham´s line algorithm can lead to errors in visibility estimation when
vertical elements are not perpendicularly aligned with X and Y axes in a Cartesian Coordinate System
(Figure 8b). For this reason, the DXF plane must be rotated to align principal elements with XY axes.

3.4. Scan Optimization

Once visibility analysis is completed, theoretical visible surfaces from each candidate position are
known. If the distribution of candidates is robust in terms of coverage, building elements are visible
from different candidate positions.

Since the goal of this method is to obtain the minimum number of scanning positions Sscan for
avoiding the acquisition of repetitive data, an optimization is performed by using a backtracking
algorithm [53]. Final scan positions are determined considering the theoretical surface acquirable a
from each position (Figure 9). The best scan position is the one from which a larger number of cells
are visible. The rest of the scan positions are being selected based on the number of visible cells that
can provide to the already selected positions Sscan ← {Scand : max(a)

}
. The process is repeated until a

minimum of coverage cmin is accomplished (stopping criteria). Since semantic information is preserved
from the BIM model, scan optimization can be directed to the control of specific elements in the scene.
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Figure 9. Scan optimization process is carried out from candidate positions (green points) to obtain
scanning positions (red points). In each iteration the candidate position is selected which maximizes the
theoretically acquirable surface (red lines). The black lines represent the surface theoretically acquired
from the previously selected positions.

3.5. Optimal Routing

Unlike most scan-planning approaches, the calculation of an optimal route for scanning position
is tackled. This problem can be raised as the well-known travelling salesman problem (TSP) that
is formulated as: given n cities identified by its positions, to determine a path so that all cities are
visited just once, travelling as little distance as possible. This problem is framed within the NP-hard
complexity problems, wherefore the optimal solution cannot be obtained in a reasonable time. Typically,
the problem is solved by means heuristic approaches that conduct sub-optimal solutions within a
reasonable time. This work implements a probabilistic algorithm based on the ant colony algorithm
family [54]. This algorithm is based on modelling the behavior observed in real ants to find short
paths between food sources and their nest. The result is an emergent behavior caused from each ant’s
preference to follow trail pheromones deposited by other ants.

In order to obtain the optimal route, distances between pairs of scan positions Sscan have to be
obtained, and for this purpose, a navigable graph G = {N,E} is created. As grid-based graphs are more
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suitable for route calculation than triangulation-based graphs [31], the construction of the navigable
graph is based on a regular grid.

First, the navigable space is gridded. Vertices of grid cells Vc correspond to graph nodes N.
Adjacency between nodes is studied to create the adjacency matrix. Nodes are 8-connected [55]
forming edges E. Then, the accessibility of the edges is checked (Figure 10a). Edges crossed by
any non-navigable cell are removed. The location of scanning positions Sscan may not coincide
with the location of navigable nodes N, previously calculated because this process is independent
of candidate generation. In this case, scan positions are relocated to the nearest navigable nodes
Sscan ← {N : min|N, Sscan|} in order to calculate the optimal route (Figure 10b). In this way, accessibility
is ensured.
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Figure 10. (a) Graph nodes are 8-connected by edges and the ones intersecting with any no-navigable
space are removed (magenta). (b) Scanning positions (red points) are relocated to nearest nodes to
them (blue points with red contour).

Once the navigable graph is created, the shortest path P = {Np,Ep} between each pair of scan
positions is calculated using Dijkstra algorithm [56]. This information is used to create a simplified
graph in which just nodes representing scan positions and distances between them are represented
(Figure 11). This simplified graph Gs = {Ns,Es} is used to implement the Ant colony optimization
algorithm for obtaining the optimal path.
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Figure 11. (a) A navigable graph composed by navigable (blue) and scanning (red) nodes is generated.
Then, navigable nodes are abstracted from graph and (b) a simpler one is represented only with
scanning nodes (red).

When navigable space is divided into rooms, a navigable graph is generated for each of them.
The scanning nodes are determined in the same way as explained above. Due to graph disconnection,
the optimal route calculation cannot be addressed with a global approach of the space. Accessible door
positions D are considered as connection nodes between rooms N← {N, D} (Figure 12).
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Figure 12. (a) A subgraph is generated separately for each room. (b) The global graph consists of all
subgraphs joined by new nodes corresponding to door positions (yellow).

From room polygonal representation by using simple polygons arises a particular issue: when
there are rooms within other rooms. In this case, the navigable space of inner room must be subtracted
from outer room space. Doors between both rooms are considered as doors of the exterior room, even
though boundaries do not belong to its contour.

4. Results and Discussion

This section is organized in three sub-sections. The first section presents the data and instrument
employed for testing the described method. The second section collects the results obtained and the
discussion of them. The third section shows the applicability of the proposed method in a real scenario
of an under-construction building.

4.1. Instruments and Data

The method described in this paper has been tested in several cases study, some of them provided
by the International Society for Photogrammetry and Remote Sensing (ISPRS) Benchmark on Indoor
Modelling [57]. Previous results have been already published in [51].

The developed method is focused on an acquisition system composed by a TLS mounted on top of
an autonomous mobile robot. The TLS employed is FARO Focus3D X 330 [57]. The operating mode of
the acquisition system follows a strategy known as stop & go. Robot moves to next scanning position,
stop at this one and then laser scanner realized the acquisition task. This operation is repeated until
all scanning positions are reached by mobile robot. The local planning of robot mobile is out of the
framework of this work.

4.2. Results

4.2.1. Parameters and Values

In order to apply the method and guarantee reproducibility, parameters and values are summarized
in Table 1. General parameters are required in any case while specific parameters are necessary
depending on the scenario and the distribution method. For the comparison of decomposition space
methods, the values do not vary in all tests. Some results obtained with different parameters are
showed to assess their influence.
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Table 1. Input parameters.

Type of Parameter Parameter Abbreviation Value

Discretization resolution ddis 50 mm
Laser range r 5 m

Field of view v 360º
General Security Distance dsec 0.7 m

Coverage cmin 90%

Specifics
Resolution grid rgrid 1.0 m

Door accessibility door_access 0.7 m
Doors as scanning position door_scan True/False

The coverage degree cmin is given by the ratio of theoretical area that must be acquired from all
visible area of interest. The cmin parameter supposes the stop criterion in the selection of the best
scanning positions. The process ends when the ratio of structural acquired elements is greater than or
equal to cmin.

4.2.2. From 3D to 2D

BIM models are exported to 2D CAD model with DXF format. The Figure 13 shows (a) the
BIM model and (b) and (c) the 2D models—case studies—extracted from the BIM model of the case
studies. For each case study, two virtual scenarios have been proposed. On one hand, a structural
stage considering beams and columns for control of execution, and the existence of stairs as elements
influencing the visibility. The second scenario is composed by columns, walls, stairs and doors. Rooms
are also defined. Beams have been manually created to perform the simulation, since they were not
represented in the BIM.
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Figure 13. (a) Input BIM model. (b) DXF model of case study 1 and (b) DXF model of case study 2.

According to input requirements, the entities of the facilities are arranged by layers. The definition
of floor layer, which enclose the navigable space, is a preliminary condition. Auxiliary layers, such as
rooms or doors, can be used to improve the efficient of the processing.

4.2.3. Distribution of the Navigable Space

The discretization of continuous elements has generated a variable number of units depending
on number and size of structural elements. The number of units for res_disc = 50 mm is collected in
Table 2.

Table 2. Number of units of discretization.

Scenario BEAMS COLUMNS STAIRS WALLS TOTAL

Case 1 (Structural) 9066 1038 891 - 10995
Case 1 (Rooms) - 1038 891 6296 8225

Case 2 (Structural) 6044 491 682 - 7217
Case 2 (Rooms) - 491 682 5690 6863
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The number of candidate scan positions depends on the discretization method and construction
phase. Figures 14 and 15 show candidate scan positions generated by grid-based method and
triangulation-based methods of space partition implemented. The results confirm the expected
behaviour of both methods, grid-based method led to more regular distribution than triangulation-based
method. In structural phase, grid-based method generates more candidates than triangulation. With
rooms, triangulation provides more density distributions. The number of scan positions is listed in
Table 3.
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Figure 14. Candidate positions generated by both discretization methods in case study 1: (a) grid-based
method in structural phase, (b) triangulation-based method in structural phase, (c) grid-based method
with rooms and (d) triangulation-based method with rooms. Horizontal and vertical elements are
displayed in magenta and black respectively. Green points represent position reachable by robotic
system, unreachable positions are depicted in red.

Table 3. Results distribution of candidate positions.

Case of Study Scenario Distribution Number of Candidates Reachable Candidates Time (s)

Case 1
Structural

Grid-based 374 247 0.83
Triangulation-based 131 80 0.33

Rooms
Grid-based 297 163 0.83

Triangulation-based 368 229 1.06

Case 2
Structural

Grid-based 214 182 0.80
Triangulation-based 65 35 1.10

Rooms
Grid-based 183 105 0.79

Triangulation-based 233 138 0.68
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Figure 15. Candidate positions generated by both discretization methods in case study 2.

Based on these results, the implemented triangulation process provides two main advantages
respect to grid-based method for scan-planning in indoor environments. Fewer positions in the
structural phase reduces the computational cost of testing each candidate. A greater density of
positions in presence of walls dividing space into room offers enhancement in terms of coverage.
The two smallest rooms (Figures 14 and 15) are only well partitioned with triangulation-distribution.

The processing times of both discretization methods are similar, in most cases, grid-based is
slightly faster than triangulation-based. However, the generation of candidate scan positions has less
influence in total time than visibility analysis.

4.2.4. Visibility Analysis

Visibility analysis is a critical procedure in terms of time and completeness. Each candidate
position is tested, so the number of candidates have repercussions in execution time. Also, the number
of discretization units is relevant, although only those within the range of the laser scanner l_rng
are analyzed. Completeness in this process is understood as the ratio of visible elements from all
candidates. It can be used as a measure to evaluate the distributions obtained.

Results of visibility analysis (Figures 16 and 17) conducted in the four case studies are gathered
in Table 4. The level completeness is greater for denser distributions. However, this correlation
differs depending on discretization-method and construction phase. The grid-based method provides
distributions denser than triangulation in structural phase, but the degree of wholeness is not greater.
In spaces separated by rooms, triangulation supply a significant better visibility coverage with a
decreased density about 40% in the worst case.
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Figure 16. Visibility analysis results obtained from candidates generated in case study 1: (a) grid-based
candidate distribution in structural phase, (b) triangulation-based candidate distribution in structural
phase, (c) grid-based candidate distribution with rooms and (d) triangulation-based candidate
distribution with rooms. Elements determined as visible for analysis process are depicted in green,
black points represent no visible elements.
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Table 4. Results of visibility analysis.

Scenario Units To Be
Acquired Method Candidate

Positions
Visible
Units

Time
(s)

Avg.
Time (s)

Case 1 (structural) 10104
Grid-based 247 9864 15.66 0.063

Triangulation-based 80 9714 4.73 0.059

Case 2 (structural) 6535
Grid-based 182 6230 7.73 0.042

Triangulation-based 35 6173 1.53 0.043

Case 1 (Rooms) 7334
Grid-based 163 3940 2.45 0.015

Triangulation-based 229 4260 3.78 0.017

Case 2 (Rooms) 6181
Grid-based 105 3193 1.69 0.016

Triangulation-based 138 3417 2.18 0.016

With regard to processing time, there is a correlation between the number of candidate positions
and the execution time of the process. In contrast to what was observed in the completeness analysis,
the processing time seems independent of the partitioning method used. The main relevance, in terms
of time, is related to construction phase and is more relevant in structural phase. With rooms, the range
of the laser is restricted to rooms. In order to evaluate the influence of laser scanner range, structural
phase of case study 1 has been tested with l_rng = 10 m Table 5).

Table 5. Comparison between different l_rng in structural phase of case study 1.

l_rng 5 m 10 m

Grid-based
units of visible elements 9864 units 9967 units

time consumed 15.66 s 89.59 s

Triangulation-based units of visible elements 9714 units 9963 units
time consumed 4.73 s 21.18 s

To check the raytracing in the visibility analysis in case studies not aligned with the XY axes of
Cartesian Coordinates, case study 1 has been rotated 45º on the Z axis. The visibility analysis on case
study 1 rotated is shown in Figure 18. In most of areas of the scene, the behaviour of the algorithm is
right except in the framed area because the external wall is considered as visible (double green line).

4.2.5. Scan Optimization

Table 6 shows that the number of selected positions is similar between both discretization methods.
The time consumed by the optimization process depends on the number of candidate scan positions.
The result of this process is shown in Figures 19 and 20. For the selection of optimal positions, laser
constraints, such as incidence angle, density or overlapping, are not regarded. This could compromise
the quality of acquired data and cause problems in further registration. As this work is framed in indoor
acquisition, short laser range is employed (5–10 m) therefore the effect of angle of incidence is minor [58].
Despite the fact that overlapping is not taken into account during optimization, door_scan parameter
enables door locations can be used as scanning positions in order to provide the registration task.
Doors locations are added after optimization and they have no influence in scan optimization process.
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Figure 18. Visibility analysis of case study 1 original (a) and rotated (b). Visible elements are coloured 
in green, while black zones correspond to areas of element to be acquired are not visible from any 
candidate position. 

Figure 18. Visibility analysis of case study 1 original (a) and rotated (b). Visible elements are coloured
in green, while black zones correspond to areas of element to be acquired are not visible from any
candidate position.

Table 6. Results of optimization process.

Scenario Method Candidate
Positions

Scanning
Positions Acquired (%) Time (s)

Case 1 (structural) Grid-based 247 10 90.67 1.94
Triangulation-based 80 10 90.71 0.58

Case 2 (structural) Grid-based 182 7 90.48 0.92
Triangulation-based 35 7 90.07 0.17

Case 1 (Rooms) Grid-based 163 17 90.36 1.36
Triangulation-based 229 19 90.71 2.19

Case 2 (Rooms) Grid-based 105 13 92.48 0.71
Triangulation-based 138 14 90.31 0.97
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Figure 19. Optimization scan position result in case study 1: (a) grid-based method, (b) triangulation-based
method, (c) grid-based with scan positions in doors and (d) triangulation-based method with scan positions
in doors. Color code: scan positions (red points), candidates scan positions (gray points), acquired
elements (green), non-acquired elements (black).
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4.2.6. Optimal Route

The initial grid resolution is 1 m and the algorithm automatically reduces it until satisfied
den_grid_min and max_err_dist. The density of the node distribution is not uniform because a subgraph
is calculated for each room individually. Table 7 lists the processing times for the network creation,
the route calculation and the route distance. Optimal route is obtained from navigable network by
applying ant algorithm. Figures 21 and 22 show calculated optimal routes for the case of study 1 and 2,
respectively. As expected, total distance is in accordance with vertical elements of the navigable space
and not with candidate generation process.

Table 7. Results optimal route calculation.

Scenario Method Scanning
Positions

Time Graph
Generation (s)

Route
Distance (m)

Time Route
Calculation (s)

Case 1
(structural)

Grid-based 10 2.35 55.61 0.15
Triangulation-based 10 2.38 57.02 0.15

Case 2
(structural)

Grid-based 7 1.58 42.42 0.06
Triangulation-based 7 1.55 44.59 0.05

Case 1 (Rooms) Grid-based 17 3.02 103.99 0.63
Triangulation-based 19 4.27 100.34 0.94

Case 2 (Rooms) Grid-based 13 1.87 88.10 0.29
Triangulation-based 14 1.89 87.27 0.35Remote Sens. 2019, 11, x FOR PEER REVIEW 21 of 26 

 

 

Figure 21. Optimal route calculated in case study 1 whose scanning positions were obtained by: (a) 
grid-based method in structural phase, (b) triangulation-based method in structural phase, (c) grid-
based method with rooms and (d) triangulation-based method with rooms. Horizontal and vertical 
elements are displayed in magenta and black respectively. Green points represent start and end 
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Figure 21. Optimal route calculated in case study 1 whose scanning positions were obtained by:
(a) grid-based method in structural phase, (b) triangulation-based method in structural phase,
(c) grid-based method with rooms and (d) triangulation-based method with rooms. Horizontal
and vertical elements are displayed in magenta and black respectively. Green points represent start
and end scanning position, the remaining ones are depicted in red.
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In order to avoid subsequent overlapping problems in registration, door positions can be added
to route calculation. Figure 23 shows that the optimal route with door positions is not much longer
than the route with only optimal scanning positions.
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4.3. Application in A Real Case Study

This section presents the results of the entire process from the BIM model to obtaining a point
cloud acquired by the acquisition system described in Section 4.1.

The BIM model corresponds to a building under construction during the test in the city of
Badalona, Spain. The results shown here comply with one of the floors of the building (highlighted in
red in the BIM model shown in Figure 24).

The values of the parameters used to generate the scanning plan are the same as those used in
Section 4.2. Figure 23 shows the most relevant results of the process such as the calculated scanning
positions and the subsequent optimal route. The calculation of the optimal scan positions took less
than 1 second while the optimal route was approximately 2.5 seconds.
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Figure 23 also depicts the point cloud obtained by the acquisition system tracking the scan
planning calculated by the proposed algorithm. The planning consists of eleven scan positions on a
52.4 metre long route.

5. Conclusions

This paper presents a method to optimize the number and position of scans for Scan-vs-BIM
procedures following stop & go scanning method, and the shortest route for an autonomous robot
visiting once all the optimal scan positions. The input for the method is a DXF file exported by BIM in
which elements are organized by layers. Since semantic information is preserved, scan planning can
be directed to certain building elements, or types of elements. This is crucial for control of execution
processes. The method implements and compares two strategies for the distribution of scan position
candidates: a grid-based method and a triangulation-based method. This aspect is critical, especially in
large and complex scenes. Final scan positions are optimized based on visibility and data completeness
as stopping criteria, and a probabilistic ant colony optimization algorithm is implemented to obtain a
suboptimal route.

The method has been tested in two case studies performing a total of eight simulations. The method
has showed to be efficient in terms of time computing. Simulations were carried out for structural
elements including beams and columns, and for final elements including walls, doors, etc. In both cases,
the grid-based and the triangulation-based distribution have been tested and compared. The results
show that the triangulation-based method provides a robust solution in terms of completeness and
processing time. In addition, unlike most scan-planning approaches, the path planning problem has
been addressed, obtaining reasonable short routes. Scan positions have been correctly distributed on
the navigable surface, all of which are accessible by the robotic unit. Scan positions are not too close to
each other or to walls.

The method has also been implemented in a complex real case study, providing the robotic unit
with the route with the scan positions. From the information provided by the presented algorithm, the
robotic unit has performed all the scans autonomously. The point cloud has been generated with a
coverage according to the project specifications, high density and precision.
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Coverage, candidate positions distribution and selection of optimal locations are crucial aspects
for scan planning. These three problems are not independent; coverage is highly dependent on the
distribution of candidates, which in turn qualitatively influences the candidate selection process.
This interrelation involves reaching a trade-off among the matters already mentioned. Unlike most
works focused on scan planning, this paper considers vertical and horizontal structural elements for
analysis. Horizontal structural elements, such as beams, are considered to not cause occlusions because
the analysis is performed from a 2D perspective.

Future work will involve the study of scan planning from a 3D perspective in a way that not only
concerns coverage, but point cloud density and overlapping will be considered as stopping criteria.
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56 CHAPTER 3. OPTIMISED SCAN PLANNING

3.3. Optimal Scan Planning for Surveying Large
Sites with Static and Mobile Mapping Sys-
tems

Planificación óptima del escaneo para el sondeo de sitios exten-
sos con sistemas de mapeo estáticos y móviles

Resumen

Desde las dos últimas décadas, el uso de escáneres láser para generar mo-
delos 3D precisos y densos ha crecido rápidamente en múltiples disciplinas.
La dependencia de la experiencia humana para realizar un escaneo eficiente
en términos de completitud y calidad estimuló a los investigadores a desarro-
llar estrategias para llevar a cabo una planificación del escaneo optimizada y
automatizada. Sin embargo, debido al uso predominante de escáneres láser
terrestres estáticos (TLS), la mayoŕıa de los métodos desarrollados se han
centrado en la optimización del escaneo mediante la determinación de los
puntos de observación sobre la base del escaneo estático. El creciente uso de
sistemas de escaneo láser móviles (MLS) portables permite una adquisición
más rápida sin parada, lo que demanda la planificación de trayectorias de
escaneo óptimas. Por lo tanto, un nuevo método que aborda la ausencia de
planificación del escaneo dinámico teniendo en cuenta las restricciones es-
pećıficas de los MLS, tales como tiempo máximo de adquisición o el requisito
de bucles cerrados es propuesto. En primer lugar, se lleva a cabo un análisis
inicial para determinar posiciones clave a alcanzar durante la adquisición
de datos. A partir de estas posiciones se genera un grafo navegable para
calcular rutas que satisfagan las restricciones espećıficas del MLS mediante
un proceso de tres pasos. Se empieza por estimar el número de rutas nece-
sarias para, posteriormente, realizar una partición gruesa del grafo basada
en la agrupación de Kmedoids. A continuación, se implementó un algoritmo
de balanceo para calcular una partición equilibrada del grafo mediante el
intercambio de nodos. Por último, las particiones se extienden añadiendo
nodos clave de sus adyacentes con el fin de proporcionar un solapamiento
deseable entre escaneos. El método se probó simulando tres configuraciones
de escáner láser en cuatro casos reales de interior y exterior. de interior y
exterior. La calidad de adquisición de la planificación del escaneo compu-
tada se evaluó en términos de completitud en 3D y la densidad de la nube
de puntos con el simulador Helios++.
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A B S T R A C T

Since the last two decades, the use of laser scanners for generating accurate and dense 3D models has been
rapidly growing in multiple disciplines. The reliance on human-expertise to perform an efficient scanning
in terms of completeness and quality encouraged the researchers to develop strategies for carrying out an
optimized and automated scan planning. Nevertheless, due to the predominant use of static terrestrial laser
scanners (TLS), the most of developed methods have been focused on scan optimization by fixing standpoints
on basis of static scanning. The increasing use of portable mobile laser scanning systems (MLS) enables faster
non-stop acquisition which demands the planning of optimal scan trajectories. Therefore, a novel method
addressing the absence of dynamic scan planning is proposed considering specific MLS constraints such as
maximum acquisition time or closed-loops requirement. First, an initial analysis is carried out to determinate
key-positions to reach during data acquisition. From these positions a navigable graph is generated to compute
routes satisfying specific MLS constraints by a three-step process. This starts by estimating the number of routes
necessary to subsequently carry out a coarse graph partition based on Kmedoids clustering. Next, a balancing
algorithm was implemented to compute a balanced graph partition by node exchanging. Finally, partitions are
extended by adding key nodes from their adjacent ones in order to provide a desirable overlapping between
scans. The method was tested by simulating three laser scanner configurations in four indoor and outdoor real
case studies. The acquisition quality of the computed scan planning was evaluated in terms of 3D completeness
and point cloud density with the simulator Helios++.

1. Introduction

With the development of reliable and rapid sensing methods for
direct 3D point cloud acquisition, new opportunities for surveying and
mapping complex sites have emerged. Starting in first early 2000s,
static terrestrial laser scanning technology has developed and become
a consolidated technique for 3D data acquisition (Watt and Donoghue,
2005; Alba et al., 2006; Buckley et al., 2008; Oppikofer et al., 2009;
Abellan et al., 2014). These new opportunities have become more
relevant with the progress of mobile mapping systems (MMSs), and
more recently with the development of indoor mobile mapping systems
(IMMSs) (Nocerino et al., 2017). Advances in the reduction of size and
weight of laser scanning sensors, together with improvements in indoor
positioning techniques such as the well-known simultaneous localiza-
tion and mapping (SLAM), have contributed to the consolidation of
new portable and mobile systems (Corso and Zakhor, 2013). MMSs
are usually classified according to the platform in which sensors are
placed: cart, backpack, UAV, and handheld. The variability of platforms

∗ Corresponding author.
E-mail address: lucia@uvigo.es (L. Díaz-Vilariño).

where sensors are integrated gives an idea about how complex and
challenging the sites to acquire may be (Otero et al., 2020).

Despite the usefulness of laser scanning systems, data capture is gen-
erally a time-consuming task especially when talking about terrestrial
laser scanning (TLS). Minimizing the number of scanning operations
while maximizing data completeness is essential for efficient data cap-
ture. In this context, the optimal positioning of TLS has been extensively
studied in the last few years see, e.g., Ahn and Wohn (2015) and Biswas
(2020). On the contrary, the problem of scan planning for MMSs has
not been addressed too much. This can be explained by the fact that
acquiring data with MMS is much faster, and acquisition time is no
longer considered a problem except for the autonomy of the systems.
Nevertheless, scan planning for MMSs becomes also necessary in the
case of large and complex sites in a way to ensure data completeness,
avoiding repetitiveness, and dealing with time restrictions. This need
is even more essential for autonomous systems not following the Next
Best View (NBV) problem, that is all case studies in which there is

https://doi.org/10.1016/j.isprsjprs.2022.07.025
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previous knowledge about the scene to capture, typically as 2D and 3D
models. Applications such as construction control or scan-vs-BIM are
among the most popular in recent times (Aryan et al., 2021).

Different from optimal scan planning for TLS, in which we typically
define a set of minimum positions maximizing the coverage from which
the laser scanners capturing data with a panoramic horizontal field
of view, scan planning for MMSs requires from the definition of a
complete trajectory. In this paper, we formulate the definition of a
trajectory of acquisition as the definition of an optimal route passing
through a set of key scan positions. Route planning has been widely
addressed in the literature, and many related problems are known to
be NP-hard (Kim et al., 2020). The complexity increases substantially
with the size of the case study because more nodes conforming the
navigable graph need to be considered in the analysis. In the same way,
the coverage problem is becoming more complex when requirements
from some MMS, such as the need of closed loops, is taken into account.

To overcome the above challenges, this paper describes a novel
model-based scan-planning method, whose primary aim is to obtain
the optimal scan trajectories to capture the three-dimensional scene
maximizing data completeness and minimizing data repetitiveness. Pre-
vious developments focused on TLS scan planning (Frías et al., 2019)
are taken as basis for the determination of the minimal scan positions
from which the MMS needs to pass through. Then, the scan planning
for MMS is formulated as an optimal-route planning problem in which
the main restriction is given by the maximum acquisition time for
each specific sensor. In addition, the method also considers overlapping
between laser scan trajectories for ensuring subsequent registration
tasks. The method deals with shapes with holes and obstacles either
from the perspective of the navigable graph calculation and for the
visibility analysis.

To summarize, the main contributions of this paper are listed as
follows:

• a flexible scan planning tool including optimal routing; it ad-
dresses static and mobile scan planning, dealing with non-closed
loop and closed-loop requirements;

• a graph partitioning programming formulation for solving mobile
scan planning with closed-loops, which effectively find balanced
solutions in case of large-site acquisition. The method includes the
sharing of nodes between adjacent loops to ensure overlapping;

• a method for route softening towards 3D data quality simulation
based on the open-source software Helios.

The remainder of this paper is organized as follows. Section 2
reviews the state of the art in terms of scan planning both for static
and mobile mapping systems. A subsection about quality analysis of
planned scan data is also included. Section 3 describes the proposed
method while Section 4 analyses and discusses the results obtained
from applying the method to several case studies, including indoor and
outdoor scenarios. Finally, Section 5 is devoted to conclude this work
and to address future development which will be necessary to go along
with a continuously improving technology.

2. Related work

Scan planning problem is generally stated as a particular case of
the extensively studied View Planning Problem (VPP) (Scott et al.,
2003). Techniques to address this problem can be classified in two main
categories depending on scene model availability. Scan planning can be
classified as model-based or non-model-based whether previous knowl-
edge of the scene is available or not available, respectively (Aryan et al.,
2021).

If the scene is not know (non-model approaches), the problem is
generally formulated as a NextBest View (NBV) problem by which the
best scan position providing greater coverage gain (Connolly, 1985;
Pito, 1999). Since no prior knowledge from the scene is available,

heuristic function is often defined to decide the next scan position
using only information obtained from previous scans. This online strat-
egy is widely implemented for automatic scanning by autonomous
mobile robots (Quintana et al., 2016) or Unmanned Aerial Systems
(UASs) (González-de Santos et al., 2018).

If the scene is previously known, model-based methods enable to
perform a scan planing with complete scene information. Generally,
the model consists of 2D layout or is reduced to it from a 3D model to
represent the scene as a polygon such that scan planning can be posed
as the classical computational geometrical ‘‘art-gallery problem’’. This
is formulated as the calculation of minimum number of positions inside
the polygon needed to provide free-obstacle line-of-sight to any point
composing the polygon. The NP-hard complexity of the problem (Lewis
and Papadimitriou, 1997) leads to make assumptions to become good
solutions. For example, González-Banos (2001) proposed a randomized
strategy to reformulate the ‘‘art-gallery problem’’ as a ‘‘set-covering
problem’’. In his work, candidate positions are randomly generated
and polygon boundaries are dicretised on basis of the visibility from
candidates. Then, the minimum covering problem is solved by applying
Greedy strategy (Chvatal, 1979). This approach is also used by Blaer
and Allen (2007) extending laser constraints for a initial coarse scan-
ning embedded in a two-phase acquisition refined with a NBV scan
planning.

A similar approach is adopted by Soudarissanane and Lindenbergh
(2011) in which elements of interest are discretized in equal-length
segments whereas a regular grid is used to generate candidates. Besides,
laser constraints such as range and incidence angle are regarded in
visibility analysis. In the following stage, the coverage optimization
is solved by Greedy selection again. A variant from this optimization
algorithm is proposed by Jia and Lichti (2019) coined Weighted Greedy
Algorithm (WGA) that prioritizes candidates covering segments not
visible from other positions. Furthermore, the provided solution is
exploited to remove redundant candidates hierarchically in order to
carry out a reliable scan planning for large sites.

A different approach for a workable scanning of large scenes is
proposed in Zhang et al. (2016). In addition to the aforementioned laser
constrains, specific Level-of-Detail (LOD) requirement are included in
the coverage optimization involving an increase of computational com-
plexity. To reduce this, points of interest in the elements to scan are
grouped in compliance with required LOD for each point. After, the
resultant clusters are arranged minimizing geometrical scattering and
coverage problem is solved separately per each cluster.

A more recent work presented by Kim et al. (2020) generalizes
sensor constraints to realize an efficient space representation oriented
to a variety of indoor applications beyond scan planning. The polygon
representing the scene is split into triangles which are then grouped ac-
cording to the target application, so that the expanded groups may fulfil
required constraints. Then, coverage optimization (also the partitioning
problem) is posed as a binary linear programming problem (Hu and
Kahng, 2016). In addition, the space representation is compatible with
the well-known standard IndoorGML (Kang and Li, 2017). Previous
set-covering problem formulations are extended to a mixed-integer
programming problem in Dehbi et al. (2021) by adding non-discrete
variables to address overlapping constraint for further point cloud reg-
istration. To do this, a graph is created representing candidate positions
as nodes which are connected according visibility. Furthermore, cover-
age is not focused on vertical elements but also floor area acquisition
is explicitly managed.

Despite the numerous works addressing scan planning, almost all
of them are limited to static acquisition assuming that data is col-
lected only from the selected scan positions as is the case TLS is
adopted. In addition, scanning complex environments with TLS may
become a tedious task because of the inaccessibility for mobile robots
or craggy surfaces. A real situation is reported in Rüther and Palumbo
(2012), where the objective of this study was to scan with TLS an
extend heritage site of 700 × 400 m of extension. The 1200 scans
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collected to cover the entire scene required six weeks and its subse-
quent registration about four months. In contrast, Zlot et al. (2014)
has evaluated the advantages of dynamic scan by a handheld laser
scanner performing a scanning of an heritage site with an extension
of approximately 400 × 250 m. The scanning time was about 3.6 hours
while the processing time from raw data to provide a coherent 3D
model was 2.6 hours. Despite the scanned area is almost three times
smaller than the site scanned with TLS, the consumed time for both
data capture and post-processing is drastically reduced by operating
a dynamic acquisition with a mobile laser scanning (MLS). However,
since acquisition was driven on basis operator-experience in absence of
a previous automatic scan planning, some aspects about the redundant
data capturing, minimum number of scans and time optimization per
scan were missed.

Actually, there is a shortage in the literature about dynamic scan
planning requiring to deal with specific constraints of MLS devices such
as tracing closed trajectories and maximum acquisition time per scan.
The proposed work is focused on addressing this gap by extending
the static scan planning proposed by Frías et al. (2019) to dynamic
acquisition in order to derive efficient trajectories in terms of time-
saving, coverage and overlapping. The proposed work introduces for
first time a method for the optimal scan planning for mobile systems.

3. Method

A general overview of the method is represented in Fig. 1. Firstly, an
initial analysis for determining the minimal scan positions maximizing
coverage is performed. This process consists of a set of steps (space
partitioning, visibility analysis and scan optimization) and it consid-
ers a panoramic horizontal field of view. The acquisition from these
positions guarantees the minimal coverage required, therefore, route
planning starts by generating a grid-based navigable graph ensuring
that all initial scanning positions are reached. Then, an optimal route
is computed using a heuristic ant ‘‘colony optimization algorithm’’
(ACO). For TLS, only one route is sufficient to complete an acquisition
because it does not have time restrictions. However, MLS planning
may require several routes, especially on large environments. In this
case, navigable graph is partitioned into smaller subgraphs taken into
account MLS limitations, such as maximum acquisition time or closed
route requirement. The graph division is addressed as a balanced graph
partitioning problem deriving cluster subgraphs from which optimal
routes are computed by ACO algorithm. Each procedure is extensively
explained in the following subsections. It should be noted that the
method is conceived for the analysis of individual floor plans, and
accordingly, the analysis of building elements joining two consecutive
floors (i.e. stairs, ramps, etc.) is not in the scope of the paper.

3.1. Initial analysis

The proposed method starts by making an initial analysis of the site
for determining the minimum scan positions that have to be reached
during mobile acquisition. This initial analysis is similar to Frías et al.
(2019), constituting the starting point of the proposed method. A brief
summary of the processes conforming the initial analysis are explained
in this section to contextualize the route planning problem for MLS.

The input data consists of a 2D CAD file structured in layers, each
one corresponding to an element type such as floor, walls or columns.
In accordance with user selection, layers are classified into 𝑎𝑐𝑞 and𝑜𝑐𝑐 groups containing element layers to be acquired and elements
that cause occlusions in laser visibility, respectively. Also, a predefined
layer called ‘floor’ or ‘extension’ represents the navigable space which is
defined as the floor area where the acquisition system can be positioned
by itself. Further, this layer is represented geometrically as a closed
shape  . Then, elements of 𝑎𝑐𝑞 and 𝑜𝑐𝑐 are discretized so that
their geometries (i.e. lines, polylines, circumferences, arches, etc.) are
represented by evenly spaced points composing the sets 𝑎𝑐𝑞 and 𝑜𝑐𝑐 .

In order to carry out a simulated scanning acquisition as realistic
as possible, laser characteristics involving acquisition constraints are
included in all procedures composing the method. Since this study
addresses two acquisitions modes with different limitations, scanner
parameters are divided into two categories: common and specific con-
straints collected in Table 1.

3.1.1. Space partitioning
After elements have been discretized and classified, the geometry

of the navigable space is partitioned into smaller regions for a more
efficient and manageable representation. Although multiple partitions
are possible, a space partition can be generically defined as:

Definition 1 (Space Partition). Given a shape  representing the navi-
gable space, a set of the regions  ⊂  is a partition of  if given any
region 𝑟𝑖, 𝑟𝑗 ∈  such that {𝑟𝑖 ∩ 𝑟𝑗 ,∀𝑖,𝑗 ∣ 𝑖 ≠ 𝑗} = ∅ and {𝑟𝑖 ∪ 𝑟𝑗 ,∀𝑖,𝑗 ∣ 𝑖 ≠
𝑗} =  .

For the initial analysis, two partitioning methods based on grid
or triangulation distribution can be selected to generate a discrete
number of potential positions 𝑖𝑛𝑖 to be scanning places. Although a
comparison between both methods concluded that triangulation-based-
approaches provide a more efficient solution in terms of processing
time, especially for large scenes, while ensuring robustness in terms
of completeness (Frías et al., 2019), two configurations are available
in our tool for user selection. Unlike most of scan planning works, the
boundary of  may not be the area of interest to be acquired, moreover,
it may not be represented as a closed shape as is the case of construction
environments where outer walls have not already been built or as in
open outdoor environments.

The set 𝑖𝑛𝑖 resultant from space partitioning (Figs. 2(a) and 2(b))
are filtered by laser range and minimum distance constraints before the
visibility analysis. To do this, the positions from which no point of 𝑎𝑐𝑞
would be acquired due to range constraints and positions at a distance
less than the minimum distance to occlusion elements are discarded.
The filtering outcome is a set of candidate positions 𝑐𝑎𝑛𝑑 (Figs. 2(c)
and 2(d)) to be analysed in the next step.

3.1.2. Visibility analysis
In this step, the coverage provided by each candidate position

𝑝𝑐𝑎𝑛𝑑 ∈ 𝑆𝑐𝑎𝑛𝑑 is evaluated by a visibility analysis based on a ray-tracing
strategy (Díaz-Vilariño et al., 2019) as shown in Fig. 3. Prior to this
analysis, an occupancy binary map is generated projecting occlusion
elements 𝑜𝑐𝑐 on it. Then, visible points 𝑣𝑖𝑠 from each candidate
are determined by simulating laser beams on the map from 𝑝𝑐𝑎𝑛𝑑 to
elements of interest 𝑎𝑐𝑞 .

Generally, ray-tracing-based visibility analysis is a time-consuming
process due to the larger number of evaluations from candidates to
target points that have to be performed. Therefore, only points to be
acquired 𝑎𝑐𝑞 falling in covering range are used for beam simulations
from each candidate. In addition, auxiliary layers can be included in
the input 2D model to lead a more efficient analysis. These should cor-
respond to subspaces of the navigable space, i.e., rooms and corridors
in indoors. In this case, only visibility from points to be acquired inside
the subspace is checked.

Visibility analysis determines which points of 𝑎𝑐𝑞 are visible from
each candidate position in order to select the optimal scan position on
basis the number of unseen points by the next optimization process.

3.1.3. Scan optimization
Finally, the selection of the best scanning positions is formulated

as a minimum coverage problem. As already implemented in Frías
et al. (2019), the candidate position covering unseen greater area to
acquire is selected (maximum coverage) by a combinatorial iterative
process as shown in Fig. 4. The implemented algorithm based on a
‘backtracking’ strategy stops when the minimum required completeness
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Fig. 1. General workflow of the method.

Table 1
Laser constraints classified in common and specific.

Constraints Static acquisition (TLS) Dynamic acquisition (MLS)

Common
Laser field of view 3D 2D/3D
Minimum distance Yes Yes
Visibility Yes Yes

Specific
Maximum acquisition time No Yes
Closed-loops requirement No Yes/No
Overlap User-defined User-defined

Fig. 2. Points (red) representing navigable space generated by (a) grid-based and (b) triangulation-based methods. Candidate points (red) are depicted in (c) and (d) after filtering
on basis of range (blue points) and minimum distance (light gold) constraints. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

𝐶𝑜𝑣𝑚𝑖𝑛 is achieved. The selected positions  are the minimum positions
necessary to accomplish the required coverage in terms of completeness
(minimum coverage).

In summary, the initial analysis provides a set  containing the
theoretically optimal scan placements to acquire the points of interest

𝑎𝑐𝑞 . The coverage/completeness provided by the selected locations
satisfies scanning requirements. Moreover, the panoramic Field-of-View
(FoV) considered for the analysis assumes all points of interest falling in
a sphere (3D) centred at each scanner placement are visible. However,
acquisition area of most iMMS consists in a 2D plane orthogonal to the
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Fig. 3. Visibility analysis process determines which points to be acquired (blue) would be reached by the simulated laser beam (green) from any candidate position (red). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. From candidates (blue points) resulting after visibility analysis, scan optimization procedure selects the candidate providing the most coverage (at the centre of dashed
circle) in each iteration considering only visible points (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

system motion. Despite this difference, the obtained positions used in
the further analysis performed for dynamic acquisition are valid since
similar 3D coverage is obtained by making a U-turn at a scan position
with a MLS system. Besides, the implemented procedure achieves to
compute high quality placements with a reasonable computational
effort avoiding the higher complexity entailed for a 2D acquisition.

3.2. Route planning

Although the optimal scanning positions calculated in the initial
analysis contribute to reduce acquisition time, addressing route plan-
ning problem can minimize the route distance to reach all positions.
Route planning is more critical to carry out an efficient acquisition plan
in large complex environments acquisition with a iMMS. Therefore,
remaining part of the proposed method deals with route computation
taking into account common and specific laser constraints. Route plan-
ning for static acquisitions is implemented as in Frías et al. (2019) but
the novelty of this work lies in route computation for acquisition based
on MLS.

Route planning is divided into the three processing steps explained
below and takes the scan positions 𝑆 as input. The first one consists
in a graph generation to obtain routes for both laser operation modes.

The second step corresponds to route computation for static acquisition
with TLS while dynamic route planning is addressed in the latter
process.

3.2.1. Graph generation
The most common representation of the navigable space for route

computation is by means of a graph, therefore, route planning starts
by generating a navigable graph. Since the method is geared to au-
tonomous mobile robots, square grid was selected as graph nodes
distribution. With regard to the previous, a navigable graph can be
formally defined as:

Definition 2 (Navigable Graph). A navigable graph is a simple undi-
rected connected graph 𝐺𝑛 = {𝑁,𝐸} where 𝑁 is the set of graph nodes
and 𝐸 the set of collision-free edges connecting graph nodes.

Furthermore, nodes composing 𝑁 are categorized into two classes:
scan nodes 𝑁𝑠 corresponding to nodes located at scan locations from
𝑆 and navigable nodes 𝑁𝑛 that the mobile system can reach while
travelling through the graph edges. An example of a 𝐺𝑛 is depicted
in Fig. 5(a) representing scan and navigable nodes in red and blue
respectively.
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Fig. 5. Graphical representation of (a) a navigable graph and (b) its corresponding high-level representation as a scanning graph. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Optimal routes.

As nodes 𝑁𝑠 are the key-positions to route computation, a simpler
higher hierarchy graph representation is made by abstracting navigable
nodes. We call this high-level graph representation scanning graph
(Fig. 5(b)) and it is defined as:

Definition 3 (Scanning Graph). Given a navigable graph 𝐺𝑛 = {𝑁,𝐸},
a scanning graph is a complete graph 𝐺𝑆 = {𝑁𝑠, 𝐸𝑠} where 𝑁𝑠 is the
set of all scan nodes contained in 𝑁 and 𝐸𝑠 ⊂ 𝐸 the set of collision-free
edges connecting nodes.

The scanning graph is generated from 𝐺𝑛 computing shortest path
between each pair of nodes (𝑢𝑠, 𝑣𝑠) ∈ 𝑁𝑠 using Dijkstra algorithm (Di-
jkstra, 1959). The obtained paths constitute the set of edges 𝐸𝑠 repre-
senting the shortest route between scan nodes. Thus, only the relevant
information to route computation is kept in the scanning graph.

3.2.2. Route computation for static acquisition
An optimal route in the scanning graph should reach all scan

locations travelling as short a distance as possible. Hence, the route
computation can be formulated as the well-known Travelling Salesman
Problem (TSP) defined as the search for the shortest route reaching all
key-positions only once. The NP-hard complexity of this problem makes
its applicability unfeasible in large environments where the number of
scan positions would be high. This limitation is generally overcome by
using available heuristic algorithms providing good results as the ACO
selected for this work.

For a static acquisition with TLS, the optimal route is obtained by
directly applying a ACO algorithm to the whole scanning subgraph.
This is possible because no time restrictions have been considered
for this acquisition mode, assuming that the scan planning can be
completed with only one route. Fig. 6(a) depicts an optimal route
passing through all of scan positions while Fig. 6(b) shows another
route for the same graph finishing at the start position (closed route).

3.2.3. Route computation for dynamic acquisition
Unlike TLS-based systems, dynamic acquisition is generally per-

formed with Mobile Mapping Systems (MMSs) based on SLAM that
may cause positioning drift in large trajectories decreasing acquisition
accuracy. To avoid this degradation, manufacturers recommend to limit

the scanning time to a certain temporal value 𝑡𝑚𝑎𝑥 or tracing closed
trajectories during the acquisition. The temporal restriction together
with the velocity of the mobile system 𝑣𝑠𝑦𝑠 fix the maximum acquisition
distance 𝑑𝑚𝑎𝑥 computed by Eq. (1):

𝑑𝑚𝑎𝑥 = 𝑡𝑚𝑎𝑥 ∗ 𝑣𝑠𝑦𝑠 (1)

Especially in large environments, the recommended maximum ac-
quisition time leads to require multiple scans to complete the scan
planning involving a route computation per each scan. To address
this problem, a balanced-clustering algorithm is proposed to accom-
plish laser requirements while minimizing the number of scans. The
algorithm consists of three steps starting by a rough initial graph
partitioning that is refined in the next step by a balancing process.
Finally, clusters are extended to provide enough overlap between scans
to facilitate the further registration of point clouds derived from each
scan.

3.2.3.1. K-medoids coarse partition. In this step, clustering K-medoids
(Park and Jun, 2009) algorithm is used for an initial coarse group-
ing of scan nodes. As the popular K-means method (Krishna and
Narasimha Murty, 1999), the number of goal clusters and the distance
between key-points are the required input parameters. Unlike this, K-
medoids can minimize other magnitudes beyond Euclidean distance.
This property makes K-medoids more suitable for graph distance min-
imization. Hence, the distance matrix from scanning graph 𝐷𝑠 is one
input used as the dissimilarity measure to be minimized while the input
number of clusters 𝑘 must be estimated. The proposed solution for
this problem consists in estimating the average number of scan nodes
forming a cluster 𝑛𝑛𝑝𝑐 complying laser constraints. The estimation of
𝑛𝑛𝑝𝑐 is obtained by Eq. (2), which takes into account 𝑑𝑚𝑎𝑥 and the
overlapping fixed by an arbitrary number of scan nodes to be shared
between clusters 𝑛𝑠ℎ:

𝑛𝑛𝑝𝑐 =
⌊𝑑𝑚𝑎𝑥∕𝑑𝑎𝑣𝑔

2
− 𝑛𝑠ℎ

⌋
(2)

Besides, the average distance between clusters 𝑑𝑎𝑣𝑔 is necessary
to determinate 𝑛𝑛𝑝𝑐 but this not can be computed directly. Since all
nodes composing a scanning graph are connected, the average distance
between them cannot be taken as a reliable measure. This is because
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Fig. 7. Graph partitioning from (a) scan nodes and (b) clusters.

the value obtained would increase according to the graph’s length. To
find a more robust value, an adjacency relation between the scan nodes
is established on the basis of graph connectivity. Thus, only adjacent
nodes are used to compute the 𝑑𝑎𝑣𝑔 with respect to each other.

To determinate adjacency between scan nodes, the navigable graph
is split into smaller subgraphs hereinafter referred to as scanning sub-
graphs. Before defining a scanning subgraph, the concept of induced
subgraph in graph theory is introduced:

Definition 4 (Induced Subgraph). Given a graph 𝐺𝑛 = {𝑁,𝐸}, let be
𝑌 a subset of nodes such as 𝑌 ⊂ 𝑁 . The induced subgraph 𝐺𝑛[𝑌 ] is
a graph composed of nodes from Y and the edges from E whose both
nodes belong to Y.

Relying on the above definition, a scanning subgraph can be defined
as follows:

Definition 5 (Scanning Subgraph). Given a navigable graph 𝐺𝑛 =
{𝑁,𝐸}, let be 𝑁𝑠 the set of scan nodes on the graph and 𝐺𝑆𝑆 =
{𝑁𝑆𝑆 , 𝐸𝑆𝑆} the subgraph induced by 𝑁𝑆𝑆 ⊂ 𝑁 . 𝐺𝑆𝑆 is a scanning
subgraph if the subset 𝑁𝑆𝑆 contains only one scan node 𝑛𝑖𝑠 ∈ 𝑁𝑠 and
the navigable nodes closer to 𝑛𝑖𝑠 than to any other scan node.

Definition 6 (Graph Partition). Given a navigable graph 𝐺𝑛 = {𝑁,𝐸},
𝑁𝑝 = 𝑁0,… , 𝑁𝑘 is a partition of 𝐺𝑛 if

⋃𝑘−1
𝑖=0 𝑁𝑖 = 𝑁 and 𝑁𝑖 ∩ 𝑁𝑗 =

∞,∀𝑖,𝑗 , 𝑖 ≠ 𝑗.

Hence, a navigable graph can be partitioned into |𝑁𝑠| scanning
subgraphs deriving into a scanning partition formally defined as:

Definition 7 (Scanning Partition). Given a navigable graph 𝐺𝑛 = {𝑁,𝐸},
let be 𝑁𝑝 = 𝑁0,… , 𝑁𝑘 a partition of 𝐺𝑛, 𝑁𝑝 is a scanning partition
of 𝐺𝑛 if the induced subgraph 𝐺𝑖

𝑆𝑆 = 𝐺𝑛[𝑁𝑖] is a scanning subgraph
∀𝑖 = 0,… , 𝑘.

An example of a scanning partition is shown in Fig. 7(a) where each
group of nodes is depicted by the same colour. Note that subgraphs
are connected to each other by edges of 𝐺𝑛 not belonging to any
scanning subgraph (black dashes edges). In this paper, these edges
will be referred to as adjacent scanning edges since they determinate
the adjacency relation between scanning subgraphs. Consequently, two
scan nodes 𝑛𝑖𝑠, 𝑛

𝑗
𝑠 ∈ 𝑁𝑠 are adjacent if their induced scanning subgraphs

𝐺𝑖
𝑆𝑆 and 𝐺𝑗

𝑆𝑆 are connected in the scanning partition by at least one
adjacent scanning edge.

After the mean distance of each scan node with respect to their
adjacent ones is obtained and 𝑑𝑎𝑣𝑔 is computed by averaging all these
distances the initial number of clusters 𝑘𝑖𝑛𝑖 is determined by Eq. (3). As
conservative estimations have been assumed, the number of clusters
is refined by the Algorithm 1 in order to optimize its value. In the
first iteration, initial 𝑘𝑖𝑛𝑖 clusters are obtained by K-medoids. Then, the
route distance of each cluster is estimated using the Greedy approach

considering the closed-loops constraint. The mean of length of routes
𝑙𝑎𝑣𝑔 and the shortest route are evaluated to decide whether 𝑘 is optimal
or it has to be increased or decremented. This process is repeated until
𝑘 is optimal. In addition, the 𝑘 value used at each iteration is saved in
a buffer 𝑘𝑏𝑢𝑓𝑓𝑒𝑟 to avoid oscillations since evaluation conditions are not
mutually exclusive:

𝑘𝑖𝑛𝑖 =
⌈
|𝑆|

/
𝑛𝑛𝑝𝑐

⌉
(3)

Algorithm 1 Optimal k computation
1: procedure k_computation(𝑘𝑖𝑛𝑖, 𝐷𝑠, 𝑑𝑚𝑎𝑥)
2: 𝑘𝑐 ← 𝐹𝑎𝑙𝑠𝑒
3: 𝑘 ← 𝑘𝑖𝑛𝑖
4: 𝐾𝑏𝑢𝑓𝑓𝑒𝑟 ← 𝑘
5: while 𝑘𝑐 = 𝐹𝑎𝑙𝑠𝑒 do
6: 𝐶𝑖𝑛𝑖 ← Kmedoids(𝑘,𝐷𝑠)
7: for 𝑐𝑖 ← 𝑐𝑖𝑛𝑖 do
8: 𝐷𝑒𝑠𝑡 ← Greedy_estimation(𝑐𝑖)
9: 𝑙𝑎𝑣𝑔 = mean(𝐷𝑒𝑠𝑡)
10: if 𝑙𝑎𝑣𝑔 > 𝑑𝑚𝑎𝑥 then
11: 𝑘 ← 𝑘 + 1
12: 𝑘𝑏𝑢𝑓𝑓𝑒𝑟 ← 𝑘
13: else
14: if (𝑙𝑎𝑣𝑔+min(𝐷𝑒𝑠𝑡)) < 𝑑𝑚𝑎𝑥 and not (𝑘−1) in 𝐾𝑏𝑢𝑓𝑓𝑒𝑟 then
15: 𝑘 ← 𝑘 − 1
16: 𝐾𝑏𝑢𝑓𝑓𝑒𝑟 ← 𝑘
17: else
18: 𝑘𝑜𝑝𝑡 ← 𝑘
19: 𝑘𝑐 ← 𝑇 𝑟𝑢𝑒

Output:𝑘𝑜𝑝𝑡, 𝐶𝑖𝑛𝑖

Since clustering is only based on the distance between scan nodes,
initial clustering 𝐶𝑖𝑛𝑖 may be unbalanced such that the estimated route
distance for some clusters can exceed 𝑑𝑚𝑎𝑥. In order to comply with
laser requirements, next step consists in a balancing process that seeks
to compensate the cluster distance difference through node exchange
between adjacent clusters.

Like in the case of scanning subgraphs, adjacency between clusters
is determined by the navigable graph partitioning (Fig. 7(b)). The
sets derived from the partitioning correspond to nodes inducing to
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 defined as follows:

Definition 8 (Cluster Subgraph). Given a navigable graph 𝐺𝑛 = {𝑁,𝐸},
let be 𝑁𝑠 the set of scan nodes on the graph and 𝑁𝑐 ⊂ 𝑁𝑠 a set of scan
nodes composing a cluster, the subgraph 𝐺𝐶𝑆 = {𝑁𝐶𝑆 , 𝐸𝐶𝑆} is a cluster
subgraph if:
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Fig. 8. General clustering graph balancing process.

1. 𝑁𝐶𝑆 is the set of nodes from 𝑁 closer to 𝑁𝑐 than to scan nodes
not belonging to 𝑁𝑐 .

2. 𝐺𝐶𝑆 is the induced subgraph 𝐺𝑛[𝑁𝐶𝑆 ].

Therefore, the navigable graph can be partitioned into 𝑘 node sets
inducing a 𝑘 cluster subgraphs. The obtained graph is refereed as cluster
partition that is defined as:

Definition 9 (Cluster Partition). Given a navigable graph 𝐺𝑛 = {𝑁,𝐸},
let be 𝑁𝑝 = 𝑁0,… , 𝑁𝑘 a partition of 𝐺𝑛, 𝑁𝑝 is a scanning partition
of 𝐺𝑛 if the induced subgraph 𝐺𝑖

𝑆𝑆 = 𝐺𝑛[𝑁𝑖] is a cluster subgraph
∀𝑖 = 0,… , 𝑘.

According to the previous definition, the relation between scan
nodes composing a cluster 𝐶𝑖 and the cluster subgraph 𝐺𝑖

𝐶𝑆 induced from
them is unambiguous. Like scanning partition, edges not belonging
to any cluster subgraph are used to determinate adjacency relations
between clusters. These edges are referred to as adjacent cluster edges.

Besides, since cluster subgraph connectivity is required in the balanc-
ing process to exchange nodes between adjacent clusters, the cluster
subgraphs derived from the cluster graph partitioning must be con-
nected. However, the induced subgraphs from clusters obtained by
K-medoids clustering may not satisfy the connectivity condition. There-
fore, before starting the balancing procedure, cluster subgraphs are
analysed to meet connectivity requirement by moving scanning sub-
graphs between clusters, if necessary. The resultant clusters 𝐶𝑐𝑜𝑛 are
the input for the balancing process.

3.2.3.2. Cluster partition balancing. The implemented balancing pro-
cess consists in exchanging scan nodes between clusters for the purpose
of making all cluster routes shorter than 𝑑𝑚𝑎𝑥, for forcing the distance
variance from them be as small as possible. Main operations performed
by the algorithm to attain a balanced cluster partition from the coarse
clustering are visualized in Fig. 8.

First, the initial clustering graph is generated by partitioning the
navigable graph according to the coarse clustering 𝐶𝑐𝑜𝑛 computed in
the previous step. At each iteration, the length of every cluster subgraph
is estimated by Greedy-based route computation. Also, the clustering
distance variance is calculated for the refinement of the balancing.

From the previous estimations, two clusters are selected to perform
the node(s) exchange between them. The criteria for this selection
depends on whether the estimated length of any cluster exceeds the
maximum acquisition distance 𝑑𝑚𝑎𝑥 or not. In the first case, the longest
cluster subgraph is chosen as the cluster to be reduced 𝐶𝑟𝑑𝑐 . Sub-
sequently, the shorter cluster subgraph adjacent to 𝐶𝑟𝑑𝑐 is the clus-
ter selected to be expanded 𝐶𝑒𝑥𝑝. Otherwise, the algorithm seeks to

improve the balancing by clustering variance reduction. To do this,
cluster selection is based on the length deviation of the clusters around
the clustering average distance. First, the most deviated cluster 𝑐𝑑 is
selected in agreement with Eq. (4):

𝑐𝑑 ∣ 𝑑 = max
𝑑

|𝐷𝑑 | (4)

Then, Eq. (5) is used to determinate the cluster whose deviation
better compensate that of 𝑐𝑑 . Once both clusters have been determined,
the cluster with the smallest deviation value is selected as the one to
be expanded (𝐶𝑒𝑥𝑝) while the other one is the one to be reduced (𝐶𝑟𝑑𝑐).
In the example visualized in Fig. 9, the cluster 𝑐2 is the most deviated
cluster and it is selected as 𝐶𝑒𝑥𝑝 because 𝐷2 is smaller than 𝐷0:

𝑐𝑜 ∣ 𝑜 = min
𝑜

|𝐷𝑜 +𝐷𝑑 | (5)

Next step consists in determining the node(s) to move from 𝐶𝑟𝑑𝑐 to
𝐶𝑒𝑥𝑝 regardless of the criteria previously used to select both clusters.
Balancing process is based on nodes’ connectivity, thus, all subgraphs
composing 𝐶𝑟𝑑𝑐 adjacent to 𝐶𝑒𝑥𝑝 are candidates to be exchanged. Fol-
lowing the example in Fig. 10(a), let us suppose that 𝐶1 (purple nodes)
has been selected as 𝐶𝑟𝑑𝑐 and 𝐶2 (green nodes) as 𝐶𝑒𝑥𝑝. Thus, the nodes
corresponding to subgraphs 𝐺5

𝑠𝑠, 𝐺6
𝑠𝑠, 𝐺11

𝑠𝑠 are the candidates to ex-
change for being adjacent to 𝐶2. Since multiple exchanges are possible,
a criteria of prioritization is defined with the aim of conducting the
most advantageous exchange. Therefore, candidate nodes are evaluated
in connectivity terms to establish node priority. Due to the fact that
𝐶𝑒𝑥𝑝 is adjacent to any candidate, the resultant expanded cluster will
always be connected after the exchange. However, this is not true for
the reduced cluster. Continuing with the example in Fig. 10(a), the
exchange of one subgraph such as 𝐺5

𝑠𝑠 or 𝐺11
𝑠𝑠 to 𝐶2 does not break

the connectivity of 𝐶𝑟𝑑𝑐 . In contrast, 𝐶𝑟𝑑𝑐 is split into three connected
components if 𝐺6

𝑠𝑠 is exchanged generating a cluster graph partition of
𝑘 + 1 sets. To avoid this inconsistency, the candidate node associate
to 𝐺6

𝑠𝑠 is discarded. After, the priority of the remaining candidates is
determined according the number of adjacent cluster edges (dashed
black edges) joining candidate subgraph with 𝐶𝑒𝑥𝑝. Thus, the subgraph
𝐺5
𝑠𝑠 have a level of priority 5 while that for subgraph 𝐺11

𝑠𝑠 is 1 being
priority 1 the highest level.

The break in connectivity of 𝐶𝑟𝑑𝑐 is an usual situation in graphs
of indoor spaces since topological connections between corridors and
rooms occur through by a door. Therefore, a more complex node
exchange is addressed to provide greater flexibility to the algorithm. To
visualize the problem, a new clustering graph represented in Fig. 10(b)
that corresponds to the previous example adding a slightly modification
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Fig. 9. Graphical representation of cluster deviations around the mean distance. The largest deviation is visualized in red while the deviation that most offsets it is coloured in
light blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Unconnected cluster subgraph (purple) after moving one scanning subgraph (𝐺6
𝑠𝑠) generating a subgraph composed by (a) 3 and (b) 2 connected components. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

is used. In this case, subgraphs 𝐺5
𝑠𝑠 and 𝐺6

𝑠𝑠 are the adjacent candidate
nodes to be exchanged. As in the example above, 𝐺5

𝑠𝑠 has priority 5
while the exchange of 𝐺6

𝑠𝑠 breaks continuity of 𝐶𝑟𝑑𝑐 . But unlike the
previous case, this exchange breaks the subgraph into two connected
components only. In this case, a solution to allow the exchange of
nodes that break cluster graph connectivity keeping cluster partition
consistency is more feasible to implement. To solve clustering consis-
tency, a new operation called multi-node exchange has been added. This
exchange consists in moving the shorter component ({𝐺5

𝑠𝑠}) together
with the candidate subgraph (𝐺6

𝑠𝑠) to 𝐶𝑒𝑥𝑝 which ensures connectivity of
resultant subgraphs. Although this exchange is possible, the candidate
𝐺5
𝑠𝑠 is priority because this can be moved by single-node operation, that

is, only one subgraph is moved.
Then, a new clustering is obtained after exchanging the highest-

priority node(s) but it must be checked in order to avoid exchanges
leading to oscillations in the balancing process. The clustering prop-
erties to evaluate depend on the criteria used for cluster selection.
The length of the resulting expanded cluster is computed from the
comparison with the previous length of 𝐶𝑟𝑑𝑐 if any cluster exceeded
𝑑𝑚𝑎𝑥 in the previous clustering. In this case, the exchange is valid if
length of 𝐶𝑒𝑥𝑝 is smaller. Otherwise, when clusters are selected on the
basis of variance reduction, the exchange is valid if the variance of the
new clustering is smaller than the previous variance and the length of

𝐶𝑒𝑥𝑝 does not exceed 𝑑𝑚𝑎𝑥. According to this check, the new clustering
is ruled out if the exchange is not valid. Consequently, the remaining
candidates are chosen according to priority until a valid exchange is
performed.

In complex cases, exchange validation may be invalid for all candi-
dates. To avoid the non-convergence of the algorithm in this situation,
the node exchange between 𝐶𝑟𝑑𝑐 and 𝐶𝑒𝑥𝑝 is blocked until one of them
is modified in a further iteration. Thus, the balancing process concludes
when any exchange is blocked providing a new distribution of the scan
nodes 𝐶𝑏.

3.2.3.3. Overlapping sharing nodes. Once scan nodes have been clus-
tered into balanced clusters, a route from each cluster can be computed
separately with the expectation that the routes obtained comply with
the specific MLS constraints. However, the overlapping between indi-
vidual point clouds collected from each route may not be enough for
further registration. To ensure this, clusters are extended by adding
nodes from their adjacent clusters. The level of overlapping is deter-
mined by the user-selected parameter 𝑛𝑠ℎ, which corresponds to the
number of nodes that clusters must share with each other. Hence, from
clusters do not sharing 𝑛𝑠ℎ, the shortest one is selected to expand it with
the closest node from an adjacency cluster and this process is repeated
until all clusters share at less 𝑛𝑠ℎ. The routes obtained after to apply
this to the previous example with 𝑛𝑠ℎ = 1 are depicted in Fig. 11(b).



ISPRS Journal of Photogrammetry and Remote Sensing 192 (2022) 13–32

22

E. Frías et al.

Fig. 11. Routes computed (a) directly from balanced clustering and (b) after adding shared nodes.

Fig. 12. (a) Trajectory segments are projected to binary map to determinate unique trajectory positions which (b) are used to carry out visibility analysis in the Euclidean Space.

3.3. MLS visibility analysis

In order to make a coverage/completeness comparison between
static and dynamic acquisition, a new visibility analysis is carried out
with dynamic constraints. First, trajectory positions for laser beam
simulation are computed on the basis of binary map obtained by
projecting trajectory segments as shown Fig. 12(a). The occupied cells
by the projected trajectory are the source positions to perform the ray-
tracing test. Second, the FoV is adapted to 2D laser range of MLS that
limits the reachable points from source positions. Thus, the coverage
area covered from a trajectory position corresponds to the orthogonal
plane to the direction of motion. In addition, the yaw effect, inherent to
mobile system movement is simulated by an angular sweeping of the
coverage plane considering an offset of ±𝛹 degrees. Abrupt changes
in the direction along the trajectory generating gain in coverage are
regarded as well by extending the plane sweeping with the angle 𝛩 as
is represented in Fig. 12(b).

3.4. Scan simulation

The methodology developed for route planning is considering as
searching space for the estimation of the optimal path a 2D domain. To
evaluate the possible effects of this assumption in terms of scan quality,

density and completeness in realistic 3D applications a scan simulation
has been carried out for the four case study analysed.

Scan simulation is carried out by using the HELIOS++ library (Wini-
warter et al., 2021). The Heidelberg LiDAR Operations Simulator
(HELIOS++) is a laser scanning simulation framework originally imple-
mented in C++ and allowing bindings with Python by using pyhelios
extension. The HELIOS++ framework allows the virtual laser scanning
simulations of LiDAR sensors placed on different platforms. For scan
simulation five main elements are necessary: (i) the definition of the
scanner characteristics, properties and the platform behaviour, (ii) an
adequate 3D model of the scene to be simulated, (iii) a simplification
of the real-world interaction between the laser beam and the objects in
the 3D scene to be simulated.

The HELIOS++ framework is highly flexible and arranged into
modules allowing for the definition of new sensors in terms of: the
emitter (e.g., beam divergence full-angle, pulse frequencies, laser pulse
length/duration, wavelength), the laser beam deflector (e.g., rotating
mirror, fiber array, oscillating mirror, conic mirror, risley prims, etc.),
characteristic of the range detector (e.g., minimum and maximum
range, sensor accuracy) and scanner head properties (e.g., maximum
speed, axis of rotation, etc.). Defined scanners can be coupled with
static and dynamic as well as terrestrial and airborne platforms.

The model of the scene to be simulated can be provided as triangular
meshes, digital elevation raster, voxel grids and point clouds. The
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model can be obtained either from a real survey or can be generated
digitally. Materials can be applied to the 3D to simulate intensity
behaviour and laser return intensity values are calculated using the
laser radar equation.

The physical interaction among laser beam and simulated object is
modelled using a set of parameters considering both physical and ma-
terial behaviour of the object and characteristics of the laser beam such
as: transmitted optical power, receiver aperture diameter, atmosphere
transmission, beam divergence, angle of incidence, range distance to
the target, angle of incidence to the target, reflectance of the target
surface.

In this context simulations are carried out to evaluate the perfor-
mance of the estimated optimal path considering two different metrics:

1. Data completeness, that considers if a certain area of the scene
is captured or not by the scanner

2. Data density, that provides the amount of points recorded to
approximate the surface of the reflector

Data completeness reflects if the surface of the investigated ob-
ject is surveyed and represented in the point cloud or not. Lack of
completeness can be the consequence of an incomplete acquisition
due to wrong planning of the scan standpoints (static scanner) and
paths (mobile scanner). In particular, data completeness is defined as
the ratio between the surface of the scene covered by scan data and
the total area of the scene. Completeness is evaluated considering a
voxel based strategy: the original scene is represented using a regular
voxel structure and if scanned data are present into a voxel occupied
by the original simulated scene that voxel is labelled as ‘‘complete’’.
Otherwise, if the voxel is not covered by scanner data it is labelled
as ‘‘empty’’. The completeness is defined as the percentage of scanned
voxels compared to the total number of voxels that compose the scene
to be scanned.

Data completeness accounts only if a certain area is covered by
scan data or not. However, it is not accounting if the recorded point
cloud has a sufficient resolution to reconstruct all the details of the
investigated site. According to this concept, a further metrics is added
in the evaluation of the estimated optimal path performance. Data
density is locally evaluated on the surface within a prefixed diameter
around each point, as proposed in Fugazza et al. (2018). This metric can
be depicted to model the point density distribution that can be obtained
from the proposed data acquisition plan. A minimum threshold for the
local point density can be established to check whether this parameter
is acceptable or a revision of the scan plan is needed.

4. Results and discussion

Experiments carried out to validate the proposed method and the
obtained results are outlined in this section. Datasets used for testing
and the designing of the experiments are described in Section 4.1.
Results presented in Section 4.2 are divided in two parts in accordance
with both main problems addressed: initial analysis and route planning.
The results of the latter are further split into TLS and MLS analysis.

4.1. Case studies

With the aim to evaluate the robustness of the method for different
applications, four case studies from indoor and outdoor environments
have been selected (Fig. 13). Case studies (1) and (2) correspond
to real indoor scenes from the Technische Universität Braunschweig
(Germany) and they are provided by the ISPRS Benchmark on Indoor
Modelling dataset (Khoshelham et al., 2017). An area from the archae-
ological site of Pompeii (Italy) is selected as case study (3) in order
to demonstrate the reliability of the method in complex and large real
outdoor scenarios. And finally, case study (4) is a simulated shopping
mall designed to show the potential applicability of our method to
large industrial/commercial buildings. This mall has the particularity

of being composed of rooms with a highly variable size. Special focus
should be put into the large size of case studies; the total processed
area is 304 m2, 373 m2, 18,364 m2 and 35,503 m2, for case studies 1,
2, 3 and 4, respectively. For case study 1 and 2 an angular sampling of
0,048◦ was used. Instead, due to the larger scale of case study 3 and 4
the angular sampling was increased at 0,024◦. (See Fig. 14).

Simulations were intended to assess the utility of the proposed
method with three different theoretical laser scanners imitating core
features of commercial devices. The technical specifications defined for
the emulated systems are summarized in Table 2. One of the systems is
a terrestrial laser scanner selected to simulate static acquisitions, while
the other two are MLS systems used for dynamic mapping. The main
differences between the two mobile systems in terms of scan planning
are the maximum recommended acquisition time and the requirement
of closed loops. It should be also noted that IMMs-2 and IMMs-1
are systems conformed by one 2D time-of-flight laser range scanner
coupled to an inertial measurement unit (IMU). The motion of the
laser scanner together with a simultaneous localization and mapping
algorithm generate the 3D field of view indicated in Table 2.

For each case study, five simulations are conducted. One simulation
corresponds to a static TLS, two simulations are conceived for a MLS
referred as IMMs-1 considering maximum acquisition times of 5 min
and 2 min, respectively, and the last two simulations are conducted for
another MLS coined IMMs-2 with 15 min and 10 min of acquisition
time. For all MLS simulations, a travel speed of 4 km/h is considered.
This value is similar to the base travel speed of non-disabled people
(Montufar et al. 2007). The optimal route for TLS is also calculated
to consider the option of mounting the system on an autonomous
system for performing a Scan&Go procedure as in Frías et al. (2019).
In this case, the optimal route corresponds to the shortest route not
considering time restrictions.

4.2. Results

This section is devoted to show the results obtained from simula-
tions. Section 4.2.1 collects the output data from initial analysis while
the relevant results of route planning are presented and analysed in
Section 4.2.2. Results of simulations on Helios are reported in Sec-
tion 4.2.3. Both initial analysis and route computation processes were
carried on a laptop with 2.6 GHz CPU and 16 GB RAM.

4.2.1. Initial analysis
For initial scan candidate generation both partition methods were

used, triangulation in the two first case studies, while a 2 m grid
resolution was selected for cases 3 and 4. Regarding environment
extension, two different laser ranges were chosen to carry out the
planned simulations. A range of 5 m was used for the cases 1 and 2
whereas for the other much larger scenarios a laser operating distance
was set to 10 m. From this configuration for simulations, the number
of initial scan candidates obtained for studies case 1, 2, 3 and 4 were
151, 185, 3261 and 6675 respectively. Finally, scan positions were
computed in order to ensure a theoretical coverage of 90% of the
elements of interest for all of the cases resulting in 15, 18, 210 and 300
positions. The outcome of this analysis previous to route computation
is depicted in Figs. 15 and 16

4.2.2. Route planning
4.2.2.1. Route planning for TLS. The main results for TLS simulation in
the four case studies are collected in Table 3. The larger the case study
extension, the longer the computed routes listed in the second column
of Table 3. The processing time to compute the optimal route grows
as well as the number of scan nodes increases. This is because the ACO
algorithm complexity depends on the number of nodes involving a high
computation time for route planning in large environments as in cases
3 and 4. The computed routes for the middle-sized buildings 1, 2 and
large scenes 3, 4 are depicted in Figs. 17 and 18 respectively.
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Fig. 13. BIM of the case studies (a) 1, (b) 2, (c) 3 and (d) 4.

Fig. 14. dxf models of the case studies (a) 1, (b) 2, (c) 3 and (d) 4.

Table 2
Technical specifications of laser scanner systems used to test the method.

TLS-1 (TLS) IMMs-2 (MLS) IMMs-1 (MLS)

Field of view 360◦ × 270◦ 360◦ × 270◦ 360◦ × 270◦
Range 330 30 m (optimal conditions)/

<10 m (recommended)
0.5–25

Point measurement (rate
pts/s)

976,000 43,000 420,000

Maximum recommended
acquisition time

No limited 30 min 2 min

Closed-loops requirement No Yes No
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Fig. 15. Initial analysis results depicting discarded candidates (grey) and scan positions (red) for cases (a) 1 and (b) 2. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 16. Initial analysis results depicting discarded candidates (grey) and scan positions (red) for cases (a) 3 and (b) 4. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 17. Routes obtained from TLS simulation for cases (a) 1 and (b) 2.
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Fig. 18. Routes obtained from TLS simulation for cases (a) 3 and (b) 4.

Table 3
Route length and processing time for TLS simulation with the four
selected study cases.
Case study Route length (m) Processing time (s)

1 94.6 0.8
2 107.2 1.3
3 1825.3 2987.6
4 6136.0 5152.0

4.2.2.2. Route planning for MLS. Some relevant results to analyse the
computed routes for MLS are collected in Table 4 for the simulations
described in Section 4.1. The number clusters 𝑘 obtained in simulations,
decreases longer the maximum acquisition time 𝑡𝑚𝑎𝑥 and increases as
the number of scan nodes is higher. This behaviour is congruent with
Eqs. (2) and (3) used for 𝑘 calculation. The suitability of this estimation
is evaluated in the analysis of final routes.

From 𝑘 estimation, the balanced-clustering algorithm is tested by
comparing balanced clusters with the coarse clustering previous to
balance. The number of clusters complying time restriction (column
labelled as ‘ct’) and the clustering distance variance (𝜎2) have been the
measures chosen to evaluate the performance of the process. In cases
studies 1 and 2, the only simulation requiring more than one cluster is
the 2 minutes without loops. For both cases, the two clusters obtained
by coarse clustering satisfy time constraint but the balancing algorithm
reduces clustering distance variance in case 1. Fig. 19 shows that cluster
distribution is improved by applying the balancing algorithm. On the
contrary, no balancing is performed in the case 2 since the result
generated by the coarse clustering with variance of 0.32 m2 is already
valid.

Case studies 3 and 4 are really challenging for the balancing process
since the variance of distances of coarse clustering is high and several
clusters exceed 𝑡𝑚𝑎𝑥 condition. In case 3, the clustering distance vari-
ance is strongly reduced for all simulations and balanced clusters satisfy
𝑡𝑚𝑎𝑥 restriction except in one simulation. This corresponds to the most
restrictive simulation in time of 2 min for which the coarse clustering
generates clusters varying from 0 m (one scan node) to 400 m. Despite
this difficulty the algorithm archives to improve significantly cluster
distribution. Variance is also reduced but two clusters exceeds 𝑡𝑚𝑎𝑥 by
no more than 15 m due to a exceptional situation. Both clusters are
almost the same length and they are adjacent to each other. Beyond,
they are also adjacent to another cluster of length similar to 𝑑𝑚𝑎𝑥
what does not allow any exchanges between them. Theoretically, the

algorithm should be able to reduce this cluster in order to enable the
exchange with its adjacent ones in a later iteration. But this is not
reduced since the unique possible exchange with its adjacent cluster
generates a longer expanded cluster, violating the exchange validation.
Consequently, as the estimation of the distance is far from optimal
route the balancing is not completed. Even more complex is the case
study 4 both in extension and in space distribution. As in the other case
studies, balancing algorithm improves significantly clustering distribu-
tion, however, some clusters exceed 𝑡𝑚𝑎𝑥 limitation. By visual analysis
we note that balanced clusters longer than 𝑑𝑚𝑎𝑥 are located in the
same areas during different simulations. These areas are composed of
a narrow corridor connecting several small rooms adjacent to each
other on both sides. This distribution involves to perform a large multi-
exchange operation for the balancing that, in many cases, infringes the
exchange condition locking node moving with their adjacent clusters.
As these clusters are shorter than 𝑑𝑚𝑎𝑥 when 𝑡𝑚𝑎𝑥 = 15 min, the
balancing is successfully completed as depicted in Figs. 20(a) and 20(b),
respectively.

The last three columns in the Table 4 contain the results of the com-
puted optimal routes after adding shared nodes 𝑛𝑠ℎ = 1. The average
length of clusters for every simulation is at least a 10% shorter than
the maximum acquisition distance. Therefore, the estimated number
of clusters (𝑘) is enough to carry out a cluster balancing fulfilling the
adopted MLS constraints. An example of the final routes for each case
study with open and closed loops are visualized in Figs. 21 and 22,
respectively.

Processing time is the sum of the complete process from coarse
clustering to route computation. While simulations requiring one route
path are processed with a similar temporal cost as TLS route (case 1
and 2), processing time consumed to compute partitioned routes in the
same cases is drastically reduced. Such as, the worst MLS simulation
for case 4 the computation time was 276.6 s which is approximately
a 5% of the route computation time in the TLS planning for the same
case study.

To the best of our knowledge, no previous works addressing scan
planning for MLS provide automated scan trajectories. Therefore, a
rigorous comparison with previous methods is not yet possible. Scan
trajectories (routes) followed by operators during acquisition of a large
heritage site are provided in Zlot et al. (2014) (Table 5).

These routes were followed by operators on the basis of their ex-
perience without previous scan planning. From this data, only distance
variance can be compared with the automatic mobile scan planning
proposed in the present work. The variance of the route distances listed
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Table 4
Summarize of MLS results.

Case study Closed Loops 𝑡𝑚𝑎𝑥 (min)
𝑘 Coarse clustering Balanced clustering Routes

ct 𝜎2 ct 𝜎2 ct Avg. length (m) Proc. time (s)

1

No 2 2 2 588.6 2 25.6 2 39.4 0.4
No 5 1 1 0.0 1 0.0 1 94.4 0.9
Yes 10 1 1 0.0 1 0.0 1 128.4 0.9
Yes 15 1 1 0.0 1 0.0 1 129.3 0.9

2

No 2 2 2 0.3 2 0.3 2 52.0 0.6
No 5 1 1 0.0 1 0.0 1 106.6 1.3
Yes 10 1 1 0.0 1 0.0 1 138.0 1.3
Yes 15 1 1 0.0 1 0.0 1 136.6 1.4

3

No 2 23 16 15633.2 21 254.2 22 88.6 168.3
No 5 13 9 77454.0 13 2052.1 13 167.1 114.2
Yes 10 8 5 58888.5 8 1080.0 8 3.4 122.4
Yes 15 6 4 87776.0 6 2662.6 6 485.7 136.0

4

No 2 43 31 34881.6 36 9709.8 38 95.4 276.6
No 5 22 15 174332.2 20 16486.0 21 199.9 174.2
Yes 10 14 9 219839.8 13 18642.6 14 394.3 160.0
Yes 15 11 8 842479.7 11 11040.6 11 512.4 190.7

Fig. 19. Clustering in the simulation of an acquisition performed by IMMs-1 with maximum acquisition time of 2 min in case study 1, before balancing (a) and after balancing
(b).

Table 5
Routes extracted from Zlot et al. (2014).
Scan trajectories Scanning time ([h:]mm:ss) Trajectory length (m)

Sparse overview loop 24:15 1039
Male compound 1 17:26 854
Male compound 2 14:23 505
Male huts (recreation area) 15:38 413
Male huts 1:55 77
Coloured compound 39:45 1998
Female and male compound 29:52 1215
Female hut and surrounds 9:45 289
Recreation hall 9:53 235
Path to doctor’s residence 10:55 376
Doctor’s residence 19:22 522
Nurses’ residence 15:41 811
Superinterdent’s quarters 8:26 178

in Table 5 is 259,784.9 which is more than ten times greater than the
worst case of the simulations conducted in this work. This result points
out that balanced clustering leads to more balanced routes reducing the
distance of longest scan which minimizes the impact of the deviation
caused by SLAM positioning.

4.2.3. Scan simulation
4.2.3.1. Scan simulation for TLS. The main results for TLS simula-
tion in the four case studies are presented in Tables 6 and 7. In
Table 6, the second column represents the 2D completeness (ratio
computed in 2D space) used as the stopping criteria for the definition
of the optimal scanning positions to capture the scene. The remaining
columns presents the completeness for the main elements composing
the scene (i.e., wall, ceiling and floor) and the overall completeness of
the scene. Completeness is evaluated considering a regular voxel size
of (3.0 × 3.0 × 3.0 cm). As it can be observed the completeness of walls
is really close to the 2D completeness used as stopping criteria. Ceiling
and floor present a lower completeness and this is mainly due to the
fact that the acquisition is assumed on a tripod at an height with respect
to the ground equal to 1.5 m so the area under the scanner tripod is
not surveyed and the incidence angle between the laser ray and the
reflector is unfavourable for those areas compared with walls.

Table 7 presents data density as the percentage of points in the
points cloud having a number of neighbouring points (computed in a
circle of radius 0.2 m).

4.2.3.2. Scan simulation for MLS. The main results for MLS simulation
in the four case studies are presented in Tables 7 and 8. In Table 7 the
results for the simulation of the for case study. Simulations were carried
out considering a walking speed of 1.1 m/s.
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Fig. 20. Clustering in the simulation of an acquisition performed by IMMs-2 with maximum acquisition time of 15 min in case study 4, before balancing (a) and after balancing
(b).

Fig. 21. Final route with node sharing from IMMs-1 2 min simulation for case study (a) 1 and (b) 2.

Table 9 presents data density as the percentage of points in the
points cloud having a number of neighbouring points (computed in a
circle of radius 0.2 m). Simulation results with IMMs-1 are showing
for case study 1 and 2 a really high completeness (90%) even better
with the one achieved in the simulation of the TLS. In particular,
completeness of ceiling and floors is high and this is mainly connected

with the different acquisition pattern that is more favourable, for those
surfaces, compared with TLS static acquisition. The high completeness
is connected with the high point measurement rate. For case study 3
and 4 completeness decreases and this is, in our opinion, mainly due
to the large scale of the case study, the relatively limited range of the
instrument and the relatively small voxel size used for simulation.
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Fig. 22. Final route with node sharing from IMMs-2 10 min simulation for case studies (a) 3 and (b) 4.

Table 6
Data completeness for TLS simulation using Helios with the four selected study cases.
Case study Estimated 2D

completeness
Overall 3D completeness
(simulation) [%]

Wall completeness
(simulation) [%]

Ceiling completeness
(simulation) [%]

Floor completeness
(simulation) [%]

1 90 85.6 89.7 84.4 78.5
2 90 84.3 88.5 82.7 77.7
3 90 82.7 90.1 80.3 66.5
4 90 81.8 89.3 81.1 63.2

Table 7
Data density for TLS simulation in Helios with the four selected study cases.
Case study Point density >

5000 pts [%]
Point density >
15000 pts [%]

Point density >
25000 pts [%]

1 87.55 66.86 37.10
2 86.24 64.52 35.98
3 63.30 21.57 5.68
4 62.45 19.96 6.49

Simulation results with IMMs-2 are showing a much lower com-
pleteness compared with IMMs-1 and, this could be mainly connected
with the lower point measurement rate compared with IMMs-1. Results
in terms of density are also confirming this. The lower measurement
rate results in a much lower data density and keeping a quite tight
voxel size (3.0 × 3.0 × 3.0 cm) influences the results also in terms of
completeness. Considering density analysis the TLS data are showing
as expected, a concentration of areas with high density points com-
pared to MLS, that instead are showing a lower density but an higher
homogeneity in the distribution.

MMS data are showing relatively low completeness with respect to
TLS data especially in Case study 3 and Case study 4. Concerning case
study 3 this is mainly due to the fact that a larger part of the dataset is
characterized by a large square representing a significant percentage of
the overall surface of the dataset. The presented methodology is mainly
relying on the survey of vertical structures (walls) and not horizontal
elements like floors, ceilings, etc. For those elements the distribution of
the completeness and density is high irregular. High completeness and
density is observable in correspondence of a buffer area (approximately
2/3 depending on the instruments considered in the simulation) around
the trajectory of the instrument. Outside this buffer the completeness
rapidly decrease this is due to the lower acquisition rate and due to the
height of 1.0 m considered as instrumental height of the MMS during
the simulation. While this factor is beneficial is relatively small environ-
ments (like Case Study 1 and 2) becomes a drawback for large sites (like
Case Study 3 and 4). In addition, the walking speed is fixed at 1.1 m/s

for Case Studies 1 and 2, while 2.0 m/s is used for Case Studies 3 and 4.
This increase in speed was needed to obtain feasible processing time of
Helios simulations given the large dimension of those case studies, and
it has a significant influence both on completes and density. Decreasing
the walking speed would increase both indicators. For case study 4
similar considerations can be drawn since floors and ceiling represent
a significant percentage of total surface.

5. Conclusion

In this paper, a novel approach for both static and mobile scan
planning is presented. The method is flexible in the sense that it
can deal with several MMSs constraints such as maximum acquisition
time and non-closed loop and closed-loop requirement. These con-
straints configure the graph partition balancing process implemented
to generate routes specific for a user-configurable MMS. The method is
tested in four real case studies with variable size and complexity. Five
simulations are performed for each case study considering different
laser scanning system configurations. Simulation with Helios++ is used
for demonstrating the reliability of the computed route in terms of
3D completeness, and validate the acquisition assumption for MLSs.
Results show a good performance of the scan planning method, in-
cluding optimal routing, in large scale and complex sites. Furthermore,
scanning from multiple routes with MLS not only allows to capture
the scene more quickly than using TLS but also the processing time
to compute the optimal route is significantly reduced, particularly in
large scenes. Obtained results suggest that the routes provided by the
proposed method are more balanced than when an automatic scan
planning is no performed.

In this work, optimal scan planning is designed to fulfil data com-
pleteness criterion, which is commonly stated as the most critical point
cloud data criterion for scan planning (Aryan et al., 2021). The scan
simulator used in the manuscript –Helios– allows in the definition of
the scanning system the setting of the beam divergence full-angle.
This parameter in conjunction with the definition of the scene and
of the scanner position are used for the simulation of the scanning
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Table 8
Data completeness for MLS simulation in Helios with the four selected study cases.

Case study Estimated 2D
completeness

Overall 3D completeness
(simulation) [%]

Wall completeness
(simulation) [%]

Ceiling completeness
(simulation) [%]

Floor completeness
(simulation) [%]

IMMs-1 2 min

1 90 88.7 89.5 84.4 82.2
2 90 88.3 88.9 86.6 83.4
3 90 73.3 77.1 N.A. 61.8
4 90 74.8 81.1 62.3 62.3

IMMs-1 5 min

1 90 89.8 90.2 88.8 88.6
2 90 88.4 89.2 86.9 86.7
3 90 75.2 79.0 N.A. 65.8
4 90 76.8 81.3 65.3 65.3

IMMs-2 10 min

1 90 80.3 80.4 79.6 79.3
2 90 81.5 82.9 80.5 80.3
3 90 53.3 56.6 N.A. 40.1
4 90 54.8 58.7 42.2 42.2

IMMs-2 15 min

1 90 80.2 80.5 79.3 79.0
2 90 81.1 81.9 80.8 80.6
3 90 52.4 55.4 N.A 38.3
4 90 53.2 55.3 40.1 40.1

Table 9
Data density for MLS simulation with the four selected study cases.

Case study Point density >
5000 pts [%]

Point density >
15000 pts [%]

Point density >
25000 [%]

Point density
> 35000[%]

IMMs-1 2 min

1 50.32 12.42 5.85 3.87
2 49.17 11.35 5.85 3.87
3 19.80 9.24 2.12 0.35
4 22.30 13.54 3.32 0.53

IMMs-1 5 min

1 48.69 12.35 5.76 3.79
2 46.86 10.96 3.87 1.76
3 20.13 10.43 3.29 0.43
4 23.12 14.27 4.21 0.65

IMMs-2 10 min

1 42.78 8.67 3.89 <1.00
2 41.35 8.32 3.15 <1.00
3 0.40 0.02 N.A N.A.
4 0.52 0.03 N.A N.A

IMMs-2 15 min

1 41.54 8.01 3.88 <1.00
2 41.23 7.96 3.78 <1.00
3 0.35 0.01 N.A. N.A.
4 0.50 0.02 N.A. N.A.

phase. In this way, the incidence angle between the laser beam and
the scanning surface it is taken into account in the generation of the
simulated point cloud. In addition, reflectance properties of the scene
can be defined further refining the definition of the simulated point
cloud. The precision of the simulated point cloud was not addressed
in the manuscript since, according to authors’ opinion, uncertainties
connected with simplified scenes used in the simulation may, in real-
world applications, lead to misleading interpretation of results. For
example, in the Pompeii example the mesh model used was quite
rough and elements like columns were highly simplified as (almost)
rectangular elements. According to authors opinion those simplifica-
tions are inevitable for real world applications. However, while such
simplifications may have limited impact on ‘‘overall’’ indicators like
scanning completeness and point density they can lead do misleading
results for the evaluation of the point cloud precision.

In future work, some limitations should be addressed to improve
the proposed method. The use of grid-based graph for large scenes
involves a high computation cost in memory, therefore, a more efficient
graph nodes distribution should be studied. In this line, a flexible graph
generation for multiple platforms carrying the MLS or for different
environments, i.e. indoor/outdoor would improve route accuracy.
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Appendix. Balanced graph partitioning algorithm

This appendix is devoted to extend the balanced graph partition-
ing algorithm described in Section 3.2.3.2. A detailed pseudocode of
the entire process is collected in Algorithm 2. This takes the coarse
clustering computed in the previous step 𝐶𝑐𝑜𝑛, the navigable graph 𝐺𝑛
and the MLS constraints of maximum acquisition distance 𝑑𝑚𝑎𝑥 and the
closed loops requirement𝑐𝑙 as input parameters. Before to start the main
iterative process, estimated distances of each cluster 𝐷𝑒𝑠𝑡 are computed
by a Greedy-based algorithm to determinate the binary condition 𝑙𝑐
which is true if any cluster is longer than 𝑑𝑚𝑎𝑥. To exchange control, the
boolean matrix 𝐸 is initially filled with true values where the elements
𝑒𝑙,𝑚 with value true means that the exchange between cluster 𝑙 and
cluster 𝑚 is enabled while the exchange is disable when the value is
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false. Consequently, the exchange between two clusters is allowed if
they are adjacent and the corresponding change is enabled in 𝐸.

At each iteration, an adjacency cluster matrix 𝐴𝑐 is computed to
define adjacency relations between clusters from the clustering at this
iteration 𝐶𝑏. Then, clusters to be reduced 𝐶𝑟𝑑𝑐 and expanded 𝐶𝑒𝑥𝑝 are
selected according to criteria explained in Section 3.2.3.2. From 𝐶𝑟𝑑𝑐 ,

Algorithm 2 Cluster balancing
1: procedure Cluster_balancing(𝐶𝑐𝑜𝑛, 𝐺𝑛, 𝑑𝑚𝑎𝑥, 𝑐𝑙)
2: 𝐶𝑏 ← 𝐶𝑐𝑜𝑛
3: 𝐸 ← matrix_initialization()
4: 𝐷𝑒𝑠𝑡 ← greedy_estimation(𝐶𝑐𝑜𝑛, 𝑐𝑙)
5: if max(𝐷𝑒𝑠𝑡) > 𝑑𝑚𝑎𝑥 then
6: 𝑙𝑐 ← 𝑇 𝑟𝑢𝑒
7: else
8: 𝑙𝑐 ← 𝐹𝑎𝑙𝑠𝑒
9: 𝜎2𝐷 ← variance(𝐷𝑒𝑠𝑡)
10: while 𝑙𝑐 == 𝑇 𝑟𝑢𝑒 or any(𝐸) do
11: 𝐴𝑐 ← adjacent_cluster_matrix(𝐶𝑏, 𝐺𝑛)
12: 𝐷𝑒𝑠𝑡 ← greedy_estimation(𝐶𝑏)
13: if 𝑙𝑐 == 𝑇 𝑟𝑢𝑒 then
14: 𝐶𝑟𝑑𝑐 ← longest_cluster(𝐶𝑏, 𝐸)
15: 𝐶𝑒𝑥𝑝 ← adjacent_cluster(𝐶𝑏, 𝐶𝑟𝑑𝑐 , 𝐴𝑐 , 𝐸)
16: else
17: 𝑑𝑎𝑣𝑔 ← mean(𝐷𝑒𝑠𝑡)
18: 𝐷 ← 𝐷𝑒𝑠𝑡 −𝐷𝑎𝑣𝑔
19: 𝐶𝑚𝑎𝑥_𝑑𝑒𝑣 ← abs_most_dev_cluster(𝐶𝑏, 𝐷, 𝐸)
20: 𝐶𝑎𝑑𝑗_𝑑𝑒𝑣 ← adj_offset_dev_cluster(𝐶𝑏, 𝐷, 𝐴𝑐 , 𝐸)
21: 𝐶𝑟𝑑𝑐 ← max_dev_cluster(𝐶𝑚𝑎𝑥_𝑑𝑒𝑣, 𝐶𝑎𝑑𝑗_𝑑𝑒𝑣)
22: 𝐶𝑒𝑥𝑝 ← min_dev_cluster(𝐶𝑚𝑎𝑥_𝑑𝑒𝑣, 𝐶𝑎𝑑𝑗_𝑑𝑒𝑣)
23: if 𝐶𝑟𝑑𝑐 == 𝑛𝑢𝑙𝑙 or 𝐶𝑒𝑥𝑝 == 𝑛𝑢𝑙𝑙 then
24: exit()
25: 𝑁𝑎𝑑𝑗 ← candidate_adj_nodes(𝐶𝑟𝑑𝑐 , 𝐶𝑒𝑥𝑝, 𝐴, 𝐺𝑛)
26: 𝑣𝑎𝑙𝑒𝑥𝑐 ← 𝐹𝑎𝑙𝑠𝑒
27: while 𝑁𝑎𝑑𝑗 ≠ ∅ ς 𝑣𝑎𝑙𝑒𝑥𝑐 == 𝐹𝑎𝑙𝑠𝑒 do
28: 𝑛𝑎 ← 𝑁𝑎𝑑𝑗 [0]
29: 𝑁𝑒 ← nodes_to_exchange(𝐶𝑟𝑑𝑐 , 𝐶𝑒𝑥𝑝, 𝐴, 𝐺𝑛, 𝑛𝑎)
30: 𝐶 ′

𝑟𝑑𝑐 ← 𝐶𝑟𝑑𝑐 ⧵𝑁𝑒

31: 𝐶 ′
𝑒𝑥𝑝 ← 𝐶𝑒𝑥𝑝 ∪𝑁𝑒

32: 𝐶 ′
← 𝐶𝑏 ⧵ {𝐶𝑟𝑑𝑐 , 𝐶𝑒𝑥𝑝}

33: 𝐷′
𝑒𝑠𝑡 ← greedy_estimation(𝐶 ′ )

34: 𝜎2′𝐷 ← variance(𝐷′
𝑒𝑠𝑡)

35: if 𝑙𝑐 == 𝑇 𝑟𝑢𝑒 then
36: if 𝐷′

𝑒𝑠𝑡[𝐶
′
𝑒𝑥𝑝] <= 𝐷𝑒𝑠𝑡[𝐶𝑟𝑑𝑐] then

37: 𝑣𝑎𝑙𝑒𝑥𝑐 ← 𝑇 𝑟𝑢𝑒
38: if max(𝐷′

𝑒𝑠𝑡) then
39: 𝑙𝑐 ← 𝐹𝑎𝑙𝑠𝑒
40: else
41: if 𝜎2′𝐷 < 𝜎2𝐷 ς max(𝐷′

𝑒𝑠𝑡) < 𝑑𝑚𝑎𝑥 then
42: 𝑣𝑎𝑙𝑒𝑥𝑐 ← 𝑇 𝑟𝑢𝑒
43: if 𝑣𝑎𝑙𝑒𝑥𝑐 == 𝐹𝑎𝑙𝑠𝑒 then
44: 𝑁𝑎𝑑𝑗 ← 𝑁𝑎𝑑𝑗 ⧵ 𝑛𝑎
45: if 𝑣𝑎𝑙𝑒𝑥𝑐 == 𝑇 𝑟𝑢𝑒 then
46: 𝐶𝑏 ← 𝐶 ′

47: 𝐷𝑒𝑠𝑡 ← 𝐷′
𝑒𝑠𝑡

48: 𝜎2𝐷 ← 𝜎2′𝐷
49: 𝐸 ← unlock_exchange(𝐶𝑟𝑑𝑐 , 𝐶𝑒𝑥𝑝)
50: else
51: 𝐸 ← lock_exchange(𝐶𝑟𝑑𝑐 , 𝐶𝑒𝑥𝑝)

Output:𝐶𝑏

adjacent nodes to 𝐶𝑒𝑥𝑝 are retrieved and arranged by the function
candidate_adj_nodes. Next, the candidate exchange is evaluated in order
of priority. Since candidate moving may involve a multi-node exchange
operation, the function nodes_to_exchange computes nodes which must
be moved to keep connectivity of 𝐶𝑟𝑑𝑐 . The resultant clusters after
exchange are saved in 𝐶 ′

𝑟𝑑𝑐 and 𝐶 ′
𝑒𝑥𝑝 to compose the clustering derived

from the exchange 𝐶 ′. From these, the length of new clusters 𝐷′
𝑒𝑠𝑡 and

the clustering distance variance 𝜎2′𝐷 are calculated to determinate if the
exchange satisfied the conditions (val_exc) defined in Section 3.2.3.2.
If not, the candidate 𝑛𝑎 is remove from candidate list 𝑁𝑎𝑑𝑗 and the
next candidate is evaluated. In case the exchange is valid, no more
candidates are tested and clustering is updated. Since 𝐶𝑟𝑑𝑐 and 𝐶𝑒𝑥𝑝
have been modified due to the exchange, matrix 𝐸 is also actualized to
allow further exchanges from them.
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Caṕıtulo 4

Segmentation and
classification of indoor point
clouds towards indoor
understanding

4.1. Point Cloud Room Segmentation Based on
Indoor Spaces and 3D Mathematical Morpho-
logy

Segmentación de nubes de puntos en habitaciones basada en
espacios interiores y morfoloǵıa matemática 3D

Resumen

En esta sección se presenta un método para la segmentación de nubes
de puntos de interiores en habitaciones aplicando técnicas de morfoloǵıa
matemática 3D. A diferencia de la mayoŕıa de enfoques basados en la iden-
tificación e interpretación de los elementos estructurales, se propone una
segmentación basada en el espacio no ocupado. Para ello, el espacio de la
nube de puntos es discretizado en vóxeles que representan el espacio ocu-
pado y vaćıo. Aplicando un algoritmo basado en alpha-shape se obtiene el
contorno del edificio y mediante el algoritmo CropHull se extraen los vóxeles
vaćıos pertenecientes al interior del edificio. Sobre estos vóxeles se aplica una
operación morfológica de erosión para eliminar la conectividad entre habita-
ciones adjacentes debida al espacio de las puertas. Luego, el las habitaciones
son individiualizadas agrupando los vóxeles resultantes por el algoritmo 3D
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connected components. Para recuperar la morfoloǵıa de las habitaciones se
aplica una operación de dilatación morfológica 3D. Finalmente, la segmen-
tación en habitaciones se realiza de acuerdo a la proximidad de los vóxe-
les ocupados respecto los vóxeles vaćıos clasificados de cada habitación. El
método ha sido probado en dos casos de estudio y evaluado sobre la métrica
IoU para cada habitación obteniendo resultados prometedores.

Palabras clave:

Segmentación en habitaciones, espacios interiores, segmentación de nu-
bes de puntos, morfoloǵıa 3D, navegación en interiores, reconstrucción
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ABSTRACT: 
 
Room segmentation is a matter of ongoing interesting for indoor navigation and reconstruction in robotics and AEC. While in 
robotics field, the problem room segmentation has been typically addressed on 2D floorplan, interest in enrichment 3D models 
providing more detailed representation of indoors has been growing in the AEC. Point clouds make available more realistic and 
update but room segmentation from point clouds is still a challenging topic. This work presents a method to carried out point cloud 
segmentation into rooms based on 3D mathematical morphological operations. First, the input point cloud is voxelized and indoor 
empty voxels are extracted by CropHull algorithm. Then, a morphological erosion is performed on the 3D image of indoor empty 
voxels in order to break connectivity between voxels belonging to adjacent rooms. Remaining voxels after erosion are clustered by a 
3D connected components algorithm so that each room is individualized. Room morphology is retrieved by individual 3D 
morphological dilation on clustered voxels. Finally, unlabelled occupied voxels are classified according proximity to labelled empty 
voxels after dilation operation. The method was tested in two real cases and segmentation performance was evaluated with 
encouraging results.    
 

1. INTRODUCTION 

Space is a term wider referred in many research areas. It 
acquires different conceptualization on the discipline in which it 
is applied and on the target application. In the 3D modelling and 
reconstruction domain, the representation of spaces has been 
defined and interpreted in very different ways. However, while 
a formal definition of the space is not provided in the literature 
for outdoors, the indoor spaces have been more strictly defined. 
(Zlatanova et al., 2020). 
 
Commonly, indoor space is defined as the space enclosed by 
permanent structural elements such as floors, ceilings, and 
walls. The subdivision of indoor space into meaningful 
subspaces have been addressed in many works applying 
multiple approaches and with different goals.  Since space 
subdivision provides spatial relations between simpler 
subspaces, topological representations can be generated from 
these relations for navigation applications. Also, the space 
subdivision has been used for facilitating building 
reconstruction (Nikoohemat et al., 2020). 
 
Beyond the classical indoor space interpretation based on the 
presence of physical elements (Li, 2008; Yang et al., 2019) new 
space subdivision approaches have proposed in recent years. 
Divisions according to space functionality or by human 
perception of it have entailed a new conceptualization of the 
space (Zlatanova et al., 2013). A newer space interpretation is 
proposed in (Diakité and Zlatanova, 2018) based on subdividing 
the space on the basis of the objects present on the scene and 
their functionality.  
 
The modelling of complex spaces requires not only geometric 
models but also a detailed semantic and topological information 
may be necessary. Generally, these well-defined models do not 
provide other crucial information for indoor navigation such the  
distribution of temporary or movable elements in a specific 
time. While point clouds provide a more realistic and updated 

representation of environment its processing and analysis 
involve a greater effort than well-defined models (Zlatanova et 
al., 2014).      
 
This method proposes the use of 3D mathematical morphology 
for segmenting indoor point clouds into rooms. Different to 
previous approaches, this new conceptualization does not 
require the use of the trajectory followed by the laser scanning 
system during acquisition, and also it does not need from the 
extraction and modelling of building structural elements by 
point cloud processing. Consequently, the method is purely 
relying on the empty space for room segmentation. For the 
proposed method, the space division is addressed from indoor 
empty space perspective. This refers to all space inside building 
without physical objects. Furthermore, in advance space 
division will be reference as room segmentation because the 
resulting divisions of space correspond to the rooms. 
 

2.  RELATED WORK 

Most of room segmentation methods are based on previous 
structural element detection such as walls, ceilings, and floors. 
Doors also play a key role in many strategies of room 
segmentation because they act as the connecting element 
between adjacent rooms. This section reviews previous methods 
addressing room segmentation from point clouds. In literature, 
there are several interesting strategies based on floorplans. They 
are important in the indoor modelling field, but they will not be 
included in this review. 
 
Line-fitting methods consist in representing walls as lines and 
then determinate lines delimiting each room. This technique, 
often used in the reconstruction field, starts with a plane 
detection in the point cloud. RANSAC and Hough Transform 
(HT) are the most popular algorithm for that purpose (Grilli et 
al., 2017). Vertical planes are considered candidate walls and 
they are often project to XY-plane in order to minimize 
complexity of 3D processing. This way, walls are represented 
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by lines. (Ochmann et al., 2016) generate a planar graph from 
candidate lines. Then surfaces classification is formalized as a 
labelled problem solved by an energy minimization approach. 
This method requires prior knowledge of the scan positions. 
 
A void-based approach for semantic enrichment of indoor point 
clouds is proposed in (Armeni et al., 2016). Rooms are 
separated by identify the hollows between the walls since laser 
scanner acquire object surfaces. To find these gaps, a set of 
filters are applied on density histograms on each axis assuming 
that walls generate peaks on the histogram. The method is 
strongly limited to Manhattan world and axis-aligned walls. 
 
In recent years, trajectory data provided by Mobile Laser 
Scanners (MLS) was exploited to carry out point cloud 
segmentation. (Díaz-Vilariño et al., 2017) analyse height 
variations of upper points above trajectory positions to detect 
door candidates. Then labelled problem is addressed as a 
minimum energy approach.  MLS trajectory is also used by 
(Nikoohemat et al., 2018, 2017) to detect doors from which 
room segmentation is carried out. Both methods identify 
structural elements previously by means of plane detection and 
construct an adjacency graph linking patches that represent 
different elements. From this classification, openings are 
searched on detected walls.  
Morphological segmentation is a well-known approach in the 
robotic field to divide floorplan into meaningful rooms 

(Bormann et al., 2016). Some authors (Jung et al., 2017; Li et 
al., 2018) have addressed point cloud segmentation by 
morphological operations. However, the operation is performed 
in 2D space projecting point cloud to XY-plane.  
 
Our method is based on applying morphological operations 
directly in the 3D voxel-space. Different to other works 
operating into the pixels representing building elements, in this 
work morphological operations are applied to the voxels 
representing the indoor empty space with the aim of breaking 
indoor space continuity. Besides, the proposed method can 
overcome the limitations generated by occlusions present in 
previous 2D methods. 
 

3. METHOD 

This section describes the method used to performed room 
segmentation based on 3D mathematical morphology. The 
general workflow is depicted in Figure 1. The input point cloud 
is transformed to voxels from which the building contour is 
obtained for extract indoor empty voxels. Then a 3D 
morphological erosion is applied to indoor voxels allowing 
spaces identification according room semantic. Finally, 
identified spaces are morphologically dilated to perform point 
cloud segmentation.  
 

 

 
Figure 1. General workflow of proposed approach. 

 
3.1. Voxelization and initial classification 

The input data of the method consist in a point cloud composed 
of a set of coordinates XYZ. In order to reduce the volume and 
provide a structured representation of the data, the point cloud is 
voxelized (Figure 1.b). This operation structures the space into 
voxels which are labelled as ‘occupied’ if any point is contained 
in the voxel and as ‘empty’ voxel if it is not. Voxels are located 
by the grid coordinates i, j, k related with x, y, z axis, 
respectively. 
 
Resolution is a critical parameter in the voxelization process. 
Commonly, the resolution value is determined for trade-off 
computational costs and accuracy. In our method, voxel 
resolution is selected in order to ensure that space between walls 
is not represented by ‘empty’ voxels. 
 

3.2. Contour extraction  

Because the voxelization is performed for the extension of the 
point cloud, the results will include ‘occupied’ voxels, ‘empty’ 
voxels from inside rooms and ‘empty’ voxels from the outside 
of the building if the building shape is not a rectangle. With the 
aim of select the ‘empty’ voxels belonging to the interior of the 
building, the building contour is extracted by applying a 
concave hull operation to ‘occupied’ voxels (Figure 1.c). As this 
operation is based on an alpha-shape method, the accuracy of 
the extracted contour depends on the alpha parameter.  
 
The contour extraction process is computed in 2D and 
consequently, the point cloud should be orientated. In addition, 
a z-histogram of ‘occupied’ voxels is computed to detect the 
floor and the ceiling of the building in a way that outdoor empty 
voxels placed above the ceiling and below the floor are 
discarded.  
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The result of this step consists on the ‘empty’ voxels belonging 
to the building indoor (Figure 1.d, Figure 2). 
 

 
 

Figure 2. a) Building contour (purple) is computed from 
occupied voxels (red) to discard outside voxels (grey). b) Indoor 

empty voxels (green) are those inside building contour. 
 

3.3. 3D erosion of the empty space 

Morphological erosion is applied to empty voxels to break the 
space continuity between rooms given by doors (Figure 1.e). To 
apply morphological operations, voxels are binarized to 
generate a 3D binary image that is divided into indoor empty 
voxels and non-indoor empty voxels (occupied and outside 
voxels). By eliminating occupied and outside voxels, indoor 
empty voxels maintain continuity between rooms through 
doors. A 3D morphological erosion is applied to break the 
continuity. Morphological erosion is based on the removal of 
voxels whose neighbourhood does not match the size and shape 
of the structuring element. The structuring element used to 
erode the indoor spaces is a cube whose side l is equal to the 
door width, which is the typical element that maintains 
continuity between rooms. After applying morphological 
erosion, all voxels within 1/2 of an occupied or outside voxel 
are removed and the continuity between voxels belonging to 
different rooms is broken. In addition, the existing empty voxels 
between rooms are eliminated if the space inside walls is wider 
than l. 
 
3.4. Room individualization 

Remaining voxels after erosion operation are clustered on basis 
connectivity between voxels (Figure 1.f). A 3D connected 
components algorithm is used to perform the clustering. Unlike 
the popular clustering methods such as K-means, the 3D 
connected components does not require foreknowledge the 
number of rooms. 
 
3.5. Point cloud classification 

The classification of the point cloud is based on a proximity 
assignment between the voxels belonging to each room and the 
nearby points. To restore the complete empty space 
corresponding to each room, a morphological dilation is applied 
(Figure 1.g). Morphological dilation adds voxels according to 
the shape and size of the structuring element. Restored dilated 
voxels have the same room label as voxels from growth. The 
exact number of empty voxels with respect to the input voxels is 
not recovered. The combination of erosion and dilation with the 
same structural element (SE) is a morphological opening and 

produces the elimination of isolated voxels or narrow shapes. 
Therefore, empty pixels inside walls are not restored. 
  
Occupied voxels are labelled regarding proximity of labelled 
empty voxel. For each occupied voxel, a set of neighboring 
voxels are evaluated. If any of them was labelled in the previous 
steps, occupied voxel is classified in the same way. In case there 
are not a unique label, the most frequent one is selected to 
classify occupied voxel.  
 

4. RESULTS AND DISCUSSION 

4.1. Case studies 

Two real case studies were selected to evaluate the proposed 
method. The first case study (Figure 3.a.) corresponds to a 
laboratory at the University of Vigo composed of three rooms 
and connected with a corridor partially acquired. The rooms are 
occupied with office objects such as tables, chairs, computers. 
The second case study (Figure 3.b.) is provide by the ISPRS 
Benchmark on Indoor Modelling (Khoshelham et al., 2017). 
Noise caused by the presence of people in the corridors has 
been removed.  
 

 

Figure 3. Visualization of the raw input point clouds in 
CloudCompare corresponding to a) laboratory at the Vigo 
University and b) the case study of ISPRS Benchmark on 

Indoor Modelling. 
 
The data of the first study case was collected with ZEB-REVO 
laser scanner. The raw point cloud containing over 6 million 
points is shown in Figure 3.a. Otherwise, the second point cloud 
consist of over 31 million points after cleaning pre-process 
(Figure 3.b).  
 
4.2. Results and discussion 

The input parameters used to voxelize the raw points clouds are 
collected in Table 1.  
 

 Grid resolution Alpha value 
Laboratory  0.1 m 0.15 
ISPRS 0.5 m 0.45 

 
Table 1. Input parameters. 
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The grid resolution was selected in accordance with the width of 
the empty space between walls. For the first case, the voxel 
resolution used was 0.1 m and the minimum number of points 
inside a voxel to consider the voxel an occupied voxel is the one 
point. In this step, remaining voxels are labelled as empty 

voxels (Figure 4.a). The selection of the resolution value for the 
second case study is more compromised due to the different 
width of the space between walls. This separation becomes 
more than 1m in some areas. Moreover, a low resolution can 
lead to an inaccurate space representation. Thus, a value of 0.5 
m balances both factors.  

 

 

Figure 4. a) Visualization of the voxelized point cloud in CloudCompare. Upper empty voxels were hidden to better visualization. b) 
Voxelized point cloud into occupied (grey) and empty voxels (blue) inside of extracted building contour (red). c) ‘inside’ empty 

voxels and the building contour. 
 

 

Figure 5. a) Visualization of the voxelized point cloud in CloudCompare. Upper empty voxels were hidden to better visualization. b) 
Voxelized point cloud into occupied (grey) and empty voxels (blue) inside of extracted building contour (red). c) ‘inside’ empty 

voxels and the building contour. 
 
Alpha value is used by ConcaveHull algorithm of the Point 
Cloud Library (PCL) to extract building contour from voxelized 
point cloud (Figure 4.b and 5.b). Values are selected according 
to voxel resolution, therefore the value for the second case is 
greater. Then, computer contour is extracted by CropHull 
algorithm (PCL) to retrieve only inside empty voxels (Figure 
4.c and 5.c).  
 
In the next step, the side of the cube used as structuring element 
by 3D morphological operation is defined. The length selected 

was 7 and 2 voxels in the laboratory and ISPRS case studies, 
respectively. Results of 3D erosion are depicted in the Figure 
6.b and 7d. After, remaining inside voxels (Figure 6.b and 7.b) 
are clustered by 3D connected components algorithm on basis 
26-connectivity (Figure 6.c and 7.c). Subsequently, a 3D 
morphology dilation is applied to labelled clusters to retrieve 
the room form (Figure 6.d and 7.d). Finally, miss-classified 
voxels are classified by proximity and the point cloud on basis 
voxel correspondence. Results of point cloud classification are 
shown in the Figure 6.e and 7.e. 

 

 

Figure 6. Steps of the room segmentation in the laboratory case: Steps of the room segmentation in the laboratory case: a) inside 
‘empty’ voxels, b) result of 3D erosion, c) eroded voxels clusterized, d) result of 3D dilation, e) point cloud after classification. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-49-2020 | © Authors 2020. CC BY 4.0 License.

 
52



 

 

 
Figure 7. Steps of the room segmentation in the ISPRS case: a) inside ‘empty’ voxels, b) result of 3D erosion, c) eroded voxels 

clusterized, d) result of 3D dilation, e) point cloud after classification. 
 
Table 2 represents confusion matrix describing the performance 
of the laboratory point cloud classification. Results show a 
success rate of over 90% in three of the rooms. However, the 
Room 3 presents a high level of miss-classification, this is 
probably because the large number of objects that break 
connectivity of empty space inside a small room.   
 

  Classification 
Id Room 0 Room 1 Room 2 Room 3 

G
ro

un
d 

Tr
ut

h 

Room 0 0.99 0.01 0.0 0.0 
Room 1 0.01 0.98 <0.01 < 0.01 
Room 2 0.01 0.05 0.93 <0.01 
Room 3 0.0 0.21 0.06 0.73 

Table 2. Confusion matrix of the classification in the laboratory 
case study. 

Confusion matrix of the ISPRS point cloud classification is 
collected in the Table 3. The performance is over 95% in five of 
the rooms and only under 85% in two of them. The worst 
classification occurs with the room1 which corresponds to the 
two rightmost segments composing the corridor (Figure 8.a). 
Next, we will analyse why the corridor is divided into three 
segments. A plant-view of the corridor with removed ceiling is 
visualized in the Figure 8.b.  
 
The Figure 8.c depicts the connection area between two 
segments belonging to corridor. Since there is a door in the area, 
the segmentation at this point is carried out correctly. 
Conversely, the segmentation at the point visualized in the  
 

Table 3. Confusion matrix of the classification in the ISPR case study. 
 
Figure 8.d is caused by the presence of an object resulting in a 
narrow in the empty space of the corridor. As this narrowing 
effect is similar to that caused by door presence in the navigable 
space, the method segments point cloud at this point. This leads 
to high level of over-segmentation in Room1. 
   
Figure 9.a shows over-segmentation in Room6 (framed in black 
rectangle), however this miss-classification only represents a 
2% of points corresponding to the room.  Figures 9.b and 9.c 
visualise a plant-view and a profile view of the Room6 
respectively. Pictures shows the presence of a tripod between 

classified segments. Since this element do not generate a high 
level of occlusion the over-segmentation is related with low 
resolution in the voxelization. 
  
On overall, the method presented performs an accuracy 
segmentation of most tested rooms. Although people had to be 
removed manually from the ISPRS point cloud, this limitation 
is already addressed in the literature. Classification over-
segmentation caused by low resolution can be overcome by 
applying adaptive resolutions or implementing a function to 
remove inside voxels located between walls. So, it would not be 

 Classification 
 Id Room0 Room1 Room2 Room3 Room4 Room5 Room6 Room7 Room8 Room9 Over-

segmentation 

G
ro

un
d 

Tr
ut

h 

Room0 0.96 0.02 0.00 0.00 0.00 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 
Room1 0.01 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 
Room2 0.08 0.00 0.73 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 
Room3 0.00 0.00 <0.01 0.86 0.14 0.00 0.00 0.00 0.00 0.00 0.00 
Room4 <0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
Room5 0.00 0.00 0.00 0.00 0.02 0.97 0.01 0.00 0.00 0.00 <0.01 
Room6 0.00 0.00 0.00 0.00 0.00 0.1 0.88 0.00 0.00 0.00 0.02 
Room7 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0 0.07 <0.01 
Room8 0.04 0.00 0.00 0.00 0.00 0.00 0.00 <0.01 0.96 0.00 <0.01 
Room9 <0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0 0.95 0.00 
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necessary to set a resolution value depending on the thickness of 
the walls. 
 

 
 

Figure 8. a) Classified point cloud with corridor splits into three 
segments. b) Visualization of the inner side of the corridor. c) d) 

Zoom view of connection areas between corridor segments. 

 

 

Figure 9. a) Classified point cloud with highly over-segmented 
room (framed in a black rectangle). b) Plant-view of the over-
segmented room. c) Profile view of the over-segmented room. 

 
5. CONCLUSIONS 

This work presents a room segmentation method for point 
clouds based on 3D morphological operations. The space is 
represented with a voxel-grid structure and indoor space is 
modelled from empty space. Unlike previous methods perform 
room segmentation exploiting trajectory data, this is not 
required for the proposed method. Also, rooms are 
individualized independently the modelling of structural 
elements such as doors and walls.  
 
The method was tested in a couple of real case studies showing 
promising results. However, some limitations associated with 
resolution restrictions lead to improve the method in future 

work. Vertical walls and invariant height of floor and ceil are 
assumed. Also, the way to perform morphological operations 
without the prior knowledge of the width door would be 
addressed.  
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88 CAPÍTULO 4. INDOOR POINT CLOUD UNDERSTANDING

4.2. Exploiting BIM objects for synthetic data gen-
eration toward indoor point cloud classifica-
tion using deep learning

Explotando objectos BIM para la generación de datos sintéticos
hacia la clasificación de nubes de puntos de interiores usando deep
learning

Resumen

Los avances tecnológicos están permitiendo que cada vez más dispositivos
integren sensores capaces de adquirir datos de forma muy rápida y con gran
precisión. Las nubes de puntos no son una excepción. Por ello la gran canti-
dad de datos disponibles de Laser Imaging Detection and Ranging (LiDAR)
está suscitando el interés de la comunidad por la clasificación de nubes de
puntos utilizando inteligencia artificial. Sin embargo, el etiquetado de nubes
de puntos es una tarea que requiere mucho tiempo. De ah́ı que la cantidad de
datos etiquetados sea todav́ıa escasa. Data synthesis está ganando atención
como alternativa para aumentar el volumen de datos clasificados. Al mismo
tiempo, la cantidad de Building Information Models (BIM) proporcionados
por los fabricantes en las bases de datos de los sitios web está aumentando.
En ĺınea con estas tendencias recientes, este trabajo presenta un framework
de deep-learning para clasificar los objetos de las nubes de puntos basándose
en conjuntos de datos sintéticos creados a partir de objetos BIM. El método
comienza transformando los objetos BIM en nubes de puntos, obteniendo un
conjunto de datos compuesto por 21 clases de objetos caracterizados con va-
rios patrones de perturbación. A continuación, el conjunto de datos se divide
en cuatro subconjuntos para llevar a cabo la evaluación de los datos sintéti-
cos en el flexible framework de deep learning 2D implementado. . En este
último, se pueden generar imágenes binarias o en escala de grises a partir
de nubes de puntos tanto por proyección ortográfica como por perspectiva
para alimentar la red. Además, se calculó la caracteŕıstica de variación de la
superficie para añadir más información geométrica a las imágenes y evaluar
cómo influye en la clasificación de los objetos. La precisión global es supe-
rior al 85% en todas las pruebas cuando se utilizan imágenes ortográficas.
Además, el uso de imágenes en escala de grises que representan la variación
de la superficie mejora el rendimiento en casi todas las pruebas, aunque el
cálculo de esta caracteŕıstica pue de no ser robusto en nubes de puntos con
geometŕıa compleja o perturbaciones.
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ABSTRACT
Advances in technology are leading to more and more devices integrating sensors capable of acquiring data
in a very fast way and with high accuracy. Point clouds are no exception. Therefore, the large amount of
available Laser Imaging Detection and Ranging (LiDAR) data is arising the community interest by point
cloud classification using artificial intelligence. Nevertheless, point cloud labelling is a time-consuming
task. Hence the amount of labelled data is scarce yet. Data synthesis is gaining attention as an alternative to
increase the volume of classified data. At the same time, the amount of Building Information Models (BIM)
provided by manufacturers on website databases is being increased. In line with these recent trends, this
paper presents a deep-learning framework for classifying point cloud objects based on synthetic datasets
created from BIM objects. The method starts by transforming BIM objects into point clouds deriving a
dataset consisting of 21 object classes characterised with various perturbation patterns. Then, the dataset is
split into four subsets to carry out the evaluation of synthetic data on the implemented flexible 2D deep neural
framework. In the latter, binary or greyscale images can be generated from point clouds by both orthographic
or perspective projection to feed the network. Moreover, surface variation feature was computed in order to
aggregate more geometric information to images and to evaluate how it influences the object classification.
The overall accuracy is over 85% in all tests when orthographic images are used. Also, the use of greyscale
images representing surface variation improves performance in almost all tests although the computation of
this feature may not be robust in point clouds with complex geometry or perturbations.



1 Introduction

In the last decade, the use of 3D sensors such as laser scanners or depth cameras has been consolidated
in Architecture, Engineering and Construction (AEC) industry and robotics providing a greater availability
of 3D models of indoor scenes in the point cloud form (Khoshelham et al. 2017). More recently, mobile
devices widely used by the population such as the iPad pro or the iPhone 12 pro have integrated LiDAR
sensors extending the possibility of acquiring point cloud data on a massive scale. In both computer vision
and 3D modelling, point cloud classification is an active topic because it is a fundamental problem for
the understanding of 3D scenes in the real-world. Beyond geometric analysis, traditional machine learning
techniques have been applied to address the 3D classification problem (Weiss et al. 2010; Park and Guldmann
2019). However, the successful results achieved with deep learning techniques in 2D image classification
are leading researchers to adopt this approach in 3D classification (Griffiths and Boehm 2019a; Jaritz, Gu,
and Su 2019).

Traditional machine learning techniques are based on teaching machines to identify patterns and extract
features from data that are not perceived by humans due to the large volume and complexity of the information
to be processed (Dey 2016). Thus, the performance of these methods is strongly dependent on the design of
a feature extractor that requires a comprehensive knowledge in the domain of application. This limitation
has been outperformed by the newest machine-learning techniques since their capacity to interpret raw data
without relying on human skills (LeCun, Bengio, and Hinton 2015).

In the recent years, Deep Neural Networks have demonstrated a high performance in applications such
as speech recognition (Abdel-Hamid et al. 2012) and image recognition (Krizhevsky, Sutskever, and Hinton
2012) becoming the state-of-the-art so far for both areas (Szegedy et al. 2014). Convolutional Neural
Network (CNN) architecture is based on visual perception, hence its ability to interpret the nature of images
which makes CNNs suitable for image classification. The requirement to have a large classified dataset
available is a major drawback of using CNNs because a lack of labelled data will most likely result in
overfitting for a deep learning model (Liu et al. 2016).

In many areas, the amount of classified data is not enough to train a CNN deriving a well-fitting model.
This lack is commonly addressed by using data augmentation techniques which consist in applying certain
transformations on the initial dataset to expand input data (Perez and Wang 2017). Different transformations
can be applied to both synthetic and real data. Data augmentation from real data can be addressed by data
wrapping and synthetic over-sampling approaches depending on whether the transformations are applied in
the data or in the feature-space respectively. To carry out synthetic-based data augmentation, new samples
are artificially generated to be added to initial dataset (Wong et al. 2016). In this way, previous works have
demonstrated that the over-sampling generation of the minority classes in imbalanced datasets can improve
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classifier performance (Bowyer et al. 2011).
An additional alternative commonly used to deal with inadequacy of labelled data is to reuse models

already trained in another application domain or for a different task but keeping some sense of relationship.
This approach, widely known as transfer learning, leverages the knowledge acquired by training a model
with a large amount of data to another domain of interest with shorter data set (Pan and Yang 2010).
Network-based deep transfer learning consists in using a partially pre-trained network with a large volume
of labelled data in a smaller dataset that keeps certain similarity with the data used to train the original
network (Tan et al. 2018).

In last years, the development of applications using point clouds to generate as-build models from existing
buildings has grown in the AEC industry (Bosché et al. 2013). However, although more and more point
clouds are available, its labelling is an arduous, time-consuming and error-prone task. The use the Building
Information Models (BIM) for ongoing building monitoring has provided considerable improvements in
processes of construction control (Wang et al. 2014), building energy analysis (Abanda and Byers 2016),
project documentation and coordination (Broquetas, Bryde, and Volm 2013). Also, BIM models of objects
such as pieces of furniture are provided by manufacturers and they can be retrieved from website databases.
Since BIM models not only represent geometry of building components or objects but also provide semantic
and functional information, they can be used as classified 3D models. Recently, building BIM models have
been used to generate both 2D and 3D synthetic data for image classification and point cloud semantic
segmentation (Ma, Czerniawski, and Leite 2020; Alawadhi and Yan 2021). Nevertheless, training a neural
network with synthetic point clouds provides models that do not generalise well with real-world data (Uy
et al. 2019). To address this shortcoming, synthetic point clouds can be perturbed by adding intrinsic
undesired defects such as noise or occlusions.

This work proposes a method that explores the use of BIM object models for generating synthetic data
sets composed of multiple classes including those that are not normally present in available public classified
datasets. Synthetic perturbed point clouds with noise and occlusions are also created to reduce the impact
of bad generalisation of classification models trained with no real data. The main contributions provided by
this work are as follows:

• an algorithm to transform BIM objects into customized point clouds. Beyond data provided, the
procedure has the advantages that is highly automated the minimal user intervention once BIM
objects have been downloaded.

• a flexible deep learning framework to evaluate the generated synthetic data for object classification.
This also implements fine-tuning functionality to optimise hyperparameters and data generation
parameters.
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• a comparison between simple orthographic projection and perspective projection to generate images
for 2D deep learning classification framed on Gestalt approach.

• the use of surface variation feature for image enrichment and the limitations of this feature in the point
cloud domain.

The remainder of the paper is organized as follows: ”Section 2” summarizes the previous related work.
The proposed method is theoretically described in ”Section 3”. Then, results and experiments are shown
and discussed in ”Section 4”. Finally, ”Section 5” is devoted to conclude the work.

2 Related Work

This section addresses the state of the art of point cloud deep learning classification focusing on techniques
to tackle the labelling problem: Data Synthesis and Transfer Learning applied to 2D data.

High performance proved by CNNs in image classification together with the increased availability of
point clouds have led researchers to the development of new 3D deep learning architectures. Nevertheless,
handling the non-regular structure of point clouds is still a challenge for CNNs. Hence previous works have
addressed this challenge with different strategies which can be classified in three categories according to
how data is represented. Multi-view or projection-based approach consists in generating multiple 2D images
from several perspectives of the point cloud with the aim to take advantage of the yield attained by 2D
CNNs (Su et al. 2015). The main drawback of these methods is the loss of both spatial information of the
objects and spatial relationship to each other due to the 2D projection. Within 3D approaches, volumetric
methods (Maturana and Scherer 2015; Tchapmi et al. 2017; Le and Duan 2018) have been proposed to
benefit from 3D geometrical object representation while preserving the nature of convolutional operations
from 2D CNN. For this purpose, point clouds are previously converted to a 3D regular structure, commonly
composed of voxels. Despite the more realistic geometric representation, classification using the multi-view
CNNs (MVCNNs) has proved higher performance than volumetric CNNs (Ruizhongtai Qi et al. 2016) due
to the lower resolution of voxel representation among other factors. An alternative to structured approaches
consists in the use of network architectures capable of taking the points directly as input data (Charles et al.
2017; Qi et al. 2017). The performance of early architectures developed on the basis of this unstructured
approach was lower than the structured approaches. However, in the last years, the improvement of theses
architectures has been an active research topic are achieving promising results (Landrieu and Simonovsky
2018).

The shortage of 3D labelled data for training these 3D networks is an important disadvantage compared
to 2D CNNs (Griffiths and Boehm 2019b). Although there are some public datasets composed of labelled
point cloud data generated from RGB-D images as the popular NYU-Depth (Silberman et al. 2012), S3DIS
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(Silberman et al. 2012; Xiao, Owens, and Torralba 2013; Armeni et al. 2017), MatterPort3D (Chang et al.
2017) or from 3D CAD models as is the case of ModelNet40 (Wu et al. 2015) are available, the amount
of classified data is far from the number of images provided by the popular dataset ImageNet (Krizhevsky,
Sutskever, and Hinton 2012) which is composed of over 14 million labelled images. This work proposes
a combination of Data Synthesis and Transfer Learning techniques for 3D data labelling. The approach,
based on the use of BIM object databases, is specifically addressing the problem of object classification and
not semantic segmentation.

In this line, data synthesis is gaining preference to solve the problem of relevant and labeled data lacking.
In fact, some areas of data mining and machine learning rely significantly on benchmark data sets to compare
and evaluate results across competing methods in their development. To overcome the shortage of publicly
available large real-world data sets, synthetic or semi-synthetic datasets are very suitable for a wide range of
controlled scenario tests for several Machine Learning methods, such as regression (Cano and Torra 2009),
classification (Sánchez-Monedero et al. 2013), drift detection (Iglesias et al. 2020; Belford, Namee, and
Greene 2017), anomaly detection (Taylor, Leblanc, and Japkowicz 2016), failure prediction (Hajiaghayi
and Vahedi 2019). In fact, this approach brings the possibility of producing a large quantity of relevant
data, of generating data with desired characteristics for testing and of knowing exactly the targets and the
underlying models. In some cases, for specific complex data algorithms such as Multi-Label Classification
and Multi-target Regression, the dataset may be difficult to find (Tomás et al. 2014). The main drawback of
Data Synthesis is that it does not have a well-defined methodology since there is not a specific technique for
each data type in each context. Besides, as this does not generate all the diversity of data and the true noise
information, the required models precision may be not well represented.

But this approach goes a step further. Through data synthesis it is possible to teach the concept of a
class to a training model. That is, data is generated in a way that expresses the main features of classes.
In particular, in this work, furniture objects are characterized in their essential features, primarily their
geometry, that we use to identify the same objects. This approach is inspired in the Gestalt theories of
perception, where human perception tends to understand objects as an entire structure rather than the sum
of its parts. Therefore, objects are synthesized by using overall shapes that include all parts of the object.

Transfer learning is also another technique to solve the problem of training data shortage. Particularly,
2D neural networks are less likely to overfitting than the 3D architectures due to the amount of available
labelled images in contrast 3D models. To leverage the potential of 2D CNNs, the synthetically generated
point clouds are transformed into images, so that this approach can be also a particular case of transfer
learning. In fact, data does come from the domain of point clouds while training is performed with synthetic
images. A closed transfer learning approach was used by Balado et al. (2020) proving that augmenting RGB
image dataset generated from coloured point clouds with images available on online resources can improve
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furniture object classification. The object point clouds were taken from S3DIS dataset which only contains
five furniture classes. Goyal et al. (2021) used depth images generated from point clouds obtaining results
in the state-of-the-art. The method was tested with ModelNet40 dataset that is composed of clean models
without any perturbation.

Our method generates synthetic point clouds from BIM objects supplying labelled datasets containing
unusual object classes in public datasets, such as urinal, chimney, plant, washing machine, radiator, etc. In
the generation process, noise and occlusion models are used with the aim to create perturbed point clouds
more closely resembling real point clouds. The object classification accuracy is evaluated on 2D deep
neural networks to take advantage of their higher performance in object classification by using multi-view
strategy. For this purpose, the generated point clouds are mapped to binary and greyscale images by applying
orthographic and perspective projection. Results obtained using the different generated images are evaluated
and compared.

3 Method

The general workflow of the proposed method is depicted in Fig. 1. The method starts by collecting BIM
objects from websites and organizing them into object classes to serve as source dataset. After, these models
are processed to generate a synthetic dataset of classified point clouds affected by different perturbations
such as noise and occlusions. Once labelled point clouds are generated, they are used as the input data to
the deep learning framework developed for point cloud object recognition. This framework is composed of
sequential steps such as image generation, model computation and object classification which are explained
in more detail in the following sections.

3.1 Point Cloud Data Generation

In this step, a classified point cloud dataset is generated by processing BIM objects which can be downloaded
from public website databases. For this work, most of models have been downloaded from https://www.
bimobject.com to compose the initial dataset that was complete with data from another websites such
as https://www.nationalbimlibrary.com, https://www.polantis.com and https://www.bimandco.com. Unlike
virtual CAD models, object models provided by manufacturers correspond to real-world objects. Thus,
these models are downloaded from free registration websites and stored in a directory arranged by object
category. The use of graphical interfaces of database search engines facilitates model collecting process by
type object filtering. Besides, file format is restricted to those that do not require commercial software to be
processed.

Both BIM models and point clouds are handled and processed by the open-source python library Open3D
(Zhou, Park, and Koltun 2018). This software provides the necessary transformations and operations for the
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Fig. 1. General workflow

method development. BIM models with .OBJ format are directly imported to be processed while ifc format
models are automatically converted to OBJ. by invoking the open-source application IfcConvert in batch
mode. Note that the conversion can be directly performed because individual objects have been previously
classified. But if the input IFC file is composed of multiple objects, it needs to be parsed to extract object
label class and geometry. To do this, the open-source IfcOpenShell could be implemented..

Then, from each object model, four point clouds are generated by adding perturbations with different
characterisations. First, a point cloud without any perturbation is directly obtained by poisson disk sampling
algorithm (Yuksel 2015) which requires determining the number of sampled points 𝑛𝑝𝑡𝑠. To ensure a fixed
density for every object point cloud, 𝑛𝑝𝑡𝑠 is calculated regarding the total area of the object surface 𝐴𝑆 by
the following equation:

𝑛𝑝𝑡𝑠 = 𝑑𝑒𝑛𝑠 ∗ 𝐴𝑆 (1)

Where 𝑑𝑒𝑛𝑠 is a fixed density in pts/m² and 𝐴𝑆 is calculated as the sum of area of all faces composing
the .OBJ model.

After, object point cloud orientation is visually checked and corrected if the object is not aligned with
Z axis. This step is required to augment the data by applying coherent rotations along Z axis in the sense
of how the objects are generally positioned in the real-world. This oriented point cloud 𝑃𝑜 is an instance of
the perturbed-free dataset which will be used to generate training/validation images. Next, three perturbed
datasets are generated from 𝑃𝑜 by adding noise and occlusions to 𝑃𝑜. Synthetic data simulates these real
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effects presented in point clouds serving as useful training data to classify real data or as testing data when
real data is not available.

Fig. 2 depicts how the sampled points clouds are processed to generate the four characterised datasets.
To noisy point cloud generation, the common approach used to test many denoising applications is adopted
(Han et al. 2017; Rakotosaona et al. 2019; Hermosilla, Ritschel, and Ropinski 2019). Consequently, noisy
point clouds are derived by Gaussian noise addition operation which consists in aggregating an offset to each
point position belonging to a real surface. The added noise is modeled by a zero-average normal distribution
with a standard deviation 𝜎.

Fig. 2. Generation of four types of point clouds according to the perturbations implemented.

The presence of occlusions in point clouds is a common challenge in real scenarios due to the appearance
of objects between the laser beam and the target object. Occlusions are particularly challenging in indoor
scenes due to the high presence of objects. To take into account this perturbation, the process of adding
occlusion intends to simulate occlusion effects by using a fast and simple visibility analysis known as Hidden
Point Removal (HPR) which is implemented in the Open3D library. As shown in Fig. 3, four subsets of
points are extracted from the input point cloud 𝑃𝑖 on basis of visibility from four viewpoints that ensure the
visible points represent the object well. The bounding box enclosing the object 𝐵𝐵𝑜𝑏 𝑗 provides a simple and
regular representation of the object volume therefore it is taken as a reference to determinate the observation
positions. These view points belong to a plane located 𝑑𝑥𝑦 meters away from vertical faces of the 𝐵𝐵𝑜𝑏 𝑗

and orthogonal to the faces. To determinate view positions, centroids of vertical faces are projected to the
planes and then projected points are vertically shifted by arbitrarily setting point height to 𝑍𝑜 𝑓 𝑓 relative to
the bottom of the 𝐵𝐵𝑜𝑏 𝑗 . Finally, occlusion is simulated by discarding a point subset randomly selected so
that the resulting occluded point cloud is composed of the three remaining point subsets.
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Fig. 3. Occlusion addition process.

The last dataset consists of point clouds characterised by both noise and occlusion. Thus, this data are
the most challenging for object recognition as shown in Fig. 4 illustrating the processes implemented to
generate four types of point clouds from the same object model.

Fig. 4. Example of the four point clouds obtained with different characterisations from a BIM model object

Once synthetic datasets are created, 3D information provided by point clouds is exploited to extract
object features which be used in 2D projection to reduce missing spatial information in order to increase
classification performance. Considering that the approach of this work is based on Gestalt principle, variation
of point cloud surfaces can provide useful information to define the whole object on 2D images. Therefore,
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surface variation is computed from each point by applying the method proposed by Bazazian, Casas, and
Ruiz-Hidalgo based on the eigenvalues of the covariance matrix. Unlike original method, radius search
criteria is used to select neighboring points which are contained in a closed ball of radius 𝜌 centered on
the evaluated point. Point clouds visualised in Fig. 4 are coloured according the computed surface variance
value.

In summary, point cloud generation process converts 3D BIM objects into different characterised point
clouds providing synthetic classified datasets. The process is automated requiring human-interaction only
to collect models from websites and to carry out visual inspection to discard geometrically and scale-
inconsistent point clouds with the real-world or to orient points clouds if necessary. Particularly, in this
work, the generated synthetic point cloud dataset is used for training a neural network and testing the trained
model input data.

3.2 Deep Learning Framework

A flexible deep learning framework has been implemented with the aim of conducting experiments using
differently characterised point clouds, several neural network architectures and optimisation techniques for
hyperparameter or data tuning. First, input object point clouds are converted to suitable data for the neural
networks integrated on the framework that work with 2D images. Previously, image generation parameters
can be optimised if real data are provided. Once training, validation and testing images are created, a deep
learning model is used for object prediction. The model can be computed by training a neural network from
scratch with training/validation images or with auto Machine Learning to fine-tune network hyperparameters.
Also, a pre-trained model can be loaded to streamline tests within the similar domain. The main processes
involved in the deep learning framework are exposed more extensively below.

3.2.1 Image data generation

The initial process on the framework consists in transforming point clouds to 2D image format adopted
by the embedded deep learning architectures. A commonly used technique to represent three-dimensional
data into 2D is 3D graphical projection encompassing various transformations to generate images. The
framework incorporates two selectable projections: orthographic and perspective. While images generated
by orthographic projection, hereinafter referred as ’orthographic images’, are derived by directly projecting
points to XZ plane as shown in Fig. 5a, perspective projection requires fixing a camera optical center and
determining a projection plane.

Images generated by perspective projection, which will referred to as ’perspective images’ are more
realistic from the human-perception of the object than orthographic images Hearn and Baker (1997). In the
model used to carry out perspective projection which is represented in Fig. 5b, the camera optical center 𝑂𝑐
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is fixed to a horizontal distance 𝑑ℎ from a vertical face of 𝐵𝐵𝑜𝑏 𝑗 at 𝑍𝑜 𝑓 𝑓 meters height from the bottom of
𝐵𝐵𝑜𝑏 𝑗 . Then, projection plane Π𝑝𝑟𝑜 𝑗 is defined by the normal vector from object center 𝐶𝑜 to 𝑂𝑐 and the
bottom vertices of the vertical face. Next, visible points from 𝑂𝑐 are determined by HPR algorithm and they
are projected on the Π𝑝𝑟𝑜 𝑗 to derive a 2D object representation. Unlike other visibility algorithms, HPR
provides a good balance between robustness and computational cost, making it suitable for run-time image
generation.

(a) Orthographic projection. (b) Perspective projection.

Fig. 5. Graphical representation of both orthographic projection (a) and perspective projection (b)

Fig 6 visualises the workflow of the entire image generation process from non perturbed point clouds to
multi-channel images. In order to take advantage of the fact that the source data are represented on the 3D
space, several 2D images can be generated from each instance by making a random rotation along the object
up vector. From this randomly rotated point cloud, 𝑛𝑟𝑜𝑡 arbitrary rotations are carried out to generate one
projected image for each rotation corresponding to image channels. Before projection, noise and occlusion
addition processes described in ”Section 3.1” are applied on rotated point clouds if these are perturbed free
and testing data are real. For perspective projection, occlusion addition is omitted because this perturbation
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is intrinsic to the visible points calculation.

Fig. 6. Workflow of image generation process.

After projection, points can be mapped into both binary or greyscale pixels depending on whether point
cloud features are regarded or not. Pixels composing binary images take value 1 if at least one projected
point falls in the pixel area and the value 0 is assigned otherwise. In greyscale images, pixels represent the
above computed surface variation of points projected on the pixel. Previously, values of surface variation
are scaled using Eq. 2 to avoid that points with no change in the surface (value 0) are represented as empty
pixels on the greyscale image:

𝜎
′
𝑟 (𝑝) = 𝜎𝑟 (𝑝) + (1 − max{𝜎𝑟 (𝑝𝑖) : 𝑝𝑖 ∈ 𝑃, 𝑖 = 0, ..., 𝑛 − 1}) (2)

Where 𝜎𝑟 (𝑝𝑖) represents the surface variation on the point 𝑝𝑖 considering a neighbourhood radius /𝑟.
The pixel value is the averaged scaled surface variation of points projected on the pixel. Lastly, pixels are
randomly translated along to horizontal and vertical axis at most 𝑇ℎ 𝑚𝑎𝑥 and 𝑇𝑣 𝑚𝑎𝑥 .

Examples of both image formats depicted in Fig 7 show that surface changes along the object are more
highlighted in greyscale images.

The number of images generated for training 𝑛𝑡𝑟𝑎𝑖𝑛, validation 𝑛𝑣𝑎𝑙 and testing 𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑔 are arbitrarily set
being independent of the size of the point cloud dataset. Previously to image generation, parameters used
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(a) Point clouds (b) Binary images (c) Greyscale images

Fig. 7. Representation of two objects as a) point cloud coloured on basis its surface variation, b) binary
image and c) greyscale image.

for image generation such as maximum rotation angle Θ𝑚𝑎𝑥 , 𝜎, 𝑇ℎ 𝑚𝑎𝑥 , 𝑇𝑣 𝑚𝑎𝑥 can be obtained from real by
data tuning process which is further explained in the next section.

3.2.2 Model computation

At the core of the developed approach, both synthetic data generation and model training are presented.
As will become clear in the following paragraphs, both are deeply connected by a parameter optimisation
methodology, which sweeps across most of the developed modeling work.

Given the extreme computational costs of generating large enough datasets for deep learning and of
creating and training deep learning models, an optimisation method which aims at reducing the number of
parameter configurations tested or that is able to intelligently decrease the cost of these different operations
is a mandatory requirement.

From the large amount of optimisation and auto ML methodologies one in particular was found to be
very promising, not only presenting the best results of all research gathered, but also providing the full
source code, thus giving a very strong starting position.

This optimisation method is Harmonica by Hazan, Klivans, and Yuan (2017). We will provide a
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description of how this method operates, however a technical and detailed explanation is outside the scope
of this paper and thus the interested reader should refer to the aforementioned work.

The basic premise of Harmonica is to identify the most important parameters and to lock their values to
the ones which lead to the best performance. Then the optimisation of the remaining parameters follows in
this now reduced search space. It works on the following manner:

Step 0 Given a set of tunable parameters X = (𝑥1, 𝑥2, ..., 𝑥𝑛) with each parameter 𝑥𝑚 ∈ {0, 1} and a cost
function 𝑓 (X).

Step 1 Randomly initialize X and compute the score = 𝑓 (X).
Step 2 Repeat step 1 a fixed 𝑁 number of times, storing all parameters sets and scores.

Step 3 Expand the parameter sets with polynomial combinations including interactions. Run Lasso regres-
sion with the list of polynomials as the feature and the list of scores as the target.

Step 4 Use Lasso coefficients to identify monomial importance (powers and interactions of features).
Extract only the top n monomials.

Step 5 Obtain the set of important features. Important features are those contained in the monomials
obtained in step 4.

Step 6 Obtain all the possible value combinations for the set of important features.

Step 7 For each combination obtain the score. The score for a value combination𝐶𝑖 is given by
∑𝑅

𝑗=1{𝐶𝑜𝑒 𝑓 𝑗×∏𝑆
𝑘=1{𝑣𝑘 : 𝑣𝑘 ∈ 𝐶𝑖, 𝑓𝑘 ∈ 𝑀 𝑗 }}, with 𝑅 and 𝑆 being the number of monomials and important features,

M and Coef being the monomials and respective coeficients, f being an important feature and 𝑣

being the value of the combination.

Thus, the score of the combination is the sum of the scores of the monomials. While the score of a
monomial is the coeficient of the monomial times the multiplication of the values for each feature in
the monomial.

Step 8 Extract the top n combinations by score.

Step 9 Repeat steps 1-9 K times, saving all the combinations obtained in step 8.

Step 10 Delegate further optimisation to a different optimisation method, passing the obtained value com-
binations that should be locked.

Step 11 Return the best set of parameters found.

Given this it is possible to see that despite the great performance, the functioning of the method is quite
intuitive. The attentive reader might however have noticed that there are two components that have yet to be
fully defined.
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The first one is the cost function, which being dependent on the exact problem and application will be
different for the data parameter tuning and model hyperparameter optimisation steps. Both these cases will
be detailed further into this section.

The second component is the optimisation function to which the remaining parameter optimisation is
delegated. Like the cost function this too can be changed, needing only to modify any intended function to
lock the passed value combinations in place. In the work where Harmonica is presented two alternatives
are proposed. The first one is simple random search, with the non locked parameters being randomly set.
This is, of course, not a very intelligent strategy, which nevertheless tends to obtain quite good results. The
second alternative, and the one which we opted to use in this work, is Hyperband, presented by Li et al.
(2017).

Much like for Harmonica we will present a brief overview of the core idea behind the Hyperband method
and an explanation of its functioning, however for more technical details we direct the reader either to the
harmonica paper, or to the far more detailed Hyperband paper referred before.

The basic premise of Hyperband is first to reduce the amount of resources allocated to parameter
configurations which are not promising, by stopping these early, while letting those which quickly yield
better results continue. This can be done by for example only letting models train for a small number of
iterations, and continue training only for the ones obtaining the best results, or by allocating only limited
time to a operation.

However, different problems converge at different speeds, so for some a partial resource allocation might
be sufficient to differentiate, while for others it might not. Thus, the second part of Hyperband tackles this
problem by testing different allocations and pruning speeds, from simply allocating all resources equally
to all candidates, like random search, or on the other extreme allocating the minimum resources to many
candidates and only continuing with one. As such, it works in the following manner:

Step 0 Given a total budget 𝐵, a maximum budget per candidate 𝐵𝑐, a control parameter [ and, for the
specific case of using Harmonica, the list of locked configurations Lc.

Step 1 Calculate the number of pruning strategies to test 𝑆 =
⌊

log 𝐵𝑐
log [

⌋
and the budget per strategy 𝑏 =

⌊
𝐵
𝑆+1

⌋
.

Step 2 For all values of 𝑠 ∈ {𝑛 : 𝑛 ∈ N, 0 ≤ 𝑛 ≤ 𝑆}, perform steps 3-5, saving the best parameters.

Step 3 Calculate the number of initial random configurations 𝐶𝑛 =
⌊

𝐵×[𝑠
𝐵𝑐×(𝑠+1)

⌋
. Obtain the initial budget

for each configuration 𝑏0 = ⌊𝐵𝑐 × [−𝑠⌋.
Step 4 For all values of 𝑖 ∈ {𝑛 : 𝑛 ∈ N, 0 ≤ 𝑛 ≤ 𝑠}, perform step 5, saving the best parameters.

Step 5 Create 𝐶𝑛 random configurations, picking, if using Harmonica, one element of Lc at random for
each. Obtain the cost for all configurations.
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Step 6 With R being the number of remaining configurations. Keep only
⌈
𝑅
[

⌉
of the best configurations.

Update the budget per configuration for the next iteration to 𝑏𝑖 = ⌈𝑏𝑖−1 × [𝑠⌉.
Step 7 Return the best parameters found.

Similarly to Harmonica, the Hyperband algorithm achieves great results while being quite intuitive,
simply stopping less promising configurations early, allowing better resource allocation to all others. Given
this, we will now present the two instances where this method was employed, starting with data generation
parameter optimisation.

As the basic version of Harmonica can only handle binary parameters, to define more detailed parameter
grids multiple binary parameters must be combined. A total of 11 parameters, mapped into 4 actual
parameters were employed. These are 4 for noise intensity, 3 for maximum random z-rotation, and 4 for
maximum translation, with 2 for each axis (horizontal and vertical).

The cost function thus works as follows. First, a random instantiation of the binary parameters is obtained
by the optimisation method, with these then being mapped into the actual parameters. The synthetic dataset
is generated with these parameters and a predefined deep learning model is trained to classify the instances
of this dataset. Finally, validation performance in terms of accuracy is obtained from perturbed point cloud
different than those using for training. These perturbed point clouds are generated as in ”Section 3.1”.

For the hyperparameter optimisation of the deep learning models the process is quite similar. A
synthetic dataset, that can be either be parameter optimised or manually defined, is created. Then, the binary
parameters are set by Harmonica. There are a total of 8 parameters, 3 for learning rate, 2 for batch size, 1
for momentum existence, 1 for momentum value and 1 for the selection of the optimisation method. With
these, the values are mapped and the model trained on the synthetic dataset. Finally, the model is validated
on a different partition of the synthetic dataset and the accuracy is returned.

For this task, a set of deep learning models which have proven to be very effective in computer vision
were selected. Table 1 presents all the models used whose architectures are quickly and comprehensively
described in Karim (2020), spanning from the very simple 8-layer Lenet to the 43 million-parameter
Inception-v4. Unlike for the various parameters, model selection was done manually and separately, with
architectures showing less promise, like VGG-16 and Inception-v3 having less time dedicated to tuning.

To wrap up this section, we would be remiss to not point out a concerning detail that the discerning
reader might have noticed. This is the fact that during the dataset parameter tuning, real data is used as a
validation set, in order to obtain the final score. Due to the data driven optimisation methodology this was
required, but could, if mishandled, lead to a form of parameter overfitting. To combat this two constraints
were put in place. First, there is no intersection between the portion of the real data used in the optimisation
and the one used for the final results. And second, the model architecture used for data parameter tuning is
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always different from the one optimised and used for the final predictions, with the former usually being the
simpler LeNet or AlexNet, and the latter being one of the other 6.

Table 1. Description of the neural networks available on the framework.

Architecture Description
LeNet LeCun et al. (1989) Simple convolutional network for handwritten digits.
AlexNet Krizhevsky, Sutskever, and Hinton (2012) Winner of ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 in image classification and localization.
VGG-16 Simonyan and Zisserman (2014) Archive the first and second place of ILSVRC-2014 in image classification and localisation.
Inception-v1 Szegedy et al. (2015) Presents a novel block-based architecture with important performance improvments.
Inception-v3 Szegedy et al. (2016) Runner-up in ILSVRC-2015.
Inception-v4 Szegedy et al. (2017) Major performance and computational cost improvements over previous versions.
resNet 50 He et al. (2016) One of the first to include skip connections, greatly increase potential performance.
Xception Chollet (2017) The first major network composed only of depthwise separable convolution layers.

4 Results

This section is organized in two parts in accordance with the workflow of the method. First, the results of
data generation are presented. The second describes the tests performed and the results are discussed.

4.1 Dataset

The generated dataset is composed of 21 object classes collected in Table 2. The number of instances in
each class is less than the downloaded objects since bad-built and mis-scaled models have been discarded
during point cloud generation. Furthermore, because classification is performed based on the geometry of
the object, the classes were defined taking into account geometrical features. Thus, chandeliers are included
in a specific class instead of in the general lamp class because chandelier geometry is much more complex
than common lamps. On the contrary, two objects of different type with similar geometry such as washing
machines and dryers are considering in the same class. This dataset is publicly available on GitHub via the
following link: https://dpv.uvigo.es/index.php/s/ywPWjr8cKc4P3dk.

Examples of point clouds obtained by point generation process are depicted in Fig. ?? where points are
coloured on the basis of point surface variation. The fixed density 𝑑𝑒𝑛𝑠 used to sample point clouds was
4000𝑝𝑡/𝑚2. Concerning perturbation addition, Gaussian noise was modeled by a normal distribution with
a standard deviation of 0.005m while the parameters 𝑑𝑥𝑦 and 𝑧𝑜 𝑓 𝑓 required to determinate the viewpoints in
occlusion addition process were set to 2.0 m and 1.5 m respectively. For surface variation computation, the
radius 𝑟 was set to 0.04 m.

figures/point𝑐𝑙𝑜𝑢𝑑𝑟𝑒𝑠𝑢𝑙𝑡𝑠.𝑝𝑛𝑔

Fig. 8. Examples of generated point cloud coloured on the basis of point surface variation.
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Table 2. Information about classes composing the dataset.

Class Nº instances Class Nº instances Class Nº instances

Bed 20 Fridge 11 Lamp 50
Door 28 Sofa 76 Toilet 137
Shower 78 Bookcase 4 Chandelier 19
Bidet 79 Fume extractor 9 Plant 20
Drawer 25 Table 89 Urinal 70
Sink 73 Chair 71 Radiator 26
Bin 31 Chimney 10 Washing machine/Dryer 12

4.2 Tests and Classification Results

From the entire dataset described in the above section, four different reduced datasets consisting of 5, 6,
8 and 10 object classes were created. Table 3 lists the classes selected for each dataset. The point clouds
selected for each class are composed of 80% non-perturbed instances which are used to training/validation
and 20% noisy point clouds with occlusion simulating real data in the testing stage.

Table 3. Class lists composing datasets.

Dataset Classes

Dataset1 chandelier, chimney, fridge, shower, toilet
Dataset2 bin, shower, sink, sofa, table, urinal
Dataset3 bin, chair, chandelier, door, shower, sink, table, toilet
Dataset4 bed, bidet, chair, chimney, fridge, radiator, shower, plant, sink, table

For deep learning framework configuration, AlexNet architecture was selected for training data setting
epochs and batch size to 18 and 128 respectively in every experiment. For image generation, four rotations
have been carried out for each image considering a maximum rotation angle Θ𝑚𝑎𝑥 of 120º. Resolution of
both binary and greyscale images was 224x224 while the number of images generated for training/validation
was 1500/400, 1500/400, 2000/600, 2400/1000 for Dataset1, Dataset2, Dataset3 and Dataset4 respectively.

For each dataset, four simulations have been carried out to assess how 3D projection and format image
influence on the trained model performance. Table 4 lists confusion matrices derived from classification
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of Dataset1 using orthographic and perspective projection to generate binary images. Classification per-
formance was measured by overall accuracy (OA) metric which is the ratio between the number of objects
correctly classified and the total objects. Results show that the neural network recognizes better the object
using orthographic images than perspective images.

Table 4. Confusion matrices of object prediction in Dataset1.

ORTHOGRAPHIC PERSPECTIVE

Class Cha Chi F S T Cha Chi F S T

Chandelier(Cha) 2 - - - - 2 1 - - 3
Chimney(Chi) - 2 - - - - 1 - - -

Fridge(F) - - 2 - - - - 1 - -
Shower(S) 1 - - 15 - 1 - - 15 -
Toilet(T) - - - - 27 - - 1 - 24

Accuracy (%) 0.98 0.88

Similar tests were carried out generating greyscale images on basis of surface variation feature pro-
jections. Confusion matrices collected in Table 5 show that the OA increases with both orthographic and
perspective images.

The same 4 tests were replicated with the remaining datasets. The OA obtained in each test is repre-
sented in Fig 9. With regard to the graphical projection used to generate the images, all tests prove that
orthographic projection (blue line) is more suitable than perspective projection (green line) for point cloud
object classification based on Gestalt approach. This find is opposite to the expected result, since perspective
projection provides more realistic images being more distinguishable for the human-eye. The reason for this
counter-intuitive outcome may be due to the simpler object representation in orthographic images making
the whole form of the objects more clearly perceptible.

The use of greyscale images based on surface variation instead of binary images increases the classi-
fication performance in most cases. However, this feature might be not useful for classification in some
cases on account of limitations on surface variation computation. Perturbations added to point cloud such
as noise and occlusion may affect to surface variation computation as shown in Fig. 10a. Furthermore, the
robustness of surface variation algorithm decreases for objects with smooth variation surfaces (Fig 10b).
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Table 5. Confusion matrices of object prediction in Dataset1 using greyscale images representing the value
of surface variation (SV).

ORTHOGRAPHIC + SV PERSPECTIVE + SV

Class Cha Chi F S T Cha Chi F S T

Chandelier(Cha) 3 - - - - 3 - - - 2
Chimney(Chi) - 2 - - - - 2 1 - -

Fridge(F) - - 2 - - - - 1 - -
Shower(S) - - - 15 - - - - 15 -
Toilet(T) - - - - 27 - - - - 25

Accuracy (%) 1.0 0.94

Another shortcoming is related to the HPR algorithm used for occlusion addition and the determination
of visible points in perspective image generation. Since these operations have to be run multiple times to
prepare data training/validation in execution time, HPR algorithm is suitable for the implemented method
because it is fast and simple. However, high level of noise and surface variation negatively affects the correct
determination of whether a point is visible or not.

4.3 Harmonica-Hyperband Algorithm Evaluation

In the previous experiments hyperparameters were set manually based on the intuition without any kind of
optimisation. To evaluate the implemented optimisation method which combines harmonica and hyperband
algorithms, experiments reported in previous section were repeated applying this optimisation strategy.
Optimised values derived by harmonica-hyperband for both hyperparameters and data generation parameters
are listed in Table 6.

Evaluation of Harmonica-Hyperband optimisation strategy is carried out by means OA comparison
prediction to other strategies. Similar experiments to above described were performed setting hyperparam-
eters to the values collected in Table 6. For a more comprehensive assessment, the widely used random
search optimisation method was also considered. Thus, the OA achieved by using harmonica-hyperband
strategy is compared to both random search method and manual setting hyperparameters. Figure 11 depicts
the OA obtained for each optimisation strategy using binary images orthogonally projected. Results show
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Fig. 9. Representation of the overall accuracy obtained for the four possible combinations between projec-
tions and type of images. Results obtained using binary images from orthogonal and perspective projections
are depicted by a blue and green line respectively. Overall accuracy achieved using greyscale images repre-
senting surface variation (SV) generated by orthogonal (light blue) and perspective (light green) projections
is depicted.

(a) Noise and occlusion. (b) Smooth surfaces

Fig. 10. Effect of a) noise, occlusion and b) smooth surfaces in surface variation computation.
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Table 6. Optimised parameters and hyperparameters obtained by harmonica-hyperband algorithm.

Optimisation
algorithm

Parameter Dataset1 Dataset2 Dataset3 Dataset4

Hyperparameters

Optimiser SGD Adam Adam Adam
Learning rate 0.003 0.0003 0.0003 0.0003

Batch Size 32 64 32 32
Momentum 0.9 0.9 0.9 0.9

Data
Generation
Parameters

Noise (m) 0.014 0.008 * *
Max Z Rotation (Degrees) 90 150 * *

Max horizontal translation (px) 100 100 * *
Max vertical translation (py) 0 0 * *

* This data have not been obtained due to the extensive computational resources required.

that the use of harmonica-hyperband algorithm improves classification performance in the most of cases.
Specifically, the OA with harmonica-hyperband optimisation is higher than when hyperparameters are set
manually for three of the four datasets improving by 8% in Dataset4. Concerning random search method,
harmonica-hyperband algorithm achieves a 2%, 4%, 5% improvement for Dataset1, Dataset2, Dataset4
respectively.

4.4 Test with Real Data

Although the target of this work is the benefit of the use of BIM models to generate unusual object class,
real data from datasets which do not contains unusual classes was performed. Particularly, S3DIS dataset
was selected to carry out the experiment extracting the classes of objects available in our dataset as shown
Fig. 12.

From the five common classes, bookcase has been discarded for the test since 581 bookcase objects were
extracted from S3DIS to prediction while only 4 bookcase instances are available in ours dataset which is
used for training. Consequently, tests were conducted with 4 classes keeping same values for data generation
parameters and using 1500/400 binary images for training and validation respectively.

Overall accuracy obtained in classification is listed in Table 7. Results for our dataset confirm that
the use of orthographic images improve classification performance with data generated by our method.
However, this result is opposed to the OA derived from S3DIS since classification by using perspective
images increases performance drastically.

This discrepancy in the more suitable type of projection for synthetic or real point clouds may be due
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Fig. 11. Overall accuracy obtained without hyperparameter optimisation, by using harmonica-hyperband
algorithm and by applying random search strategy.

Table 7. Overall accuracy obtained with real data.

Dataset Projection OA

Ours
Orthographic 0.96
Perspective 0.8

S3DIS
Orthographic 0.57
Perspective 0.81

to several factors. While our occlusion model assumes low noise level from other objects, point clouds
from S3DIS may contains higher level of object occlusion due to the static mode in which the data were
acquired. In this case, perspective projection generates certain occlusion level caused by the object itself.
Another possible factor is related to density, perspective projection derives lower density point clouds which
is maybe more similar to the density of the S3DIS point clouds. Projected images and result classification
from four point cloud objects belonging to S3DIS are depicted in Fig 13.
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Fig. 12. Class intersection between ours dataset and S3DIS.

Fig. 13. Point clouds, projected images and classification results from four different objects contained in
S3DIS.
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4.5 Assessment of noise and occlusions in the classification performance

The aim of this section is evaluate the significance of generate synthetic point clouds with perturbations such
as noise and occlusions. For this, previous results are compared with new similar tests carried out without
adding noise or occlusions during training. To evaluate the impact of perturbations in the four generated
datasets, the deep learning framework parameters are set like in non optimised experiments. Orthogonal
projection is selected to generate binary images since this provides higher OA than perspective images. In
addition to the impact assessment in synthetic datasets, this is evaluated with the real data extracted from
S3DID dataset used in the previous section. In this case perspective images are used because they provides
greater OA with S3DIS dataset.

Classification OA of these test are shown in Fig. 14 together OA obtained in previous test in which noise
and occlusion are added during training data generation. Results reveal the OA decreases sharply for both
synthetic and real point clouds if perturbations are not regarded for training data generation. The lost yield
varies widely from 6% to 35% for synthetic datasets while for real data it reachs 34%. From these results,
these influence of noise and occlusion has a considerable impact in classification performance. Furthermore,
the classification OA with real data is improved by using the implemented perturbation models.

Fig. 14. Classification OA when perturbations are added (blue) and when they are not (green).
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5 Conclusions

A highly automated method for generating synthetic classified point clouds from BIM objects has been
presented. The synthetic point cloud datasets are characterised by various simulating perturbations present
in real data such as noise or occlusions. Furthermore, a deep learning framework was implemented to
evaluate the feasibility of using this synthetic data for object classification with deep learning techniques.
Data generated in this way are significantly helpful for augmenting dataset, using data controlled or balancing
datasets by adding instances of shorter classes.

Results revealed the OA of deep learning models is higher when model is trained with orthographic
images instead perspective images. Beyond projection, the use of surface variation feature to enrichment
greyscale images when RGB data is not provided was explored. This object representation improved
classification performance in almost all tests. However, surface computation limitations on complex point
clouds might generate a misleading point cloud mapping.

In future work, the creation of a more complete dataset will be considered and the study of new
methods using this dataset or different data sources should be addressed with the aim to develop a general
methodology that produces reliable synthetic point cloud for deep learning classification. In addition,
attributes such as contextual information could be added to overcome geometric representation weaknesses.
Particularly, the proposed method could be extended address the problem of semantic segmentation by
generating multi-labelled point cloud scenes from BIM models composed of structural building elements
and furniture.
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“An n-spheres based synthetic data generator for supervised classification.” In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
doi:10.1007/978-3-642-38679-4“˙62.

Silberman, Nathan, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. 2012. “Indoor Segmentation and
Support Inference from RGBD Images.” In Computer Vision – ECCV 2012, edited by Andrew Fitzgibbon,
Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, Berlin, Heidelberg, 746–760.
Springer Berlin Heidelberg.

Simonyan, Karen, and Andrew Zisserman. 2014. “Very deep convolutional networks for large-scale image
recognition.” arXiv preprint arXiv:1409.1556 .

Su, Hang, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. “Multi-view Convolu-
tional Neural Networks for 3D Shape Recognition.” doi:10.1109/ICCV.2015.114.

Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. 2017. “Inception-v4,
inception-resnet and the impact of residual connections on learning.” In Thirty-first AAAI conference
on artificial intelligence, .

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. “Going deeper with convolutions.” In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 1–9.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2014. “Going Deeper with Convolutions.” CoRR
abs/1409.4842.

30



Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. “Rethinking
the inception architecture for computer vision.” In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2818–2826.

Tan, Chuanqi, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. 2018. “A Survey
on Deep Transfer Learning.” CoRR abs/1808.01974.

Taylor, Adrian, Sylvain Leblanc, and Nathalie Japkowicz. 2016. “Anomaly Detection in Automobile Control
Network Data with Long Short-Term Memory Networks.” In 2016 IEEE International Conference on
Data Science and Advanced Analytics (DSAA), 130–139. doi:10.1109/DSAA.2016.20.

Tchapmi, Lyne, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese. 2017. “SEGCloud:
Semantic Segmentation of 3D Point Clouds.” In 2017 International Conference on 3D Vision (3DV),
537–547. doi:10.1109/3DV.2017.00067.
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Chapter 5

From semantically enriched
point cloud to hierarchical
path planning

5.1. A variable-scale partitioning schema for spa-
tial subdivision of indoors from point clouds
to hierarchical path planning

Un esquema de partición de escala variable para la subdivisión
espacial de interiores a partir de nubes de puntos para la planifi-
cación jerárquica de rutas

Resumen

En la actualidad, los hábitos humanos hacen que las personas a pasen
cada vez más tiempo en interiores, pudiendo llegar a suponer hasta el 90%
de su tiempo. Debido a la gran cantidad de actividades que tienen lugar en
interiores, el modelado y la interpretación de los entornos interiores resulta
cada vez más atractivo para la comunidad. En los últimos años, ha aumenta-
do el interés por el desarrollo de aplicaciones para la navegación asistida en
interiores. Muchas de estas aplicaciones utilizan modelos planificados que a
menudo no representan con precisión el estado real del entorno. Con el obje-
tivo de asistir la navegación en interiores con datos espaciales actualizados,
este trabajo propone un método para la generación de un grafo jerárquico
para la navegación en interiores a partir de una nube de puntos enriquecida
semánticamente. El método consta de tres pasos: En primer lugar, la nube
de puntos se segmenta en habitaciones mediante el uso de morfoloǵıa ma-

123



124CHAPTER 5. HIERARCHICAL PATH PLANNING FROMPOINT CLOUDS

temática, aśı como se implementa la detección de puertas. A continuación, se
extrae el espacio navegable de cada habitación y se divide individualmente
en función de los objetos del entorno en el que se realizan las actividades.
Por último, se construye un grafo jerárquico a partir de la información es-
pacial extráıda anteriormente, lo que permite calcular rutas precisas sin un
elevado coste computacional. Los experimentos se han llevado a cabo en un
caso real de varias habitaciones que demuestra la aplicabilidad del método.

Palabras clave:

Partición del espacio, espacio de interiores, nubes de puntos, subdivisión
3D, sub-espacios, navegación, planificación de rutas
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ABSTRACT

Nowadays human habits lead people to spend more and more of their time indoors, which can reach up to

90% of their time. Due to the vast amount of activities that take place indoors, modelling and interpret-

ing indoor environments is becoming increasingly attractive in the community. In recent years, there has

been increasing interest in the development of applications for assisted indoor navigation. Many of these

applications use planned models that often do not represent accurately the actual state of the environment.

With the aim of supporting indoor navigation with update spatial data, this paper proposes a method to

generate a hierarchical graph for indoor navigation from an semantically enriched point cloud. The method

consists of three steps: First, the point cloud is segmented into rooms by using mathematical morphology

as well as door detection is implemented. Then the navigable space of each room is extracted and parti-

tioned individually on the basis of the objects around which activities are performed. Finally, a hierarchical

graph is constructed from the previous extracted spatial information enabling the computation of precise

routes without high computational cost. The experiments were carried out on a multi-room real case study

showing the applicability of the method.
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1 Introduction

In the last decade, the modelling of indoor environments have been of increasingly importance due to

the fact that people spend most of their time in indoors. This is particularly relevant for people living

in cities, for which it is estimated to spend on the average of 90% of their time inside buildings (EPA,

2009). Moreover, population living in cities is expected to rise up to 70% of the world’s population by

2050 (UN, 2018). In this context, applications to assist indoor activities such as navigational assistance

for blind or wheelchair people, tourism, building crisis management or training emergency assistance units

have recently gained a lot of attention.

Recent advances in computing together with the development of indoor mobile mapping systems sig-

nificantly contributed to the recent flourishing of research on indoor modelling and navigation. In spite of

the fact that much research has been done in terms of 3D building reconstruction, spatial models for indoor

navigation mostly rely on simplified representations such as 2D floor maps, often ignoring indoor features

such as furniture. In addition, compared to the outdoors in which the urban space is mostly organized in

sidewalks and roads, indoor navigation only depends on whether there is free space and whether the moving

object can fit in such space or not (Diakité and Zlatanova 2018), making the use of simplified 2D floor plans

inadequate to accurate path planning. And this unsuitability is still more substantial in case of highly oc-

cupied indoor environments and in case of path planning for autonomous vehicles such as UAVs, in which

the analysis of the third dimensional space is needed.

With the increased use of BIM models in construction, recent proposals extended the spatial subdivi-

sion of indoors for navigation to 3D. Taking the advantage that BIM models represent the 3D geometry,

semantics and topology of building elements, a flexible framework for space subdivision was proposed by

(Diakité and Zlatanova 2018), in which the functionality of the indoor space was extracted from the BIM

model and considered for the navigation, achieving to a semantically rich spatial schema. However, this

approach relies on BIM models, and although huge research was recently made to reconstruct as-built BIM,

most of the building stock still lacks its equivalent digital representation.

With the progress of location systems based on SLAM technique, indoor mobile mapping systems have

become efficient instruments for collecting three-dimensional and high quality data of the as-built status of

large and complex indoor scenarios. In fact, scanning technology has undergone a considerable reduction

in price and diversification of devices, culminating in the recent integration with smartphones such as the

iPhone Pro and iPad Pro launched by Apple in 2020 (Dı́az-Vilariño et al. 2022). Therefore, point clouds

are now more accessible than ever. Although reconstruction of building elements from point clouds is still

under research because of the difficulties on obtaining regularized and topologically coherent models and

on reconstructing highly complex elements such as stairs or furniture, point cloud classification is highly

advanced especially due to the recent implementation of artificial intelligence techniques. For this reason,

classified point clouds were already considered as models themselves for the direct use in applications

such as pedestrian path finding in outdoors (Balado et al. 2019). Path planning and navigation acquire a
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new dimension of importance with the availability of highly accurate classified point clouds, and this new

dimension of importance is related with the need of understanding the point clouds in order to extract the

needed knowledge for the spatial subdivision of indoors towards path planning.

This paper proposes the direct use of point clouds for the spatial subdivision of indoor environments

according to a variable-scale partitioning schema for hierarchical path planning. Point clouds are used as

the source of information for understanding the building indoor environment at several geometrical scales:

room scale, functional scale, and spatial scale; which are further used to enable hierarchical path planning.

The remainder of the document is structured as follows. Section 2 discusses previous works related with

subdivision of indoor spaces for navigation and indoor path-planning. Section 3 describes the proposed

method, while Section 4 presents and discusses the results of implementing the proposed method to real

case studies. Finally, Section 5 is devoted to conclude this work.

2 Related Work

Subdivision of indoor spaces for path planning and navigation has been commonly investigated in literature

(Afyouni, Ray, and Christophe 2012; Zlatanova et al. 2014). Conventional approaches still rely on 2D

representations consisting of layouts provided by structural building components such as floors, walls, and

doors. The floor map describes the geometry of the space that can be navigated. Continuous representations

of the indoor space have the advantage that any point within the indoor space can be reached, but this

requires large computational effort in finding paths.

In order to reduce the computation effort of path finding, several spatial models have been proposed to

discretize the indoor space. The simplest representation of an indoor navigable space is the one adopted by

standards such as the IndoorGML (Tran et al. 2017), employing graph structures in which the interconnected

subspaces (e.g. rooms, corridors, etc.) are represented by linked nodes. This model corresponds to the

skeleton of a space, which is frequently addressed as the medial axis of the space, where nodes represent

subspaces and edges represent the movement between subspaces. Methods based on the Medial-Axis-

Transformation (MAT) were often proposed to model indoor navigable space. A MAT-based method was

developed by Lee for generating skeleton structures of simple polygons but just geometric information was

considered. Another approach based on the centreline algorithm was proposed by Meijers, Zlatanova, and

Pfeifer, in which semantic knowledge was taken into account to represent corridors. A conceptual model

space inflation and deflation was proposed by Sithole to extract indoor graphs from the navigable space

without requiring space subdivision. The benefit of this conceptual model is that the space can be deflated

or inflated according to the needs of the path planning, that can result in a multi-resolution description of

the navigable space. However, some limitations were identified and no implementation in real case studies

were proposed for the moment. Although skeletonization is widely used, this representation is typically too

simple for being representative for path finding in case of applications requiring accurate results (Flikweert

et al. 2019).

Other indoor spatial models are based on tessellation. Due to their simplicity, grid-based tessellations are
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widely used in the representation of navigable maps. They provide a uniform structuration of the navigable

space, but the trade-off between resolution and computational effort is an inherent issue in regular grid

techniques. A fine-grained grid entails a high consumption of computational resources, particularly in

large scenarios (Afyouni, Ray, and Christophe 2012). There is a large amount of works using grid-based

tessellations for indoor space discretization. For example, Li, Claramunt, and Ray structure the navigable

space as 2D squared cells, each one representing one node with an attribute identifying the building element

they represent. Frı́as et al. uses the same partition schema including a security area close to building

elements which is needed for path planning for autonomous robotic platform navigation. In case of high

density grid representations, hierarchical-organization structures such as quadtrees have been proposed to

enhance efficiency in processing (Joo et al. 2010). Voronoi diagram is also one of the most fundamental

data structure for space partition. For example, Boguslawski et al. proposed the Variable Density Network,

in which floors are tessellated considering nodes representing doors and concave corners as the nucleation

points for Voronoi cells. Other space subdivision schemas are based on Delaunay Triangulation (DT),

which is a dual representation of VD. This approach consists in the union of initial sites of adjacent Voronoi

regions generating a partition composed of triangles. For example, Frı́as et al. implemented a DT-based

method to obtain a distribution of indoor navigable space in candidate positions for scan planning, which

resulted into a more efficient distribution than grid-based distribution in terms of computational cost.

Although most of literature addresses indoor space subdivision for navigation from a two-dimensional

perspective, some recent approaches were extended to 3D. For example, Fichtner et al (2018) proposed

an octree-based approach to model the navigable indoor space from point clouds in order to enable multi-

story path planning. Building elements were semantically identified, and this information was further used

to enrich the occupied octree cells with labels (e.g. floor, wall, staircase, obstacle). Li et al (2018) also

proposed a 3D indoor partition based on voxelization aiming to indoor drone path planning. In this case,

the navigable space corresponded to the empty space and an algorithm was proposed to compute safe

shortest path and safe least cost path. Unlike previous approaches, Diakité and Zlatanova propose a spatial

partitioning schema called Flexible Space Subdivision (FSS) to perform an automatic subdivision of the

space by relying on the indoor objects and their functions. The method is demonstrated in BIM models,

inherently containing semantics. Objects populating the indoor spaces are represented by bounding boxes,

and their functions are used to perform further subdivision in terms of object space, functional space, and

navigation space. Indoor point clouds are used by Nikoohemat et al. to generate a more realistic 3D model

from which the FSS is applied to address indoor navigation.

3 Methods

Taking a raw input point cloud as input, the method performs variable-scale partitioning schema with the

purpose of generating a three-level hierarchical network suitable for hierarchical path planning. The first

step consists in segmenting the input point cloud into rooms by applying 3D morphological operations.

Once rooms are segmented, each one is processed individually to classify obstacles in order to then extract
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navigable space which is further partitioned on based of element functionality. After, a two-level hierarchi-

cal network is generated to perform a functional navigation where agents (people, mobile robots, drones,

etc) move from one functional area to another one. Network topology composes of rooms represented in the

top level and functional segments in the second level. During path computation, the hierarchical network

can be expanded with a third level based spatial customisable resolution that enables to calculate higher

resolution paths. The three processes outline above are shown in Figure 1 and explained in depth in the

remainder of this section.

Figure 1 General workflow of the method

3.1 Room Segmentation

The method used to perform room segmentation is an improved variant from the method previously pro-

posed in Frı́as et al. (2020). This method is basically based on applying 3D morphological operations on

the indoor empty voxels. The two major enhancements consist of the overcoming the Manhattan-world

limitation as well as the addition of a door detection process in the empty space. The following is a brief

description of the room segmentation method emphasising on new developments.

With the twofold objective of to alleviate computational workload and operate with structured geo-

metrical data, the input point cloud Pin is voxelised generating a voxel grid PV ox with resolution resvox.

Besides, raw point clouds directly provided by laser scanners suffer from undesired effects such a noise

and outliers making their processing challenging (Han et al. 2017). Point cloud is commonly pre-treated

to avoid unexpected results during processing, e.g. in segmentation processes. Thus, as shown the room

segmentation workflow in Figure 2, before to apply morphological operations, noise is removed from PG

by a more refined filtering process than in the original work.

3.1.1 Point Cloud Cleaning

The noise filtering starts by removing the points outside of the building using the clustering algorithm

DBSCAN (Ester et al. 1996). Resulting clustering depends on the radio search ϵout and the minimum

number of points required to form a cluster nPtsout used by the algorithm. Since the objective is to eliminate

outside noise such as points reflected by windows keeping small objects placed inside, the value of ϵout
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Figure 2 Room segmentation workflow.

should be large enough. In this way, although points away from the principal cluster are readily removed, the

principal cluster may contain undesired points corresponding to external building elements or incomplete

building areas. For this, rather than using a z-histogram limited to axis aligned and non-sloping point clouds,

the ceiling and the floor points are extracted carrying out a planar segmentation. First, point normals are

computed to discard points whose normal direction on z-axis is less of minZnor. Then, the parametric

model of the two largest planes are computed by applying RANSAC (Fischler and Bolles 1981) algorithm.

Generally, these planes are fit to the floor and ceiling of the building. Thereby points closer than a threshold

distance thransac to planes are considered to be floor and ceiling points. From the two resulting set of

points, the average height is computed to determinate whether points belong to floor or ceiling. Thus the

plane equations fit to floor and ceiling points are referred hereafter as Πfloor and Πceiling. At this stage, the

all other points are considered as obstacle points Pobs.

Ceiling points are used to determine the building boundary since the ceiling is commonly less occluded

that the floor. However, because the large range of the laser, areas not crossed during acquisition can be

partially acquired through open doors or corridor, for example. These points may affect to the consistence

of the further segmentation and navigation, hence they should be removed. The robustness of DBSCAN

algorithm to outliers detection is exploited again to filter ceiling points corresponding to incomplete areas.

As already mentioned, the building boundary is computed by applying an alpha-shape algorithm on

filtered ceiling points. The concave hull derived by the algorithm consists of a 2D polygon corresponding

to the boundary of the ceiling points. Thus, 2D projected Pobs falling out of the polygon are removed as can

be seen in the Figure 3.

Since the boundary filtering is performed in 2D, outside points close to the ceiling and the floor are not

filtered out in the previous steps. Therefore, the last step of the filtering process consists in filtering the
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Figure 3 Steps of cleaning point cloud process.

outside points from under the floor and above the ceiling. To do this, the distance from obstacle points to

ΠceilingandΠfloor is computed and outside points are removed by applying the criterion based on the sign

of the distance. Once filtering process is completed, the output point cloud clean of outside noise Pclean is

taken as input of the 3D morphological segmentation explained in the next section.

3.1.2 3D Morphological Segmentation

Since the 3D morphological segmentation carried out in this work is similar to method proposed by Frı́as

et al. (2020), this section merely provide a brief summary of the main steps of the process. Thus, the

interested reader should be referred to the aforementioned work.

From the Pclean voxels are classified into occupied Vocc and empty ones. Then, the building boundary

together the planes Πfloor and Πceiling are used to separate indoor VE in and outside VE out empty voxels. The

former compose the indoor empty space which is subjected to 3D morphological operations to obtain the

building rooms segmented. The first morphological operation consists in a erosion applied to indoor empty

space with the aim of breaking the empty space continuity where it is weakest, generally in doorways. As

shown Figure 5, after morphological erosion, spatially room spaces are clearly differentiated, therefore, 3D

connected components algorithm is suitable to individualise each room. Then, room spaces are generated by
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applying a 3D morphological dilation on individualised spaces without retrieving the continuity generated

by doorway spaces. Finally, Pclean is classify in accordance to individualised rooms by proximity to labelled

indoor empty voxels Ve lbl.

Figure 4 Steps of the 3D morphological segmentation.

3.1.3 Door Detection

As the communication between adjacent rooms takes place via doors, their placement is very interesting for

indoor navigation applications. Consequently, doors determine the adjacency relationships of the rooms in

a building. Aware of this, a door detection process have been developed from the previous morphological

room segmentation method in order to generate the highest topological level of the proposed hierarchical

navigation.

As mentioned above, not all indoor empty voxels VE in are retrieved after dilation process. Among

these non-recovered voxels are the ones corresponding to the empty space of open doors. Thus, as shown

in Algorithm 1, door detection starts by computing the unrecovered empty voxels Vunr from indoor empty

voxels and labelled empty voxels:

VE unr = VE in − VE lbl (1)

In addition to empty door voxels, other voxels belonging to VE in are not recovered during dilation

process due to the presence of occlusions or walls wider than resvox. On basis of the hypotheses outlined

above, the procedure to carry out the door detection should be able to select only the unrecovered voxels

associated to doors. To do this, a two-step filtering is performed from VE in on basis of the empty voxel

features of door space. In the first step, normal vector of vu ∈ VE unr are computed and voxels whose

z-component normal is greater a than threshold thz are discarded. Given that doors are a vertical element,

the value of thz should be a small value within the range 0-1 to filter out non-vertical empty spaces. In the

second filtering step, the empty voxels closer than a distance dmax to any occupied voxels are removed. This

filtering attempts to remove empty voxels close to wall that may cause false positives in the door detection

process.
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Algorithm 1 Door detection
1: procedure DOOR DETECTION(VE in, VE lbl, Vocc, VE out)
2: VE unr ← VE in − VE lbl

3: normalsunr ← compute normals(VE unr)

4: VE nFilt ← ∅
5: for i← 1, length(VE unr) do
6: if normalsunr[i][3] ≤ thz then
7: VE nFilt ← VE unr[i]

8: VE dFilt ← ∅
9: for i← 1, length(VE nFilt) do

10: if closest distance(VE nFilt[i], Vocc) ≤ dmax then
11: VE dFilt ← VE nFilt[i]

12: Ccand ← DBSCAN(VE dFilt)

13: bbxdoors ← ∅
14: for i← 1, length(Ccand) do
15: bbxextr = extruded bounding box(Ccand[i])

16: lblsroom ← voxels within bounding box(VE lbl, bbxextr)

17: lblsocc ← voxels within bounding box(Vocc, bbxextr)

18: lblsout ← voxels within bounding box(VE out, bbxextr)

19: nrooms = unique(lblsroom)

20: if nrooms == 2 and length(lblsout) == 0 and length(lblsocc) < length(Ccand[i]) then
21: nPtsRoom1 ← length(lblsroom == Room1

22: nPtsRoom2 ← length(lblsroom == Room2

23: if nPtsRoom1/length(lblsroom) > rmin and nPtsRoom2/length(lblsroom) > rmin then
24: bbxdoors ← bbxdoors ∪ bounding box(Ccand[i])

25: return bbxdoors

Following the algorithm, filtered empty voxels VE dfilt are grouped by DBSCAN algorithm before to

evaluate whether voxels represent a door space. The surroundings of each cluster are analysed to determi-

nate whether its voxels correspond to a door space. The neighbouring voxels to selected cluster are those

located inside the cluster bounding box extruded bbxextr along shorter dimension. The criterion defined to

door detection is based on the checking of empty labelled, occupied and outside voxels. It is mandatory

that labelled empty voxels VE lblof the close to the cluster belong to two different rooms. However, cluster

is detected as negative if bbxextr contains any outside voxel or the number of occupied voxels is greater than

the cluster voxels. In addition, to increase the robustness of the detection, the ratio of empty voxels from

each room must be greater than a minimum ratio rmin.

Room segmentation concludes after door detection providing a point cloud segmented into rooms and

the bounding boxes of the detected doors. The potential of this segmentation is benefited in the following

steps to perform a functional partitioning.

3.2 Functional Partitioning

Room partitioning process segments room point clouds into by element types and divides the navigable

space into functional areas. The proposed functional partitioning takes into account the custom of the people

and their actions. This way, the concept of functional areas means the indoor places where people stay to

take an action presented in Krūminaitė and Zlatanova (2014) for BIM models is extended to point clouds.

First, all elements that constitute the room as well as the objects present in the room are classified into
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structural, ground or top elements. Second, navigable space is generated considering elements hindering

navigation such as structural and ground elements in case of 2D navigation. Finally, navigable space is

partitioned taking into account the class and the location of the elements.

Figure 5 General workflow of the functional space segmentation

3.2.1 Obstacle Classification

The wide variety of elements often found in indoor environments makes their contextualisation complex,

particularly when the indoor data is a point cloud instead a 3D model. In case that a semantically detailed

3D model is also available, a more precise contextualisation of the indoor elements could be performed by

using Scan-vs-BIM technique. Unfortunately, no such models are provided for the majority of building so

that certain hypothesis should be defined. Functional areas are generally located close to elements where

actions take place such as reception tables, chairs or platforms which are hereinafter referred to as functional

elements. From the navigational point of view, functional elements are generally treated as obstacles in the

same way that structural elements. The proposed functional approach requires differentiating both class

of elements for the further navigable space partitioning. Besides, depending on whether navigation is

performed in 2D or 3D and the type of agent, elements no supporting on the floor at a considerable height

can be ignore or not. Considering the above, the developed obstacles classification process categorises
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indoor elements as structural, ground and top through the five steps shown in Figure 6. A more precise

classification could be done by using deep learning techniques (Frı́as et al. 2022), but semantic segmentation

is out of the scope of this paper.

Figure 6 Steps of obstacle classification process: a) Room is split into ceiling (green), floor (blue) and

obstacles (red). b) Dynamic obstacles (gray) are computed and removed from obstacles keeping static

obstacles (red). c) The boundary of the ceiling (gray) is contracted to obtained a tighter boundary (red)

which is used to separate walls from the other obstacles. d) Selected obstacles are individualised for further

classification in the next step. d) Obstacles are classified into structural, ground and top.

Room segmentation derives individualised rooms that can be analysed separately enabling them to be

processed at higher resolution while maintaining computational cost. Thus, room point cloud is voxelised

with resroom resolution before to split the room into floor, ceiling and obstacles. This division, depicted

in Figure 6a, can be directly perform from the occupied voxels classified during the cleaning step in room

segmentation process. In case only room labels are used, the cleaning process explained in section 3.1.1

is applied to rooms making the remainder of the method independent of the proposed room segmentation.

The points not belonging to the floor or the ceiling are considered obstacles containing the elements to be

identified and maybe other undesirable obstacles of dynamic character or noise. Dynamic obstacles are

distinguished from static ones by analysing timestamp of all points contained in the same voxel as proposed
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in Staats et al. (2017). If the maximum time difference is greater than tmax) seconds, the points are labelled

as static and as dynamic if this is not the case.

For the wall filtering step shown in (Figure 6c), the room boundary is obtained from the their ceiling

points by an alpha-shape-based algorithm. To ensure the removal of walls while the other static elements are

preserved, the boundary is slightly contracted before to apply a concave-hull filtering to obstacles. Previ-

ously to the classification, elements are individualised to be further classified in accordance their particular

features. As floor, ceiling and walls were filtered in the preceding steps, the clustering DBSCAN algorithm

can be used to individualise elements. Before clustering, a SOR filter is applied to remove the noise around

the elements. Finally, elements are classified in accordance with their placement and dimensions. Class

element is determined on basis two parameters: the maximum height at which the agent could perform

an action on the element dfunct max and a threshold distance dth to considerate whether the element con-

tacts the floor or the ceiling. The classification criterion states that all elements at a greater distance than

dfunct max from the floor are top elements. Otherwise, element is classified as ground if it does not reach

the ceiling and as structural if the elements reaches both the floor and the ceiling. Although this criterion is

a simple criterion, it is valid for almost all cases. Exceptionally some elements need to be reclassified in a

post-validation process.

3.2.2 Navigable Space Generation

The navigable space where agents transits relies on the motion mode of the agent, thus, while drones

commonly navigate at certain distance from the floor, people and autonomous mobile robots move on the

ground. Although in this work navigable space is computed for the latter, the approach could be extended

for small UAVs considering the empty voxels as the navigable space. Starting from floor of each room

extracted above, the perturbations caused by obstructions and occlusions on the floor are addressed to

generate the real navigable space. Conscious of navigable space on the floor can be approached on 2D,

occlusion reconstruction is performed on 2D images by using image processing. In this case, occlusions are

reconstructed by a iterative dilation applied to the 2D image of occluded floor. Previously, a reference mask

is generated to avoid dilated pixels extents to pixels occupied by obstacles or to outside pixels. As shown

in Figure 7, ceiling and obstacles affecting navigation are the input for reference mask generation which

is based on morphological and basic operations on 2D images. Reconstruction of occlusions consists in

execute a morphological dilation iteratively until no more pixels are added starting from the image derived

by the rasterisation of the occlude floor. The reconstruction process depicted in Figure 8 transforms the

dilated image to point cloud by generating uniformly distributed points along occupied pixels and then

estimating z-coordinate. The estimated height of each point is calculated by averaging the height of their

kfloor nearest neighbours from the occluded floor.
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Figure 7 Workflow of reference mask generation.

3.2.3 Functional Segmentation of the Navigable Space

Although the navigable floor obtained in the previous step represents the placements where the agent can

be located, some constraints such as security distance and functionality should be addressed to ensure safe

and effective navigation. A commonly constraint in navigation applications to avoid collisions with obsta-

cles during navigation consists in ensuring a minimum distance to obstacles during navigation. Since the

functional elements have a different role than the structural elements in the proposed contextual navigation,

only the latter are regarded for determining unsafe floor areas. Thus, navigable floor points at a shorter

distance than dsec to structural elements compose the unsafe navigable area visualised in red in Figure 9a.

The second constraint is given by the functional areas where agents performs their activities and which

therefore should be excluded from the transit area referred to here as walkable space. Due to the absence

of a 3D model with such information, functional areas are assumed as the secured floor points closer than a

distance dfunct to functional elements. For the case where the navigable space is the floor, functional areas

are located close to ground elements, but in the case of empty voxels, top element should be also regarded.

Furthermore, many functional areas are occupied simultaneously by several agents as in the case of benches

or queues. By the same, each functional area is divided into smaller subareas on basis the ground element

dimensions. Points of functional areas are split by the four planes aligned with the four vertical faces of

the bounding box enclosing the ground element matched to functional area. An example of functional area

partitioning is visualised in Figure 9b.
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Figure 8 Workflow of occlusion reconstruction process.

The remaining floor points constitute the walkable floor through which agents move from one functional

area to another. For the partition of the walkable floor, functional subareas are taking into account rather

purely geometric spatial partitions which neglect agent behaviour. Thus, walkable partition is carried out

in similar way to functional areas partitioning providing accessibility to functional subareas from walkable

segments.

It should be noted that while geometric partitions generally generate more segments in larger rooms, the

proposed functional partition produces more segments in rooms where there are more functional elements.

3.3 Variable-scale Hierarchical Navigation

Once point cloud has been split according to rooms and functional elements, a two-level graph is created for

indoor navigation implementation. Further, a third level termed as spatial level is added to the hierarchical

graph with the aim to provide higher accurate paths. Besides spatial partition, a strategy for navigation has

been developed to exploiting the hierarchical structure in terms of computational efficiency.
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Figure 9 Workflow of functional partitioning.

3.3.1 Hierarchical Graph Generation

At the top of the hierarchy, it is the most abstract level that in this work is also referred to as room level. The

graph at this level is constructed from the output of room segmentation process. Each room is represented

by a node in the graph located at the floor room center. Room nodes are not directly connected, but door

nodes computed from bounding boxes obtained in section 3.1.3 are added to graph. This indoor topological

representation not pay attention to the presence of obstacles which can lead to inaccurate paths but it is very

useful for the path calculation at the lower levels.

In the next hierarchical, level also named functional level, nodes are distributed on the basis of functional

segments computed in section 3.2.3. Topological representation of functional space consists of a graph

composed by nodes directly derived from both walkable and functional segments and door nodes. Nodes

are placed at the segment point closest to the centroid of the segment. A pair of nodes are connected if their

corresponding segments are adjacent what is determined by connected components algorithm. Then, door

nodes are connected to the nodes representing functional segments composed of points that fall inside of

door bounding boxes. To ensure that some segment point fall in the bounding box, this is extruded along z

axis.

The third navigational level also called spatial level is only generated during the navigation. At this
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scale nodes are generated with a grid distribution at customisable resolution resgrid. Points that compose

the segments derived from functional partitioning have a uniform distribution with a resolution of resnav

due to how navigable floor is generated. Taking resnav as reference, the way that spatial nodes are created

depends on the value of the selected resgrid. The simplest case is when both resolutions take the same

value and the segment points are directly used as nodes. However, if resgrid is higher than resnav, segment

points are voselised at the selected resolution. In contrast, when resgrid is lower segment bounding box is

simplified to a 2D convex hull and points are sampled at the selected resolution and their coordinate z is set

to the average height of segment points. Obtained points are then filtered by using the concave hull of the

segment points.

3.3.2 Path planning for Hierarchical Navigation

Path planning have been implemented based on functional context in the sense that paths starting and end-

ing at functional nodes which cannot be intermediate nodes on the pathway. This implies that all other

functional nodes are discarded for path computation. As the segments and classified elements are arranged

by rooms, the origin and the target room are known. Thus, the path is first calculated at the room scaled

providing the rooms and doors to be accessed. Taking advantage of this information, functional path cal-

culation is performed room per room reducing substantially the number of nodes used. If a more accurate

path is required, spatial level allows to compute a route with a customised resolution. Unlike to grid-based

nodes distribution that generates vast amount of nodes which involves a high computational cost, spatial

nodes are only generated on the segments through which the functional path crosses. Thus, high-precision

paths can be obtained at an affordable computational cost.

4 Results

Results section is structured in two differentiated parts. First, the case study used to evaluate the method is

described. Then, remaining subsections are devoted to present and discuss the obtained results.

4.1 Case Study

The method was tested in a case study consisting of a indoor point cloud acquired in a floor of the Mining

Engineering School at the Vigo university in Spain. The building was scanned with the commercial mobile

laser scanner ZEB-REVO which together the point cloud provides trajectory information. The acquired

floor is composed of six rooms corresponding to five classroom with one door each accessible through

a long corridor. Each classroom has an area of about 130 square meters while the area of the corridor

is approximately 180 square meters. Point cloud has almost 44 million points and mainly contains chairs,

benches, large tables, radiators and columns. In Figure 10 it can be appreciate that input point cloud contains

outliers, part of the building partially acquired and a sloping floor which make the case study challenging

to process..
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Figure 10 Point cloud of the case study

4.2 Room Segmentation

For morphological room segmentation, point cloud was voxelised with a voxel resolution resvox = 0.1m

reducing the number of points to 614593. As shown Figure 10, the input point cloud is challenging for

cleaning process due to considerable outliers and incomplete building parts present in the point cloud.

Cleaning point cloud process was performed by using the parameters listed in Table 1.

Table 1 List of parameters used in the functions composing cleaning process.

Process Parameters Value

Outliers filtering (DBSCAN)
ϵout 0.3m

nPtsout 2

Floor and Ceiling Extraction (RANSAC)
nt 0.9

thransac 0.12m

Ceiling Cleaning (DBSCAN)
ϵceiling 0.3m

nPtsceiling 2

Boundary Computation

(Concave Hull)

alphaceiling 3.2

Cleaned point cloud Pclean depicted in Figure 11 demonstrates how the filtering successfully removed

all outliers as well as incomplete parts. Moreover, floor, ceiling and obstacles were correctly identified

ensuring floor and ceiling planes were accurately calculated.

Indoor empty voxels visualised in Figure 12a faithfully represent the indoor empty space of Pclean.

Labelled empty voxels resulting after applying morphological operation and individualisation is deoicted

in Figure 12b where empty voxel of rooms are coloured in different colours. Figure 12c shows classified

Pclean based on proximity to labelled empty voxels. By visual inspection it can check that rooms were

segmented with sufficient accuracy. Consequently, the improved room segmentation method has succeeded

in segmentation of a non aligned point cloud.

The implemented door detection algorithm was successfully tested with the presented case study. In
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Figure 11 Input point cloud a) and point cloud after cleaning process

Figure 12 Visualization of indoor empty voxels a) before and b) after morphological segmentation. c)

Labelled occupied voxels.
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line with the assumptions stated in section 3.1.3, doors were searched in the not recovered indoor empty

voxels after morphological dilation illustrated in Figure 13. Filtering parameters thz and dmax were set to

0.1 and 2*resvox respectively. After clustering, 530 door candidates were obtained as shown in Figure 13b.

This large number of candidates is a challenge for door selection criterion because only five candidates

are matched with the doors. Despite the complexity, only the five doors are correctly selected as can be

observed (yellow points) in Figure 13c with classified voxels.

Figure 13 Results produced during door detection: a) Non-classified voxels after filtering process are vi-

sualised. b) Clusters obtained by DBSCAN differentiated by colour. c) Detected doors (in yellow) and

classified rooms with room1 (corridor) cropped for better visualisation of doors

Finally the input point cloud is segmented by projecting points to voxel grid space of classified Pclean.

Thus, each point is labelled with the label of the voxel where is projected discarding points that fall within

empty voxels.
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4.3 Room Functional partitioning

Unlike room segmentation, functional partitioning is based on occupied voxels instead empty ones. Besides,

as rooms are individually processed classified point cloud was voxelised at resroom= 0.05m of resolution.

Although the classification of the structural elements of each room could be extracted directly, the filtering

process was successfully tested in all rooms.

A significant amount of dynamic obstacles are presented in the case study, particularly in room 1 as

shown Figure 14. As mentioned above, trajectory is available providing the points of a timestamp which

makes possible to use the characterisation method referred in section 2. Dynamic obstacles (in grey) were

effectively removed from static ones (red points) by setting a temporal window of 1 second.

Figure 14 Static (red) and dynamic (grey) obstacles of room 1.

Before obstacle classification, walls were removed from static obstacles and remaining obstacles were

filtered and individualised. Then, individualised obstacles were classified on basis of criterion parameters

dfunct max and dth fixed to 1.8m and 0.1m respectively. Table 2 collects the number of each element type

in the ground true (row GT) and the number of correctly classified (row CC) elements by the algorithm.

Results demonstrate that the criterion used for obstacle classification is not only simple but also highly

effective achieving a performance of 97%, 97% and 100% for structural, ground and top elements respec-

tively. Most of misclassified elements correspond to large ground elements hanging from the ceiling that

were which were reclassified in the validation process. The resulting elements classifications is shown in

Figure 15.

Figure 15 Obstacles coloured by element type: structural (red), ground (green) and top (blue).

As the method was evaluated for navigation on the ground hence, structural and ground elements were

considered to remove non navigable points from the floor. For navigable space generation, rasters were cre-

ated with the same resolution than voxels while the number of neighbours used to point cloud reconstruction

was 10. Floor before and after navigable space generation is represented in Fig 16a and Fig 16 show that

floor areas occupied y ground elements are removed correctly and occlusions are accurately reconstructed..
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Table 2 Results of obstacle classification arranged by room.

Room
Structural

elements

Ground

elements

Top

elements

1
GT 19 18 16

CC 18 18 16

2
GT 3 14 1

CC 3 14 1

3
GT 3 24 2

CC 3 23 2

4
GT 3 25 5

CC 3 25 5

5
GT 2 13 1

CC 2 12 1

6
GT 3 13 1

CC 3 12 1

Figure 16 a) Floor points before navigable space generation and b) the reconstructed navigable space.

Previously to functional partitioning, unsafe areas were removed from navigable floor considering a

security distance dsec = 0.2m. Functional areas were obtained according to a functional distance set to

0.4m. Table 3 lists the number of functional areas an subareas as well as the number of walkable segments

into which the navigable space is divided. In view of the results, the number of segments depends mainly

on the number of ground elements present in the rooms rather their size. In this case, room 1 is the largest
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room however it is the one composed of the fewest segments. On the other hand, rooms 3 and 4, which

contain more ground elements, are the most partitioned.

Table 3 Number of functional and walkable segments generated in each room.

Functional

areas

Functional

subareas

Walkable

segments

Room 1 17 50 56

Room 2 14 93 75

Room 3 24 137 100

Room 4 24 127 103

Room 5 13 94 72

Room 6 13 84 64

Figure 17 Functional subareas (intense colours) and walkable segments (pastel colours) derived from func-

tional partitioning

4.4 Hierarchical Navigation

The usability of the method in navigation applications was tested with the calculation of paths between

functional subareas. Figure 18 represents the computed path for the three hierarchical levels. The starting

and ending points of the path were set in the rooms furthest away from each other, specifically in rooms 2

and 6 respectively. The path computed at the room-level depicted in Figure 18a shows that rooms 2, 1 and

6 are crossed however this path is inaccurate because this path goes through the obstacles. More precise

path is obtained at the functional level by performing path computation iteratively, one per room, requiring

only 60, 59 and 64 nodes in each of them. It should be noted that without the calculation of this path at

the previous level it would require a graph of 404 nodes.The resulting path represented in Figure 18b has

a length of 90.60m. In order to test the usefulness of the lowest level, the same path was computed with a

spatial resolution of 0.05m. In contrast to functional level, 3541, 42429 and 9338 nodes were used to obtain

a 87.33m path visualised in Figure 18c. Although the number of nodes increases considerably, the number

of nodes that would be needed without the functional level would be 17766, 65747 and 20811 whereas with

a purely geometric design, 267241 nodes would be needed.
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Figure 18 Computed path at the three navigation levels: a) Room-level, b) Functional-level and c) Spatial-

level.

5 Conclusion

A method to perform a efficient hierarchical indoor navigation from point cloud has been presented. Hier-

archical graph generation requires of point cloud partitioning at three different scales: Room segmentation

was carried out by 3D morphological operations on indoor empty space shown successful even for door de-

tection. Furthermore, results proves the applicability of functional partitioning for point cloud. In addition,

customised spatial scale provide more accurate paths saving computational resources. The implemented hi-

erarchical navigation significantly reduces the search space of path and consequently the number of nodes

in the graph. The effectiveness of the method was demonstrated in a real case study with various difficulties

such as the presence of noise, sloping ground and the presence of multiple obstacles.

Aware of the large number of steps included in the method, some of them could be improved in future

work. For example, the element individualisation in obstacle classification process is not able to differentiate

between elements that are in contact with each other. A more refined method for classifying the elements

would generate a more accurate functional segmentation. It would also be of interest to extend the method

to a 3D approach considering empty voxels as the navigable.
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Diakité, Abdoulaye A., and Sisi Zlatanova. 2018. “Spatial subdivision of complex indoor environments

for 3D indoor navigation.” International Journal of Geographical Information Science (online) 32 (2):

213–235. doi:10.1080/13658816.2017.1376066.

Dı́az-Vilariño, L., H. Tran, E. Frı́as, J. Balado, and K. Khoshelham. 2022. “3D MAPPING OF IN-

DOOR AND OUTDOOR ENVIRONMENTS USING APPLE SMART DEVICES.” The International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2022:

303–308. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B4-2022/303/2022/,

doi:10.5194/isprs-archives-XLIII-B4-2022-303-2022.

24



Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. “A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise.” In Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, KDD’96, 226–231. AAAI Press.

Fischler, Martin A., and Robert C. Bolles. 1981. “Random Sample Consensus: A Paradigm for Model Fit-

ting with Applications to Image Analysis and Automated Cartography.” Commun. ACM 24 (6): 381–395.

https://doi.org/10.1145/358669.358692, doi:10.1145/358669.358692.

Flikweert, P., R. Peters, L. Dı́az-Vilariño, R. Voûte, and B. Staats. 2019. “AUTOMATIC EXTRAC-
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Frı́as, Ernesto, José Pinto, Ricardo Sousa, Henrique Lorenzo, and Lucı́a Dı́az-Vilariño. 2022. “Exploiting

BIM Objects for Synthetic Data Generation toward Indoor Point Cloud Classification Using Deep Learn-

ing.” Journal of Computing in Civil Engineering 36 (6): 04022032. https://ascelibrary.org/doi/abs/10.

1061/%28ASCE%29CP.1943-5487.0001039, doi:10.1061/(ASCE)CP.1943-5487.0001039.

Han, Xian-Feng, Jesse S. Jin, Ming-Jie Wang, Wei Jiang, Lei Gao, and Liping Xiao. 2017. “A review of

algorithms for filtering the 3D point cloud.” Signal Processing: Image Communication 57: 103–112.

doi:https://doi.org/10.1016/j.image.2017.05.009.

Joo, Kwangro, Tae-Kyeong Lee, Sanghoon Baek, and Se-Young Oh. 2010. “Generating topological map

from occupancy grid-map using virtual door detection.” In IEEE Congress on Evolutionary Computation,

1–6. doi:10.1109/CEC.2010.5586510.
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Caṕıtulo 6

General discussion

This chapter is intended to assess the level of accomplishment of the ob-
jectives stated in Chapter 2. The discussion of this Doctoral Thesis follows
the structure of the research objectives arranged in the three topics addres-
sed in this Doctoral Thesis: Data acquisition, 3D indoor understanding and
indoor navigation.

Data acquisition results outlined from works collected in Chapter 3 are
focused on scan planning problem. Along the three papers composing the
chapter, scan planning methods were developed and evaluated in distinct
types of environment considering the constraints of different mapping sys-
tems. The optimisation of scan planning was carried out not only minimising
the number of scanning positions by selecting the best positions, but also by
computing scanning routes with the aim to provide the shortest trajectory
for the mapping system.

In the first work presented in section 3.1, a scan planning method was
developed for archaeological sites, which are characterised by covering large
areas of land. Since as-planned models of heritage sites are not available,
aerial orthoimages were used to create CAD models arranged in layers ac-
cording to the element type and zone. Elements can be geometrically defined
by lines, polylines, arcs and circles. Unlike blanket models, semantic models
enables to focus scan planning on specific elements or areas.

In order to reduce the complexity of scan planning, both elements of
interest and the non-occupied space where laser can be placed were discreti-
sed. As further analysis will carry out on discrete space, elements of interest
are sampled into equal-length segments. Non-occupied space can be parti-
tioned by using a grid tesellation or the proposed partition based on the
Delaunay triangulation in order to compare the latter with the former. For
candidate generation, the laser range and the minimum distance from laser
to elements are defined. A large range involves higher computational effort
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152 CAPÍTULO 6. GENERAL DISCUSSION

in subsequent steps, particularly in visibility analysis, and also the number
of candidates to be analysed may be greater. For this reason, set laser ran-
ge between 5 and 10 meters is recommended to efficient computation while
ensuring the quality of the acquired data.

Visibility analysis is generally a time-consuming process that depends
on the number of candidates and the discretised elements, hence the impor-
tance of not generating redundant candidates. Best locations were selected
by applying a combinatorial strategy on the basis of the number of segments
visible by the laser from each position. Although overlapping between scans
has not been included in this work, it could influence the selection of candi-
dates.

The implemented scan planning method was tested in two real cases co-
rresponding to archaeological sites. Due to the dimensions and complexity of
archaeological scenarios, the amount of candidate positions generated from
partitioning method can become a limiting factor in both processing time
and computational resources terms. Many of the previous methods addres-
sing scan planning generate candidates by using a grid distribution which
leads to a time consuming scanning position selection. The objective of this
work was to develop a robust scan planning algorithm for archaeological sites
by evaluating the reliability of the implemented triangulation-based partitio-
ning in terms of candidate reduction and comparing it to grid partitioning.
The scan planning was successfully completed in the two case studies of up
to 3 hectares in size, obtaining 208 and 128 scan positions in each case.
Comparison with grid-based partitioning was carried out in one of the areas
of the largest scene demonstrating that triangulation-based partitioning re-
sulting in 80% fewer candidates that grid partitioning. The generation time
was also lower, reducing processing time by 70%. The configurable para-
meters, minimum and maximum distance to elements of interest were set
at 0.5m and 10m respectively, while the grid resolution used was 1m. The
results shows that the method is robust and that the triangulation-based
partitioning is more suitable than the grid approach for large scenarios in
terms of computational cost because the number of candidates generated is
significantly lower without compromising the completeness of the acquired
data.

Among the existing scan planning methods in the literature, to the best
of my knowledge, only one is specific to archaeological sites [61], in which
scan planning focuses on human intervention between scans rather than fully
automated scanning. Details of laser constraints, grid resolution, number of
candidates or processing time are not reported in this work, thus results
cannot be compared. Another method focusing on scan planning for large
and complex areas was proposed by [24]. The method was tested in two
case studies, one of them a large building to be scanned from outdoor cove-
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ring an extension of approximately 700 m x 500 m. The method proposes a
hierarchical candidate generation using a grid distribution from coarser to
finer resolution, specifically, in the experiments resolution varies from 20 m
to 0.035 m. With this configuration 1317 candidates were initially produced
reaching 1873 with the finest resolution. Although the method presented by
[24] generated a slightly larger number of candidates in an area 10 times
larger than the longest scene in which triangulation-based partitioning was
tested, this result is influenced by several factors: the laser range used was
100 m, the elements of interest were discretised with a resolution of 2 m,
there is a large occupied area which reduces the partitioning space and the
geometric complexity of the elements of interest is much smaller. This scan
planning configuration reduces the number of candidates but the quality and
completeness of the acquisition may be compromised. Due to the large dif-
ference between the parameters used in each method, a rigorous comparison
between the methods is not possible.

In the second work of the Chapter 3, scan planning is focused on cons-
truction sites as part of a complete workflow for the automated construction
progress control. Scan planning was customised to TLS constraints because
the overall objective, which is out of the scope of this Doctoral Thesis, would
be to compare the point cloud acquired from selected optimal scanning po-
sitions to as-planned model, for which millimetric accuracy is necessary.

Construction environments are quite different from archaeological sites,
as the former are smaller and present other complexities such as holes on the
floor or upper elements, for example beams or slabs. The increasing adop-
tion of BIM for the management and monitoring of new building provides
semantically enriched models that should be harnessed to the detriment of
2D floor plans with limited information. A detailed model can provide con-
textual information that is not directly retrievable from physical elements
such as rooms spaces. Knowledge of room spaces is a powerful information
that enables efficient indoor scan planning by limiting laser range to elements
within the room. In addition, door locations serve as convenient scanning
positions that ensure further registration.

Since laser is fixed at the same height, scan planning was conducted on
2D in order to reduce substantially computational resources. Therefore, a
2D model was derived from the input BIM preserving semantic information.
Taking advantage of the knowledge of the element class, the acquisition of
upper elements was simulated on 2D assuming that upper elements do not
occlude vertical elements. In contrast to the other elements, the holes in the
floor, which are present in the early stages of construction, are represented
in the model with the vertices arranged clockwise in order to process them
automatically.

The scan planning implemented for construction sites addressed the
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optimisation of both scanning positions and scanning routes following a
Stop&Go strategy. The applicability of the method was tested in different
construction phases with successful results. The behaviour of both candi-
date generation methods in the structural phase was similar to that of the
archaeological sites, with the triangulation-based method generating lower
number of candidates. In a more advanced construction phase, the number of
candidates generated by triangulation is higher; however, the triangulation-
based method generated valid candidates in small rooms where the grid dis-
tribution did not achieve it due to the grid resolution. Furthermore, route
computation yielded efficient routes in less than 6 s with network generation
being the most costly operation. It was also found that the inclusion of the
door positions in the scanning route does not increase its length significantly.

The work presented in section 3.3 is motivated by the lack of specific
scan planning for MLS. Two common constraints of MLS are the maximum
acquisition time and the closing of loops in the trajectory followed. Both
constraints were considered in the balanced-clustering algorithm proposed
to generate routes that meet the specific constraints of the MLS. The esti-
mation of distance variance of the routes was used to quantify the accuracy
of the balancing. In case of large sites, several scans with MLS systems are
commonly necessary requiring further registration. Regarding this require-
ment, the overlapping between scans is ensured by determining the level of
overlapping between routes. In contrast the non-planned routes tracked for
the acquisition of a large cultural heritage like the one carried out in [26],
the distance variance of obtained routes was more than 10 times lower in
the case studies used.

The method was tested in four case studies from medium to large scale
conducting four experiments with two simulated MLS systems configured
with different constraints. For medium scale buildings, well balanced routes
were obtained complying with the constraints of the simulated MLS systems.
Most of the routes calculated for large-scale cases fulfill specific constrains
while the balanced-clustering improved substantially the initial coarse parti-
tion, reducing drastically the distance variance. Due to the high complexity
of these scenes and the continuity condition in the balancing process, some
clusters do not satisfy the most restrictive constraints. Although to generate
coherent and non-scattered routes,it is necessary to maintain the continuity
condition, in practice, MLS systems with such restrictive constraints are not
suitable for the acquisition of such large scenes.

Beyond route computation, the resulting trajectories were tested in the
3D simulator HELIOS to evaluate the point clouds obtained from the si-
mulation in terms of completeness and point density. The overall level of
completeness for the medium-scale buildings was over 80% while for large
scenes it varies from 52% to 89%. This disparity in the results also occurs



155

in the density measure.This range of variation is conditioned by the diffe-
rent point measurement rate of the two simulated MLS systems as well as
the voxel size and displacement rate used in the simulation forced by the
limitations of the simulator. Overall, results obtained in four case studies
from medium to large-scale showed the usefulness and applicability of scan
planning for MLS.

In summary, the methods developed in the three works above discussed
have tackled the data acquisition objectives defined in Chapter 2. The deve-
loped scan planning methods were evaluated in diverse scenarios, including
archaeological sites, public buildings, construction environments and large
shopping centres with successful results accomplishing the objective 1.a). In
addition to the selection of optimal scanning positions, path planning for ef-
fective acquisition was addressed by using the probabilistic ACO algorithm
obtaining accurate routes in a short time fulfilling objective 1.c). The imple-
mented scan planning algorithm is flexible not only for scanning positions
calculation, but also route planning is customised to both TLS and MLS
meeting the objective 1.b).

Sections 4.1 and 4.2 composing Chapter 4 correspond to objectives 2.a)
and 2.b) respectively. The method presented in Section 4.1 performs room
segmentation of point clouds by applying 3D morphological operations to
the indoor empty space. Unlike the most widely used approach for room seg-
mentation, which consists in parameterising the walls and then performing
the segmentation based on elaborate reasoning, the implemented method
succeeds in segmenting point clouds into rooms with no parameterisation
of structural elements. In fact, the developed method is based on the in-
door empty space which represents the morphology of the building. Since
morphological operations operate on structured data, point cloud has to be
voxelised.

In addition to door detection, which is also required in other methods, is
not carried out either. However, door locations are an useful information to
generate a topological representation of the building for indoor path plan-
ning. For this reason, this method was extended in the work presented in
section 5.1 which implements a door detection process based on the empty
space.

The selection of the structuring element (SE) is a key point of the method
because SE should be large enough to remove empty space of doors, but a
too large SE may lead to over-segmentation. Results showed that the use of
a SE with cubic geometry with a length slightly longer than the width of
the doors is a plausible selection.

The developed room segmentation method simplifies significantly the
point cloud analysis, requiring only the basic information from point clouds
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which consists of XYZ coordinates of points. The method was tested in two
real case studies composed of four and ten furnished rooms. The performance
of point segmentation exceeded 90% in most of the rooms while the level
of over-segmentation was low. The promising results obtained validate the
empty space approach for point cloud room segmentation.

In summary, results proved that the developed method is able to segment
indoor point clouds with acceptable classification accuracy. Also, structural
element modelling or trajectory information were not required, and conse-
quently, the objective 2.a) was achieved through this work.

In the second work of the Chapter

Both the parameter settings for image generation and the neural network
hyperparameters have an impact the classification performance. Although
these parameters are usually set by the user based on previous tests and ex-
periences, there are optimisation and auto ML methodologies that estimate
the relevance of the parameters as well as their values. This allows less sig-
nificant parameters to be set as invariant reducing computational costs.The
deep learning framework allows the parameters to be set manually or by
using the implemented harmonica-hyperband optimisation algorithm. The
optimisation methodologies were selected because of their promising results
compared to simpler methods such as random search or grid search.

From the generated dataset, four datasets consisting of 5, 6, 8 and 10
classes were created for carry out the experiments. The overall accuracy of
the classification of the perturbed synthetic point clouds was over 80% when
the tests were conducted with orthographic images and was superior when
greyscale images were used.

The hyperparameter optimisation carried out with Harmonica-hyperband
algorithm leads higher overall accuracy in most of cases that whether optimi-
sation is not employed or random search strategy is selected. Noise and oc-
clusion perturbations had a significantly impact in classification using CNNs:
in case of the synthetic dataset, overall accuracy decreased by 6-35%, while
the drop in performance was 34% with real data. Overall, the developed
method covers the objective 2.b) defined in Chapter 2.

Semantically enriched point clouds resulting from segmentation and clas-
sification provide useful information to be exploited for indoor spatial parti-
tioning considering context. A method to carry out hierarchical path plan-
ning by coupling different levels of representation from spatial partitions
was presented in chapter 5. Topological indoor representation is commonly
derived from room segmentation representing each room as a node and con-
necting them by doors, which are also represented by a node. The corres-
ponding graph constitute the more abstract level of representation in the
proposed hierarchy for path planning because it only represents the accessi-
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bility between rooms and the number of nodes is lower, leading to fast route
computation. Routes at this level provide the knowledge of the rooms to be
crossed, but the route accuracy is lower the larger and more complex the
room is.

Functional areas were defined by [62] as the navigable space close to
objects where agents conduct their activities. This approach involves con-
sidering the contextual information of indoor and this is the basis for the
functional partitioning that was also used by [57] on 3D models. Unlike
above mentioned works, the proposed partition divides the walkable space
by reference the geometry of objects which determines the functional areas
instead of geometrical criteria independent of functional areas. Thus, the
granularity of the obtained functional graph will be higher in the rooms
populated by objects. Consequently, routes computed at this level are more
accurate than those at previous level being in many cases accurate enough
for navigation.

In the case of requiring more accurate routes , spatial partitioning can be
performed. Geometrical partitioning based on grid distribution was chosen
since its can be easily adapted to desired resolution and provides robust na-
vigation. As pointed out in section 1.4, the large amount of generated nodes
is the main drawback of the grid-based partitioning. However, the hierar-
chical graph was exploited to reduce the area to be spatially partitioned
avoiding massive node generation.

The method was tested in a real case study composed of five rooms
connected by a large corridor. A consistent multi-level graph was generated
supporting hierarchical path planning. Obtained routes showed the benefit
of the proposed method to computed accurate routes efficiently.

In summary, semantically enriched point cloud was partitioned at three
scales: room, functional and spatial. From the resulting partitions, three
topological representations were derived to generate a three-level hierarchical
graph for path planning. Finally, hierarchical graph was exploited to carry
out accurate route computation efficiently. Thus, the objectives 3.a), 3.b)
and 3.c) were complied with the method developed.
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Caṕıtulo 7

Conclusions

In this PhD thesis, the methods designed and implemented to carry
out route planning supporting context-based indoor navigation from point
clouds have been presented and discussed. Three processes, which are ad-
dressed sequentially in the chapters 3, 4, 5, have been identified as essential
to accomplish the objectives of this Doctoral Thesis: data acquisition, 3D
indoor understanding and indoor navigation. The methods developed ha-
ve been presented as a compendium of six articles organised thematically
in three chapters. The results and the objectives accomplished have been
discussed in Chapter 6. To conclude this Doctoral Thesis, the conclusions
derived from de work outlined as well as future directions are presented as
follows:

Tests in multiple environments have validated the applicability and ro-
bustness of the implemented methods. The advantages of triangulation over
the grid for partitioning space have been shown to be advantageous both
indoors and outdoors, as well as providing a good compromise between den-
sity and coverage. The use of semantically enriched models has been shown
to be beneficial for scanning planning, especially in construction and indoor
environments where room, door and upper element information has been
successfully exploited. The routes obtained for both TLS and MLS have
been satisfactory according to the characteristics of the mapping system
taking into account the high complexity of the scenarios.

Beyond the achievement of the objectives proposed for data acquisition,
suggestions for future work addressing the scanning planning are outlined.
Extending the problem to 3D models avoiding the loss of spatial information
caused by 2D projection would allow estimating the quality of the scan
more accurately. However, this approach would considerably increase the
computational cost, therefore a 2.5D approach in which important features
are extracted from the 3D model before simplification is a trade-off between
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accuracy and efficiency. Although routes were planned in scenarios larger
than 30,000m2̂, the grid structure of the navigation network may become
a limiting factor in larger scenarios. An alternative would be to implement
hierarchical graphs that improve planning efficiency.

In Chapter 4 two methods to approach the problem of indoor unders-
tanding were presented with the aim of extracting semantic information
from the raw point clouds derived from the data acquisition process. The
first method performs room segmentation avoiding wall detection based on
the unoccupied space which represents the morphology of the buildings. On
a voxelised space, morphological operations of erosion and dilation can be
applied to achieve the partition and reconstruction of the sub-spaces corres-
ponding to the rooms. The use of morphological operations and connectivity
relations were sufficient to carry out the segmentation of rooms. The pro-
mising results obtained in two case studies showed the feasibility of the
method.

Part of the future work has already been implemented in the method
presented in section 5.1. The functionality of the method has been exten-
ded with the improvement of two aspects: the filtering prior to obtaining
the indoor voxels was refined such that the method can be applied to point
clouds not aligned with the Z-coordinate axis. The other enhancement is the
implementation of a door detection procedure based on empty space while
keeping the method independent of wall modelling and trajectory informa-
tion. However, the automatic configuration of the structuring element for
morphological operations is still a challenge to be addressed.

The second method in this chapter aims to extract more detailed infor-
mation from point clouds by using deep learning techniques. BIM objects
provided by manufacturers via web databases are interesting for point cloud
generation. The accuracy of point cloud classification with neural networks
decreases significantly when using real clouds with perturbations because
the networks have been trained with non-perturbed data. The generation
of synthetic data addresses the problem of shortage of the classified point
cloud.

The deep learning framework developed for object classification was eva-
luated with synthetic data generated from BIM objects as well as with real
data. The results demonstrated the strong impact of noise and occlusions
from point clouds on the classification. The use of surface variation to repre-
sent objects improved classification accuracy in most tests but depending
on object geometry and perturbations its usefulness may be affected. The
implementation of parameter optimisation techniques has improved the clas-
sification accuracy.

Future work for this work would consist of extending the synthetic data
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generation method to process BIM models of buildings containing structural
elements and objects producing multi-labelled point clouds. With the avai-
lability of these point clouds, the problem of semantic segmentation could
be addressed.

In Chapter 5, a method for partitioning the indoor space considering the
semantic information extracted above was presented with the aim of imple-
menting a route planning suitable for context-based indoor navigation. The
structuring of the indoor space is an important factor for the implementation
of route planning. The definition of functional areas makes it possible to re-
present the indoor space according to the agent’s activities. Context-based
partitioning combined with purely geometric partitioning helps to obtain
routes with different levels of resolution and accuracy and contributes to
improve the efficiency of route computation.

The usefulness of the method was evaluated in a complex case study
consisting of furnished classrooms with satisfactory results. With the imple-
mentation of route planning in hierarchical mode it was possible to calculate
precise routes saving significant computational resources. The functional le-
vel introduced was decisive for the efficient calculation of the routes, even
routes calculated at the functional level can be sufficiently accurate in many
cases.

For future work, a more detailed object classification is suggested to de-
fine the functional areas more precisely. It is also of interest to extend the
method to support the navigation of agents that do not move on the ground,
such as drones, for which the indoor empty space should be considered as
navigable space. In order to generate a standardised model, it should be con-
sidered to obtain from the proposed space partitions a valid representation
according to an indoor modelling standard such as IndoorGML.

In summary, this PhD Thesis presents methods for the efficient acquisi-
tion of point clouds for use in path planning to support context-based indoor
navigation. BIM models have been exploited to leverage the potential of the
semantic information they provide. Segmentation methods based on both
traditional techniques and Deep Learning have been implemented to obtain
semantic information from the raw point clouds. Although the results obtai-
ned are promising, this is still an active field that requires further research.
Unlike pre-designed models, point clouds have not been widely used for path
planning due to the challenge of processing them, however, the accurate and
up-to-date representation of the environment they provide makes them an
alternative for indoor navigation.

The methods have been developed in a sequential way following the pha-
ses necessary to achieve the final objective of the doctoral thesis. However,
the connection between the different phases is not always direct. As a future
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work, it would be of interest to integrate all the methods in order to automate
the execution of the process. The spatial representations obtained could be
used by indoor navigation applications to carry out context-oriented guided
assistance to increase the safety and accuracy of navigation.
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174APÉNDICE A. PUBLICATIONS IMPACT FACTORDESCRIPTION...



Apéndice B

Versión en español

B.1. Resumen

El cambio de hábitos está llevando a la gente a pasar más tiempo en es-
pacios interiores. Este echo se agrava en las personas más mayores las cuales
son más propensas a sufrir algún tipo de discapacidad que afecta a su mo-
vilidad y orientación. Los avances en sistemas de posicionamiento, teléfonos
móviles y tablets, junto al acceso de modelos semánticos de edificios han
estimulado el interés por el desarrollo de aplicaciones para la navegación
asistida en interiores. Puesto que los modelos BIM proporcionan informa-
ción geométrica y semántica detallada, ellos son una interesante opción para
proporcionar soporte contextual a la navegación. Sin embargo, estos mode-
los no siempre están disponibles, puede que no están desactualizados y su
flexibilidad a los cambios en el entorno es limitada.

En cambio, los sistemas de mapeo de interiores pueden generar un mo-
delo 3D con alta precisión en forma de nube de puntos. A pesar de que la
adquisición de datos se considera un proceso rápido, escanear lugares gran-
des y complejos puede convertirse en una tarea que consume mucho tiempo
si el escaneo no se planifica de forma apropiada de antemano. Las nubes de
puntos sin procesar proporcionadas por los sistemas de escaneo no contie-
nen información semántica, lo que hace que su uso para la navegación en
interiores sea desafiante. Afortunadamente, con el desarrollo de las técni-
cas de Inteligencia Artificial, se están obteniendo resultados prometedores
en la extracción de información semántica de las nubes de puntos de forma
automatizada. La información semántica de los edificios es esencial para la
interpretación del espacio interior con el fin de proporcionar soporte a una
navegación en interiores segura y precisa orienta al contexto del usuario.

En esta Tesis Doctoral, se presentan diferentes métodos con el objetivo
de implementar una planificación de rutas para una navegación en interiores
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contextual a partir de nubes de puntos. Los métodos desarrollados abordan
los tres procedimientos globales que se han identificado como necesarios
para alcanzar el objetivo de esta Tesis Doctoral: La adquisición de datos,
el entendimiento de interiores y la navegación en interiores. Los métodos
desarrollados en la primera parte de la tesis proponen soluciones para la
planificación del escaneo con el objetivo de optimizar la adquisición de da-
tos en términos temporales asegurando la calidad y la completitud de los
datos. Métodos para la segmentación de habitaciones y clasificación fueron
implementados para extraer información semántica de las nubes de puntos
sin procesar tratando el problema del entendimiento de interiores. Nubes
de puntos semánticamente enriquecidas son aprovechadas para particionar
el interior en base a diferentes contextos lo que deriva en una planificación
de rutas jerárquica que da soporte a un cálculo eficiente de rutas precisas
orientadas al contexto del agente.

Todos los métodos propuestos en esta Tesis Doctoral fueron testados en
casos de estudio reales obteniendo resultados prometedores. Los métodos y
resultados fueron fueron presentados como un compendio de seis art́ıculos
cient́ıficos, cinco de ellos han sido publicados en revistas internacionales con
un alto factor de impacto y el otro está en proceso de revisión por pares.
Tres art́ıculos fueron publicados en revistas internacionales indexadas en
el Journal Citation Report (JCR), y dos trabajos fueron presentados en
conferencias internacionales.

B.2. Introducción

B.2.1. Contexto

Las personas pasan cada vez más tiempo en el interior de los edificios,
especialmente la gente que vive en ciudades, donde el tiempo medio es de
aproximadamente un 90%. Esta circunstancia es más acentuada en la po-
blación de avanzada edad, cuyo crecimiento se espera que se siga acelerando
en las próximas décadas, duplicando el número de personas mayores de 60
años en 2050 [1]. El avance de la edad lleva a la pérdida de las capacidades
f́ısicas, sensoriales, y cognitivas que afectan de forma negativa a la movilidad
y orientación para la navegación. Incluso la gente sin ningún tipo discapa-
cidad encuentra dificultades para encontrar su destino cuando visitan por
primera vez edificios públicos aeropuertos, hospitales o centros comerciales.
Por ello, el desarrollo de aplicaciones para la navegación asistida está ganado
interés tanto a nivel cient́ıfico como comercial.

Los avances en sensores de adquisición [2, 3], modelado 3D [4], sistemas
de posicionamiento en interiores [5] y dispositivos inteligentes están permi-
tiendo la implementación de aplicaciones de navegación en interiores preci-
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sas, seguras y guiadas. El aumento de la disponibilidad de modelos estandari-
zados, entre los que destacan BIM e IndoorGML, que contienen información
geométrica, semántica y topológica detallada de los interiores permiten ob-
tener representaciones espaciales significativas las cuales son esenciales para
llevar a cabo una navegación en interiores eficiente. Por ello, la represen-
tación espacial de los interiores está recibiendo atención en los campos de
modelado y mapeo de interiores [6].

Tradicionalmente, el análisis espacial de interiores orientado a aplica-
ciones de navegación fue realizado sobre planos 2D carentes de semánti-
ca e información geométrica precisa. Hace ya dos décadas, Building Infor-
matión Modelling (BIM) fue propuesta como una metodoloǵıa en el domi-
nio de la Arquitectura, Ingenieŕıa y Construcción/Gestión de Instalaciones
(AEC/FM) con el objetivo de ahorrar costes en el diseño, construcción y
mantenimiento de edificios [7]. Desde la perspectiva del modelado de inte-
riores, BIM no solo provee información geométrica de modelos de edificios,
sino que información semántica, topológica y contextual también puede ser
proporcionada. Sin embargo, estos atractivos modelos para el modelado de
interiores, normalmente no reflejan los cambios más recientes en el entorno,
lo que hace que resulta en una representación desactualizada. En cambio, las
nubes de puntos obtenidas por sistemas de mapeo de interiores han mostrado
ser una alternativa y/o complemento a los modelos BIM.

El uso de los sistemas de adquisición basados en tecnoloǵıa LiDAR se
han consolidado en los sondeos sin contacto proporcionando nubes altamente
precisas y densas. En contraste con la fotogametŕıa, los principales incon-
venientes del escaneo con láser son la portabilidad, el tiempo consumido, el
mayor coste y rúıdo [8] , lo que ha llevado a los esfuerzos de la comunidad
al desarrollo de sistemas y metodoloǵıas que mejores estas inconvenientes.
Los avances tecnológicos han permitido la rápida evolución de los sistemas
de escaneo, particularmente, en el desarrollo de de dispositivos más porta-
bles. En base a la estacionariedad, el modo de adquisición de los sistemas de
mapeo puede ser referido como estático o dinámico. Mientras que la adqui-
sición requiere que el sistema permanezca en el lugar durante la adquisición,
los sistemas dinámicos pueden desplazarse durante la adquisición lo que da
lugar a adquisiciones más rápidas. El escaneo láser terrestre (TLS) es la
técnica de adquisición estática más conocida, en la que el láser se monta so-
bre un tŕıpode capturando datos con una precisión milimétrica. Las mayores
desventajas de TLS son la baja portabilidad, la presencia de oclusiones en
los datos y la necesidad de post-procesamiento para alinear las nubes de
puntos obtenidas desde distintas ubicaciones. Estas limitaciones son miti-
gadas en el escaneo láser móvil (MLS), originalmente implementado para
sistemas de adquisición montados sobre veh́ıculos para mapear el entorno
de las carreteras y que recientemente se ha extendido al mapeo de interio-
res principalmente gracias al desarrollo de métodos de localización y mapeo
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simultáneos (SLAM) fiables. Los sistemas de mapeo de interiores (IMMSs),
en función de la plataforma en la se monta el láser, pueden ser clasificados
como de carro, de mochila o de mano [2]. Más recientemente, los escáneres
láser se han integrado en dispositivos inteligentes (iPhone, iPad) haciéndolos
más accesibles a la población general [9].

La creciente dotación de sistemas de adquisición ha ampliado su rango
de aplicación al registro de patrimonio cultural [10], la inspección de puen-
tes [11], el mapeo forestal [12], la medición del progreso de obras [13] y al
modelado y mapeo de interiores [14, 15]. En muchas de esas aplicaciones,
las tecnoloǵıas de escaneo y BIM son utilizadas de forma complementaria.
Aunque el uso de BIM se ha incrementado en la industria de la AEC, no se
dispone de modelos semánticamente enriquecidos de muchos edificios exis-
tentes ni de lugares de patrimonio cultural. Además, si tal modelo existe,
este quizá este desactualizado y no represente las condiciones del edificio
’tal como está’ (as-is). Por ello, los esfuerzos de los investigadores se han
centrado en el desarrollo de métodos para producir modelos BIM a partir de
nubes de puntos basados en la técnica conocida como Scan-to-BIM. Además,
la posibilidad de obtener modelos as-is despertó el interés de su uso para
automatizar la evaluación del progreso y calidad de los edificios en fase de
construcción mediante la comparación del modelo as-is con el modelo plani-
ficado. Más allá de Scan-to-BIM, que puede detectar y reconocer objetos, la
técnica Scan-vs-BIM es además capaz de identificarlos, lo que hace que su
uso se más adecuado para la monitorización de los elementos de obra [16].

Los sistemas de mapeo con escáner producen un modelo geométrico pre-
ciso en forma de un conjunto de puntos definidos básicamente por coordena-
das XYZ y, dependiendo de las caracteŕısticas del sistema, otra información
como la intensidad, el color, el vector normal o el timestamp pueden ser
provistos. A diferencia de los modelos BIM, no se puede extraer información
semántica directamente de las nubes de puntos no procesadas. Por ello, las
nubes de puntos tienen que ser procesadas para extraer información de los
elementos estructurales, objetos y espacios significativos generalmente me-
diante el uso de procesos de clasificación, reconocimiento o segmentación,
los cuales están relacionados con lo que se conoce como comprensión de
la escena en el campo de la visión artificial [17]. El incremento de datos
públicos de nubes de puntos, junto a los exitosos resultados logrados en la
clasificación de imágenes de objetos mediante el uso de algoritmos de deep
learning superando el rendimiento de los métodos tradicionales ha hecho que
la interpretación de las nubes de puntos uno de los temas más activos tanto
en la disciplina de visión artificial como en la de teledetección. El rápido
progreso realizado en este tema ha llevado a prometedores resultados hacia
extracción automática de semántica de las nubes de puntos.

Hasta no hace mucho, la navegación en interiores era principalmente
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abordada en el campo de la robótica. El principal objetivo estaba basado en
obtener una ruta para alcanzar un destino predefinido en el edificio evitando
al mismo tiempo los obstáculos del entorno. El surgimiento de nuevos sen-
sores, dispositivos inteligentes, sistemas de localización y modelos con una
semántica detallada ha abierto el rango de aplicación de la navegación en
interiores a otros agentes (personas, drones) or a aplicaciones más avanza-
das, por ejemplo, navegación asistida para personas con discapacidad [18]
o evacuaciones de emergencia [19]. Por ello, los modelos y nubes de pun-
tos enriquecidos con información contextual son imprescindibles para una
navegación guiada segura y precisa considerando las condiciones del agente.

A partir de lo anterior, tres procesos han sido claramente identificados
como necesarios para la implementación de la planificación de rutas para
dar soporte a la navegación en interiores con contexto a partir de nubes de
puntos:

Adquisición de datos.

Comprensión de interiores.

Navegación en interiores.

Esta Tesis Doctoral surge con el propósito de diseñar e implementar
métodos que aborden los problemas previamente identificados con un al-
to grado de automatización, En las siguientes secciones, cada problema es
presentado en detalle incluyendo el estado del arte.

B.2.2. Adquisición de datos

El uso de sistemas de mapeo basados en LiDAR se ha consolidado en
aplicaciones de distintas áreas ya que ellos pueden producir un modelo 3D
preciso de forma rápida. La selección del sistema en aplicaciones que requie-
ren precisión milimétrica, como la evaluación de la calidad o el control de
obra, están restringido a TLS. Como se mencionó anteriormente, las medicio-
nes con TLS se realizan de forma estática en el sentido de que el dispositivo
permanece estacionario durante el tiempo de operación. La calidad de los
datos recogidos por el escaneo láser puede estar comprometida debido a
efectos indeseados como son las oclusiones y el ruido, por ello, la ubicación
del dispositivo láser es determinante para llevar a cabo una adquisición de
alta calidad en términos de completitud y precisión. Generalmente, los sis-
temas de mapeo tendrán que ser ubicados en varias localizaciones con el fin
de adquirir la escena completa, lo que hace que el proceso de escaneo sea
lento, especialmente en escenarios grandes y complejos. Para estos casos, el
tiempo de adquisición se puede reducir llevando a cabo una planificación del
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escaneo que determine las ubicaciones desde las que realizar el escaneo que
cubra toda la escena.

En la literatura, los métodos que abordan el problema de la planifica-
ción del escaneo se agrupan en métodos no basado en modelos, si no hay un
conocimiento previo de la escena, y métodos basados en modelos, los cuales
explotan un modelo disponible de la escena para determinar las posiciones
de escaneo. La planificación del escaneo no basada en modelos es general-
mente planteada como el problema de la Siguiente Mejor Vista (NBV) muy
relacionado con la estrategia de navegación de los robots móviles autónomos
o drones. Las posiciones de escaneo son calculadas de forma secuencial bus-
cando maximizar el grado de cobertura adquirido. Comúnmente, se define
una función heuŕıstica para calcular la mejor posición de escaneo a partir
de la información de la escena adquirida en los escaneos previos.

Para los métodos basados es modelos, la planificación del escaneo apro-
vecha la disponibilidad de un modelo de la escena (plano, CAD, BIM) que
debe adquirirse para el cálculo de las posiciones óptimas de escaneo. Debido
a que el problema es generalmente enfocado en 2D, este puede ser formulado
como una variante del bien estudiado problema de geometŕıa computacional
Problema de la galeŕıa de arte [20] que enuncia lo siguiente: dada una galeŕıa
representada por un poĺıgono, determinar el número mı́nimo de guardias ne-
cesarios para vigilar la galeŕıa entera. La complejidad computacional NP del
problema lleva a la aplicación de restricciones para obtener soluciones apro-
ximadas en un tiempo razonable. Generalmente, el problema es discretizado
para ser formulado como un problema de conjunto de cobertura (SCP) [21].
La discretización normalmente consiste en particionar el espacio continuo,
donde el sistema de escaneo puede ser ubicado, en un número finito de espa-
cios más pequeños, cada uno representado por una posición. De esta forma,
las posibles ubicaciones del sistema de escaneo queda limitado a un conjunto
finito compuesto por localizaciones candidatas que representan los espacios.
La generación de candidatos es un punto clave de la planificación del es-
caneo puesto que, un número bajo de candidatos puede llevar a soluciones
pobres, mientras que un número alto de candidatos implica un incremento
en el tiempo de computación debido a que un análisis de visibilidad compu-
tacionalmente costoso es normalmente realizado para cada candidato. Por
consiguiente, se necesita encontrar un compromiso entre la exactitud de la
solución y eficiencia en el problema de la planificación del escaneo.

Muchos trabajos previos han usado un enfoque basado en cuadŕıcula
para particionar el espacio en cuadrados del mismo tamaño generando po-
siciones equiespaciadas [22, 23]. El número de candidatos generado depende
directamente de la resolución de la cuadŕıcula (invermente proporcional a
la longitud del lado del cuadrado) y puede que sea insuficiente para cubrir
areas estrechas si la resolución es baja o ineficiente si se utiliza una reso-
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lución alta el grandes escenas. Con el objetivo de mejorar la eficiencia de
la distribución de cuadŕıcula, [24] generó los candidatos de forma jerárqui-
ca desde una resolución global baja a una resolución local más fina en dos
grandes escenas exteriores. Para escenas de interiores, [25] propuso una par-
tición de interiores adaptable a diferentes tipos de sensores y aplicaciones.
Inicialmente, el espacio es particionado en superficies triangulares que segui-
damente son agrupadas en base a las limitaciones del sensor. A continuación,
se utiliza programación lineal binaria para resolver el SCP en las particiones
resultantes del agrupamiento.

La mayoŕıa de métodos no consideran la planificación de rutas para el
escaneo, sin embargo, la falta de planificación puede incrementar de forma
significativa el tiempo de escaneo, especialmente en grandes lugares comple-
jos. Este echo es más cŕıtico para el MLS ya que pueden requerirse limita-
ciones espećıficas como el tiempo máximo de adquisición o lazos cerrados.
Mientras que los operadores inexpertos de MLS normalmente reciben un en-
trenamiento básico en el uso del dispositivo y algunas recomendaciones para
evitar la pérdida de datos durante el proceso de adquisición, los usuarios
expertos se gúıan por su conocimiento, lo que puede llevar a una adquisición
incompleta o redundante de los datos [26]. Sin embargo, hasta donde alcanza
mi conocimiento, la planificación del escaneo automatizada espećıfica para
MLS no ha sido tratada en el campo de la teledetección.

B.2.3. Comprensión de interiores

Una vez que el escaneo ha sido completado, las nubes de puntos obte-
nidas de diferentes escaneos tienen que ser alineadas en el mismo sistema
de coordenadas para obtener un modelo completo de toda la escena [27].
A pesar de que los sistemas de escaneo proporcionan una representación
geométrica precisa, esta carece de información semántica, la cual es esencial
para llevar a cabo una navegación con contexto. Por ello, las nubes de pun-
tos no procesadas requieren un procesado posterior con el fin de enriquecer
las nubes de puntos con una semántica significativa. Los procesos de seg-
mentación, segmentación semántica y clasificación son algunos de los más
comúnmente usados para obtener contexto a partir de las nubes de puntos.

El proceso de agrupar puntos dotándolos de un significado de acuerdo
a unas caracteŕısticas predefinidas se conoce como segmentación de nube
de puntos. A diferencia de la clasificación y la segmentación semántica, la
segmentación no proporciona directamente la clase de cada segmento: sin
embargo, segmentar la nube de puntos antes de la clasificación o la segmen-
tación semántica puede ayudarlos a mejorar sus resultados y a aliviar el
coste computacional. Particularmente, particionar un modelo de interiores
(2D CAD, BIM, point cloud) en segmentos que se corresponden con las ha-
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bitaciones es un proceso ampliamente utilizado en los campos de la robótica
y AEC, conocido como segmentación en habitaciones.

En el campo de la robótica, la segmentación de habitaciones ha sido un
problema ampliamente estudiado con el fin de obtener información semánti-
ca útil para numerosas aplicaciones. En este campo, la segmentación de
habitaciones se ha realizado generalmente en mapas discretos 2D [28]. La
segmentación de habitaciones también ha despertado un gran interés en el
modelado 3D de interiores debido al potencial de la información semántica
a nivel de habitación que proporciona el contexto de los espacios del edificio
delimitados por paredes y las relaciones de adyacencia entre habitaciones
a través de las puertas. La valiosa información obtenida a partir de la seg-
mentación de habitaciones se aprovecha en el modelado de interiores para
tareas de reconstrucción, aśı como para aplicaciones de navegación en inte-
riores mediante la generación de un grafo de navegación que representa las
relaciones topológicas entre las habitaciones.

Muchos de los métodos de segmentación de nubes de puntos en habi-
taciones en el estado del arte se centran en extraer segmentos planos para
seguidamente analizar y determinar cuáles de ellos se corresponden con las
paredes [29, 30, 31, 32]. Las paredes detectadas son generalmente proyec-
tadas a 2D como ĺıneas organizadas en una estructura de complejo celular
a partir de la cual se puede construir un grafo plano en base a un crite-
rio espećıfico. Posteriormente, la segmentación en habitaciones es formulada
como un problema de minimización de enerǵıa, el cual se resuelve de dife-
rentes formas. Esta familia de métodos son fuertemente dependientes de la
detección de elementos estructurales (paredes, suelo, techo) y requieren un
razonamiento laborioso.

La detección de puertas es también un proceso importante en la segmen-
tación de habitaciones debido a que las puertas son un elemento interesante
tanto para la reconstrucción de interiores como para la navegación en in-
teriores. Las puertas son comúnmente detectadas analizando las paredes
identificadas previamente y luego, las puertas son consideradas para llevar
a cabo la segmentación de habitaciones. Métodos recientes, explotan la tra-
yectoria proporcionada por los sistemas MLS para detectar puertas y otras
aperturas en las paredes [33]. [34] logró realizar la segmentación de habita-
ciones en base a la ubicación de las puertas que fueron determinadas sobre
las posiciones de la trayectoria analizando la variación de la altura del techo
sin requerir la detección de paredes. Estos métodos han probado el poten-
cial de la información de la trayectoria de los sistemas de mapeo móviles,
sin embargo, los datos de la trayectoria no siempre esta disponible, lo que
limita la aplicabilidad de los métodos.

Entre los métodos que emplean un enfoque diferente, [35] propuso un
método que no requiere la detección previa de elementos estructurales ni
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información de la trayectoria. Básicamente, el método consiste en detectar
los huecos entre las paredes de habitaciones adyacentes en histogramas de
una dimensión a lo largo de los ejes X, Y y Z. Aunque el método es simple y
efectivo, las premisas de Manhattan-world y paredes alineadas con los ejes
limitan considerablemente su aplicabilidad a casos reales. Un enfoque mor-
fológico fue utilizado por [36] para segmentar nubes de puntos de interiores
rasterizando la nube de puntos y realizando procesado morfológico sobre
un plano de planta 2D. El método también depende de la detección de las
paredes y requiere de un laborioso análisis de las paredes en el plano del
suelo. Un análisis morfológico en 3D fue llevado a cabo by [37] tras haber
detectado previamente los elementos estructurales y las puertas. El método
propuesto depende de la trayectoria para detectar puertas y para descartar
los espacios exteriores.

La valiosa semántica proporcionada por la segmentación en habitacio-
nes hace que esta sea un tema activo en la comunidad, lo que conduce al
desarrollo de métodos alternativos más robustos y sencillos. Sin embargo, la
navegación basada en el contexto requiere información semántica más deta-
llada, que puede obtenerse mediante métodos de clasificación y segmentación
semántica.

La tarea de clasificación consiste en determinar la clase de una nube de
puntos de un objeto de entre un conjunto de clases previamente predefinido;
aśı, todos los puntos que conforman el objeto son clasificados con la misma
clase. Mientras que la segmentación semántica asigna una etiqueta a cada
uno de los puntos de forma individual, por ello todos los objetos de una
escena pueden ser etiquetados sin una individualización previa de los objetos.
Evidentemente, la segmentación semántica es una tarea más compleja y,
aunque se han producido grandes avances [38] con resultados prometedores,
estos todav́ıa están lejos de los resultados de obtenidos en clasificación.

La segmentación de nubes de puntos utilizando métodos tradicionales
basados en modelos matemáticos y razonamientos geométricos está limita-
da porque el ruido, las oclusiones y la escasa densidad de las nubes de puntos
dificultan la búsqueda de primitivas geométricas precisas para parametrizar
escenas complejas [39]. Por ello, las técnicas de machine learninghan sido
exploradas tanto para clasificación como para segmentación semántica ob-
teniendo mayor rendimiento en la identificación de objetos complejos. Sin
embargo, la calidad y precisión de la segmentación proporcionada por las
técnicas de machine learning convencionales dependen de la habilidad y ex-
periencia en el dominio para el diseño de un extractor de caracteŕısticas. Este
inconveniente ha sido superado por el uso de técnicas de deep learning, las
cuales son capaces de extraer caracteŕısticas por śı solas sin depender de la
habilidad humana para extraerlas. La principal limitación del deep learning
es la necesidad de una gran cantidad de datos clasificados para entrenar las
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redes neuronales.

Los excelentes resultados obtenidos en la clasificación de objetos en
imágenes 2D, en particular por las redes neuronales convolucionales CNNs,
han despertado el interés por el uso de deep learning para la clasificación y
segmentación semántica de las nubes de puntos. A diferencia de las imáge-
nes, las nubes de puntos son datos 3D no estructurados que no pueden
ser procesados directamente por CNNs 2D y la disponibilidad de nubes de
puntos etiquetadas es escasa lo que puede llevar a modelos de clasificación
sobre-ajustados. Estas limitaciones se pueden mitigar utilizando técnicas de
Transfer Learning [40] y Data Augmentation [41] que ya han sido aplicadas
al dominio de las imágenes.

La idea básica del Transfer Learning es explotar el conocimiento adqui-
rido en un dominio más amplio usando este en un dominio más espećıfico
relacionado con el dominio de origen. Teniendo en cuenta el mayor rendi-
miento obtenido por las CNNs 2D en el dominio de las imágenes, algunos
trabajos han propuesto generar imágenes representativas a partir de las nu-
bes de puntos para llevar a cabo la clasificación o segmentación semántica
de las nubes de puntos usando una red neural pre-entrenada en el domi-
nio 2D, técnica acuñada transfer learning basado en la red. En el ámbito
de la segmentación semántica, [42] generó ortoimágenes geo-referenciadas
en el mismo sistema de coordinadas de la nube de puntos para segmentar
fachadas de edificios empleando la conocida red neural Res-Net. Transfer
Learning también fue aplicada por [43], imágenes 2D representando carac-
teŕısticas extráıdas de nubes de puntos que fueron adquiridas por escaneo
láser aerotransportado (ALS) se tomaron como entrada a una red neuronal
profunda 2D para la segmentación de exteriores.

La proyección de nubes de puntos a imágenes 2D también fue empleada
para la clasificación de objetos [44, 45]. A pesar de la pérdida de información
espacial causada por la reducción de una dimensión, el enfoque multi-vista
que consiste en generar varas imágenes do un objeto 3D desde diferentes
perspectivas ha superado a los enfoques 3D [46, 47]. La clasificación ha si-
do generalmente evaluada en nubes de puntos sin imperfecciones generadas
sintéticamente a partir de la popular colección de datos ModelNet40 [48] lo-
grando una precisión global por encima del 90%. Sin embargo, las nubes de
puntos reales están afectadas por efectos indeseados como el ruido y las oclu-
siones, por ello, el porcentaje del rendimiento decrece drásticamente cuando
se clasifican nubes de puntos reales con perturbaciones, lo que significa que
la clasificación de nubes de puntos reales es todav́ıa un problema abierto
[49].
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B.2.4. Navegación en interiores

Con el surgimiento de sistemas de localización y posicionamiento por-
tables no dependientes de la cobertura satelital, la navegación en interiores
ha atraido el interés de compañ́ıas tecnológicas e investigadores. La expan-
sión del los teléfonos inteligentes ha ampliado el interés de la navegación en
interiores desde robótica a múltiples aplicaciones de asistencia al usuario.
Para dichas aplicaciones, la búsqueda de una ruta para alcanzar un destino
deseado de forma precisa y segura es el principal objetivo, siendo la genera-
ción de una representación apropiada del espacio interior un problema clave
en la navegación en interiores. La forma en la que se representa el espacio
del interior está fuertemente vinculado a cómo este ha sido estructurado en
un proceso previo de división del espacio. Por ello, la división espacial del
espacio del interior es de especial importancia para la planificación de rutas
en la navegación en interiores [50].

La subdivisión espacial consiste en particionar el espacio del interior en
sub-espacios que mantienen significado con el objetivo de la aplicación, p.
ej. la segmentación de habitaciones presentada en la sección B.2.3. Existen
una gran variedad de métodos que han sido adoptados para la división del
espacio interior. De acuerdo a la clasificación presentada en [51, 50], los
métodos que se han empleado para particionar los interiores están basados
en representaciones geométricas o topológicas.

Los métodos topológicos derivan directamente en una representación es-
quelética del espacio del edificio. La representación más simple se obtiene
aplicando la Dualidad de Point Caré propuesta por [52]. Esta estrategia
consiste en crear un grafo, conocido como grafo dual, en el cual, cada sub-
espacio (celda) es representado por un nodo y los arcos son definidos a
partir de las paredes compartidas por sub-espacios, que generalmente se
corresponden con habitaciones. Este método fue adoptado por el estándar
IndoorGML [53] para generar representaciones topológicas de modelos de
interiores. Aunque las relaciones de adyacencia entre sub-espacios son pro-
porcionadas por esta representación, los grafos obtenidos no son adecuados
para una navegación precisa debido a su alto nivel de abstracción. Para el
caso particular de grandes sub-espacios como es el caso de los pasillos que
conectan varias habitaciones, los algoritmos de transformación del eje medio
(MAT) y ĺıneas centrales han sido empleados para subdividir sub-espacios
extensos en sub-espacios más precisos. [19] propuso un algoritmo basado en
MAT para la sub-división de pasillos teniendo en cuenta la localización de
las puertas.

Dentro de los métodos geométricos, las teselaciones realizan una parti-
ción completa del espacio en celdas regulares o irregulares no solapadas. La
teselación regular más simple y usada, especialmente en la navegación de ro-
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bots, divide el espacio en cuadrados uniformemente distribuidos cubriendo
todo es espacio, también conocida como partición basada en cuadŕıcula. La
resolución de la cuadŕıcula viene determinada por la longitud de la celda,
lo cual permite representaciones muy precisas. Sin embargo, las particiones
con alta resolución conllevan un mayor coste de recursos computacionales.
Para aliviar este inconveniente, se propuso la estructura quadtree para una
representación más eficiente, aunque su flexibilidad es limitada [54]. A partir
de una estructura de cuadŕıcula, se puede crear un grafo de forma sencilla
para la planificación de rutas representando el centroide o las esquinas de
las celdas como nodos. La estructura de cuadŕıcula puede ser extendida a
representaciones volumétricas usando celdas 3D con forma de cubo llamados
vóxeles, pero el cuello de botella en la eficiencia se mantiene. Inspirado en los
quadtrees, los octrees [55] pueden ser usados para un manejo más eficiente
de los vóxeles.

La mayoŕıa de los métodos existentes no consideran la semántica para
el particionado o solo utilizan una semántica básica como la de las habita-
ciones o las puertas. La ausencia de semántica hace que esta representación
de interiores no sea adecuada para la navegación basada en el contexto, la
cual se ve considerablemente limitada por el hecho de utilizar planos 2D. La
necesidad de suministrar información semántica sobre los espacios de inte-
riores para una navegación fiable basada en el contexto ha puesto de relieve
el valor de los modelos BIM. Un enfoque 3D para extraer el espacio vaćıo a
partir de modelos BIM fue propuesto por [56]. Partiendo de dicho modelo, los
sub-espacios correspondientes a las habitaciones son directamente extráıdos
como celdas 3D y luego, el espacio ocupado por los bounding boxes de los
objetos del mobiliario es eliminado del espacio vaćıo. La representación to-
pológica es obtenida considerando las aperturas como puertas y ventanas. A
pesar de que el espacio vaćıo es extráıdo de forma efectiva , la información
semántica proporcinada por los modelos BIM no fue utilizada para la parti-
ción del espacio vaćıo. [57] presentó un framework para realizar particiones
del espacio en base a la información semántica proporcionada por modelos
3D enriquecidos tales como los BIM. Para ello, se propone una clasificación
de objetos en base a su movilidad dando lugar a objetos estáticos, móviles
y semi-móviles. A partir de los objetos clasificados, el espacio vaćıo es ca-
tegorizado en ocupado, funcional y navegable. Los sub-espacios funcionales
son aquellos donde los objetos móviles (personas, robots autónomo, drones,
etc) llevan a cabo sus actividades y/o interactúan generalmente con objetos
semimóviles (mesas, sillas, etc.). A diferencia de los enfoques previos, la par-
tición propuesta se lleva a cabo de acuerdo al contexto de los objetos, lo que
permite la generación de un grafo significativo para la navegación basada en
contexto.

A pesar de que el uso de modelos semánticamente enriquecidos ha cre-
cido en las últimas décadas, en la mayoŕıa de casos no están disponibles, lo
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que limita el marco de aplicación para la navegación basada en contexto.
Además, los modelos diseñados puede que no contengan objetos o que el
estada de los objetos esté desactualizado. Por su parte, las nubes de puntos
proporcionan un modelo preciso y actualizado ya que los sistemas de mapeo
basados en LiDAR son capaces de colectar la geometŕıa del edificio en poco
tiempo. Como contrapartida, las nubes de puntos no procesadas entregadas
por los sistemas de mapeo no proporciona ninguna semántica, por ello, un
post procesado es necesario para extraer información semántica. Los avances
en las técnicas de segmentación, clasificación y segmentación semántica ex-
puestas en la sección B.2.3 permiten que cada vez más información semántica
precisa y detallada esté disponible.

A partir de nubes de puntos [58] propuso un método para la obtención
de rutas transitables libres de obstáculos. Varios umbrales de altura son es-
tablecidos para clasificar suelo, paredes y los restantes objeto mediante el
análisis tanto de un raster horizontal como vertical. El suelo navegable es
obtenido eliminando paredes y objetos para posteriormente obtener rutas
transitables aplicando una reducción morfológica al suelo navegable. A par-
tir de las rutas resultantes, los ṕıxeles donde dos rutas interseccionan son
tomados como nodos mientras que los ṕıxeles entre los nodos forman los
arcos del grafo.

Un enfoque basado en reglas gramaticales para generar una representa-
ción jerárquica a partir de nubes de puntos fue propuesto por [59]. Primero,
el espacio del interior es sub-dividido en cuboides definidos por los vértices
extráıdos a partir de los picos de un histograma en los ejes X e Y. La to-
poloǵıa del espacio interior es establecida en base a las relaciones definidas
de adyacencia, conectividad y contención. Además de la relación topológi-
cas común entre habitaciones conectadas por puertas, el método consigue
dividir la sala en sub-espacios correspondientes a los cuboides contenidos
en la habitación. Sin embargo, como los cuboides son definidos en base a
histogramas, no se está considerando información semántica detallada para
la partición espacial.

Partiendo de una nube de puntos con varias plantas voxelizada [60] usó
un algoritmo de región de crecimiento para identificar los espacios de las
habitaciones, puertas, escaleras y rampas. Para la representación topológica,
cada espacio fue representado por un nodo en el grafo resultante, lo que
resulta demasiado abstracto para una navegación precisa.

Más recientemente, nubes de puntos RGB coloreadas fueron utilizadas
por [13] para clasificar los elementos interiores en techo, suelo, elementos
verticales, puertas y otro utilizando algoritmos de deep learning. A continua-
ción, las paredes se utilizan para realizar la segmentación de las habitaciones
en el espacio 2D y las puertas son consideradas para establecer relaciones
de adyacencia entre las habitaciones para obtener un gráfico. El método se
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evaluó en un caso de estudio Manhattan-World y la semántica utilizada para
la partición se limita a la habitación y las puertas.

Aunque las nubes de puntos proporcionan datos geométricos precisos y
actualizados, la cantidad de trabajos que emplean nubes de puntos para
estructurar el espacio con el fin de implementar la navegación contextual
es limitada. La falta de información semántica de las nubes de puntos sin
procesar hace que su uso sea un reto, sin embargo, los avances en la com-
prensión de los interiores, hacen posible extraer información semántica de
las nubes de puntos para explotarla en favor de la navegación contextual.

B.2.5. Contribución de la tesis

La contribución de esta Tesis Doctoral, presentada como un compendio
de art́ıculos, está soportada por seis manuscritos cient́ıficos: Tres de ellos han
sido publicados en revistas indexadas en Journal Citation Report (JCR) ca-
talogadas en el primer y segundo cuartil (Q1, Q2). Dos art́ıculos han sido
presentados en Congresos Internacionales, concretamente, en las ediciones
de GEORES 2019 y 3D Geoinfo 2020 promovidos por la fundación ISPRS.
El sexto art́ıculo está en proceso de revisión por pares en una revista inter-
nacional catalogada en el segundo cuartil.

Según la normativa de la Universidad de Vigo, se debe discutir la inclu-
sión de cada art́ıculo y la relación entre ellos. Los art́ıculos están organizados
temáticamente por caṕıtulos que se dividen en secciones correspondientes a
los art́ıculos. La estructura de la tesis, con un breve resumen en español de
los art́ıculos, se presenta a continuación:

Caṕıtulo 3: Planificación del escaneo optimizado para la adqui-
sición de datos LiDAR Este caṕıtulo recopila los art́ıculos relacionados
con la adquisición de datos que se centran en abordar el problema de la
planificación del escaneo. Se proponen métodos para la adquisición estática
y dinámica con sistemas de mapeo basados en láser y se evalúan en dife-
rentes tipos de entornos. El caṕıtulo se compone de tres manuscritos, dos
publicados en revistas cient́ıficas y un art́ıculo de conferencia:

Sección 3.1 Optimización de la planificación del escaneo de
yacimientos arqueológicos en exteriores

Dado que el TLS proporciona nubes de puntos densas y muy precisas de
forma rápida, esta técnica es especialmente adecuada para la documentación
del patrimonio cultural. Sin embargo, los yacimientos arqueológicos al aire
libre se ocupan a menudo de grandes áreas, por lo que el escaneo es una
operación que requiere mucho tiempo y esfuerzo. Planificar el escaneo con
antelación puede reducir tanto el tiempo como el esfuerzo necesarios para
la adquisición del yacimiento completo. Un punto cŕıtico de la planificación



B.2. INTRODUCCIÓN 189

del escaneo es la determinación de las posiciones candidatas en las que se
puede colocar el láser. Muchos de los trabajos anteriores generan los candi-
datos utilizando una distribución en cuadŕıcula que conduce a una cantidad
de posiciones masiva en escenarios grandes. Para paliar este inconvenien-
te, se presenta un método de planificación de escaneo de triangulación de
Delaunay para la generación de candidatos y se compara con la generación
de candidatos basada en cuadŕıculas. El método fue probado en dos casos
reales demostrando que la distribución basada en la triangulación reduce
significativamente el tiempo de ejecución de la planificación del escaneo.

Este trabajo se ha realizado con la colaboración internacional de miem-
bros especializados en aplicaciones de inspección sin contacto, modelado y
reconstrucción 3D del departamento de Arquitectura, Ingenieŕıa del entorno
constrúıdo y construcción del politécnico de Milano.

Sección 3.2 Del BIM a la planificación y optimización del es-
caneo para el control de la construcción

Las discrepancias entre el estado planeado y el real de un edificio en fase
de construcción suponen importantes pérdidas para el sector de la cons-
trucción. Los controles de seguimiento para ahorrar costes se han realizado
tradicionalmente mediante inspección visual, lo que da lugar a evaluaciones
propensas a errores. Con TLS se puede obtener un modelo as-built de gran
precisión y compararlo con los modelos BIM, cada vez más utilizados en la
industria AEC, para automatizar la supervisión y el control de la obra de
forma eficiente. La planificación del escaneo permite automatizar y garanti-
zar la calidad del modelo y reducir el tiempo de adquisición. En este trabajo,
se presenta un método que explota la información semántica de los modelos
BIM para la planificación del escaneo en entornos de construcción. Además,
se aborda el problema de la planificación de rutas orientada a un escáner
láser montado sobre un robot móvil autónomo siguiendo una estrategia de
stop&go. El método se ha probado en casos simulados y reales con diferentes
condiciones y elementos estructurales.

Este trabajo se enmarca dentro del proyecto Nueva Tecnoloǵıa de Captu-
ra de Datos en Entornos Interiores y Algoritmos de Procesado para Intega-
ción BIM (AUTO-BIM) financiado por el Ministerio de economı́a y compe-
titividad del gobierno de España y con la participación de las universidades
de Vigo y Salamanca, el centro de investigación metalúrgica del noroeste
(AIMEN) y de las compañ́ıas Vı́as y construciones S.A. BAC Engineering
Consultance Group S.L., Aplicaciones de CAD CAM y GIS S.L., y Aplitop
S.L. El objetivo principal del proyecto consist́ıa en desarrollar algoritmos y
estrategias de optimización para la captura de datos en entornos de obra
con tecnoloǵıa LiDAR. Además, para este proyecto se ha desarrolado un
prototipo aplicación con interfaz gráfica para el uso de usuarios no expertos.
La aplicación ha sido probada en el caso de estudio piloto del proyecto sobre
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un entorno de obra real en la ciudad de Badalona (España).

Sección 3.2 Planificación óptima del escaneo para el sondeo de
sitios extensos con sistemas de mapeo estáticos y móviles

Los métodos de planificación de escaneo propuestos se han centrado en
el TLS, sin embargo, el MLS con precisión centimétrica es más adecuado
para otras aplicaciones, ya que permite un proceso de adquisición más rápi-
do, mientras que las oclusiones pueden reducirse significativamente. Para
abordar la planificación del escaneo para el MLS, hay que tener en cuenta
las restricciones espećıficas de los sistemas de mapeo móvil, como el tiempo
máximo de adquisición o el requisito de trayectorias cerradas. En este tra-
bajo se propone un método de agrupamiento equilibrado para la partición
de grafos que proporciona trayectorias planificadas. El método se ha pro-
bado en cuatro casos reales, 3 interiores y 1 exterior de casi 40.000 metros
cuadrados de superficie.

Caṕıtulo 4: Segmentación y clasificación de nubes de puntos de
interiores hacia la comprensión de interiores

Los datos recolectados por un sistema de mapeo basado en LiDAR se
proporcionan en forma de nube de puntos compuesta por coordenadas XYZ,
incluso se puede obtener información adicional como intensidad, normales
o colores dependiendo del sistema. Con vistas a la navegación contextual
en interiores, se pueden extraer datos espaciales significativos de las nubes
de puntos sin procesar para enriquecerlas semánticamente utilizando técni-
cas tradicionales y modernas de segmentación y clasificación. Este caṕıtulo
incluye dos trabajos: uno es un procedimiento presentado en un congreso
internacional que aborda el proceso de segmentación de habitaciones de nu-
bes de puntos expuesto en la sección 1.3. El segundo trabajo consiste en un
art́ıculo de revista que propone un método para generar nubes de puntos a
partir de objetos BIM para su posterior clasificación mediante deep learning.

Sección 4.1 Segmentación de nubes de puntos en habitaciones
basada en espacios interiores y morfoloǵıa matemática 3D

La segmentación de habitaciones es un tema clave tanto en la recons-
trucción de interiores en 3D como en la navegación en interiores en 3D. La
mayoŕıa de los métodos previos extraen y modelan los elementos estruc-
turales de los edificios para realizar la segmentación de habitaciones. Este
trabajo surge con el objetivo de segmentar habitaciones evitando el mode-
lado de elementos estructurales. A diferencia de los trabajos anteriores, la
segmentación de habitaciones se aborda en el espacio interior vaćıo mientras
que las operaciones morfológicas 3D y las relaciones de conectividad se uti-
lizan para segmentar el espacio vaćıo en habitaciones. El método se evaluó
en dos casos reales con resultados prometedores.

Sección 4.2 Explotando objectos BIM para la generación de
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datos sintéticos hacia la clasificación de nubes de puntos de inte-
riores usando deep learning

Este trabajo explora las técnicas de Śıntesis de Datos y Aprendizaje de
Transferencia para la clasificación de objetos de nubes de puntos con per-
turbaciones. Los objetos BIM proporcionados por los fabricantes a través
de las bases de datos de la web se utilizan para generar objetos de nubes de
puntos sintéticas con perturbaciones de ruido y oclusiones. Se implementó
un framework de deep learning para realizar la clasificación de objetos utili-
zando las imágenes generadas a partir de la nube de puntos sintética sobre la
base de un enfoque multi-vista. A partir de la combinación de proyecciones
ortográficas y de perspectiva con imágenes binarias de ocupación e imágenes
en escala de grises que representan la curvatura de la superficie, se produje-
ron cuatro tipos de imágenes para evaluar la influencia de la generación de
imágenes. Se realizaron experimentos con datos sintéticos y reales que de-
mostraron el impacto significativo de las perturbaciones para la clasificación
de objetos.

Este trabajo fue desarrollado con la colaboración internacional de miem-
bros del laboratorio LIAAD integrado en el INESC TEC (Porto) en donde
realicé una estancia de tres meses dentro del programa de cooperación e in-
tercambio entre la Eurorregión de Galicia y el Norte de Portugal IACOBUS.
En el LIAAD son expertos en técnicas de Inteligencia Artificial y Soporte
de Toma de Decisiones. Los conocimientos sobre generación y clasificación
de imágenes adquiridos durante esta estancia han sido determinantes para
el desarrollo de este trabajo.

Caṕıtulo 5: De las nubes de puntos enriquecidas semánticamen-
te a la planificación jerárquica de rutas

Una vez que las nubes de puntos son segmentadas y clasificadas, se puede
extraer información semántica para la partición espacial interior. De acuer-
do a la información semántica utilizada para llevar a cabo la partición el
espacio interior se estructura de acuerdo un contexto. En base a la infor-
mación semántica disponible se pueden realizar distintas particiones con
distintos contextos y generar un grafo de navegación para cada uno de ellos.
Este caṕıtulo se compone de un articulo de revista todav́ıa no publicado
abordando la partición espacial de nubes de puntos para implementar una
planificación de rutas jerárquica que pueda dar soporte a la navegación con-
textual en interiores.

Sección 5.1 Un esquema de partición de escala variable para
la subdivisión espacial de interiores a partir de nubes de puntos
para la planificación jerárquica de rutas

Este art́ıculo presenta un método para implementar una planificación
jerárquica de rutas a partir de nubes de puntos de interiores con el obje-
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tivo de calcular rutas eficientes y precisas en grandes edificios. La nube de
puntos se particiona en tres escalas diferentes basadas en criterios geométri-
cos, funcionales y espaciales. La representación topológica derivada de cada
partición se utiliza para implementar un grafo de tres niveles que permita
una planificación de rutas eficiente. La fiabilidad del método se ha evaluado
en un edificio amplio y amueblado que consta de 5 habitaciones y 1 pasillo
obteniendo rutas seguras y precisas.

B.3. Objetivos de investigación

El ámbito de esta Tesis Doctoral abarca el proceso completo hacia la
implementación de una planificación de rutas contextual para la navegación
en interiores partiendo de la adquisición de datos con sistemas de mapeo
basados en LiDAR. Como se describe en el caṕıtulo Chapter 1, para con-
ducir el objetivo principal, tres fases han sido identificadas y expuestas en
detalle en las secciones 1.2, 1.3 and 1.4 para los cuales los siguientes aspectos
debeŕıan ser considerados:

i Asegurar la calidad de los datos en términos de completitud y precisión
en la fase de adquisión de los datos.

ii Extraer información relevante de las nubes de puntos que proporcionen
contexto a las escenas de interiores.

iii Explotar nubes de puntos semánticamente enriquecidas para proporcio-
nar contexto a la navegación en interiores.

El primer paso consiste en adquirir datos de alta calidad con sistemas
de mapeo basados en LiDAR que es abordado en el Caṕıtulo Chapter3
cubriendo el mayor porcentaje de esta Tesis Doctoral. El principal objetivo
de este tema es el diseño de y la implementación de métodos que lleven a una
planificación de escaneo efectiva y eficiente que satisfaga la condición I. De
cara a alcanzar este objetivo, los siguientes objetivos secundarios debeŕıan
ser abordados:

1.a) Desarrollo de métodos para la planificación del escaneo en diferentes
áreas de aplicación como el control de la construcción, el registro de
yacimientos arqueológicos o el modelado de interiores. Las soluciones
óptimas implican encontrar el número minimo de posiciones de esca-
neo que son necesarias para llevar a cabo la adquisición de la escena
cumpliendo con los requisitos predefinidos. Este es un problema de
geometŕıa computacional de complejidad NP de ah́ı que, se deberán
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analizar hipótesis, heuŕısticos y otras alternativas para alcanzar una
solución asequible en un tiempo de computación razonable.

1.b) Diseño de algoritmos flexibles considerando las limitaciones espećıficas
de los sistemas de adquisición de acuerdo con el campo de aplicación.
Dependiendo de si la técnica de adquisición consiste en TLS o MLS,
la adquisición de los datos se realiza de forma estática o dinámica lo
cual requiere que se consideren las caracteŕısticas espećıficas de cada
modo aśı como las del sistema empleado. La mayoŕıa de métodos de
planificación del escaneo se centran en la adquisición estática, particu-
larmente en TLS, mientras que una planificación del escaneo adaptada
a los sistemas móviles que adquieren datos de forma dinámica no ha
sido abordada en profundidad. Puesto que los sistemas móviles de ma-
peo de interiores portables reducen el tiempo de adquisición y el nivel
de oclusión, su uso se está incrementando rápidamente, lo que plantea
la necesidad de suministrar una planificación del escaneo adaptada.

1.c) Planificación de rutas para llevar a cabo una adquisición de los datos
eficiente. Más allá de determinar las posiciones de escaneo óptimas, la
trayectoria recorrida para alcanzar todas las posiciones de escaneo pue-
de tener un impacto significativo en el tiempo de adquisición o incluso
en la completitud de los datos en el caso de los sistemas de mapeo
móviles. El problema de calcular la ruta más corta que pase por to-
das las posiciones de escaneo una sola vez puede ser formulado como
el conocido problema del vendedor viajero de complejidad NP. Con el
objetivo de de encontrar soluciones sub-óptimas, se deben considerar
la simplificación del problema o el uso de algoritmos heuŕısticos.

La comprensión de los interiores es el segundo tema clave abordado en
esta Tesis Doctoral que se trata en el caṕıtulo 4. El principal objetivo de este
tema consiste en extraer la información semántica relevante de las nubes de
puntos sin procesar para proveer de contexto a la posterior navegación en
interiores. Los objetivos espećıficos relacionados se definen como sigue:

2.a) Desarrollo de métodos para la segmentación de habitaciones a partir de
nubes de puntos no procesadas alternativos a las estrategias comúnmen-
te empleadas. La segmentación de nubes de puntos en habitaciones es
un proceso ampliamente implementado debido al potencial de la seg-
mentación resultante para aplicaciones de reconstrucción y navegación.
En el campo de la robótica, la segmentación es normalmente enfoca-
da sobre planos de planta 2D mientras que la mayoŕıa de métodos de
segmentación de habitaciones en 3D requieren modelar los elementos
estructurales. Nuevos enfoques podŕıan ser explorados con el fin de
progresar el estado del arte.
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2.b) Desarrollo de métodos automatizados para la clasificación de objetos
de interiores basados en Inteligencia Artificial. Las técnicas de deep
learning han sobrepasado a los métodos de segmentación convenciona-
les proporcionando el estado del arte en la clasificación de imágenes.
En contraste con la clasificación de imágenes, la cantidad de nubes de
puntos etiquetadas disponibles es escaso e insuficiente para para entre-
nar redes neuronales sin sobre-ajuste. La transferencia de aprendizaje
y la śıntesis de datos son dos técnicas que están ganando atención para
tratar la escasez de nubes de puntos etiquetadas. Nubes de puntos sin
defectos han sido clasificadas con un alto porcentaje de precisión, sin
embargo, este decae significativamente con objetos reales lo que lleva a
la necesidad de desarrollar nuevos métodos.

El Caṕıtulo 5 está destinado a abordar la planificación de rutas, con lo
que se completa el diagrama de trabajo trazado. El objetivo principal de
este caṕıtulo consiste la implementación de la planificación de rutas para
la navegación en interiores basada en el contexto. Para lograrlo, se han
propuesto los siguientes objetivos espećıficos:

3.a) Particionado y estructuración del espacio de interiores navegable en
base a la información contextual extráıda de nubes de puntos. La forma
en la que el espacio navegable es estructurado tiene un alto impacto en
la eficiencia y fiabilidad de la navegación en interiores. Las particiones
geométricas pueden llegar ser computacionalmente costosas e incohe-
rentes con las condiciones del agente. La partición espacial basada en
el contexto del agente sienta las bases para una navegación en interio-
res contextual efectiva. Particiones basadas en información contextual
han sido propuestas para modelos BIM, pero su implementación con
nubes de puntos es todav́ıa un desaf́ıo. El uso de nubes de puntos en
lugar de modelos BIM tiene la ventaja de proporcionar información
más actualizada sobre el estado actual de los interiores.

3.b) Generación de grafos de navegación en interiores para diferentes escalas
de información espacial. Por cada partición, se obtiene una estructura-
ción del espacio diferente, a partir de la cual se debe generar un grafo
para dar soporte a la navegación en interiores.

3.c) Implementación de una planificación de rutas jerárquica explotando los
grafos generados a partir de las distintas estructuraciones espaciales.
Los grafos generados a partir de las particiones proporcionan relaciones
con diferentes contextos y sus densidades pueden variar considerable-
mente. La planificación jerárquica de rutas puede ser útil para calcular
rutas precisas de forma eficiente.
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B.4. Discusión

En este caṕıtulo se pretende evaluar el grado de consecución de los obje-
tivos planteados en el Caṕıtulo 2. La discusión de esta Tesis Doctoral sigue
la estructura de los objetivos de investigación organizados en los tres temas
abordados en esta Tesis Doctoral: Adquisición de datos, comprensión de los
interiores 3D y navegación en interiores.

Los resultados de la adquisición de datos se han presentado en el Caṕıtu-
lo 3 se centran en el problema de la planificación del escaneo. A lo largo
de los tres trabajos que componen el caṕıtulo, se han desarrollado y evalua-
do métodos para la planificación del escaneo en distintos tipos de entorno
considerando las limitaciones de los diferentes sistemas de mapeo. La optimi-
zación de la planificación del escaneo fue llevada a cabo no solo minimizando
el número de posiciones de escaneo mediante la selección de las mejores, sino
que también calculando las rutas de escaneo con el objetivo de proporcionar
la trayectoria más corta para el sistema de escaneo.

En el primer trabajo presentado en la Sección 3.1, un método de plani-
ficación del escaneo fue desarrollado para sitios arqueológicos, los cuales se
caracterizan por cubrir largas extensiones de terreno. Debido a que no exis-
ten modelos de planificación de sitios de patrimonio cultural, se utilizaron
ortoimágenes para crear modelos CAD organizados en capas de acuerdo a la
clase de elemento y a la zona. Los elementos pueden ser definidos geométri-
camente por ĺıneas, poliĺıneas, arcos y ćırculos. A diferencia de los modelos
convencionales, los modelos semánticos permiten focalizar la planificación
del escaneo en elementos o áreas espećıficas.

Con el objetivo de reducir la complejidad de la planificación del escaneo,
se discretizaron tanto los elementos de interés como el espacio no ocupado
en el cual se puede colocar el láser. Como el análisis posterior se realizará en
un espacio discreto, los elementos de interés son discretizados en segmentos
de igual longitud. El espacio no ocupado puede ser particionado usando una
teselación de cuadŕıcula o la partición propuesta basada en la Triangulación
de Delaunay con el objetivo de comparar esta última con la primera. Pa-
ra la generación de candidatos, se definen el rango del láser y la distancia
mı́nima del láser a los elementos. Un rango amplio implica un mayor es-
fuerzo computacional en los pasos posteriores, especialmente en el análisis
de visibilidad, y además el número de candidatos a analizar quizá sea ma-
yor. Por esta razón, se recomienda configurar el rango del láser entre 5 y 10
metros para el cálculo eficiente, mientras se asegura la calidad de los datos
adquiridos.

El análisis de visibilidad es en general un proceso lento que depende del
número de candidatos y de los elementos discretizados, de ah́ı la importancia
de no generar candidatos redundantes. Las mejores posiciones se selecciona-
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ron una estrategia combinatoria en base a el número de segmentos visibles
por el láser desde cada posición. Aunque el solapamiento entre escaneos no
se ha inclúıdo en este trabajo, podŕıa influir en la selección de candidatos.

El método de planificación del escaneo fue evaluado en dos casos reales de
sitios arqueológicos. Debido a las dimensiones y complejidad de los escena-
rios arqueológicos, la cantidad de posiciones candidatas generadas a partir
del método de partición puede ser un factor limitante tanto en términos
de tiempo de procesado como en recursos computacionales. Muchos de los
métodos previos abordando la planificación del escaneo generan candida-
tos empleando una distribución de cuadŕıcula lo que lleva a una selección de
posiciones de escaneo lenta. El objetivo de este trabajo era desarrollar un al-
goritmo de planificación de escaneo robusta para yacimientos arqueológicos
evaluando la fiabilidad de la partición basada en la triangulación implemen-
tada en términos de reducción de candidatos y compararla con la partición
en cuadŕıcula. La planificación de la escaneo se completó con éxito en los
dos casos de estudio de hasta 3 hectáreas de tamaño, obteniendo 208 y 128
posiciones de escaneo en cada caso. La comparación con la partición basada
en la cuadŕıcula se llevó a cabo en una de las zonas de la escena más grande,
demostrando que la partición basada en la triangulación genera menos del
20% de los candidatos generados por la partición de la cuadŕıcula en menos
tiempo, lo que reduce el tiempo de procesamiento en un 70%. La distancia
mı́nima y máxima a los elementos de interés se fijó en 0,5m y 10m respecti-
vamente, mientras que la resolución de la cuadŕıcula utilizada fue de 1m. Los
resultados muestran que el método es robusto y que la partición basada en
la triangulación es más adecuada que el enfoque de cuadŕıcula para grandes
escenarios en términos de coste computacional ya que el número de candida-
tos generados es significativamente menor sin comprometer la completitud
de los datos adquiridos.

Entre los métodos de planificación del escaneo existentes en la literatu-
ra, hasta donde llega mi conocimiento, sólo uno es espećıfico para los sitios
arqueológicos [61] en el que la planificación del escaneo se orienta a la in-
tervención humana entre los escaneos en lugar de un escaneo automatizada.
En este trabajo no se proporcionan detalles sobre las restricciones del láser,
la resolución de la cuadŕıcula, el número de candidatos o el tiempo de pro-
cesamiento, por lo que no se pueden comparar los resultados. Otro método
centrado en la planificación del escaneo de áreas grandes y complejas fue
propuesto por [24]. El método fue probado en dos casos de estudio, uno de
ellos un gran edificio a escanear desde el exterior que cubŕıa una extensión
de aproximadamente 700 m x 500 m. El método propone una generación
jerárquica de candidatos utilizando una partición de cuadŕıcula desde una
resolución más gruesa a una más fina, concretamente, en los experimentos
la resolución vaŕıa de 20 m a 0,035 m.Aunque el método presentado por [24]
genera un número ligeramente mayor de candidatos en un área 10 veces ma-
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yor que la escena más larga en la que se probó el particionamiento basado en
la triangulación, este resultado está influido por varios factores: el alcance
del láser utilizado fue de 100 m, los elementos de interés se discretizaron con
una resolución de 2 metros, hay una gran área ocupada que reduce el espacio
sobre el que se realiza el particionamiento y la complejidad geométrica de los
elementos de interés es mucho menor. Esta configuración de la planificación
del escaneo reduce el número de candidatos, pero la calidad y la completitud
de la adquisición pueden verse comprometidas.

En el segundo trabajo del Caṕıtulo 3, la planificación del escaneo se cen-
tra en las obras de construcción como parte de un flujo de trabajo completo
para el control automatizado del progreso de la construcción. La planifica-
ción del escaneo se adaptó a las restricciones del TLS porque el objetivo
final, que está fuera del marco de esta Tesis Doctoral, seŕıa comparar la
nube de puntos adquirida a partir de las posiciones óptimas de escaneo se-
leccionadas con el modelo planificado, para el que es necesaria una precisión
milimétrica.

Los entornos de construcción son bastante diferentes a los sitios ar-
queológicos, ya que los primeros son más pequeños y presentan otras comple-
jidades, como agujeros en el suelo o elementos elevados, por ejemplo, vigas
o viguetas. La creciente adopción de BIM para la gestión y el seguimien-
to de los nuevos edificios proporciona modelos semánticamente enriquecidos
que debeŕıan aprovecharse en detrimento de los planos 2D con información
limitada. Un modelo detallado puede ofrecer información contextual que no
se puede obtener directamente de elementos f́ısicos como son los espacios de
las habitaciones. El conocimiento de los espacios de las habitaciones es una
información valiosa que permite una planificación eficiente del escaneo en
interiores al limitar el alcance del láser a los elementos que están dentro de
la habitación. Además, las ubicaciones de las puertas sirven como posiciones
convenientes para realizar escaneos que garantizan el registro posterior.

Teniendo en cuenta que el láser se fija a la misma altura, la planificación
de la exploración se realizó en 2D para reducir sustancialmente los recursos
computacionales. Por lo tanto, se derivó un modelo 2D a partir del BIM de
entrada preservando la información semántica. Aprovechando el conocimien-
to de la clase de elemento, se simuló la adquisición de elementos superiores
en 2D suponiendo que los elementos superiores no ocluyen los elementos ver-
ticales. A diferencia del resto de elementos, los huecos en el suelo, presentes
en las primeras fases de obra, se representan en el modelo con los vértices
ordenados en el sentido de las agujas del reloj para procesarlos de forma
automática.

La planificación del escaneo implementada para las obras de construcción
abordó la optimización tanto de las posiciones de escaneo como de la ruta de
escaneo siguiendo la estrategia de stop&go. La aplicabilidad del método se ha
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probado en diferentes fases de la construcción con resultados satisfactorios.
El comportamiento de ambos métodos de generación de candidatos en la fase
estructural fue similar al de los yacimientos arqueológicos, siendo el método
basado en la triangulación el que generó el menor número de candidatos. Sin
embargo, el método basado en la triangulación generó candidatos válidos
en salas pequeñas donde la distribución de la cuadŕıcula no lo consiguió
debido a la resolución de la misma. Además, el cálculo de la ruta obtuvo
rutas eficientes en menos de 6 s, siendo la generación del grafo la operación
más costosa. También se comprobó que la inclusión de las posiciones de
las puertas en la ruta de exploración no aumenta su longitud de forma
significativa.

El trabajo presentado en la Sección 3.3 está motivado por la falta de
una planificación del escaneo espećıfica para el MLS. Dos restricciones co-
munes del MLS son el tiempo máximo de adquisición y el cierre de bucles
en la trayectoria seguida. Ambas limitaciones se han tenido en cuenta en
el algoritmo de agrupación y balanceo propuesto para generar rutas que se
ajusten a las limitaciones espećıficas del MLS. La estimación de la varianza
de la distancia de las rutas se utilizó para cuantificar la precisión del ba-
lanceo. En el caso de lugares extensos, suelen ser necesarios varios escaneos
con sistemas MLS que requieren un registro posterior. En relación con este
requisito, el solapamiento entre los escaneos se garantiza determinando el
nivel de solapamiento entre las rutas. En contraste con las rutas no planifi-
cadas seguidas para la adquisición de un gran patrimonio cultural como la
realizada en [26], la varianza de la distancia de las rutas obtenidas fue más
de 10 veces menor en los casos de estudio utilizados.

El método se evaluó en cuatro casos de mediana a gran escala realizan-
do cuatro experimentos en dos sistemas MLS simulados y configurados con
diferentes restricciones. En el caso de los edificios de escala media, las rutas
obtenidas fueron bien equilibradas cumpliendo con a las limitaciones de los
sistemas MLS simulados. La mayoŕıa de las rutas calculadas para los ca-
sos de gran escala cumplen con las restricciones espećıficas, mientras que el
agrupamiento balanceado mejora sustancialmente la partición inicial grue-
sa reduciendo drásticamente la varianza de la distancia. Debido a la gran
complejidad de estas escenas y a la condición de continuidad en el balanceo,
algunas agrupaciones no satisfacen las limitaciones más restrictivas. Aunque
para generar rutas coherentes y no dispersas es necesario mantener la con-
dición de continuidad, en la práctica, los sistemas MLS con limitaciones tan
restrictivas no son adecuados para la adquisición de escenas tan extensas.

Además del cálculo de rutas, las trayectorias resultantes se probaron en
el simulador 3D HELIOS para evaluar las nubes de puntos obtenidas de
la simulación en términos de completitud y densidad de puntos. El nivel
global de completitud para los edificios de tamaño medio fue superior al
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80%, mientras que para las escenas de gran tamaño varió entre el 52% y
el 89%. Esta disparidad de resultados también se produce en la medida de
la densidad. Este rango de variación está condicionado por la diferente tasa
de medición de puntos de los dos sistemas MLS simulados, aśı como por el
tamaño de los vóxeles y la tasa de desplazamiento utilizados en la simula-
ción impuestos por las limitaciones del simulador. En general, los resultados
obtenidos en cuatro casos de estudio de mediana a gran escala mostraron la
utilidad y aplicabilidad de la planificación del escaneo para el MLS.

Resumiendo, los métodos desarrollados en los tres trabajos discutidos
anteriormente han abordado los objetivos de adquisición de datos definidos
en el Caṕıtulo 2. Los métodos de planificación de escaneo desarrollados fue-
ron evaluados en diversos escenarios, incluyendo yacimientos arqueológicos,
edificios públicos, entornos de construcción y grandes centros comerciales,
con resultados satisfactorios cumpliendo el objetivo 1.a). Además de la se-
lección de las posiciones óptimas de escaneo, la planificación de rutas para
una adquisición efectiva fue abordada con el algoritmo probabiĺıstico ACO
obteniendo rutas precisas en poco tiempo cumpliendo el objetivo 1.c). El
algoritmo de planificación del escaneo implementado no solo es flexible para
el cálculo de los posiciones de escaneo, sino que también la planificación de
rutas se ajusta tanto al TLS como al MLS cumpliendo con el objetivo 1.b).

Las secciones 4.1 y 4.2 que componen el Caṕıtulo 4 se corresponden con
los objetivos 2.a) y 2.b) respectivamente.

El método presentado en la sección 4.1 realiza la segmentación de ha-
bitaciones de las nubes de puntos mediante la aplicación de operaciones
morfológicas 3D al espacio vaćıo interior. A diferencia del enfoque más uti-
lizado para la segmentación de habitaciones, que consiste en parametrizar
las paredes y posteriormente realizar la segmentación basándose en un razo-
namiento elaborado, el método implementado consigue segmentar las nubes
de puntos en habitaciones sin parametrizar los elementos estructurales. De
echo, el método desarrollado en el espacio vaćıo en el interior, el cual repre-
senta la morfoloǵıa del edificio. Debido a que las operaciones morfológicas
operan sobre datos estructurados, la nube de puntos tiene que ser voxelizada.

Además, la detección de puertas que es requerida en otros métodos,
tampoco es necesaria para en el método desarrollado. Sin embargo, la loca-
lización de las puertas es una información valiosa para generar una repre-
sentación topológica del edificio para la planificación de rutas en interiores.
Por esta razón, este método fue extendido en el trabajo presentado en la
Sección 5.1, el cual implementa un proceso de detección de puertas basado
en el espacio vaćıo.

La selección del elemento estructurante (SE) es un punto clave del méto-
do porque el SE debeŕıa suficientemente grande para eliminar el espacio



200 APÉNDICE B. VERSIÓN EN ESPAÑOL

vaćıo de las puertas, pero un SE demasiado grande puede generar una sobre-
segmentación. Los resultados mostraron que el uso de un SE con geometŕıa
cúbica con una longitud ligeramente más larga que el ancho de las puertas
es una elección plausible.

El método de segmentación de habitaciones desarrollado simplifica signi-
ficativamente el análisis de nubes de puntos, requiriendo sólo la información
básica de las nubes de puntos que consiste en las coordenadas XYZ de los
puntos. El método se probó en dos casos reales compuestos por cuatro y
diez habitaciones amuebladas. El rendimiento de la segmentación de puntos
superó el 90% en la mayoŕıa de las habitaciones, mientras que el nivel de
sobre-segmentación fue bajo. Los prometedores resultados obtenidos validan
el enfoque del espacio vaćıo para la segmentación de habitaciones de nubes
de puntos.

En resumen, los resultados demostraron que el método desarrollado es
capaz de segmentar nubes de puntos de interiores con una precisión de cla-
sificación aceptable. Además, no se requirió el modelado de elementos es-
tructurales ni la información de la trayectoria, por lo que el objetivo 2.a) se
logró con este trabajo.

En el segundo trabajo del Caṕıtulo 4 se presentó un método para la
clasificación de objetos presentes en interiores usando técnicas de deep lear-
ning. El método implementado aprovecha la disponibilidad de los modelos
BIM de objetos proporcionados por los fabricantes en las bases de datos
de la web para generar nubes de puntos sintéticas con perturbaciones. Da-
do que el ruido y las oclusiones son dos efectos indeseados que se presentan
comúnmente en las nubes de puntos dificultando el procesamiento de las mis-
mas, ambas perturbaciones se añadieron a las nubes de puntos sintéticas.
Del proceso de śıntesis de datos se obtuvo un conjunto de datos compues-
to por 21 clases de objetos de nubes de puntos con perturbaciones. Para
la tarea de clasificación, se implementó un framework basado en deep lear-
ning 2D aprovechando la potencialidad de la transferencia de aprendizaje
de la clasificación de imágenes. En consecuencia, se generaron imágenes 2D
a partir de objetos de nubes de puntos mediante proyecciones ortogonales
y en perspectiva. Además de imágenes binarias que representan el estado
de ocupación de los ṕıxeles (ocupado o desocupado), también se utilizaron
imágenes en escala de grises tomando la caracteŕıstica de variación de la su-
perficie ponderada como valor del ṕıxel. La extracción de caracteŕısticas en
el espacio 3D para enriquecer las imágenes 2D es una práctica comúnmente
utilizada para mejorar los resultados de la clasificación. Los experimentos
mostraron que el uso de la caracteŕıstica de variación de superficie puede
mejorar la precisión de la clasificación, pero hay que tener en cuenta que
el ruido, las oclusiones y la densidad afectan al cálculo de la variación de
superficie en las nubes de puntos.
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Tanto la configuración de los parámetros para la generación de imágenes
como los hiperparámetros de la red neuronal influyen en el resultado de la
clasificación. Aunque estos parámetros suelen ser configurados por el usuario
en base a pruebas y experiencias previas, existen metodoloǵıas de optimi-
zación y auto ML que estiman la relevancia de los parámetros aśı como sus
valores. Esto permite que los parámetros menos significativos se establez-
can como invariantes, reduciendo los costes computacionales. El framework
basado en deep learning permite fijar los parámetros manualmente o me-
diante el algoritmo de optimización harmonica-hyperband implementado.
Las metodoloǵıas de optimización se seleccionaron por de sus prometedores
resultados en comparación con métodos más sencillos, como la búsqueda
aleatoria o la búsqueda en cuadŕıcula.

A partir del conjunto de datos generado, cuatro conjuntos de datos de
compuestos de 5, 6, 8 y 10 clases fueron creados para realizar los experimen-
tos. La precisión global de la clasificación de las nubes de puntos sintéticas
con perturbaciones fue superior al 80% cuando las pruebas se realizaron con
imágenes ortográficas y es superior si se usan imágenes en escala de grises.

La optimización de los hiperparámetros llevada a cabo con el algoritmo
Harmonica-hyperband condujo a una mayor precisión global en la mayoŕıa
de los casos que si no se emplea la optimización o se selecciona la estrategia
de búsqueda aleatoria. Las perturbaciones de ruido y oclusiones tuvieron
un impacto significativo en la clasificación utilizando CNNs: en el caso del
conjunto de datos sintéticos, la precisión global disminuyó entre un 6% y
un 35% mientras que con los datos reales, la cáıda del rendimiento fue del
34%. En general, el método desarrollado cubre el objetivo 2.b) definido en
el caṕıtulo 2.

Las nubes de puntos enriquecidas semánticamente que resultan de la
segmentación y la clasificación proporcionan información útil que se pue-
de explotar para la partición espacial en interiores teniendo en cuenta el
contexto. En el Caṕıtulo 5 se presentó un método para llevar a cabo la pla-
nificación jerárquica de rutas acoplando diferentes niveles de representación
sobre la base de particiones espaciales. La representación topológica de inte-
riores suele derivarse de la segmentación de las habitaciones, representando
cada una de ellas como un nodo y conectándolas mediante puertas, que tam-
bién se representan mediante un nodo. El grafo correspondiente constituye
el nivel más abstracto de representación en la jerarqúıa propuesta para la
planificación de la routa, ya que solo representa la accesibilidad entre las
habitaciones y el número de nodos es bajo, lo que permite un cálculo rápido
de las rutas. Las rutas en este nivel proporcionan el conocimiento de las
habitaciones que hay que atravesar, pero la precisión de la ruta es menor
cuanto más grande y compleja es la habitación.

Las áreas funcionales fueron definidas por [62] como el espacio navegable
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cercano a los objetos donde los agentes realizan sus actividades. Este enfoque
implica considerar la información contextual de los interiores y esta es la base
de la partición funcional que también fue utilizada por [57] en modelos 3D.
A diferencia de los trabajos mencionados, la partición propuesta divide el es-
pacio transitable por referencia a la geometŕıa de los objetos que determinan
las áreas funcionales en lugar de por criterios geométricos independientes de
las áreas funcionales. Aśı, la granularidad del gráfico funcional derivado será
mayor en los espacios más poblados por objetos. En consecuencia, las rutas
calculadas en este nivel son más precisas que en el nivel anterior siendo en
muchos casos suficientemente precisas para la navegación.

En caso de que se necesiten rutas más precisas, se puede realizar una
partición espacial. Se eligió el particionamiento geométrico basado en la
distribución en cuadŕıcula porque su resolución es fácilmente adaptable y
permite una navegación robusta. Como se señala en la sección 1.4, la gran
cantidad de nodos generados es el principal inconveniente de la partición ba-
sada en la cuadŕıcula. Sin embargo, el grafo jerárquico fue aprovechado para
reducir el área a particionar espacialmente evitando la generación masiva de
nodos.

El método se probó en un caso real compuesto por cinco habitaciones a
las que se accede por un gran pasillo. Se generó un grafo coherente de varios
niveles que soporta la planificación de rutas jerárquicas. Las rutas obtenidas
mostraron las ventajas del método propuesto para calcular rutas precisas de
forma eficiente.

En resumen, la nube de puntos enriquecida semánticamente se particionó
a tres escalas: habitación, funcional y espacial. A partir de las particiones
resultantes, se derivaron tres representaciones topológicas para generar un
gráfico jerárquico de tres niveles para la planificación de rutas. Por último, el
grafo jerárquico fue explotado para llevar a cabo el cálculo de rutas precisas
de manera eficiente. Aśı, los objetivos 3.a), 3.b) y 3.c) se cumplieron con el
método desarrollado.

B.5. Conclusiones

En esta tesis doctoral, se han presentado y discutido los métodos di-
señados e implementados para llevar a cabo una planificación de rutas que
soporte la navegación en interiores basada en el contexto a partir de nubes
de puntos. Se han identificado tres procesos, que se abordan secuencialmente
en los caṕıtulos 3, 4, 5, como esenciales para cumplir los objetivos de esta
Tesis Doctoral: adquisición de datos, comprensión de interiores en 3D y na-
vegación en interiores. Los métodos desarrollados se han presentado como
un compendio de seis art́ıculos organizados temáticamente en tres caṕıtu-
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los. Los resultados y los objetivos cumplidos se han discutido en el caṕıtulo.
Para concluir esta tesis doctoral, se presentan las conclusiones derivadas del
trabajo expuesto aśı como las direcciones futuras:

En el Caṕıtulo 3, se presentaron los métodos desarrollados para direc-
cionar el problema de la planificación del escaneo en diferentes entornos
considerando las limitaciones espećıficas del TLS y del MLS. La generación
de posiciones candidatas es una cuestión importante que afecta tanto a la
integridad y calidad de los datos adquiridos como a la eficiencia de la planifi-
cación. Las particiones basadas en triangulación pueden mejorar la eficiencia
de la generación de candidatos que usan la partición de cuadŕıcula. Además
el uso de modelos con información semántica para realizar la planificación
del escaneo proporciona ventaja sobre los modelos que solo contienen in-
formación geométrica de forma que se puede adaptar la planificación a las
caracteŕısticas de la escena a ser mapeada. La planificación de rutas para
el escaneo contribuye a la eficiencia del escaneo, su influencia es mayor en
sitios grandes y complejos y muy interesante en el caso de la planificación
espećıfica para MLS.

Los test realizados en múltiples entornos han validado la aplicabilidad
y robustez de los métodos implementados. Las ventajas de la triangulación
respecto a la cuadŕıcula para particionar el espacio han sido mostradas tanto
en interiores como en exteriores, además de proporcionar un buen compro-
miso entre densidad y cobertura. La utilización de modelos semánticamente
enriquecidos se ha mostrado ventajosa a la hora de planificar el escaneo,
especialmente en entornos de obra e interiores en los que la información de
habitaciones, puertas y elementos superiores ha sido explotada con éxito.
Las rutas obtenidas tanto para TLS como MLS han sido sido satisfactorias
de acuerdo a las caracteŕısticas del sistema de mapeo teniendo en cuenta la
alta complejidad de los escenarios.

Más allá de haber alcanzado los objetivos planteados para la adquisición
de datos, se exponen las sugerencias para el trabajo futuro en el direcciona-
miento de la planificación del escaneo. Extender el problema a modelos 3D
evitando la pérdida de información espacial causada por la proyección a 2D
permitiŕıa estimar la calidad del escaneo con mayor precisión. Sin embargo
este enfoque aumentaŕıa considerablemente el coste computacional, por lo
que un enfoque 2.5D en el que se extraigan las caracteŕısticas importantes
del modelo 3D antes de la simplificación es una alternativa equilibrada entre
precisión y eficiencia. Aunque se planificaron rutas en escenarios de más de
30,000 m2̂, la estructura de cuadŕıcula del grafo de navegación puede llegar
a ser un factor limitante en escenarios más extensos. Una alternativa seŕıa
implementar grafos jerárquicos que mejoren la eficiencia de la planificación.

En el Caṕıtulo 4 se presentaron dos métodos para abordar el problema de
la comprensión de interiores con el objetivo de extraer información semántica
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de las nubes de puntos sin procesar derivadas del proceso de adquisición
de datos. El primer método lleva a cabo la segmentación de habitaciones
evitando la detección de paredes basándose en el espacio no ocupado el
cual representa la morfoloǵıa de los edificios. Sobre un espacio voxelizado se
pueden aplicar operaciones morfológicas de erosión y dilatación para lograr
la separación y reconstrucción de los sub-espacios correspondientes a las
habitaciones. El uso de operaciones morfológicas y relaciones de conectividad
fueron suficientes para llevar a cabo la segmentación de habitaciones. Los
prometedores resultados obtenidos en dos casos de estudio mostraron la
viabilidad del método.

Parte del trabajo futuro ya ha sido implementado por el método presen-
tado en la sección 5.1. La funcionalidad del método ha sido extendida con
la mejora de dos aspectos: el filtrado previo a la obtención de los vóxeles del
interior fue refinado de forma que el método puede ser aplicado a nubes de
puntos no alineadas con el eje de coordenadas Z. La otra mejora consiste en
la implementación de un método de detección de puertas basado en el es-
pacio vaćıo manteniendo al método independiente del modelado de paredes
e información de la trayectoria. Sin embargo, la configuración automática
del elemento estructurante para las operaciones morfológicas es todav́ıa un
desaf́ıo por abordar.

El segundo método de este caṕıtulo pretende extraer información más
detallada de las nubes de puntos mediante el uso de técnicas de deep lear-
ning. Los objetos BIM proporcionados por los fabricantes a través de las
bases de datos de la web son interesantes para la generación de nubes de
puntos. La precisión de la clasificación de nubes de puntos con redes neuro-
nales decae significativamente cuando se emplean nubes reales que presentan
perturbaciones debido a que las redes han sido entrenadas con datos sin per-
turbaciones . La generación de datos sintéticos permite abordar el problema
de la escasez de la nube de puntos clasificadas.

El framework desarrollado para la clasificación de objetos basado en deep
learning fue evaluado con los datos sintéticos generados a partir de objetos
BIM aśı como con datos reales. Los resultados demostraron el fuerte impacto
que tiene el ruido y las oclusiones de las nubes de puntos en la clasificación.
El uso de la variación de la superficie para representar los objetos mejoró la
precisión de la clasificación en la mayoŕıa de pruebas pero dependiendo de la
geometŕıa del objeto y las perturbaciones su utilidad puede verse afectada.
Con la implementación de técnicas de optimización de parámetros se ha
conseguido mejorar la precisión de la clasificación.

El trabajo futuro para este trabajo consistiŕıa en extender el método
de generación de datos sintéticos para procesar modelos BIM de edificios
con elementos estructurales y objetos generando nubes de puntos multi-
etiquetadas. Con la disponibilidad de estas nubes de puntos se podŕıa abor-
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dar el problema de la segmentación semántica.

En el Caṕıtulo 5, se presentó un método para la partición del espacio de
interiores considerando la información semántica extráıda anteriormente con
el objetivo de implementar una planificación de rutas apta para la navegación
en interiores basada en contexto. La estructuración del espacio de interiores
es un factor importante para la implementación de la planificación de rutas.
La determinación de áreas funcionales permite representar el espacio de
interiores de acuerdo a las actividades del agente. Las particiones basadas
en contexto combinadas con las puramente geométricas contribuyen a la
obtención de rutas con distintos niveles de resolución y precisión y ayudan
a mejorar la eficiencia del cálculo de rutas.

La utilidad del método se evaluó en un caso de estudio complejo com-
puesto por aulas amuebladas logrando resultados satisfactorios. Con la im-
plementación de planificación de rutas en modo jerárquico se pudo calcular
rutas precisas ahorrando importantes recursos computacionales. El nivel fun-
cional introducido fue determinante para el cálculo de eficiente de las rutas,
incluso las rutas calculadas a nivel funcional, pueden ser lo suficientemente
precisas en mucho casos.

Para el trabajo futuro se sugiere una clasificación de objetos más detalla-
da que permita definir las áreas funcionales de forma más precisa. También
resulta de interés extender el método para soportar la navegación de agen-
tes que no se desplazan por el suelo, como los drones, para lo que se debe
considerar el espacio vaćıo de los interiores como espacio navegable. De cara
a generar un modelo estandarizado se debeŕıa considerar obtener a partir de
las particiones del espacio propuestas una representación válida de acuerdo
a un estándar de modelado de interiores como por ejemplo IndoorGML.

En resumen, esta Tesis Doctoral presenta métodos para la adquisición
eficiente de nubes de puntos para su utilización en la planificación de ru-
tas que den soporte a la navegación en interiores basada en el contexto.
Los modelos BIM han sido explotados para aprovechar la potencialidad de
la información semántica que proporcionan. Se han implementados méto-
dos de segmentación basados tanto en técnicas tradicionales como en Deep
Learning para la obtención de información semántica de las nubes de pun-
tos no procesadas. Aunque los resultados obtenidos son prometedores, este
sigue siendo un campo activo que requiere más investigación. A diferencia
de los modelos pre-diseñados, las nubes de puntos no han sido ampliamen-
te empleadas para la planificación de rutas debido al reto que presenta su
procesamiento, sin embargo, la representación precisa y actualizada que pro-
porcionan del entorno las convierten en una alternativa para la navegación
en interiores.

Los métodos han sido desarrollados de forma secuencial siguiendo las fa-
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ses necesarias para llevar alcanzar el objetivo final de la Tesis Doctoral. Sin
embargo, la conexión entre los distintas fases no es siempre directa. Como
trabajo futuro seŕıa de interés la integración de todos los métodos que per-
mita la ejecución del proceso de forma automatizada. Las representaciones
del espacio obtenidas podŕıan ser aprovechadas por aplicaciones de navega-
ción en interiores para llevar a cabo una asistencia guiada orientada a al
contexto del usuario con el fin de incrementar la seguridad y precisión de la
navegación.
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