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Abstract
The increasing availability of unmanned aerial vehicles (UAVs) and the progress in the

development of lightweight sensor systems have opened new possibilities for emergency
surveillance. After chemical emergencies or large �res, rotary-wing UAVs can provide
emergency response units with a quick �rst assessment of the contaminated area and
the a�ected population. However, unless the a�ected area is small, the limited �ight
time and the time-sensitive situation mean that UAVs can only take a limited number of
samples. Combined with spatial interpolation methods, these samples allow an estimate
of the distribution of contaminants and hazardous substances across the a�ected area.

This thesis addresses the problem of planning UAV missions that maximize the in-
formation gain in emergency surveillance. We study this planning problem both in an
o�ine fashion, where missions are determined before takeo�, and in the online variant
where plans are updated while the UAVs are in �ight. Our main interest lies in the design
of e�cient models and solution heuristics that use information about the spatial corre-
lations between observed and unobserved locations to determine high-quality solutions
with low prediction errors in time-sensitive situations.

For o�ine planning, we introduce the generalized correlated team orienteering prob-
lem and propose an e�cient two-stage solution approach for quickly determining ex-
plorative UAV missions. In an extensive study, we con�rm the competitiveness of our
heuristic in terms of computation time and solution quality compared to state-of-the-art
approaches for the team orienteering problem. We introduce new benchmark instances
and show the higher information gain of our model compared to related concepts. We
demonstrate that it is possible to achieve reliable predictions within computation times
that allow the use of these approaches in practice.

In the context of online planning, we study the adaptive mission planning problem,
which combines online learning of the surveyed contamination and online planning of
UAV missions. We classify a wide range of solution concepts from di�erent disciplines
and complement them with new modeling variants. We demonstrate that computation-
ally e�cient models yield high-quality solutions within very short computation times,
thus enabling their use in emergency surveillance. Furthermore, we show the added
value of more accurate but computationally expensive models and solution concepts in
case of uncertain initial beliefs and strongly varying processes.
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Kurzfassung
Die Verfügbarkeit von unbemannten Luftfahrzeugen (unmanned aerial vehicles oder

UAVs) und die Fortschritte in der Entwicklung leichtgewichtiger Sensorik erö�nen neue
Möglichkeiten für den Einsatz von Fernerkundungstechnologien zur Schnellerkundung
in Großschadenslagen. Hier ermöglichen sie es beispielsweise nach Großbränden, Ein-
satzkräften in kurzer Zeit ein erstes Lagebild zur Verfügung zu stellen. Die begrenzte
Flugdauer der UAVs wie auch der Bedarf der Einsatzkräfte nach einer schnellen Erstein-
schätzung bedeuten jedoch, dass die betro�enen Gebiete nur stichprobenartig überprüft
werden können. In Kombination mit Interpolationsverfahren ermöglichen diese Stich-
proben anschließend eine Abschätzung der Verteilung von Gefahrsto�en.

Die vorliegende Arbeit befasst sich mit dem Problem der Planung von UAV-Missionen,
die den Informationsgewinn im Notfalleinsatz maximieren. Das Problem wird dabei
sowohl in der O�ine-Variante, die Missionen vor Ab�ug bestimmt, als auch in der
Online-Variante, bei der die Pläne während des Fluges der UAVs aktualisiert werden, un-
tersucht. Das übergreifende Ziel ist die Konzeption e�zienter Modelle und Verfahren,
die Informationen über die räumliche Korrelation im beobachteten Gebiet nutzen, um
in zeitkritischen Situationen Lösungen von hoher Vorhersagegüte zu bestimmen.

In der O�ine-Planung wird das generalized correlated team orienteering problem
eingeführt und eine zweistu�ge Heuristik zur schnellen Bestimmung explorativer UAV-
Missionen vorgeschlagen. In einer umfangreichen Studie wird die Leistungsfähigkeit
und Konkurrenzfähigkeit der Heuristik hinsichtlich Rechenzeit und Lösungsqualität
bestätigt. Anhand von in dieser Arbeit neu eingeführten Benchmarkinstanzen wird der
höhere Informationsgewinn der vorgeschlagenen Modelle im Vergleich zu verwandten
Konzepten aufgezeigt.

Im Bereich der Online-Planung wird die Kombination von lernenden Verfahren zur
Modellierung der Schadsto�e mit Planungsverfahren, die dieses Wissen nutzen, um
Missionen zu verbessern, untersucht. Hierzu wird eine breite Spanne von Lösungsver-
fahren aus unterschiedlichen Disziplinen klassi�ziert und um neue e�ziente Model-
lierungsvarianten für die Schnellerkundung ergänzt. Die Untersuchung im Rahmen
einer ereignisdiskreten Simulation zeigt, dass vergleichsweise einfache Approxima-
tionen räumlicher Zusammenhänge in sehr kurzer Zeit Lösungen hoher Qualität er-
möglichen. Darüber hinaus wird die höhere Robustheit genauerer, aber aufwändigerer
Modelle und Lösungskonzepte demonstriert.
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Foundations





1 Introduction

“Essentially, all models are wrong,
but some are useful.”

— George Box1

In case of emergencies, such as wide-spread �res or accidents involving hazardous
gases, the �rst step toward an e�ective emergency response is to provide emergency
response units with detailed information about the nature and scale of the situation

at hand. The quicker this information is provided, the faster decisions can be made
concerning the appropriate protective equipment, the warning and evacuation of the
potentially a�ected population, and the e�ective deployment of response units.

The process of acquiring, combining and analyzing current geospatial information on-
demand immediately after an event has occurred is often referred to as rapid mapping.
The European Space Agency (ESA) has speci�cally addressed emergency rapid mapping
in its Copernicus program as part of the Sentinel-2 mission. However, up-to-date satellite
data of an a�ected area may only be available within a delay of several hours or even
days. This is su�cient for incidents such as �oods, where vast areas are a�ected and
need to be monitored. For the majority of emergencies faced by �re services and other
emergency response units, however, satellite data are of limited help.

Small unmanned aerial vehicles (UAV) o�er a �exible way of providing human
decision-makers with an overview of the situation. They are particularly promising
for emergencies of a more local scale, i.e., a�ecting several hundred meters to a few
kilometers, compared to the magnitude of natural disasters primarily addressed by the
Copernicus program. The degree of contamination can change quickly in space as well
as over time and is in�uenced by wind turbulences and local geographic features such as
di�erent terrain heights. In these scenarios, UAVs constitute a major asset for the rapid
assessment of the contamination within the immediately a�ected area.

However, due to the limited �ight time of the UAVs and the desire of the response
personnel to quickly obtain a reliable overview of the situation, the complete coverage
of the a�ected area is often impossible. In this case, observations can only be made at

1Box, G. and N. Draper (1987). Empirical model-building and response surfaces. John Wiley & Sons.
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1. Introduction

a limited number of sampling locations. Taking advantage of the fact that the distribu-
tion of gases and contaminants is usually positively spatially autocorrelated, i.e., similar
values can be observed at locations close to each other, these samples yield an estima-
tion of the extent and severity of the contamination. This raises the question of how the
available UAVs should be deployed to obtain samples that provide as much information
as possible.

1.1 Scope of this thesis
Mission planning in the context of emergency rapid mapping revolves around selecting
and sequencing sampling locations for one or several UAVs such that the overall infor-
mation obtained within the limited time frame is maximized. The ultimate goal is to
achieve a minimal prediction error at critical locations. This, however, is intractable in
practice, as it is impossible to assess the prediction error before the mission. Even after
all observations are completed, the actual estimation error cannot be measured, as the
“true” distribution is unknown. For this reason, models and planning approaches in this
context use a wide range of approximations that have been shown to lead to good esti-
mations, ranging from simple strategies for maximizing spatial coverage to probabilistic
models for minimizing prediction uncertainty.

In this thesis, we study o�ine and online concepts for planning informative UAV mis-
sions for emergency surveillance. These two planning variants are depicted in Figure 1.1.
Both are initialized with information about priorities in the a�ected area, which allows
the emergency response units to specify locations at which accurate information is par-
ticularly crucial, e.g., because a large number of people may be a�ected. Additionally,
these variants use some a-priori information about the spatial interdependencies in the
surveyed process, for example, the range of the correlation. This information enables the
selection of sampling locations accounting for the fact that observations made nearby
will yield similar values, and therefore are less informative compared to observations
spread over a larger area.

In o�ine planning, missions are determined in an a-priori-fashion, independently of
the actual observations and based on initial expert beliefs about the spatial correlation.
That is, they determine complete sequences of sampling locations for the UAVs to ex-
ecute. A prediction is computed based on the �nal set of samples after the mission is
completed. Online approaches, in contrast, do not compute entire missions before take-
o�. Instead, they maintain some environment representation, which is updated while
the mission is still in progress. New sampling locations are determined based on the
currently available information. These approaches are also referred to as adaptive if
they adjust mission based on the data collected during the �ight.

Considering the time-sensitivity of real-world applications, our main interest lies in
the design of e�cient models and solution heuristics for emergency rapid mapping. The
main contributions toward this goal can be summarized as follows:

1. We derive new models for representing the information provided by the sampling

4
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Figure 1.1: O�ine and online mission planning approaches.

locations during a mission.

2. We integrate these models into heuristics tailored toward the e�cient planning of
multi-UAV missions.

3. We investigate the capabilities and limitations of these models and solution ap-
proaches in extensive simulative studies based on newly introduced benchmark
instances modeled after a real-world use case.

1.2 Outline
This thesis is divided into four parts that are depicted in Figure 1.2.

Part I - Foundations introduces the technical and theoretical principles on which this
work is based. Chapter 2 discusses existing approaches for rapid mapping and situa-
tion assessment. The chapter furthermore gives an overview of the technologies that
enable UAV-based surveillance systems, e.g., recent progress in sensor technologies. In
Chapter 3, we summarize concepts for modeling spatial structure, interpolating spatial
processes, and assessing the quality of the predictions.

Part II - O�ine mission planning focuses on a-priori planning of informative UAV mis-
sions. In Chapter 4, we introduce the mission planning problem for emergency surveil-
lance (MPPES). Chapter 5 gives an overview of related approaches in di�erent �elds
of research, focusing on modeling variants for incorporating spatial interdependencies
within the considered area. Based on this overview, we discuss the gaps remaining in

5
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Figure 1.2: Organization of this thesis.

literature and summarize our contributions in Chapter 6. The following two chapters are
dedicated to our solution approach: In Chapter 7, we propose the generalized correlated
team orienteering problem (GCorTOP), a model for solving the MPPES that accounts
for spatial interdependencies as well as priorities within a target area. In Chapter 8, we
propose an exact approach for benchmarking purposes and introduce a two-phase multi-
start adaptive large neighborhood search (2MLS) for quickly obtaining high-quality so-
lutions for larger scenarios. In Chapter 9, we introduce new benchmark instances for
the MPPES and assess the performance of our approaches.

Part III - Online mission planning studies the adaptive mission planning problem for
emergency surveillance (AMPPES). We introduce the problem and summarize desirable
requirements for successful solution approaches in Chapter 10. In Chapter 11, we give
a detailed overview of approaches for online planning in dynamic environments pro-
posed in the �eld of environmental surveillance and discuss methods developed in other
disciplines. In Chapter 12, we review the �ndings with respect to the initially stated re-

6



1.2. Outline

quirements. We derive the research gap and summarize our contributions. In Chapter 13,
we introduce a uni�ed modeling approach for representing the value of sampling loca-
tions in an online setting. Based on this uni�ed model, we adapt existing strategies and
propose new methods for solving the AMPPES. These strategies are implemented within
a common solution architecture that is developed in Chapter 14. This chapter also in-
troduces a simulation framework for evaluating and comparing the di�erent strategies.
The results of these evaluations are presented and discussed in Chapter 15.

Part IV - Synthesis concludes this thesis with Chapter 16. We summarize our main
�ndings and contributions, discuss the results, and suggest future lines of research.
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2 Unmanned aerial vehicles in
emergency surveillance

This chapter provides provides an overview of the technologies studied within
the course of the BigGIS research project1, which aims at developing new solu-
tions for the e�ective use of UAVs in emergency services. To introduce the core

concepts of emergency rapid mapping, we �rst establish the role of surveillance and re-
connaissance in emergency management in general and �re services in particular. We
furthermore summarize existing guidelines for surveying and sampling in the case of
widespread hazards. We brie�y characterize related technological aspects, speci�cally
concerning the UAV and sensor systems, and conclude with an overview of existing
mission planning support.

2.1 Surveillance in emergency management
While the proposed UAV-based surveillance concept itself is new, situation assessment
and reconnaissance in general play an important role in emergency management. Es-
tablished procedures are summarized in this section, which focuses in particular on sit-
uation assessment and emergency sampling procedures for �re services.

2.1.1 The emergency management cycle
Emergency management is a term denoting a broad set of organizations and functions
that are concerned with the prevention of emergencies as well as response, rescue and
reconstruction operations (Haddow et al., 2017). The main purpose of emergency man-
agement is best shown at the hand of the emergency response cycle, a general model of
how societies and governments deal with emergencies, both before an incident and in the
short-term and long-term aftermath. According to this model, emergency management
consists of four phases: mitigation, preparedness, response, and recovery. Mitigation
includes all actions seeking to prevent an emergency and to reduce the damages if it

1http://biggis-project.eu/ accessed 07.12.2019
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cannot be avoided. Preparedness describes those actions taken before an emergency to
allow an e�ective response, such as the training of personnel and the provisioning of
resources and equipment. Emergency response refers to the actions taken in the imme-
diate aftermath of an incident. Finally, recovery describes the long-term measures taken
to return to a state of normality (ibid).

2.1.2 Rapid mapping
This thesis focuses on the emergency response phase, the main purpose of which is
to assist the a�ected population. These operations start immediately after an incident
occurred. Therefore, the �rst step towards an e�ective emergency response is to assess
the nature and scale of the situation at hand to coordinate the deployment of units and
the protection of the population.

For major disasters such as landslides, earthquakes, or �oods, dedicated systems have
been proposed for acquiring this information using remote sensing technologies. In
this context, the process of acquiring and providing information is often referred to as
rapid mapping, emphasizing the spatial nature of the data that is required. The arguably
best-known examples are satellite-based systems such as the Copernicus Emergency
Management Service (Copernicus EMS) or the UNOSAT Rapid Mapping Service, which
provide users with detailed maps indicating the extent and severity of the crisis (Coper-
nicus EMS, 2018). The target delivery time of these maps is within 9 to 12 hours after an
incident, with a �rst overview provided within 3 hours and detailed maps available after
an estimated 5 days (Spruyt, 2017). This delivery time is dependent on the time required
for acquiring satellite imagery and for data processing and map preparation. The spatial
resolution of the provided data, i.e., the amount of detail that can be captured, varies
signi�cantly. Reported resolutions ranging from approximately 1 square meter per pixel
(Copernicus EMS, 2016a) to values as high as some hundred square meters per pixel2
(Copernicus EMS, 2016b).

2.1.3 Situation assessment for first responders
The vast majority of emergencies faced by �rst responders do not reach the magnitude
of natural disasters for which the rapid mapping support described above has been in-
troduced. Nonetheless, reconnaissance is an essential aspect of every operation. It is the
�rst action in the management or command system (the so-called Führungssystem) de-
scribed in the German federal �re service regulations (FwDV 100, 1999). In this work, we
focus on operations dealing with large �res and chemical accidents that lead to the re-
lease of potentially hazardous substances. While far from being a daily occurrence, the
German Federal O�ce of Civil Protection and Disaster Assistance (BBK) reports that

2Di�erent de�nitions are used in literature to measure the resolution of a sensor system. In this remain-
der of this work, we understand the resolution as the ground sampling resolution, i.e., the size of the
ground area captured per pixel.
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a total of 99 severe incidents and an estimated 1,000 incidents involving transports of
dangerous goods occurred within three years (BBK, 2018b).

When an emergency occurs, the main focus of the response units is to

• detect and identify the speci�c hazard,

• protect the general population in the a�ected area and

• provide immediate assistance for those who have come into contact with a haz-
ardous substance, e.g., medical support or decontamination (BBK, 2018a).

These responsibilities require a reliable overview of the nature and distribution of any
potentially hazardous substances. The rapid mapping services, which to this date are
almost exclusively tailored to large-scale disasters, do not provide data in the speed and
accuracy that is required for these smaller incidents. Instead, the BBK maintains several
hundred dedicated reconnaissance vehicles that are equipped with sampling sets for a
range of biological, chemical or nuclear contaminants (BBK, 2019).

2.1.4 Sampling procedure and guidelines
To support the emergency response personnel in ground-based situation assessment, the
BBK has published guidelines and recommendations for sampling in case of chemical,
biological and radioactive hazards (Bachmann et al., 2015). They are intended to ensure
the e�ective use of the BBK’s reconnaissance vehicles by introducing common standards
for “emergency sampling”. In addition to instructions addressing speci�c equipment,
these guidelines suggest a basic sampling strategy for �rst responders, consisting of:

1. De�ning the area of interest, i.e., the area suspected of contamination,

2. Identifying potential sampling points where a hazard may be present,

3. Prioritizing these sampling points,

4. Taking samples at a selected set of locations following these priorities,

5. Evaluating the samples, and

6. Decontaminating personnel and equipment, if necessary.

To determine the priorities referred to in step 3, the BBK proposes to distinguish between
three general levels, which are summarized in Table 2.1. This classi�cation depends on
the likelihood of contamination in an area and the size of the potentially a�ected popu-
lation. The purpose of this approach is to ensure that samples are taken at critical loca-
tions, i.e., at regions with a high likelihood of contamination where the civil population
may need assistance. The guidelines furthermore recommend taking control samples at
non-contaminated areas to establish the local background levels of relevant substances
and to select representative samples across the designated target area. This is done to
ensure that the spread of substances and contaminants can be reliably assessed.
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Priority level 1 Areas with very high likelihood of contamination and presence
of endangered population

Priority level 2 Areas where contamination is likely
Priority level 3 Areas with moderate risk or uncertain risk of contamination

Table 2.1: Priority levels for emergency sampling according to the German Federal O�ce of Civil
Protection and Disaster Assistance (Bachmann et al., 2015).

2.1.5 Assessment of affected areas and priorities
Emergency services already have tools at their disposal to determine potentially con-
taminated areas after an incident. The probably best-known example is the WISER ser-
vice, an online information system developed by the U.S. National Institutes of Health
for emergency responders. This service indicates protective ranges and lists protective
measures and decontamination procedures for a wide range of hazardous substances
(United States National Library of Medicine, National Institutes of Health, 2018). For
airborne substances, this service can also estimate and visualize a�ected areas based on
the location of the source and the direction and strength of the wind. An example of
the visualization component is given in Figure 2.1, which represents the potentially af-
fected area and recommended actions for a methane spill. This gives a rough indication
of a�ected areas, but the estimate has to be con�rmed or corrected in-situ.

2.2 UAV and sensor system
Fire services still largely rely on the ground-based assessment of critical areas, either
by using dedicated surveillance vehicles or by performing observations on foot. This,
however, is comparatively slow. Furthermore, it requires the availability of quali�ed
personnel and carries the risk of exposing them to hazardous substances.

UAV-based optical remote sensing systems o�er an alternative as they can be deployed
quickly, require less personnel than conventional surveillance methods, and allow sur-
veying areas that are otherwise inaccessible. Similar to satellite-based rapid mapping
services, they can provide information about the extent and the severity of the contam-
ination. In the following, we give a brief overview of the methods and technologies that
are combined in such a surveillance system. So far, however, most of these approaches
are still in the developmental state.

2.2.1 UAV systems
UAV systems can be grouped into two categories: �xed-wing systems and rotary-wing
UAVs. Fixed-wing UAVs �y at higher speeds but need to maintain constant forward mo-
tion. Furthermore, they require either a runway or a launcher for take-o� and landing.
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Figure 2.1: Screenshot of the WISER system, indicating protective distances for a methane
spill depending on source location and primary wind direction. Source: https:
//webwiser.nlm.nih.gov/, accessed 27.05.2018.

Rotary wing UAVs have lower maximum speed and �ight duration, but can start and
land vertically. They are also able to stay stationary during the �ight. This �exibility
makes them attractive for emergency surveillance (Boccardo et al., 2015).

For this reason, the BigGIS project focused on rotary-wing UAVs with optical remote
sensor systems for surveying an area after an emergency. These vehicles can carry sen-
sors and equipment with a total weight of up to 3 kg. Some systems can �y up to around
40 minutes at a maximum horizontal cruise speed of around 50 km/h above ground, de-
pending on the total payload and environmental in�uences3. In practice, these factors
can have a major impact on �ight time and cruise speed.

2.2.2 Sensor systems and substance identification
In case of emergencies involving hazardous substances, optical remote sensors are of
particular interest. Other than chemical sensors, they allow the provisioning of infor-

3compare, e.g., the AiD-MC8 octocopter, https://www.aidrones.de/, accessed 05.03.2018
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Figure 2.2: Prototypical UAV system and hyperspectral camera. Source: Bodo Bernsdorf, EFTAS
Fernerkundung Technologietransfer GmbH.

mation without direct contact with a substance, even if these substances are invisible to
the human eye. Commercially available systems include, for example, infrared (IR) cam-
era systems that can detect substances such as methane.4 For emergency surveillance
applications, the BBK operates the IR remote reconnaissance device SIGIS 2 for detecting
chemical and biological threats (Harig and Rusch, 2011).

In recent years, the emergence of lightweight hyperspectral cameras has allowed their
use onboard UAVs (Aasen et al., 2015). A recent overview of available sensor systems in
the domain of environmental monitoring is provided by Manfreda et al. (2018). Similar to
existing approaches for the remote sensing of chemical agents (Flanigan, 1996; May�eld
et al., 2000), prototypical systems for detecting a wider range of substances using thermal
and hyperspectral imaging systems have been studied in the BigGIS project. The sensors
used in this project analyze the spectral range of visible light and near IR (wavelength
between 450 - 950 nm). As substances re�ect or absorb light in speci�c patterns, this
information can be used to identify objects and materials based on their characteristic
spectral signature.

A (simpli�ed) example of how substances can be detected this way is given in Fig-
ure 2.3, which depicts a proof of concept conducted during the BigGIS research project.
Here, an arti�cially created smoke cloud was blended with additives, i.e., speci�c sub-
stances with known spectral signatures, in this case in the form of chlorophyll. This
cloud can be seen at the left-hand side in Figure 2.3a, which depicts the smoke cloud in
white while the surrounding vegetation, which similarly contains chlorophyll, is high-
lighted in red. Two locations are marked in this image, one close to the source and one

4https://www.flir.com/browse/industrial/gas-detection-cameras/, 06.02.2018
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(a) Referenced locations (b) Spectral signatures

Figure 2.3: Spectral signatures taken at two points in a chlorophyll-blended smoke cloud, one
close to the source (red) and one in the middle of the cloud (green). The sample lo-
cations are indicated in the reference image on the left, where the smoke cloud is
highlighted in white and the vegetation is indicated in red. The �gure on the right
gives the observed spectral signatures. Source: Alexandra Bicsan, Bodo Bernsdorf,
EFTAS Fernerkundung Technologietransfer GmbH.

in the middle of the cloud. Figure 2.3b gives an extract of the hyperspectral image for
both locations, indicating very similar patterns with a �rst maximum in the visible green
spectrum (550 nm), a decrease in the red spectrum (towards 650 nm), and an increase in
the near IR.

Problems arise in practical situations due to the intermingled substances with poten-
tially similar patterns and errors in the measurements. Still, these preliminary results
indicate that it is possible to detect and identify speci�c gases using UAV-based hyper-
spectral imaging systems, thus demonstrating their potential for surveillance applica-
tions. Additionally, the UAVs can be equipped with standard RGB-cameras, allowing the
user to verify the results.

2.3 Planning and executing UAV missions
In addition to �ying under manual control, UAV systems can move autonomously along
predetermined waypoints. In the following, we discuss essential �ight parameters,
which have to be taken into account for planning UAV missions, and brie�y review
supporting tools that enable this form of automated surveillance.

Flight parameters

The possible speed, maximum height and �ight time depend on the deployed UAV plat-
form, i.e., the vehicle itself and the total payload. The e�ective �ight height and resulting
ground resolution, i.e., the size of the area represented by one pixel in an image, depend
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on the sensor that is used. In practice, the �ight height above ground is determined so
that a desired target ground resolution can be achieved.

The fundamental relationship between �ight height and ground resolution for any
given optical sensor is indicated in Figure 2.4. Note that this depiction is idealized, leav-
ing out in�uences such as lens distortions or tilts of the camera that mean that sensor
and covered ground are not strictly aligned. In practice, accurate values need to be ob-
tained from the manufacturers’ technical speci�cations. We denote the �ight altitude as
h and the ground sampling resolution as pxr. The camera is de�ned by its focal length f
with h� f , horizontal sensor size b and number of pixels per band pix. The width of an
image in terms of ground distance is denoted as g. We can then express the relationship
between �ight height and resolution as

g =
h · b
f

(2.1)

The total area covered is A = g2 for a quadratic sensor such as the one employed in our
use case. The ground sampling resolution, i.e., the covered area per pixel, is

pxr =
A

pix
.

The camera depicted in Figure 2.2 achieves a resolution of less than 1 cm2 per pixel5,
depending on the �ight altitude. The image given in Figure 2.3 has a ground sampling
resolution of approx. 5 cm2.

Ground control

During the �ight, UAVs are controlled remotely using a ground control software that
communicates with the vehicles and shows updates, e.g., concerning position and bat-
tery status, to the user. Often used open-source systems are for example QGroundCon-
trol6 or Ardu Mission Planner7. Most of these systems o�er two basic functions for
planning UAV missions:

• Following a manually determined sequence of targets, typically in form of a point-
and-click application, and

• Planning a mission for full coverage of a given region, resulting in a grid-like
regular pattern.

The ground control systems communicate with the UAV using standardized protocols
such as MAVLink8. This protocol supports the speci�cation of mission parameters and

5http://cubert-gmbh.com/product/uhd-185-firefly/, accessed 31.01.2018
6http://qgroundcontrol.com/, accessed 20.03.2018
7http://ardupilot.org/planner/index.html, accessed 20.03.2018
8http://qgroundcontrol.org/mavlink/start, accessed 07.10.2017
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Figure 2.4: Dependency between camera speci�cations and ground resolution.

allows the transmission of data relating to the state of the vehicle such as the current
position, speed, and orientation. The mission plan includes directives concerning the
orientation of the camera and the number of images to be taken at each location. In an
emergency scenario, this setup enables a user to plan and execute a mission by selecting
a sequence of target locations without having to remotely control the UAV or the sensor.

Flight controller

The term �ight controller refers to the on-board hardware and �rmware of a UAV. This
includes the on-board processor as well as sensors such as the inertial measurement
units (accelerometers and gyroscopes), which provide information about the state of the
vehicle. It may further include additional modules, for example, GPS or barometers. The
main purpose of a �ight controller is to control and stabilize the aircraft during the �ight.
This allows a UAV to �y autonomously, i.e., without continuous input from the user, by
following the mission plan transmitted by the ground station. If contact to the ground
station is lost, �ight controllers typically follow a fail-safe directive, returning the UAV
to the launch position or a predetermined home location.

2.4 Summary
In this chapter, we provided an overview of the foundations of emergency surveillance
with UAVs. We showed that an initial phase dedicated to reconnaissance and surveil-
lance plays an essential role in emergency management. Currently, emergency services
largely rely on ground-based situation assessment, with satellite-based remote sensing
systems only being available in case of large-scale disasters. An emerging alternative
are UAV-based systems that can be deployed close to the a�ected area in the immedi-
ate aftermath of an incident. Equipped with remote sensor systems, they can be used
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to detect and identify substances while avoiding immediate contact with contaminants.
We demonstrated that the use of UAV platforms is further enabled by control systems
that allow the UAVs to move autonomously through predetermined waypoints without
requiring continuous oversight. This makes it possible to deploy UAV �eets with little
manual e�ort, further reducing the demands on the response units.
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3 Models for spatial processes

In case of accidents, response units often face hazardous substances that are spread
across considerable areas. Hence, the objective of the reconnaissance phase in emer-
gency surveillance is to obtain information about a phenomenon that is inherently

spatial. In this chapter, we discuss methods for modeling spatial dependencies and for
making inferences based on sampled locations. These concepts play a central role in the
mission planning problem introduced in Chapter 4 and are used in the model formula-
tions in Chapters 7 and 13.

The approaches discussed in the following sections have been developed in two dis-
tinct �elds of research: Multivariate regression and geostatistics. The methods are simi-
lar and are occasionally used synonymously. They di�er in terminology and sometimes
in the details of speci�c approaches. To establish a common understanding, we cover
both approaches: generally applicable regression approaches used in the context of ma-
chine learning and the more speci�c methods for spatial processes developed in the �eld
of spatial statistics.

In this chapter, we �rst discuss how spatial dependencies within a process can be
modeled in Section 3.1. In Section 3.2, we give an overview of approaches that use these
properties and models for interpolating and predicting spatial processes.

3.1 Expressing spatial structure
Environmental processes such as the distribution of airborne contaminants follow phys-
ical laws but are too complex to be easily described or even understood. A possibility to
deal with the complexity is to consider these processes as random and to employ statis-
tical methods to describe and analyze them (Cressie and Wikle, 2011). Representing the
a�ected area as a set of Cartesian coordinates V ⊂ R2, a physical phenomenon can be
described as a stochastic process {Z(s)}s∈V over the locations in V , i.e., as a collection
of random variables de�ned over a two-dimensional �eld (ibid).

The observed phenomena in our case, i.e., plumes or gases, are usually positively spa-
tially autocorrelated, which means that similar values occur at locations close to each
other (Stachniss et al., 2009). In other words, they follow Tobler’s First Law of Geog-
raphy, which states that “everything is related to everything else, but near things are
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more related than distant things” (Tobler, 1970). This premise is the foundation for the
modeling and interpolation approaches that we discuss in the next sections.

3.1.1 Covariance functions and covariance matrices
In all approaches considered in this chapter, the spatial structure of a given phenomenon
is expressed by its covariance Cov(Z(s), Z(s′)), which describes the similarity between
random variables Z(s) and Z(s′) at di�erent locations s and s′ with s, s′ ∈ V .

For a stochastic process including a number of locations V , the pairwise covariances
are combined in a covariance matrix ΣV,V with each element (s, s′) describing the covari-
ance Cov(Z(s), Z(s′)). This matrix comprises the fundamental information and assump-
tions about the relationship between locations, and therefore about the spatial process
itself. Given a su�cient number of observations, it is possible to determine an empir-
ical covariance matrix. However, it is common to use covariance models rather than
empirical covariances, as observations are usually not available for all s ∈ V .

As a consequence, the covariance of a stochastic process is usually modeled using a
covariance function k(s, s′), also called a kernel (Rasmussen and Williams, 2006). It de-
pends on the distance between locations and generally decreases with growing distance
(Krause et al., 2008). A process is stationary if Cov(Z(s), Z(s′)) = Cov(s − s′), i.e., it
only depends on the vector di�erence between two locations, not the locations them-
selves. If Cov(Z(s), Z(s′)) = Cov(‖s − s′‖), i.e., the covariance only depends on the
distance, the process is called isotropic.

Several covariance functions have been proposed that are used for spatial interpola-
tion and learning. The parameters characterizing a kernel function are usually called
hyperparameters. To give an example, a popular function is the squared exponential
kernel

kSE(s, s′) = ν2 · exp(−‖s− s
′‖2

2l2
) (3.1)

where ‖s − s′‖ indicates the distance between s and s′, here and in the following un-
derstood as the Euclidean distance. The hyperparameters of this kernel are the so-called
lengthscale l > 0, which determines how smooth the function is, and ν2 indicating the
process variance as a scaling parameter.

3.1.2 The variogram
In spatial statistics, a widely used measure for spatial relationships is the variogram
γ(d) rather than a covariance function.1 These two approaches, however, are closely
related, as the variogram describes the average variance instead of the covariance. In

1The term variogram itself is not used consistently in geostatistics literature, and some authors refer
to γ(d) as the semi-variogram (Bachmaier and Backes, 2011). In this thesis, we only use the term
variogram.
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other words, it indicates the average degree of dissimilarity depending on the distance2

d := ‖s− s′‖ between two locations s and s′.

Formally, with ν2 as the maximum variance in a process and Cov(Z(s), Z(s′)) denot-
ing the covariance between two locations s and s′ at distance d, the relationship between
the the variogram and the covariance is (Mitas and Mitasova, 1999):

γ(d) = ν2 − Cov (Z(s), Z (s′)) .

Given a number of observed realizations zs, zs′ , ... of the random process, an empirical
variogram can be computed as follows:

γ(d) =
1

2|N(d)|
∑

(s,s′)∈N(d)

(zs − zs′)2 (3.2)

In Equation (3.2), N(d) denotes the set of all pairs of locations at distance d, and |N(d)|
gives the size of this set, i.e., the number of corresponding pairs. In other words, the
empirical variogram gives the average squared di�erence between observations for all
pairs of values at distance d (Rossi et al., 1994).

For subsequent analytical approaches and predictions, these empirical variograms are
often replaced by theoretical variogram models for describing the spatial dependence
of the random process. They are �tted to the empirical variogram such that the mean
squared error is minimal. These variogram models closely mirror the covariance func-
tions discussed in Section 3.1.1. To give an example, the exponential variogram, which
corresponds to the exponential kernel in Equation (3.1), is commonly de�ned as (ibid):

γSE(d) = ν2

(
1− exp

(
−3d

a

))
. (3.3)

This formulation is equivalent to the kernel function in Equation (3.1). In geostatistics,
the parameters have been associated with speci�c characteristics of a spatial process:
Similar to Equation (3.1), ν2 denotes the maximum variance within the process. When
describing a variogram, this value is commonly referred to as the sill. The parameter a
denotes the so-called range of the variogram, i.e., the distance at which locations are no
longer spatially correlated, with larger values for a indicating that the sill is reached at
higher distances. As the exponential variogram converges toward the sill asymptotically,
a is usually understood as the “practical” range at which the variogram value reaches
95% of the sill (Bohling, 2005).3

2This distance is also referred to as the separation distance or lag in spatial statistics
3With γ(d) = ν2(1− exp(− 3‖s−s′‖

a ))
‖s−s′‖≥a
≥ ν2(1− exp(−3)) ≈ 0.95ν2
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3.2 Spatial interpolation
The main purpose of modeling spatial processes is to allow inferences about unsurveyed
locations, based on a �nite number of known observations. This section discusses some
of the most often used spatial interpolation approaches, both deterministic and stochas-
tic. Afterward, we show how properties of these approaches can be used for assessing
the quality of a prediction and for designing sampling strategies.

3.2.1 Deterministic approaches
Deterministic methods interpolate a phenomenon using approximations of the relations
between observations. Again, the basic premise behind all of these approximations is
that closer objects or points exhibit more similarities than more distant ones, i.e., that the
underlying data is spatially autocorrelated. These methods are easily applicable for a vast
number of situations but do not include a stochastic component, i.e., they cannot indicate
the uncertainty or error in their prediction. Typically, they determine an estimated value
Ẑ(s0) at location s0 as a weighted average of the known values zi for i ∈ S :

Ẑ(s0) =
∑
i∈S

λizi. (3.4)

They di�er in how the weights λi and the observations taken into account for the inter-
polation are determined.

To give one example, in nearest neighbor interpolation (NN), the estimation Ẑ(s0)
equals the value zs of the location s ∈ S that is closest to s0, i.e., (Li and Heap, 2008)

λi =

{
1, i = arg mins∈S ‖s− s0‖
0, otherwise

(3.5)

When applying inverse distance weighting (IDW), which is one of the most common non-
statistical approach, the estimated value Ẑ(s0) is computed as a weighted average with
weights inversely proportional to a power q of the distance between locations (Mitas
and Mitasova, 1999):

λi =

1
‖si−s0‖q∑

s∈S

1
‖s−s0‖q

(3.6)

The parameter q > 0 determines how quickly weights decrease with distance, with
higher values for q leading to increased weights for close observations and lower values
resulting in a smoother interpolated surface.

These approaches and other non-statistical interpolation methods yield quick predic-
tions with low computational e�ort. Unlike the stochastic methods discussed in the next
section, they do not provide information about the prediction error (Li and Heap, 2008).
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3.2.2 Statistical interpolation approaches
Statistical interpolation approaches use the covariance models discussed in Section 3.1.1
to make estimations based on a set of observations. In this section, we �rst discuss
Gaussian process regression for spatial processes. We then proceed with a discussion of
kriging, which has been developed in the �eld of geostatistics.

Gaussian process regression

Gaussian processes (GP) are used extensively in machine learning and statistics. This
section is based on Rasmussen and Williams (2006), who de�ne a GP, expressed as
ZV := {Z(s)}s∈V as “a collection of random variables, any �nite number of which have
a multivariate normal distribution” (ibid, p. 13). This means that for any �nite subset
V ′ ⊂ V , the random vector ZV ′ is normally distributed.

A GP is completely de�ned by its covariance function k(s, s′) and mean function
µ(s) = E[Z(s)]. As stated above, for the spatial processes that we are interested in,
the covariance function describes the spatial covariance across a random �eld depend-
ing on the distance between locations. The mean function gives the expected value for
all s ∈ V . For simplicity, it is usually set to zero.

The main advantage of a GP in this domain is its capability to make inferences about
unobserved locations based on several sampled locations. The GP without taking sample
observations into account is referred to as a Gaussian prior. As indicated above, the prior
is de�ned by its mean and covariance functions. For simplicity, we denote the prior mean
as µV , representing a column vector of expected means with one entry µ(s) for each
s ∈ V . The covariance matrix is denoted ΣV,V and contains an entry (s, s′) = k(s, s′)
for all s, s′ ∈ V . This covariance matrix indicates the essential characteristics of the
process. In other words, the prior encapsulates all assumptions or information that one
could have about the phenomenon without having performed observations, in particular,
assumptions about the kernel function and smoothness of the distribution. In short, we
denote the Gaussian prior as

ZV v GP(µV ,ΣV,V). (3.7)

If samples are available for a set of locations S ⊂ V , the prior belief is updated taking
these measurements into account. The result is a Gaussian posterior, represented by a
posterior mean µV|S and a covariance matrix ΣV,V|S conditioned on set S . We write this
as

ZV|S v GP(µV|S ,ΣV,V|S) (3.8)

An example illustrating the di�erence between GP prior and posterior distributions
is given in Figure 3.1. For simplicity, we use a GP de�ned over R rather than a spatial
process de�ned over R2. Figure 3.1a gives the Gaussian prior. Here, the prior mean is
0. The grey shaded area represents the 95 % con�dence interval, indicating the range
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Figure 3.1: Prior and posterior probability distribution. Dashed lines indicate samples drawn from
the respective prior or posterior distribution. The grey area gives the 95 % con�dence
interval. Figure (A) represents the Gaussian prior. Figure (B) gives the posterior distri-
bution, conditioned on �ve samples indicated in red. The red line gives the posterior
mean. Own representation based on Rasmussen and Williams (2006).

in which we expect the output Z(x) to be. Grey lines indicate sample functions that
represent possible realizations of this process. The prior covariance determines the shape
and amplitude of these functions. For instance, it characterizes the average distance
between extrema and the rate at which values change, resulting in similar patterns for
all sample functions. Figure 3.1b indicates the Gaussian posterior conditioned on �ve
observations that are marked as red crosses. Again, dashed lines are sample functions,
this time drawn from the posterior. The red line represents the posterior mean function.

To derive the posterior, we de�ne ΣV,S as the covariance matrix between all s, s′ with
s ∈ V , s′ ∈ S , and ΣS,S as the covariance matrix between all s, s′ ∈ S . Furthermore, µS
designates a column vector of prior mean values µ(s) for s ∈ S . The observed values
at locations S are represented as a column vector zS . We can then determine the mean
vector and covariance matrix of the GP posterior as follows:

µV|S = µV + ΣV,SΣ−1
S,S(zS − µS) (3.9)

ΣV,V|S = ΣV,V − ΣV,SΣ−1
S,SΣS,V . (3.10)

The posterior mean determined in Equation (3.9) gives the expected values µV|S for
all s ∈ V . The posterior covariance in Equation (3.10) indicates the uncertainty asso-
ciated with the predictions. The posterior thus incorporates the knowledge obtained
using the sampled locations in combination with information about the fundamental
characteristics of the process that are formulated in the form of the Gaussian prior. A
disadvantage of this approach is its complexity of O(n3), resulting from the matrix in-
versions in Equations (3.9) and (3.10). While several approaches have been proposed
that use approximations (see, e.g., Hensman et al., 2013) or exploit structures of partic-
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3.2. Spatial interpolation

ular covariance functions (e.g., Saatçi, 2011)), the overall complexity of a GP regression
remains an issue when fast response times are required (Bui et al., 2015).

Parameter estimation

The Gaussian posterior de�ned in Equations (3.9) and (3.10) is based on a speci�c prior
covariance matrix, i.e., it depends on the speci�c parameters characterizing the cor-
responding kernel function. However, the prior belief about these parameters can be
wrong, thus impacting the quality of a prediction. To avoid this, the hyperparameters of
a kernel function, here denoted θ, are �tted based on the available samples, i.e., we seek
to �nd the best hyperparameters θ̂, given a set of sampled values zS .

We denote a parametrized kernel function as kθ. We furthermore denote the covari-
ance matrix de�ned by kθ as Σθ for s, s′ ∈ S . A means to �nd the best set of hyperpa-
rameters is to optimize the log-marginal likelihood log p(zS |θ), which is de�ned as

log p(zS |θ) = −0.5(zS − µS)>Σ−1
θ (zS − µS)− 0.5 log |Σθ| − 0.5n log 2π (3.11)

where |Σθ| is the determinant of the covariance matrix and n is the dimension of the
process.

The �rst term on the right-hand side of Equation (3.11) measures the �t to the sampled
data (−0.5(zS −µS)>Σ−1

θ (zS −µS)). The second term (−0.5 log |Σθ|) is the complexity
penalty, which is used to avoid over�tting. Based on this, the �tted hyperparameters θ̂
can be determined as those that maximize the log-marginal likelihood, i.e.:

θ̂ = arg max
θ

log p(zS |θ). (3.12)

We refer to Rasmussen and Williams (2006) for a more detailed discussion but give
one example to illustrate the interpretation of Equation (3.11): In a squared exponen-
tial kernel (see Equation (3.1)), a higher value for the lengthscale parameter represents
a smoother distribution across space. This increases the negative complexity penalty,
i.e., the second term. At the same time, it decreases the data �t in the �rst term, as the
posterior cannot follow the sampled data as closely as it is possible with a lower value
for the lengthscale. In contrast, low lengthscales imply a high process complexity while
increasing the data �t, which means that over�tting is more likely.

Kriging

Kriging refers to a similar prediction technique that has been developed in spatial statis-
tics. Instead of using covariance functions like GP regression approaches, kriging is
based on the variogram (Section 3.1.2). Kriging is often referred to as GP regression
without further di�erentiation between the two approaches. However, some di�erences
remain between these concepts. For example, several techniques have been developed
speci�cally for kriging, as it directly addresses spatial data analysis. This section in-
troduces the basic principles behind kriging. Unless otherwise noted, this discussion is
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3. Models for spatial processes

based on Wackernagel (2013) and Cressie and Wikle (2011), where we refer the reader
for a more extensive overview.

Several of kriging methods have been developed to address speci�c properties of the
underlying random �eld: The most common approaches are simple, ordinary, and uni-
versal kriging. Simple kriging is based on the assumption that the mean of the underly-
ing random function Z(s) is constant and known. Ordinary kriging assumes a constant,
but unknown, mean. Finally, universal kriging can deal with means that are both un-
known and not constant, i.e., it can incorporate trends in the data. This way, kriging
also allows for variations that can be explained by external factors such as wind. In the
following, we focus on ordinary kriging, as it is the most commonly applied and su�ces
to understand the concept (Curran and Atkinson, 1998).

Note that, often, the observations are restricted to a smaller set of samples S ′ ⊂ S ,
also called the kriging neighborhood, as samples across larger distances are no longer
correlated and thus should have little in�uence on the result (Oliver and Webster, 2014).
For ordinary kriging, this means that the assumption of a constant mean only needs to be
ful�lled for the kriging neighborhood rather than the whole process. Formally speaking,
it requires local second-order stationarity.

As in Equation (3.4), the predicted value Ẑ(s0) at location s0 is calculated as a weighted
linear combination of observed values zs. For each location s0 to be interpolated, the
objective of the kriging approach is to determine weights λi for all observed locations
such that (a) the estimator is unbiased and (b) the prediction error is minimal. Condition
(a) requires that the mean of the estimation must be equal to the mean of the real values:

E
(
Ẑ(s0)− zs0

)
= E

(∑
i∈S′

λizsi − zs0

)
= 0

Furthermore, the assumption of stationarity in ordinary kriging means that the expected
value of the random process is an unknown constant mean and, therefore, that E(zsi) =
E(zs0) = µ for i ∈ S ′. Together with the above condition and the linearity of expectation,
it derives that: ∑

i∈S′
λiµ− µ = 0

⇔
∑
i∈S′

λi = 1. (3.13)

Condition (b) requires that the variance of the estimation error is minimal. The variance
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3.2. Spatial interpolation

of the estimation error can be determined as:

Var(Ẑ(s0)− zs0) = Var(Ẑ(s0)) + Var(zs0)− 2Cov(Ẑ(s0), zs0)

= Var(
∑
i∈S′

λizsi) + σ0 − 2Cov(
∑
i∈S′

λizsi , zs0)

= E((
∑
i∈S′

λizsi)
2)︸ ︷︷ ︸∑

i,j∈S′ λiλjE(zsizsj )

− E((
∑
i∈S′

λizsi))
2

︸ ︷︷ ︸∑
i,j∈S′ λiλjE(zsi )E(zsj )

+σ0 − 2Cov(
∑
i∈S′

λizsi , zs0)

=
∑
i∈S′

∑
j∈S′

λiλj(E(zsizsj)− E(zsi)E(zsj)) + σ0 − 2Cov(
∑
i∈S′

λizsi , zs0)

=
∑
i∈S′

∑
j∈S′

λiλjCov(zsi , zsj) + σ0 − 2
∑
i∈S′

λiCov(zsi , zs0) (3.14)

To determine the best linear unbiased predictor, the objective is to minimize the error
variance de�ned in Equation (3.14) while respecting Equation (3.13). To do so, we intro-
duce a Langrange multiplier 2ψ such that

φ =
∑
i∈S′

∑
j∈S′

λiλjCov(zsi , zsj) + σ0 − 2
∑
i∈S′

λiCov(zsi , zs0) + 2ψ(
∑
i∈S′

λi − 1)

and di�erentiate with respect to the multiplier ψ and weights λi:

∂φ

∂λi
= 2

∑
j∈S′

λjCov(zsi , zsj)− 2Cov(zsi , zs0) + 2ψ ≡ 0, i ∈ S ′

∂φ

∂ψ
= (
∑
i∈S′

λi − 1) ≡ 0

This leads to the set of kriging equations for determining the weights λi:∑
j∈S′

λjCov(zsi , zsj) + ψ = Cov(zsi , zs0), i ∈ S ′ (3.15)∑
i∈S′

λi = 1 (3.16)

This means that the weights λi depend on the variogram γ(‖si−sj‖) = ν2−Cov(zsi , zsj)
and, therefore, only on the relative distances between sample locations si and the inter-
polated location s0.

Similar to GP regression, the computational complexity of kriging isO(n3), resulting
in the same obstacles when facing large data sets or needing quick response times. On
the other hand, kriging-based approaches have been shown to perform particularly well
for spatial interpolation in terms of prediction accuracy (Li and Heap, 2008).
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3. Models for spatial processes

3.2.3 Measuring prediction qality

The primary advantage of GP regression and kriging over non-statistical approaches
is the knowledge about the variability that remains in the process after the prediction.
This yields an estimate about the prediction error and thus serves as an indication of the
quality of a prediction.

Variability measures

In GP regression, the variability is represented in form of the posterior covariance ΣV,V|S
determined in Equation (3.10). One possible measure for the variability in the process is
the trace tr(Σ) of a covariance matrix, which is de�ned as the sum of the diagonal ele-
ments k(s, s), s ∈ V . Another measure of uncertainty is the so-called “entropy” H(ZV)
of a Gaussian process ZV in n dimensions (Rasmussen and Williams, 2006):

H(ZV) = 0.5 · log((2πe)n|ΣV,V |), (3.17)

where |ΣV,V | denotes the determinant of the covariance matrix ΣV,V . In kriging, the
variability of the prediction is given in form of the estimation error variance Var(Ẑ(s0)−
zs0) for all predicted locations s0, see Equation (3.14). To assess the entire process, this
value can be averaged over all interpolation locations (Melles et al., 2011). In general,
the lower these measures are, the better is the corresponding prediction.

Performance indicators

Besides these variability measures, a range of performance indicators has been proposed
to evaluate the quality of an interpolation. These measures are typically based on the
di�erence between the actual and the predicted values. Among these measures are, for
example, the root mean squared error (RMSE)

RMSE =

√
1

|V|
∑
s∈V

(Ẑ(s)− zs)2, (3.18)

the mean absolute error (MAE)

MAE =
1

|V|
∑
s∈V

|Ẑ(s)− zs|, (3.19)

and the mean error (ME)

ME =
1

|V|
∑
s∈V

(Ẑ(s)− zs). (3.20)
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3.2. Spatial interpolation

RMSE and MAE measure the size of the error, with RMSE giving a relatively high weight
to outliers. ME is mostly used in order to measure the bias in the estimated values (Li
and Heap, 2008).

3.2.4 Designing sampling strategies
Gaussian processes can be used to design sampling strategies, i.e., strategies for select-
ing sampling locations that yield as much information as possible about a spatial process
(Curran and Atkinson, 1998). This is made possible by the fact that a GP provides knowl-
edge about the variability that remains in the process after the prediction, represented in
form of the posterior covariance ΣV,V|S (Equation (3.10)). This covariance is independent
of the observed values zS and only depends on the sampled locations S , which makes it
possible to estimate the quality of a set of sampling locations S prior to actually making
the observations.

In the domain of geostatistics, the estimation error variance has been used to deter-
mine an adequate sample spacing, i.e., distances between samples that yield an accept-
able prediction quality (see, e.g., Curran and Atkinson, 1998; Van Groenigen et al., 1999).
In the literature on Gaussian processes, additional variability measures for estimating
the information gain yielded by a set S have been derived. We discuss two measures
often used in literature: The �rst criterion for measuring the quality of a set S is the
average reduction in variance (ARV) that is achieved by the selected sampling locations
(Das and Kempe, 2008; Krause et al., 2008). The measure is formally de�ned as:

ARV(S) =
1

|V|
(tr(ΣV,V)− tr(ΣV,V|S)), (3.21)

with tr(ΣV,V) and tr(ΣV,V|S) measuring the variances of the GP prior and posterior,
respectively.

A criterion based on the concept of entropy (Equation (3.17)) is themutual information
(MI) between the selected sensing locations and the interpolated locations V \S , de�ned
as the reduction in entropy at all unobserved locations (Caselton and Zidek, 1984). The
objective of this approach is to select sampling locations that are “most informative”
about the remainder of the process. WithZV\S as the Gaussian prior over all interpolated
locations and ZV\S|S as the corresponding Gaussian posterior, MI is de�ned as follows:

MI(S) = H(ZV\S)−H(ZV\S|S). (3.22)

The objective of this approach is to select sampling locations that are “most informative”
about the rest of the process.

Using these criteria, sensing locations S can be determined such that ARV or MI is
maximal, which means that the variability of the posterior is minimal. Note that the basic
complexity of all of these measures is O(n3), as computing the GP posterior requires
inverting an n× n matrix with n = |S| (Rasmussen and Williams, 2006).
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3. Models for spatial processes

3.3 Summary
Environmental models such as the distribution of hazardous substances across an area
can be modeled as stochastic processes de�ned over a two-dimensional �eld. This makes
it possible to use a wide range of methods to model and interpolate these spatial pro-
cesses. Generally speaking, these approaches are based on the fundamental assumption
that close locations will exhibit similar values. These spatial interdependencies inherent
in the observed phenomenon characterize the relationship between realizations of the
process at di�erent locations.

This property can be used for interpolating the process based on several sampled lo-
cations. Stochastic spatial interpolation approaches furthermore provide the possibility
of estimating the achieved prediction quality before taking samples. This way, these
models can be applied for a-priory selecting informative sampling locations, a property
that is exploited in the approaches discussed in the remainder of this work. The main
disadvantage of using these probabilistic approaches is their comparatively high com-
putational complexity.
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Offline mission planning





4 Mission planning for UAV-based
rapid mapping

In Part I of this thesis, we have discussed the theoretical and practical foundations
of this thesis: The role of emergency surveillance, UAV and sensor technologies, and
the central concepts for modeling the spatial distribution of hazardous substances.

In this chapter, we introduce the central planning problem in a UAV-based approach for
emergency surveillance. We summarize the planning requirements and primary objec-
tive of such a system and illustrate the planning problem using a representative example.

This part is based on the following paper:

Glock, K. and A. Meyer. Mission planning for emergency rapid mapping with
drones. Transportation Science 54(2), 534-560.

4.1 Mission planning problem for emergency
surveillance (MPPES)

As we have shown in Chapter 2, an initial reconnaissance phase is an essential element
in emergency management. In the case of large-scale disasters such as �oods or earth-
quakes, this reconnaissance phase revolves around the acquisition of spatial data after
an incident, a process which is often referred to as rapid mapping. However, this term
is usually understood to apply exclusively to satellite-based surveillance systems. We
expand this de�nition to other remote-sensing based surveillance systems, notably UAV-
based systems. This distinguishes it from ground-based approaches, which are state-of-
the-art for the vast majority of incidents faced by emergency services.

In this work, we focus on UAV-based rapid mapping approaches for emergencies such
as large �res or industrial accidents, where unknown and potentially hazardous sub-
stances can be released and may a�ect a considerable number of people. The concen-
tration of these substances can change rapidly across space, e.g., due to environmental
factors such as wind turbulences or because the substances build up at the areas with
the lowest altitude. In these situations, obtaining early and reliable information about
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4. Mission planning for UAV-based rapid mapping

the nature and spread of the contamination is crucial to coordinate e�ective response
and rescue operations.

UAVs can provide high-resolution data in the immediate aftermath of an incident
without exposing response personnel to contaminants during the reconnaissance phase.
These systems can be remotely controlled by an operator or automatically execute mis-
sions by following a trajectory of predetermined waypoints. At each of these locations,
the UAVs survey the corresponding ground area using, e.g., a hyperspectral sensor sys-
tem. Each image covers a certain ground area. These images need to be taken at a
standstill to avoid blurred results. Therefore, the relevant area of interest can be dis-
cretized into a number of candidate sampling locations such that the combination of all
images provides a complete map of the area.

Existing tools for planning UAV missions are either based on a manually speci�ed
sequence of locations or ensure the complete coverage of a given target area using one
or more UAVs. The limited �ight times of small UAVs prevent such a complete survey if
the a�ected region is large. In this case, the problem of selecting appropriate sampling
locations arises.

We propose a mission planning approach dedicated to planning informative tours for
UAVs through a selected subset of candidate sensing locations such that �rst responders
can be provided with a reliable overview of the situation. This planning problem consists
of three simultaneous decisions:

1. The selection of appropriate sensing locations,

2. The assignment of the selected locations to UAVs, and

3. The determination of routes through the assigned target locations for each UAV.
The routes have to comply with the �ying time constraints of the UAVs. They are further-
more restricted by the speci�ed take-o� and landing locations, which may lay outside the
speci�ed target area. We call this problem the mission planning problem for emergency
surveillance (MPPES).

Following the de�nition by Irnich et al. (2014), the second and third decisions arise
in nearly all types of vehicle routing problems. The �rst decision is crucial for plan-
ning informative missions and mainly characterizes the problem at hand. To increase
the informativeness of the missions, this selection has to take into account that the dis-
tribution of hazardous substances within a region exhibits positive spatial correlations.
This e�ect means that locations close to one another are likely to be a�ected to a simi-
lar extent, whereas locations further apart do not show such a relation. Hence, samples
in close proximity yield less information about the overall distribution of a contami-
nant than samples taken further apart at locations not correlated with one another. As
a consequence, the bene�t of any target point is dependent on all other selected sens-
ing locations and cannot be determined in isolation. This interrelationship has to be
adequately considered when planning UAV missions.

The priority of sample locations depends on the risk of contamination and the number
of individuals that may be exposed to the substances. This ensures that the focus of the
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UAV mission lies in areas where an intervention of the response personnel is most likely
to be necessary. Jointly considering spatial interdependencies and the target locations’
priorities in MPPES is essential to achieve both accurate information in highly prioritized
areas and a reliable overview of the distribution of contaminants throughout the entire
region.

As it is the case today in the “manual” ground-based reconnaissance process, we in-
vestigate the emergency rapid mapping problem in a static setting. In particular, we
assume that priorities and the distribution of gases do not change during the mission.
These assumptions can be argued, as response teams consider the distribution of the
contaminants and the distribution of the population as more or less stable during the
considerably shorter time required for the UAV missions compared to ground-based re-
connaissance.

4.2 Input data
Before planning the UAV mission, the operator of the system speci�es the central plan-
ning parameters. At the very least, this includes the following information:

• A rectangular bounding box that encloses the a�ected region.

• The number and characteristics of the UAVs, especially the available �ight time
and maximum cruise speed.

• The locations from which these UAVs are deployed and the locations to which they
have to return after their mission is �nished.

• Priorities assigned to the sampling locations, e.g., based on population data, which
can be obtained in a �nely grained resolution of 100× 100 m for Germany (Statis-
tisches Bundesamt (Destatis), 2018).

• The desired ground sampling resolution of the obtained images.

The target area is discretized into a grid of evenly distributed target locations, each one
representing the center of the area that can be covered with one image taken during the
�ight. These centers make up the set of candidate sampling locations for the UAVs.

4.3 Illustrative example
In Figure 4.1, we illustrate how priorities in the target area and spatial coverage can be
taken into account for planning informative UAV missions. The images depict a scenario
where a target area of approximately 2.5 × 2.5 km2 needs to be surveyed. The colors
indicate the priorities, with red representing highly relevant locations, and blue repre-
senting lower-ranked ones. Candidate sampling locations for the UAV are indicated at
the �ight altitude of 120 m, while the route is depicted as a solid line.
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Figure 4.1: Illustration of di�erent mission planning concepts.

Figures 4.1a to 4.1c show three concepts for surveying this area. In all cases, the UAV
departs from and returns to a location indicated in the middle of the target region. Fig-
ure 4.1a shows a mission pattern that ensures full ground coverage, a concept that is
often used in environmental sensing (see, e.g., Stachniss et al., 2009). While providing
complete information about the target area, this UAV mission is not feasible in practice
due to the long �ight time. In contrast, Figure 4.1b represents the vehicle path resulting
from maximizing the sum of priorities of the surveyed locations given a realistic �ight
time limitation. In this solution, the UAV quickly travels to the area with the highest
priorities and stays there. Finally, in Figure 4.1c, we depict a mission plan that com-
bines priorities and spatial coverage. This plan o�ers two advantages: First, it includes
all highly prioritized regions. Second, distributing the sample locations across the area
allows a more accurate prediction of the distribution of hazardous substances.

4.4 Outline of Part II
In this part, we study the mission planning problem for emergency surveillance (MPPES),
which focuses on planning informative tours for surveying a large area to derive accu-
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rate information about the extent and the spatial distribution of contaminants in the
immediate aftermath of an emergency. To achieve informative tours that yield a re-
liable overview of the overall distribution of hazardous substances, this approach has
to account for the spatial correlation inherent in the observed physical processes, e.g.,
when considering an airborne substance. Hence, the relative bene�t of additional sens-
ing locations depends on the locations’ distance to all other selected targets. This means
that interdependencies between sampling locations within one vehicle tour as well as
between di�erent tours have to be considered during planning, thus introducing new
complexity to the planning problem.

In the following chapters, we study models and solution approaches for solving the
MPPES. We �rst summarize the existing work on vehicle routing problems involving the
selection of targets under consideration of spatial interdependencies in Chapter 5. We
conclude this summary with an overview of the main research gaps that are addressed
in this work in Chapter 6. Modeling variants for planning informative vehicle tours are
introduced in Chapter 7. Chapter 8 presents two solution approaches, an exact variant
based on dynamic programming and a two-phase multi-start adaptive large neighbor-
hood search. We evaluate the models and solution approaches in an extensive simulative
study in Chapter 9.
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5 Vehicle routing problems with
spatial coverage

The mission planning problem detailed in the previous chapter shares similari-
ties with other �elds of research: In the literature on vehicle routing, the problem
of selecting a subset of candidate locations in the face of tight resource constraints

has been considered in the form of the orienteering problem (OP) and the team orien-
teering problem (TOP). Spatial interdependencies, i.e., relationships between locations
that are close to one another, have been addressed in the form of the covering tour prob-
lem (CTP) and its variants. In the �eld of robotics, the problem of routing an unmanned
vehicle in a spatially autocorrelated random �eld is known as informative path planning
(IPP).

In this section, we give an extensive overview of the models and solution approaches
derived in these three lines of research. We �rst establish a terminology that allows us
to classify and compare these approaches in Section 5.1. In Sections 5.2 to 5.5, we discuss
models and approaches originating in these �elds in more detail.

5.1 Terminology and classifications
The di�erent problem variants can be distinguished by three major characteristics: the
form of coverage, the di�erent types of locations that are involved, and the planning
objective.

Nodes and vehicles

Especially in the vehicle routing (VRP) literature, it is common to de�ne a planning
problem over a graph, with nodes representing locations such as customers and arcs
represent possible connections between these locations. In this thesis, we follow this
terminology, using the generic term node to refer to any representation of a location
that can be part of a planned path or tour. Similarly, we use the term vehicle as an
umbrella term covering the vastly varying types of mobile resources in di�erent �elds.
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5. Vehicle routing problems with spatial coverage

Spatial coverage

Considering spatial correlations within the observed area is an essential aspect of plan-
ning informative tours. From a modeling perspective, this aspect is closely related to the
concept of coverage that has been introduced in VRP literature, as both concepts imply
some degree of similarity or relatedness between nearby nodes. In the following, we use
the generic term spatial coverage to describe any form of distance-dependent relations
between nodes that are considered in a model. These interdependencies can be used
to treat nodes that are not selected, but close to a vehicle route, as “visited” for the pur-
pose of determining total pro�t or ful�lling minimum service requirements. Conversely,
without considering coverage, only locations that immediately visited by a vehicle are
relevant for determining the objective value or compliance with planning requirements.

We can further distinguish between di�erent forms of coverage that have been dis-
cussed in literature:

Complete coverage means that any node can essentially be considered as served by a
vehicle as long as at least one vehicle route contains a visit within a given maxi-
mum distance.

Partial coverage indicates that any unvisited, covered node only provide partial ben-
e�ts compared to a solution where they are immediately served.

Cumulative coverage is a more complex form of partial coverage. We use this term
to refer to models with partial coverage, in which each additional visit yields ad-
ditional bene�ts.

Multiple coverage models, on the other hand, are a generalization of the concept of
complete coverage. Here, constraints require a minimum number of vehicle stops
near an unvisited node for this node to be considered as covered.

Gaussian process (GP) coverage refers to approaches that use the probabilistic mod-
els discussed in Chapter 3 to determine the relationship between nodes.

In all cases, the maximum bene�t of a covered node can never exceed the bene�t
provided if this node were served by a vehicle.

Node types

Nodes di�er in the form of coverage that applies to them and in whether they are optional
or mandatory:

Type I (optional visit with mandatory coverage) designates nodes that may or may
not be included in a vehicle tour, but that must be covered if they are not served
directly by a vehicle.

Type II (mandatory visit) refers to nodes that must always be served directly by a
vehicle. Coverage aspects are irrelevant for these nodes.
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Type III (optional visit without coverage) indicates candidate nodes for a vehicle
tour that do not need to be served directly and that cannot be covered. They
mainly serve to provide structure for vehicle tours.

Type IV (mandatory coverage) describes nodes that cannot be included in a vehicle
tour but that must be covered by one.

Type V (optional visit with optional coverage) involves nodes that do not need to
be visited but that provide a bene�t if they are either served or covered.

Planning objectives

Generally speaking, the objective of these planning problems is either input minimiza-
tion or pro�t maximization. In the following, we classify all problems that focus on pro�t
maximization and do not enforce all nodes to be either served directly or be covered as
(team) orienteering problems. Problems dealing with the minimization of resource con-
sumption while treating either direct service or coverage of certain nodes as mandatory
are considered as variants of the covering tour problem. Finally, we denote all problems
that plan vehicle tours using statistical means for determining route quality as informa-
tive path planning problems. Unlike the TOP, these problems do not have prede�ned
pro�t values that are associated with candidate nodes.

5.2 Covering tour problems
Coverage aspects have been considered in VRP literature in form of the covering sales-
man problem (CSP), the covering tour problem (CTP), and its multi-vehicle variant (m-
CTP). This class of problems deals with the determination of cost-minimal routes such
that every node that is not included in a vehicle tour is within a given maximum dis-
tance to a node directly served by a vehicle. An overview of model variants and solution
approaches is provided in Table 5.1.

The CSP was �rst introduced and formulated by Current and Schilling (1989) as a vari-
ant of the TSP where all nodes have to be within a predetermined maximum distance to
a node on the vehicle tour. Afterward, the problem class did not receive much attention
until Gendreau et al. (1997) proposed a more general model that distinguishes between
nodes that have to be visited, nodes that cannot be visited directly but have to be cov-
ered, and optional nodes that do not need to be visited or covered but can be included in
vehicle tours to provide coverage for other nodes nearby. In contrast to the TOP, these
optional nodes do not yield rewards or bene�ts. Instead, they serve to provide coverage
for other nodes. Both publications propose heuristics based on local search and adapt
heuristics dedicated to solving set covering problems to determine the subset of nodes
that are included in the vehicle tours. Furthermore, Gendreau et al. (1997) propose the
�rst exact solution approach for this problem class based on a branch-and-cut scheme.
The authors note that the performance of their solution approach is highly dependent on
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how many nodes can provide coverage, as increasing coverage makes instances easier to
solve. The single-vehicle problem was further discussed by Golden et al. (2012) who pro-
pose a problem generalization where some nodes need to be covered or served multiple
times. The authors refer to this problem as the generalized covering salesman problem.
They propose a local search approach where node allocation is heuristically improved
by removing and reinserting nodes in vehicle tours taking into account their cost and the
coverage they provide. Furthermore, the authors demonstrate that incorporating classic
TSP improvement moves yields signi�cant improvements.

The �rst multi-vehicle variant was discussed by Hachicha et al. (2000) as an extension
of the CTP, denoted the m-CTP. Similar to earlier approaches for the CSP and CTP, the
authors combine approaches for solving a set covering problem with well known VRP
heuristics, notably the savings and sweep heuristics and a route-�rst/cluster-second ap-
proach. Naji-Azimi et al. (2012) address the m-CTP in the context of providing humani-
tarian aid with multiple commodities and split deliveries. The authors treat coverage as
mandatory, but it may be provided by several distinct covering nodes. They demonstrate
the limits of exact approaches for coverage problems and propose a local search with
added diversi�cation steps that can signi�cantly improve solution quality and runtime.
Them-CTP is furthermore considered by Hà et al. (2013), who propose a branch-and-cut
approach and a metaheuristic for solving this problem. In their heuristic approach, they
�rst determine covering subsets. Finding tours with minimum distance through these
subsets can be considered as a VRP with unit demand. Solutions are improved by local
search moves, both classical VRP moves and operators that replace nodes within the
tours. Finally, Allahyari et al. (2015) extend the m-CTP to the multi-depot case. In their
model, the allocation of an unvisited customer to a vehicle stop incurs a speci�ed cost,
which o�ers incentives for visiting more stops directly. The authors combine a greedy
randomized adaptive search procedure and iterated local search for solving this problem.

5.3 Orienteering and team orienteering
The orienteering problem and the team orienteering problem are variants of the TSP and
VRP, respectively, in which not all nodes can be visited and the optimization objective
is pro�t maximization rather than minimizing resource utilization (e.g. distance or visit
costs). This problem has been widely studied in the VRP literature, and the availability of
benchmark instances (Tsiligirides (1984) and Chao et al. (1996a) for the OP, Chao et al.
(1996b) and Dang et al. (2013) for the TOP) has enabled the continuous improvement
and comparison of solution approaches. Recent surveys (Vansteenwegen et al. (2011)
and Gunawan et al. (2016)) provide a detailed overview of this �eld of research. Due to
the popularity of the TOP, a signi�cant body of work has been published. An overview of
relevant publications is given in Table 5.2. In this review, we focus on the progress made
in the last decade, i.e., in publications from 2007 or later, and include the approaches that
are state-of-the-art in terms of solution quality or computational performance.

Most of the work in this area has focused on a wide range of local search and ge-
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netic algorithms. Archetti et al. (2007) solve the TOP using generalized tabu search
and variable neighborhood search (VNS) algorithms. They show that VNS is supe-
rior in both solution quality and runtime, and achieve signi�cant improvements on the
previously best-known solutions. Ke et al. (2008) propose an ant colony optimization
(ACO) approach and compare four methods for constructing candidate solutions. They
achieve further improvements, notably on the largest benchmark instances by Chao et al.
(1996b). Vansteenwegen et al. (2009a) propose a guided local search (GLS) approach that
combines heuristics tailored to orienteering problems with TSP heuristics to improve
the planned routes. They perform extensive experiments on the available benchmark
instances for both the OP and the TOP, which highlight the computational e�ciency of
the proposed approach. The same year, the authors proposed a variable neighborhood
search that yielded further improvements (Vansteenwegen et al., 2009b). This algorithm
is based on similar local search moves but contains powerful shaking phases to leave
locally optimal solutions by removing chains of candidate nodes. Sou�riau et al. (2010)
introduce a greedy randomized adaptive search procedure (GRASP) with path relinking.
The primary search procedure applies local search moves for orienteering problems and
the TSP similar to those used in previous publications. Furthermore, new solutions are
created based on a pool of elite solutions with high quality.

Dang et al. (2013) introduce particle swarm optimization-inspired algorithm (PSOiA)
that extends their previous work on population-based solution approaches. Here, each
particle represents a solution to the TOP in the form of a giant tour. Solutions are im-
proved using destruction and recreation operators combined with TSP search moves.
Crossover operators create new solutions by merging subsequences from successful
tours. Recognizing that most of the recent work consistently achieve high-quality solu-
tions on the benchmark set available until that date, the authors furthermore introduce
a new set of larger instances for the TOP with up to 400 candidate nodes.

Vidal et al. (2015) published a study on the VRP with pro�ts, which is a generalization
of the TOP and related problems. The authors propose a new neighborhood concept
based on exhaustive solutions, i.e., solutions where resource constraints are relaxed such
that all visits can be included in vehicle tours. Feasible TOP solutions can be determined
in a selection phase by solving a resource constraint shortest path problem (RCSPP) for
each vehicle. The authors evaluate the new neighborhood concept by integrating it into
three established VRP solution heuristic: a local improvement procedure, an iterated
local search procedure, and a hybrid genetic algorithm (HGA). In their evaluation, the
authors highlight the trade-o� between solution quality and computational e�ort. The
results show that while the HGA achieves the overall best performance of all published
approaches up to this date, it computationally expensive. The solution quality of the
local search approach is slightly lower. Runtime is signi�cantly reduced in this case.

None of these more recent publications consider the new set of larger instances pro-
posed by Dang et al. (2013). To our knowledge, Ke et al. (2016) are the only ones to
report results for these instances since they have been introduced. The authors propose
a Pareto mimic algorithm that maintains a population of solutions based on Pareto dom-
inance. Search is based on two new operators. Similar to path relinking (see Sou�riau
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et al., 2010), a so-called mimic operator is used to build new solutions based on an in-
cumbent one. A swallow operator inserts desirable but infeasible nodes. Finally, local
search steps are used to repair and improve.

Exact methods for solving orienteering problems have been less prevalent in literature.
Dang et al. (2013) propose a branch-and-cut algorithm strengthened by valid inequalities
for symmetry breaking, clique cuts, and bounds on visited customers and pro�ts. The
algorithm improves on earlier exact approaches for the set of instances by Chao et al.
(1996b), but has not been evaluated on the larger benchmark instances introduced by
Dang et al. (2013). More recently, Keshtkaran et al. (2016) propose and compare branch-
and-price and a branch-and-cut-and-price schemes. Using the latter algorithm, they can
solve more instances among the sets proposed by Chao et al. (1996b) with proven opti-
mality than earlier approaches. However, several of the largest instances with around
60 to 100 customers remain intractable.

5.4 Combining coverage and profit maximization
Coverage aspects in the context of pro�t maximization have been addressed more fre-
quently in recent years. Yu et al. (2014) and Ozbaygin et al. (2016) propose models that
are based on TOP models with additional consideration of coverage constraints such
that nodes that are not included in a vehicle tour but are within a speci�ed maximum
distance to a visited node provide a positive contribution to the objective function. This
contribution is less than the bene�t yielded by directly including the node in a vehicle
tour.

Yu et al. (2014) introduce the correlated team orienteering problem (CorTOP) as a
variant of the TOP with the explicit objective of integrating information about spatial
correlations in the model. Their model considers coverage as cumulative, i.e., additional
stops within covering distance provide an additional bene�t. In this model, the reward
associated with a speci�c node can be divided among the nodes within covering distance.
When all covering nodes are included in a vehicle tour, the full reward of an unvisited
target node is provided. The authors propose a mixed integer quadratic programming
(MIQP) formulation for solving the problem using a commercial solver. However, com-
putation times quickly become impractical even for small instances: The largest instance
solved in the single-vehicle case involves 49 candidate locations; this number is reduced
to 36 and less for instances with several vehicles. Even for these instance sizes, compu-
tation time scales poorly with route duration and number of vehicles. Still, the results of
this model are promising with respect to the planning problem addressed in this work
due to their consideration of coverage aspects combined with pro�t maximization. This
model provides the basis of the models derived in Chapter 7.

Ozbaygin et al. (2016) propose a branch-and-cut approach for a single-vehicle problem
called the maximal covering salesman problem (MaxCSP) with the objective of maximiz-
ing covered demand. The authors consider unvisited nodes as covered as long as they
are within a given distance to a visited node. Only a �xed percentage of a node’s de-
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mand can be covered that way. This percentage is independent of the number of visited
nodes that may be able to provide coverage, or the distance between the covered and the
covering node.

A related problem is the set orienteering problem (SOP) introduced by Archetti et al.
(2018), who also introduced a set of benchmark instances. In this problem variant, cus-
tomers are grouped into clusters and visiting one customer within a cluster allows col-
lecting the full pro�t associated with this cluster. Clusters can, but do not have to, rep-
resent spatial relations. Additional visits within one cluster do not provide additional
bene�ts. Both heuristic and exact solution approaches have been proposed (Pěnička
et al., 2019). However, only the single-vehicle case has been considered to this date.

5.5 Informative path planning
The literature in the domain of robotics has its origins in sensor placement problems
without consideration of routing constraints. These problems address the question of
designing sensor networks for monitoring environmental phenomena. An example in
this line of work is the study by Krause et al. (2008), who solve the placement problem
by iteratively selecting samples providing the largest incremental bene�t with respect
to some information measure.

This placement problem has been extended to mobile sensor systems, leading to the
informative path planning (IPP) problem that is concerned with planning vehicle trajec-
tories for monitoring a phenomenon that varies in time and space while respecting the
vehicles’ maximum �ight time. The objective is to maximize a measure for the infor-
mation gain that is achieved by the selected sensing locations. This review focuses on
IPP variants with a �nite set of target locations. An overview of relevant publications is
given in Table 5.3.

Most of the work on IPP addresses environmental monitoring applications, specif-
ically oceanic monitoring using autonomous underwater vehicles, where large areas
have to be surveyed in limited time. Similar to team orienteering, these models seek
to maximize some measure indicating the bene�t of the vehicle tours. In contrast, IPP
approaches do not consider pro�ts associated with speci�c target locations. Instead,
they use the variability measures discussed in Section 3.2.3 for determining the informa-
tion gain achieved by the vehicles with respect to the observed phenomenon. In other
words, they seek to determine sensing locations such that the uncertainty remaining in
the process is minimal.

These approaches make use of the fact that the posterior covariance matrix can be
determined based on the locations at which observations are planned, and is independent
of the realizations of the random �eld (i.e., the actual measurements). This allows to plan
optimal tours with regard to these informativeness measures but requires an accurate
model for the GP prior distribution, e.g., based on preliminary information or previous
samples.

The Gaussian process models that are used in these approaches implicitly introduce
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coverage aspects in the objective function: As nearby nodes are similar, observations in
close proximity yield less overall information. Hence, the marginal contribution of an
observation to the objective value depends on which other locations are visited. At the
same time, more measurements always remain bene�cial.

Most of the solution approaches discussed in this line of research have focused on
optimal algorithms or approximation guarantees to achieve performance guarantees in
the face of high sensing costs. Singh et al. (2007) formally de�ne the IPP for multiple
vehicles. In their model, they use mutual information (MI) (see Section 3.2.4) to deter-
mine the informativeness of a solution. As this objective function is submodular, i.e.,
the marginal bene�t of additional samples decreases with sample size, their solution ap-
proach is based on the recursive greedy algorithm proposed by Chekuri and Pal (2005).
The authors further improve the running time by decomposing the target area into cells
such that locations in di�erent cells can be treated as uncorrelated. The greedy algorithm
is run on these cells instead of the full set of candidate locations. Singh et al. (2007) fur-
thermore address the multi-vehicle case by applying the recursive greedy algorithm to
a series of single-vehicle problems sequentially, in each step taking into account the in-
formation obtained using all previously planned vehicle routes. These concepts are also
discussed and evaluated in detail in a later publication (Singh et al., 2009). A version of
the recursive greedy algorithm is furthermore used by Binney et al. (2010), who solve
an IPP variant with time windows that limit the accessibility of certain areas. The au-
thors also demonstrate how available information, for example, obtained using previous
missions, can be incorporated to improve subsequent tours.

A branch-and-bound algorithm for the single-vehicle IPP is proposed by Binney and
Sukhatme (2012). Due to the high runtime required for solving even small instances to
optimality, the authors furthermore limit the search space. This signi�cantly improves
runtime, but problems remain computationally intractable for vehicle routes comprising
more than around 15 locations. Binney et al. (2013) extend this model and the recursive
greedy approach to a case with time-varying �elds. Similar to previous approaches, the
algorithm does not scale well for instances with more than a few dozen candidate loca-
tions. Hollinger and Sukhatme (2014) propose a rapidly-exploring information gathering
algorithm, which iteratively assigns random sampling locations to vehicle routes and ex-
pands vehicle paths towards these nodes. This approach is applicable to both discrete
and continuous planning problems. However, its performance is highly dependent on
maximum route length.

Following a di�erent concept for modeling informativeness, Yilmaz et al. (2008) use
the prior uncertainty of a location as an indicator for its relevance, and propose a model
maximizing the sum of these values subject to budget constraints. The objective function
resembles the classical TOP without considering coverage. Vehicle routes are further
constrained by motion and communication constraints. The problem is formulated as a
mixed integer linear programming (MIP) model and solved using a commercial solver.
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5.6 Summary
In this chapter, we provided an overview of three lines of research related to the UAV
mission planning problem derived in Chapter 4 that either consider aspects of spatial
coverage or focus on the selection of targets based on their contribution to an objective
function. This overview serves as the foundation of the research gap identi�ed in the
next chapter.

We introduced a new classi�cation, in which we classi�ed the models proposed in
literature based on their planning objective, distinguishing between orienteering prob-
lems, covering tour problems, and informative path planning. The problem of selecting
subsets of nodes based on reward values associated with each target has been discussed
in the form of the (team) orienteering problem. The informative path planning problem
focuses on pro�t maximization under consideration of route lengths constraint. These
problem variants are typically based on the sampling strategies discussed in Section 3.2.4.
The objective functions introduce spatial interdependencies into the problem, as the
marginal bene�t of each target depends on all other selected locations in the vehicles’
tours. Finally, spatial relationships between nodes are at the center of the covering tour
problem and its variants. The focus of this problem class is to determine minimum cost
routes such that all speci�ed target nodes are covered by at least one node in a vehicle
tour.

We furthermore gave an overview of solution approaches that have been derived for
each problem class. The TOP has mostly been addressed using heuristic approaches,
which allow the e�cient solution of large-scale instances. The same is true for the CTP
variants. In contrast, the literature on IPP has typically focused on approximative results
that provide approximation guarantees but do not scale as well.
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6 Research gap and contributions

In the previous chapter, we have given an extensive overview of the work published
in three lines of research that are, in some form, related to the MPPES. In this chapter,
we evaluate the models and solution approaches with regard to their suitability for

our use case and identify the research gaps that need to be addressed to successfully
solve the mission planning problem.

6.1 Research gap
The problem variants related to the MPPES are summarized in Table 6.1. Compar-
ing their characteristics with the requirements for planning UAV missions discussed in
Chapter 4, we can derive three major aspects that need to be addressed for solving this
planning problem successfully: the joint consideration of coverage and priorities, the
derivation of approximative models for spatial interdependencies, and e�cient solution
approaches for the mission planning problem.

Joint consideration of coverage and priorities The mission planning problem
for UAVs combines two practical objectives: Achieving a reliable prediction about the
spatial distribution, which requires sampling locations that are well distributed across
the area of interest, and obtaining accurate information about prioritized locations. As
a consequence, it is necessary to jointly consider each target node’s priority and the
information it can provide about the surrounding region.

Most publications, however, focus on either pro�t maximization or the minimization
of resource utilization subject to aspects of spatial coverage or spatial correlation. De-
spite their respective popularity, these two aspects are rarely combined: In the literature
on the TOP, the pro�ts collected at each node are generally treated as being indepen-
dent of the locations visited in the remainder of the tour. In contrast, CTP variants do
not involve priorities or utilities, as either direct service or coverage of nodes is consid-
ered mandatory. Finally, models derived in IPP literature have explicitly focused on node
selection under consideration of spatial interdependencies, but do so without including
priorities or bene�ts associated with individual targets. To the best of our knowledge,
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Problem variant First
reference

Vehicles Nodes Coverage Objective Solution ap-
proach

Orienteering
problem (OP)

Tsiligirides
(1984)

1 III None Max. sum of
priorities

Heuristics,exact
approaches

Covering
salesman problem
(CSP)

Current
and
Schilling
(1989)

1 I Complete Min. distance Heuristics,exact
approaches

Team orienteering
problem (TOP)

Chao et al.
(1996b)

m III None Max. sum of
priorities

Heuristics,exact
approaches

Covering tour
problem (CTP)

Gendreau
et al. (1997)

1 II, III,
IV

Complete Min. distance Heuristics,
branch-and-cut

m-covering tour
problem (m-CTP)

Hachicha
et al. (2000)

m II, III,
IV

Complete Min. distance Heuristics,
branch-and-cut

Informative path
planning (IPP)

Singh et al.
(2007)

1,m∗ V GP Min. predic-
tion variabil-
ity

Exact and ap-
proximative ap-
proaches

Correlated team
orienteering
problem (CorTOP)

Yu et al.
(2014)

m V Partial,
cumula-
tive

Max. sum of
direct and cov-
ered priorities

Branch-and-
bound

Maximal covering
salesman problem
(MaxCSP)

Ozbaygin
et al. (2016)

1 V Partial Max. sum of
direct and cov-
ered priorities

Branch-and-cut

Set orienteering
problem (SOP)

Archetti
et al. (2018)

1 V Complete Max. sum of
direct and cov-
ered priorities

Heuristics,exact
approaches

This contribution m V Partial,
cumula-
tive

Dynamic
programming
and heuristic
approach

(*) Multi-vehicle cases are typically solved by sequentially planning single-vehicle tours

Table 6.1: Summary of problem variants with pro�t maximization or coverage constraints.
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only the models of Yu et al. (2014) and Ozbaygin et al. (2016) combine pro�t maximiza-
tion with coarse models for spatial correlations. Among these two, only the CorTOP by
Yu et al. (2014) accounts for the additional bene�ts that can be gained by making several
observations in the vicinity of an unsurveyed location.

Approximative models for spatial interdependencies Considering the relation-
ships between di�erent locations in space is crucial for planning informative UAV mis-
sions, which have to account for the information that each surveyed location provides
about the surrounding area. The variants discussed in the context of the CSP or CTP
consider very coarse forms of spatial coverage. In these models, the bene�t of covering
a node is independent of the number of or distance to the nodes that provide coverage. In
contrast, the IPP relies on Gaussian process models of the observed distribution of haz-
ardous substances. These variants provide sophisticated models for spatial interdepen-
dencies, but are computationally expensive (O(n3) in the number of sampled locations).
This means that the impact of local changes to a solution cannot be computed e�ciently
– a prerequisite for many successful VRP approaches such as local search based heuris-
tics. Models that are su�ciently accurate but can be evaluated e�ciently are missing,
even if the CorTOP is a promising �rst step.

Efficient solution approaches for the mission planning problem To this date,
no e�cient solution approach exists that is applicable to the mission planning prob-
lem. E�cient heuristics designed for TOP do not account for spatial interdependencies
between nodes. The heuristics developed for the CTP, in turn, exploit the fact that cov-
erage is complete and all nodes need to be covered. This means that these approaches
are not applicable for a model which considers partial and cumulative coverage. For
IPP variants, most authors have focused on approximative approaches for the single-
vehicle case. While these algorithms scale better than exact solution methods, they do
not achieve acceptable computation times for our scenario, with benchmark instances
typically limited to less than 100 target locations.

Considering the two models closest to our application, only exact solution approaches
have been proposed to this date. The maximal covering salesman problem is solved using
branch-and-cut schemes that are tailored to the single-vehicle case with speci�c cover-
age requirements (Ozbaygin et al., 2016). The MIQP for the correlated team orienteering
problem scales poorly with instance size and the number of vehicles involved (Yu et al.,
2014). None of these approaches achieve computation times that are acceptable for our
scenario.

6.2 Contributions
By comparing the existing models and applications with the problem statement in Chap-
ter 4, we have identi�ed three points that are relevant for the MPPES, but have received

53



6. Research gap and contributions

little attention to this date. In this thesis, we seek to address these gaps. Our contribu-
tions to this goal can be summarized as follows:

GCorTOP modeling approach In Chapter 7, we derive new models that account
for spatial interdependencies between locations in the target area. These models can be
seen as a generalization of the models with partial coverage introduced by Yu et al. (2014)
and Ozbaygin et al. (2016). They provide more detailed representations of spatial inter-
dependencies that mirror the ones o�ered by GP models. Most importantly, the strength
of correlation decreases with increasing distance. This way, the information provided
by samples at di�erent distances can be modeled more accurately. Furthermore, the
proposed models can be combined with priorities that are used to measure the relative
importance of obtaining information about speci�c targets. Compared to approaches
derived in IPP literature, these models do not achieve the same level of accuracy in rep-
resenting the correlations within a process. However, the computational e�ort is lower,
thereby allowing us to integrate these models into local search approaches.

Two-phase multi-start adaptive large neighborhood search (2MLS) To solve
large-scale instances with several hundred nodes in reasonable computing time, we in-
troduce an e�cient solution concept in form of the 2MLS that incorporates knowledge
about spatial correlations for the construction of vehicle routes in Chapter 8. We pro-
pose concepts that yield good starting solutions within very short computations times,
either by identifying covering nodes or by decomposing the target area. We furthermore
design search strategies that speci�cally emphasize explorative missions, i.e., UAV tours
that cover large parts of the target area, while maintaining a balance between explo-
ration and the coverage of high-priority areas. We also show how our proposed models
can be integrated into this approach, and use information about the marginal contribu-
tion of nodes and bounds to the objective function for speeding up the search. An exact
solution approach is introduced for benchmarking purposes.

Benchmark instances for the MPPES and simulative study We study the per-
formance of our approaches as well as their limitations in an extensive simulative study
in Chapter 9. The e�ectiveness of the 2MLS is demonstrated using benchmark instances
for the TOP. We furthermore introduce a set of new benchmark instances modeled af-
ter a real-world use case. Based on these instances, we demonstrate the performance
of the proposed model and solution heuristic compared to other modeling variants. We
show the structural changes that result from considering correlations when planning
UAV missions and identify the limitations of this approach. We furthermore investigate
the applicability of these techniques for UAV based surveillance from a practical point
of view.
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7 Models for planning
informative UAV missions

The fundamental problem in mission planning is to determine informative tours.
This requires some measure to quantify “informativeness” in a meaningful way.
This measure determines the selection of locations to be surveyed and is crucial

for the accuracy of any spatial interpolation approach based on these samples.
In Section 7.1, we formally de�ne the MPPES introduced in Chapter 4. Based on a basic

problem formulation, we review stochastic modeling variants in Section 7.2. We derive
approximations for spatial interdependencies in Section 7.3 and show how to integrate
priorities in Section 7.4.

7.1 Basic problem formulation
Consistent with the notation introduced in Section 3.2, we denote the set of locations
within the two-dimensional target area as V and the set of sensing locations as S ⊆ V .
When planning informative tours, the selection of the sensing locations S constitutes
the main decision. Each UAV m in the set of available UAVs M is associated with a
starting location sstartm and ending location sendm . In the following, NS and NE designate
the sets comprising vehicle starting and ending locations, respectively. We refer to the
set of all locations asN , withN = V ∪NS ∪NE . Target locations i ∈ V are associated
with priorities ui ≥ 0 that specify their relevance to the response units. As discussed in
Section 4.2, these priorities can, for example, indicate the size of the a�ected population.
A survey at a location i requires a �xed sensing time τi to take and process images at
standstill. Each UAV mission is limited by a maximum duration of Tmaxm . The distance
between two locations i and j is denoted as dij . Traveling from a location i to a location j
with i, j ∈ N requires a nonnegative travel time τij that includes the time necessary for
acceleration and deceleration. To simplify the formulation, this also includes the sensing
time τj at the destination location.

Moreover, we de�ne the set of all feasible routes Ω =
⋃
m∈MΩm. Each route r ∈ Ωm

consists of a sequence of locations r = (sstartm , i0, i1, . . . , in, s
end
m ) such that the total travel

time of this route τsstartm i0 +
∑n−1

c=0 τicic+1 + τinsendm ≤ Tmaxm . The set of included locations
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7. Models for planning informative UAV missions

Sr = {i0, i1, . . . , in} ⊂ V corresponds to the sensing locations selected for the tour r.
We denote a feasible solution to this problem as ω, where ω = (r1, . . . , rm) ∈ Ω1× . . .×
Ωm represents one element in the Cartesian product of routes, i.e., one combination of
routes with one feasible route per vehicle. Finally, we consider a general measure of
informativeness I to determine the quality of a solution.

We can now model the mission planning problem using binary decision variables yr
with

yr =

{
1, if route r ∈ Ω is selected,
0, otherwise.

Then, the set of sampling locations included in a solution is S :=
⋃
r:yr=1 Sr. This

notation can consistently be used both for the stochastic informativeness measures of
Section 7.2 and for the models introduced in this work (Section 7.3).

The basic problem of planning informative UAV missions can then be stated as follows:

(MPPES) max I(S) (7.1)

s.t.
∑
r∈Ωm

yr = 1 m ∈M (7.2)

yr ∈ {0, 1} r ∈ Ω (7.3)

Objective (7.1) maximizes total informativeness, while constraints (7.2) ensure that ex-
actly one route is selected per vehicle. Constraints (7.3) set the variable domains.

7.2 Stochastic informativeness measures

One possible approach for measuring the informativeness I in Equation (7.1) is to use
stochastic means that account for the spatial correlation in the surveyed random �eld.
As we have shown in Section 3.2.4, stochastic process models enable us to measure the
quality of a set of sampling locations using the achieved reduction in uncertainty in the
process. These models are of particular interest for our application as they allow to con-
sider detailed information about spatial interdependencies in the observed distribution
of gases.

7.2.1 Model formulations

As discussed in Section 5.5, IPP models typically rely on Gaussian process models dis-
cussed in Chapter 3. We focus on the two variants for representing information gain that
are most commonly used in this line of work. Binney and Sukhatme (2012) use the av-
erage reduction in variance measure as de�ned in Equation (3.21) in order to determine
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solution quality. The corresponding objective can be stated as:

IARV(S) =
1

|V|
(tr(ΣV,V − tr(ΣV,V|S)) (7.4)

We denote the corresponding optimization problem as IPP-ARV.
Singh et al. (2007) propose a formulation based on the concept of mutual information,

see Equation (3.22). We refer to this variant as IPP-MI, which is based on the following
objective:

IMI(S) = H(ZV\S)−H(ZV\S|S) (7.5)

7.2.2 Model and solution characteristics

The popularity of these formulations in IPP literature is due to the fact that they have
certain properties that can be exploited in exact or approximative solution approaches,
notably submodularity and monotonicity (Singh et al., 2009; Krause and Golovin, 2014;
Jawaid and Smith, 2015). Submodularity means that the incremental bene�t of additional
samples decreases with an increased sample size. This can be formally stated as (Singh
et al., 2009; Binney et al., 2010):

I(S1 + {i})− I(S1) ≥ I(S2 + {i})− I(S2) for S1 ⊂ S2 ⊂ V , i ∈ V \ S2.

Monotonicity means that increasing the number of observations cannot decrease the
total informativeness. This is written as (ibid):

I(S1) ≤ I(S2) for S1 ⊂ S2.

MI is submodular and approximately monotonic for su�ciently small S , as shown
by Krause et al. (2008). ARV is monotonic (Binney and Sukhatme, 2012). Although it
is not always submodular, submodularity has been shown for practically relevant cases,
speci�cally in the context of environmental sampling (Binney et al., 2013).

7.3 Objective functions for approximating spatial
interdependencies

The stochastic informativeness measures discussed above provide sophisticated models
for spatial interdependencies but are computationally expensive. In the following, we
derive objective functions that show similar characteristics regarding the spatial aspects
of a solution while avoiding the computational overhead of a GP regression.
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7. Models for planning informative UAV missions

Approximating spatial correlations

In statistical interpolation approaches, interdependencies between pairs of locations are
described using a kernel function k. Using the correlation rather than the covariance as
a normalized measure of spatial similarity, a kernel is a function k : R2 → [0, 1] that
decreases with distance and asymptotically converges to 0 (Stachniss et al., 2009). In our
approach, we represent these interdependencies using discrete weights w de�ned over
the set of candidate locations V such that w : V × V → [0, 1]. A weight of wij = 1
for any i, j ∈ V indicates perfect correlation, whereas weights close to 0 mean that the
observations at i and j are independent, i.e., no information can be inferred about i upon
visiting j. Observations at larger distances can generally be assumed to be independent
of one another. We can, therefore, make use of local neighborhoods including only pairs
of locations between which there is a signi�cant correlation. To this end, we de�ne a
covering neighborhood Ci such that j ∈ Ci ⇔ wji � 0 for j 6= i.

Figure 7.1 depicts the derivation of weights and of the covering neighborhood given a
kernel function k(i, j). Candidate target locations for the UAV missions are determined
by discretizing the target area as described in Chapter 4. The weight depends on the
pairwise distance between these targets. The size of the covering neighborhood is de-
termined such that the correlation between a location i and any location j ∈ Ci is equal
to or higher than a prede�ned minimum value.

Informativeness measures

The discretized weights represent the similarity between di�erent targets. Using these
weights, we can estimate the overall information obtained by some sampling locations. A
�rst model for estimating the overall informativeness based on these discretized weights
has been proposed by Yu et al. (2014). The weights used in this approximation can be
interpreted as the proportion of the information available at i that is obtained upon
visiting j. Then, the overall informativeness is modeled as follows:

IYU(S) =
∑
i∈S

· 1︸ ︷︷ ︸
full information at
visited locations

+
∑
i∈V\S

∑
j∈S∩Cj

wji︸ ︷︷ ︸
estimated proportion
of unvisited targets

(7.6)

In other words, the authors estimate the proportion of the overall information that can be
collected by a vehicle route. In the following, we refer to the corresponding optimization
model as the IPP modeled after Yu et al. (2014), short IPP-YU.

This approximation, however, has drawbacks in practice. One problem is illustrated in
Figure 7.2, which gives the optimal routes and objective values on two small graphs that
only di�er in the modeled degree of similarity between a center and the surrounding
targets. On the left-hand side, the corresponding weights are set to wji = 0.2, which
means that full information about the graph is only obtained when the center is included
in the vehicle tour. On the right hand side, weights are increased to wji = 0.3. In this
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Figure 7.1: Derivation of discretized weights relative to a location i ∈ V .

case, the estimated information gain can be increased by leaving the center unvisited.
From a practical point of view and considering the monotonicity of the stochastic models
in Section 7.2, this e�ect is undesirable: In any realistic setting, it is not possible to
increase the information available about a location by not performing an observation.
Consequently, this model is not a valid approximation for the spatial interdependencies
that govern the surveyed area.

Yu et al. (2014) avoid this problem by requiring that∑
j∈Ci

wjiui ≤ ui (7.7)

holds for all i ∈ V . In their model, this is achieved by explicitly setting weights wji such
that

wji =
1

|Ci|
, j ∈ Ci. (7.8)

This model, however, introduces a counter-intuitive dependency between the size of
the covering neighborhood and the weights. In practice, spatial processes with strong
correlations and observations that are similar even at larger distances should be associ-
ated with an increased size of the covering neighborhood and increased weights for all
i, j ∈ Ci. This cannot be represented accurately in the approach by Yu et al. (2014): If the
neighborhood size |Ci| increases as more locations are positively correlated, the weights
wji have to decrease in order not to violate Equation (7.7). This means that information
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Figure 7.2: Illustration of the limitations of the approximation by Yu et al. (2014). Given are �ve
target locations and weightswji with respect to the center i. The black arrows indicate
the optimal path with the objective value given underneath the graph. Visited targets
are indicated in grey. The right-hand side illustrates that when weights are increased,
an improving solution can be obtained by visiting fewer targets.

about the stronger spatial interdependencies is lost.
We propose to relax the condition stated in Equation (7.7). To avoid that the estimated

information gain increases by leaving out target locations, we limit the maximum infor-
mation gain in a generalized objective function:

IGEN(S) =
∑
i∈S

1 +
∑
i∈V\S

min{1,
∑

j∈S∩Ci

wji} (7.9)

We refer to the corresponding planning problem as the generalized IPP after Yu et al.
(2014), short IPP-GEN. We model weights using a simple approximation scheme based
on inverse distance weighting. We assign a weight w̄ < 1 to locations at distance dmin
and specify all other weights relative to w̄ as follows:

wji =

{
w̄ · dmin

dji
, j ∈ Ci

0, otherwise.
(7.10)

Other approaches based on di�erent kernel functions k are equally possible.
Using such an approximation, we can derive weights wji that can represent interde-

pendencies of varying strength more accurately. This is illustrated in Figure 7.3: On
the left-hand side, we give approximated weights for our approach and the model by Yu
et al. (2014) for a comparatively small neighborhood, depending on the distance dji to
an observed location i. The right-hand side gives weights for a situation with stronger
correlations, represented by an increase in the size of the covering neighborhood. In
the case of the model by Yu et al. (2014), increasing neighborhood size decreases the

60



7.4. GCorTOP modeling approach

weights for all locations. In our model, the stronger correlation can be re�ected by in-
creasing w̄ without side e�ects. Note that similar to the stochastic variants, both models
are monotonic in the number of observations.
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Figure 7.3: Impact of increased neighborhood size on approximated weights.

7.4 GCorTOP modeling approach
Apart from the spatial interdependencies discussed above, UAV missions should also be
based on priorities within the target region that characterize how valuable obtaining
information is at a particular location. As the speci�cation of these priorities depends
on the user, they do not necessarily have to be spatially correlated. The observations
made at these locations, in contrast, are always characterized by spatial correlations in
our use case. Hence, some information about a highly prioritized location can also be
obtained by making measurements nearby. The objective function needs to adequately
account for this e�ect.

In this work, we combine these aspects: We model relations between target locations
based on the approximated weights introduced in the previous section. We then use
these weights in the objective function to partially account for the priority of locations
that are not visited themselves but are in the proximity of targets included in a UAV
mission. This way, the fact that some information can be inferred based on observations
nearby decreases the relative importance of performing additional observations at these
locations.

Yu et al. (2014) address this aspect by combining the classical TOP, which maximizes
direct coverage of priorities, with the approximative model (IPP-YU) in Equation (7.6).
This yields a mixed integer quadratic programming (MIQP) formulation, referred to as
the correlated team orienteering problem (CorTOP) by the authors, which is based on
the following objective function:

ICorTOP(S) =
∑
i∈S

ui +
∑
i∈V\S

∑
j∈S∩Ci

wjiui (7.11)
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Equation (7.11) maximizes the sum of the priorities associated with selected sensing lo-
cations

∑
i∈S ui. Unobserved locations are partially taken into account, with their total

contribution to the objective depending on the selected targets within their covering
neighborhoods. For an unobserved location i, the value of the indirectly inferred infor-
mation is approximated as

∑
j∈S∩Ci wjiui. Please note that we adapted the formulation

of Yu et al. (2014) for reasons of consistency to our notation. The original MIQP for-
mulation corresponds to ICorTOP(S) =

∑
i∈V xiui +

∑
i∈V
∑

j∈Ci xj(xj − xi)wjiui with
binary decision variable xi = 1 if i ∈ S and 0 otherwise.

This model su�ers from the same problems as IPP-YU, see Section 7.3. We derive a
new model based on the relaxed variant IPP-GEN. We refer to the corresponding model
as the generalized correlated team orienteering problem (GCorTOP) based on the following
objective function:

IGCorTOP(S) =
∑
i∈S

ui +
∑
i∈V\S

min{ui,
∑

j∈S∩Ci

wjiui} (7.12)

Equation (7.12) ensures that indirectly collected bene�t never exceeds a location’s prior-
ity. The bene�t of each additional observation j ∈ Ci with respect to i 6∈ S is determined
as

min{wjiui,max{0, (1−
∑

k∈S∩Ci

wki) · ui}}, (7.13)

i.e., the bene�t is at most wjiui, thus imposing a threshold that prevents overestimating
a mission’s informativeness. This combines the consideration of priorities as proposed
by Yu et al. (2014) with the advantages of the relaxed discretization in Equation (7.9).

7.5 Summary
In this chapter, we discussed models for considering spatial dependencies for planning
UAV missions, both stochastic and approximative. We �rst formally de�ned the mission
planning problem for emergency surveillance (MPPES) in a general fashion, i.e., inde-
pendent of speci�c models for determining the informativeness or bene�t of UAV mis-
sions. We discussed models based on Gaussian process (GP) representations that have
been proposed in IPP literature. We then derived approximative, discretized models that
avoid the computational overhead of stochastic models and allow the consideration of
priorities in the objective function. Finally, we demonstrated how these discrete mod-
els can be modi�ed to consider priorities and spatial interdependencies in the objective
function.
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8 Dynamic programming and 2MLS
solution approaches

We propose two solution approaches addressing the MPPES: an exact algo-
rithm and a heuristic approach. The exact approach based on bidirectional
dynamic programming is introduced in Section 8.1. We then discuss a two-

phase multi-start adaptive large neighborhood search (2MLS) that can quickly provide
solutions to realistic problem instances in Section 8.2.

8.1 Exact solution approach
We use bi-directional dynamic programming for solving the MPPES exactly. Our algo-
rithm assumes that the objective function I(S) is monotonic in the number of selected
samples, i.e., that additional observations can never decrease the informativeness mea-
sure (see Section 7.2.2). We do not impose further requirements on the objective function,
which makes this approach applicable to all informativeness measures that we have dis-
cussed in the previous section. However, this also means that all UAV routes have to be
de�ned completely to determine their quality.

Generation of vehicle routes

As the bene�t of individual vehicle missions cannot be evaluated in isolation, i.e., with-
out considering the routes of all other vehicles, we use a giant-tour representation for
modeling the routes of all UAVs at once. Preliminary tests have indicated that this ver-
sion is faster than a variant where individual missions are created �rst for each vehicle
and the optimal combination of these tours is determined second.

The solution approach is based on the concepts introduced by Righini and Salani
(2008). The algorithm maintains data structure Lfw and Lbw comprising the generated
labels in the forward and backward direction, respectively. Each label corresponds to a
tuple (S,m, Tm, i), where S ⊂ V indicates the sampled locations,m ∈ {0, . . . , |M|−1}
is the current vehicle, and Tm represents the duration of the emerging tour of UAV m
with i as its last reached location. The routes corresponding to a forward label start
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at sstart0 , i.e., at the starting node of the �rst UAV, and end at location i ∈ N . In the
backward direction, routes starting at the ending location of the last UAV send|M|−1 and
continue in the reverse direction until i. Tm stores the travel time associated with the
current (partial) routes of vehicle m from sstartm to i or backwards from sendm to i.

A label (S,m, Tm, i) is extended to a label (S ′,m, Tm′ , j) by adding a previously un-
visited location j ∈ V \ S and updating the set of visited target locations S ′ and route
cost Tm′ accordingly, i.e,

S ′ = S ∪ {j},
T ′m = Tm + τij.

The extension is feasible as long as Tm′ + τjsendm ≤ Tmaxm . In the backward direction,
we extend labels along arcs (j, i) starting at possible predecessors j of location i. An
extension is not feasible if Tm′ + τsstartm j > Tmaxm .

If the maximum route duration of vehiclemwould be exceeded for all j ∈ V\S , a label
is extended by closing the current vehicle route and opening a new one. In this case, the
new label is set to (S,m + 1, 0, sstartm+1) in the forward direction and (S,m − 1, 0, sendm−1)
in the backward direction.

Similar to Righini and Salani (2008), we apply resource-based bounding to avoid the
generation of redundant labels. In our case, the critical resource is the �ight duration.
Forward labels are extended as long as

m ≤ d|M|/2e − 1 ≡ mfw.

For example, if three vehicles are available, forward extension includes the vehicles in-
dexed 0 and 1. Correspondingly, backward labels are extended while

m ≥ |M| −mfw − 1 ≡ mbw

If m is not a multiple of 2, the same vehicle is included in forward and backward labels,
as mfw = mbw. In this case, extensions in any directions are only performed while
Tm ≤ Tmaxm /2 for all labels with m = mfw = mbw.

Dominance tests

As stated in the introduction of this section, we do not assume speci�c properties of
the objective function other than monotonicity. Therefore, dominance checks can only
be performed based on the selected locations and routing costs. Consequently, a label
(S,m, Tm, i) ∈ Lfw is dominated by another label (S ′,m′, Tm′ , i) ∈ Lfw if either

(a) m′ < m,S ′ ⊇ S
(b) m′ = m,Tm′ = Tm,S ′ ⊇ S
(c) m′ = m,Tm′ < Tm,S ′ = S,
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i.e., if at least the same targets can be surveyed using fewer vehicles or if the same candi-
dates can be surveyed within a shorter travel time. Similarly, in the backward direction,
a label (S,m, Tm, i) ∈ Lbw is dominated by (S ′,m′, Tm′ , i) ∈ Lbw if

(a) m′ > m,S ′ ⊇ S
(b) m′ = m,Tm′ = Tm,S ′ ⊇ S
(c) m′ = m,Tm′ < Tm,S ′ = S.

Optimal solution

To compute a feasible solution, we join forward and backward labels (S,m, Tm, i) ∈ Lfw
and (S ′,m′, Tm′ , j) ∈ Lbw such thatS∩S ′ = ∅. If there is an uneven number of vehicles,
i.e., mfw = mbw, a join is feasible only if Tm + τij + Tm′ ≤ Tmaxm . The objective value
I(S) only depends on the visited target locations. As several solutions may result in the
same set of samples, we store already computed objective values in a hash table to avoid
the redundant evaluation of expensive informativeness measures. Among all solutions
achieving the same informativeness I , we then select the one with the lowest associated
cost.

8.2 Two-phase adaptive large neighborhood search
(2MLS)

As a generalization of the TOP, the GCorTOP is NP-hard, resulting in high computation
times even for small instances when solving these problems exactly. In many applica-
tions, heuristic solution approaches are more promising for determining good solutions
quickly. For this reason, we introduce a two-phase multi-start adaptive large neighbor-
hood search (2MLS) approach for solving the MPPES.

8.2.1 Overview and algorithm design
In this section, we �rst present the fundamental ideas and concepts behind our solution
approach. We then give an overview of the proposed algorithm. Its constituting elements
are discussed in detail in the remainder of this chapter.

Concepts

Existing local search approaches for related problems usually focus on the cost-e�cient
service of targets, often resulting in narrow tours with visit locations in close proximity.
This is in contrast to our goal of surveying as large an area as possible. In contrast, our
algorithm speci�cally promotes explorative UAV routes. This is achieved by a combina-
tion of the following concepts:
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• We use a multi-start approach combined with a seeding strategy that allows us to
quickly generate and evaluate structurally diverse initial solutions.

• The search itself is separated into two phases: Phase 1 is based on reduced problem
representations that emphasize spatial exploration, while Phase 2 computes the
�nal solution. Both phases use an adaptive large neighborhood search (ALNS)
scheme for improving solutions.

• We design search strategies for the ALNS that encourage explorative routes by
accounting for the potential of the surrounding locations instead of considering
targets in isolation.

Solution Approach

The solution scheme is summarized in Algorithm 1. Phase 1 consists of a multi-start
approach for constructing diverse solutions ωredi based on aggregated or decomposed
problem representations P red (see Section 8.2.3). In each iteration, routes are initialized
with seed nodes generated by a k-means++ algorithm (Section 8.2.2) and are completed
using an insertion strategy δinsert. The solution is improved using an adaptive large
neighborhood search (ALNS) approach and �nally transformed to a solution ωi to the
initial problem representation P . In Phase 2, an ALNS is applied to the best solution
obtained in Phase 1.

Algorithm1: Two-phase multi-start adaptive large neighborhood search (2MLS)
Input: Problem P
Output: Solution ωfinal
/* Phase 1: multi-start search on simplified problem

representations */
1 ωinit = ∅, I(ωinit) = 0;
2 for i = 1 until the maximum number of multi-starts do
3 determine problem representation P red;
4 initialize ωredi using a k-means++ algorithm;
5 ωredi ← δinsert(ωred, P red);
6 ωredi ← ALNS(ωredi );
7 determine solution ωi to initial problem representation P based on ωredi ;
8 if I(ωi) > I(ωinit) then ωinit = ωi;
9 end

/* Phase 2: ALNS on complete problem representation */
10 ωfinal ← ALNS(ωinit);
11 return ωfinal;
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Adaptive large neighborhood search

The ALNS used in both phases is an adaptation of the framework proposed by Pisinger
and Ropke (2007) and is depicted in Algorithm 2. In each iteration, one removal strategy
δremoval and one insertion strategy δinsert are selected from the sets of strategies based
on their previous successes and failures. The removal strategy selects nh locations and
removes them from the current solution (Section 8.2.5). The removed locations are re-
inserted by applying δinsert to the partial solution (Section 8.2.6). The search is guided by
a reheating-based acceptance criterion that accepts a non-improving move with a prob-
ability depending on the number of iterations since the last improvement (Section 8.2.7).
The ALNS stops if a convergence criterion is met or itermax is reached.

Algorithm 2: Adaptive large neighborhood search
Input: Problem representation P , starting solution ωinit, itermax, iterconvergence,

removal strategies ∆removal, insertion strategies ∆insert, neighborhood
size limits nh−, nh+

Output: Solution ωbest
1 iter = 0, iterlastimproving = 0 ;
2 initialize selection probabilities 1

|∆removal| for δremoval ∈ ∆removal, 1
|∆insert| for

δinsert ∈ ∆insert;
3 initialize ωcur ← ωinit, ωbest ← ωinit;
4 while iter < itermax and iter− iterlastimproving < iterconvergence do
5 determine nh ∈ [nh−, nh+] ∩ N;
6 compute acceptance threshold I ;
7 select δremoval and δinsert using roulette wheel selection;
8 ω′ ← δremoval(ωcur, nh);
9 ω′′ ← δinsert(ω′, P );

10 if I(ω′′) > I(ωbest) then
11 ωbest ← ω′′;
12 ωcur ← ω′′;
13 iterlastimproving = iter;
14 else if I(ω′′) ≥ I then
15 ωcur ← ω′′;
16 update probabilities for ∆insert and ∆removal;
17 iter = iter + 1;
18 end
19 return ωbest;

8.2.2 Seed nodes
In each iteration of the multi-start approach, a seed for every vehicle tour is determined
using a k-means++ variant (Arthur and Vassilvitskii, 2007) that can account for route du-
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ration restrictions and starting and ending locations, see Algorithm 3. For each vehicle,
the algorithm determines the set of reachable locations Vm = {i ∈ V : τsstartm i + τisendm ≤
Tmaxm } and then selects a seed visit i ∈ Vm with a probability proportional to the min-
imum squared distance between i and any j ∈ N that is either a vehicle starting or
ending location or has already been selected as seed in another vehicle tour. This en-
sures that the initial seed locations are spread across the area, thereby facilitating the
construction of vehicle routes covering large parts of the target region.

Algorithm 3: k-means++ seeding algorithm
Input: Candidate targets V , vehiclesM
Output: Seeds cm ∈ V for all vehicles m ∈M

1 initialize D(i) = minj∈NS∪NE dij for all i ∈ V ;
2 initialize C = ∅ as the set of selected seed visits;
3 form ∈M do
4 determine feasible set Vm = {i ∈ V : τsstartm i + τisendm ≤ Tmaxm };
5 select seed cm ∈ Vm with probability D(cm)2∑

i∈Vm D(i)2
;

6 V ← V \ {cm}, C ← C ∪ {cm};
7 for i ∈ V do
8 if dicm < D(i) then D(i) = dicm ;
9 end

10 end
11 return C ;

8.2.3 Aggregation and decomposition strategies
In Phase 1, we use modi�ed problem representations to quickly determine starting so-
lutions with an emphasis on spatial exploration, i.e., missions covering large areas. For
this purpose, we propose two di�erent schemes: The �rst one is based on spatial aggre-
gation, reducing the number of candidate sensing locations. The second one is based on
spatial decomposition to plan individual vehicle tours separately. Both variants provide
reduced problem representations, i.e., problem representations P red where the corre-
sponding set of targets Vred is a subset of the targets V . Illustrative examples are given
in Figure 8.1.

Grid-based priority aggregation

In this aggregation scheme depicted in Figure 8.1a, the target area is divided into evenly
sized grid cellsC . Each cell comprises a number of locationsVc ⊂ V such that

⋃
c∈C Vc =

V . For each cell c ∈ C , we determine the priority-weighted center (pxc , p
y
c) based on the

positions posi = (pxi , p
y
i ) for i ∈ Vc such that pxc =

∑
i∈Vc uip

x
i∑

i∈Vc ui
and pyc =

∑
i∈Vc uip

y
i∑

i∈Vc ui
. We

chose a representative ic ∈ Vc that is closest to this point. The sum of priorities within
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(a) Grid-based aggregation
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(b) Area decomposition

Figure 8.1: Illustration of simpli�ed problem representations. Vehicle starting and ending loca-
tions are marked blue. The left-hand side represents a target area with nine repre-
sentatives in the reduced problem, depicted in black. The right-hand side indicates
the same area separated into two non-overlapping single-vehicle instances based on
initial seed nodes.

a cell
∑

i∈Vc ui is assigned to its corresponding representative. This results in a set of
target locations

Vred = {ic | c ∈ C}. (8.1)

An initial solution is constructed considering only these representatives.
In the multi-start approach, we use di�erent levels of aggregation in each iteration to

obtain a larger range of candidate solutions. Speci�cally, we determine the size |Vc| of
the grid cells c ∈ C such that either 4, 6 or 9 locations are grouped, making exceptions for
grid cells located at the border of the target region. Increasing the grid cell size further
reduces computation time, as only very few representatives remain. However, we have
observed that the solutions rarely represent good starting solutions for Phase 2 of the
search approach.

This approach allows us to quickly identify highly relevant regions within the target
area and to compute provisional routes for several vehicles. The aggregated priority of
each representative point anticipates the priority obtained from locations that are cov-
ered by the vehicle tours. Furthermore, any solution to the reduced problem represents
a feasible solution with respect to the initial problem representation.

Vehicle-oriented spatial decomposition

The spatial decomposition scheme illustrated in Figure 8.1b separates the target area into
independent sections, which are assigned to one vehicle each, and solved as a series of
single-vehicle problems. Given the seed routes rm = (sstartm , cm, s

end
m ) (see Section 8.2.2),

we determine subsets Vredm ⊂ V for all vehicles such that each target location is assigned
to the vehicle whose seed tour it is closest to. Ties are broken arbitrarily. This makes it
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possible to apply the decomposition scheme to instances with multiple vehicle starting
or ending locations.

The result of this decomposition corresponds to a number of single-vehicle problem
representations P red

m with
⋃
m∈M Vredm = V and Vredm ∩Vredm′ = ∅ for any twom,m′ with

m 6= m′. As every single-vehicle problem contains a non-overlapping subset of candi-
date locations, the combination of routes represents a feasible solution for the original
problem. The sizes of the decomposed areas are reasonably well balanced due to the use
of the seeding strategy, and the assignments to UAVs can take the vehicles’ starting and
ending position into account. This increases overall coverage when routes of di�erent
UAVs are combined.

8.2.4 Weighted objective function
During the ALNS approach, we employ a hierarchical objective function with the dis-
tance traveled by the vehicles as a secondary objective. This ensures that among solu-
tions with similar sensing locations S , the ones with lower resource consumption are
preferred. This is particularly relevant whenever it is possible to achieve complete or
near-complete coverage of a region, in which case distance minimization becomes more
relevant.

However, heavily focusing on distance minimization is detrimental to our interest in
obtaining explorative tours, as these typically require long travel times for traversing the
entire target area. For this reason, total route length is included in the objective function
by multiplying it with a su�ciently small factor of % > 0 to adjust its relative weight. De-
noting the sequence of locations in each route rm ∈ ω as (sstartm , im,0, im,1, . . . , im,n, s

end
m ),

the planning objective is de�ned is

max I(S)− %
∑
rm∈ω

(dsstartm im,0 +
n−1∑
c=0

dim,cim,c+1 + dim,nsendm ). (8.2)

For each problem instance, we heuristically set % based on the average priority ū :=∑
i∈V ui
|V| and the average distance d̄ :=

∑
i∈V

∑
j∈V dij

|V|2 such that

% = 0.01
ū

d̄
. (8.3)

8.2.5 Removal strategies
The 2MLS includes several removal strategies ∆removal that iteratively eliminate loca-
tions from a solution. The result of this procedure is a partial solution that can then
completed again by an insertion strategy (see Section 8.2.6).

The basic removal strategy of our 2MLS is depicted in Algorithm 4. The set of planned
locations Γp contains locations included in a vehicle route, while the set of unvisited lo-
cations Γu contains locations not selected to be visited in the current solution. Note that
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we explicitly select locations among the set Γu for removal instead of considering all
unvisited locations as candidates for re-insertion. First, this reduces the overall neigh-
borhood size and ensures that candidates that are unlikely to be inserted in a tour do
not need to be evaluated in the subsequent insertion strategy. Second, this allows us to
explicitly create di�erent neighborhoods, e.g., for emphasizing either diversi�cation or
more local repair steps.

The number of locations to be removed, i.e., neighborhood size nh, is divided
among the planned and the unvisited locations according to their proportion in the
initial solution. The planned locations are selected �rst following a removal heuristic
δremoval−routed, resulting in relaxed routes with fewer targets. Then, the free capacity
T free
m of each vehicle is computed as the di�erence between the vehicle’s maximum route

duration Tmaxm and the duration of the relaxed route Tm′ . Afterward, the unvisited loca-
tions are selected for removal using δremoval−unvisited. A feasibility check ensures that for
each removed unvisited location, there is at least one vehicle in the relaxed solution that
can reach this location. The removed locations are stored in the set of open locations Γo.

Algorithm 4: Basic removal strategy
Input: Solution ωinit with selected locations S , neighborhood size nh
Output: Open targets Γo, remaining planned locations Γp, unvisited locations Γu

1 set Γp = S,Γu = V \ S,Γo = ∅, nhp = d |S||V| · nhe;
2 while |Γo| < nhp do
3 select i ∈ Γp following removal heuristic δremoval−routed;
4 Γo = Γo ∪ {i}, Γp = Γp \ {i};
5 end
6 form ∈M do
7 compute route length T ′m of the relaxed solution;
8 free capacity T free

m = Tmaxm − T ′m;
9 end

10 while |Γo| < nh do
11 select i ∈ Γu following removal heuristic δremoval−unvisited;
12 if ∃m ∈M with minimum insertion cost of i no larger than T free

m then
13 Γo = Γo ∪ {i}, Γu = Γu \ {i};
14 end
15 end

Randomized nearest neighbor removal The randomized nearest neighbor selec-
tion strategy seeks to enable local improvements by exchanging targets with others
nearby. It iteratively selects nodes in Γp at random and removes them as well as their n
nearest neighbors among the remaining nodes Γu until the maximum neighborhood size
is reached. As a result, selected nodes are grouped in clusters, which makes it possible to

71



8. Dynamic programming and 2MLS solution approaches

replace targets with others nearby. Furthermore, it enables local modi�cations of routes
to reduce total duration.

Seqence-based nearest neighbor removal The sequence-based nearest neighbor
strategy removes entire subsequences from vehicle routes. A starting point for each
segment is selected randomly from Γp. The subsequent targets in the given vehicle route
are removed until either the vehicle ending location is reached or the number of removed
locations exceeds a given segment length lensegment. The segment length limit depends
on the average route size, i.e., lensegment = bυ · |S||M|c with a parameter υ < 1. For each
segment, we select the closest remaining locations in Γu for removal, as these are the
most likely candidates for re-insertion.

Route sparsification strategy The route sparsi�cation strategy randomly selects
one vehicle m ∈ M and removes a large number of target locations within this route.
Similar to the sequence-based strategy, these locations are removed in segments of
length lensegment. One location remains between any two consecutive segments. This
allows preserving the general shape of the route. Unvisited locations are removed from a
plan by choosing one location in each of the removed segment at random, and selecting
the closest remaining locations among the set Γu for removal.

Priority-delta removal The priority-delta removal strategy selects the locations
associated with the lowest contribution to the objective value among the targets in Γp.
Furthermore, it selects the locations with the highest priority among the reachable un-
visited targets in Γu. As recommended by Pisinger and Ropke (2007), both the selection
of routed and unvisited locations are randomized. To this end, locations in Γp are sorted
by ascending priority, and locations in Γu by descending priority. Given a randomiza-
tion parameter det and a random number p ∈ [0, 1], the l-th location is selected with
l = bpdet|Γp|c or l = bpdet|Γu|c, respectively.

Region-based removal The region-based removal strategy accounts for priorities of
other locations within a limited distance d of a target instead of evaluating each loca-
tion’s priority in isolation. The value d is randomized in each iteration. Based on this
value, we de�ne the cost-bene�t ratio ratioi of location i as

ratioi =
costmin

i∑
j∈V:dij<d

uj
, (8.4)

where costmin
i corresponds to the minimum detour needed to insert a location i at the

best insertion position over all routes of the current solution. If a feasible insertion of
location i is not possible, costmin

i is set to ∞. Locations in Γp are sorted by ascending
ratioi, while those in Γu are sorted by descending ratioi. The selection is randomized
using a determinism parameter det as above.
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Weighted center removal The weighted center removal strategy uses the distance
to the vehicle tours’ weighted centers as an indicator of the cost of inserting a visit. The
weighted center is determined as the weighted average of the locations that constitute
the tour in a given solution. Irrespective of their associated priorities, this strategy se-
lects the locations in Γp that are furthest from the weighted center of the tour that they
currently belong to. Among the locations in Γu, those that are closest to any weighted
center of are removed from a solution. The goal of this strategy is to systematically
remove locations that are ill-placed with respect to the remainder of the tour.

Worst angle removal The worst-angle removal strategy selects combinations of tar-
get locations that form sharp angles in the route. We assume that these angles indicate
room for improvement, as they can be associated with considerable detours. Further-
more, in the case of the MPPES, sharp angles imply that at least two targets in the route
are located relatively close to one another, which is rarely bene�cial in terms of informa-
tion gain. For computing the associated angle for each location i ∈ Γp, we determine the
preceding location h and the succeeding location j in the current solution. The angle
∠hij ∈ [0, π] is formed by the arcs from h to i and from i to j, respectively. For the
sharpest angles in the given solution, we then remove the three constituting points h, i
and j. Unvisited locations are selected randomly from Γu.

8.2.6 Insertion strategies
Routes are constructed and re-constructed by iteratively inserting locations into vehicle
tours. The basic heuristic for constructing solutions is depicted in Algorithm 5. The
heuristic iteratively selects a location i among the set of open locations Γo following an
insertion strategy δinsert. Each selected location is inserted at its minimum cost position
and added to the set of planned locations. If no feasible insertion position is available, a
location is left unvisited and added to the set of unvisited locations Γu. To prevent the
repeated construction of similar solutions, the insertion heuristic is slightly randomized
such that a random location is selected with probability prand ∈ [0, 1] instead of following
δinsert.

Visit insertion relies on the marginal bene�t of inserting a target location, i.e., the
incremental change of the objective caused by including a location in a route, given the
current partial solution. To this end, we distinguish between the remaining priority uri
and marginal contribution umi of target i. The remaining priority uri re�ects the pro-
portion of the location’s priority value that has not yet been covered by visiting nearby
target locations. The marginal contribution umi indicates the incremental change of the
objective function when i is included in a UAV route. For the GCorTOP, the remaining
priority of a location i is:

uri = max{0, (1−
∑

j∈S∩Ci

wji) · ui}. (8.5)
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Algorithm 5: Basic insertion strategy
Input: Partial solution ωinit with open targets Γo, planned locations Γp,

unvisited locations Γu, randomization parameter prand
Output: Completed solution ωfinal with selected targets S = Γp

1 while Γo 6= ∅ do
2 determine a random number p ∈ [0, 1];
3 if p ≤ prand then
4 select i ∈ Γo at random;
5 else
6 select i ∈ Γo following construction heuristic δinsert;
7 end
8 if ∃ feasible insertion position in Γp then
9 insert i at its minimum cost position;

10 Γp = Γp ∪ {i};
11 else
12 Γu = Γu ∪ {i};
13 end
14 Γo = Γo \ {i};
15 end

The marginal bene�t of a location i can then be determined as:

umi =

{
uri +

∑
j∈V\{i}:i∈Cj min{urj , wijuj} if i ∈ Γo

0 otherwise,
(8.6)

i.e., it comprises the remaining priority of location i plus the priorities of all locations
that can be surveyed by i.

Maximum marginal priority insertion The maximum marginal priority insertion
strategy greedily inserts the visit with the highest marginal contribution to the objective
value. In the case of a tie, the visit with the highest priority ui is inserted �rst.

Best marginal priority ratio insertion The best marginal priority ratio strategy
seeks to balance marginal bene�t and resource utilization. It selects a visit i ∈ Γo such
that

i = arg max
Γo

(umi )q

costmin
i

. (8.7)

The factor q > 0 allows to adjust the relative importance of umi and costmin
i . Increasing q

leads to a higher focus on priorities during construction. Again, ties are broken by the
locations’ direct priorities ui.
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Weighted center insertion Complementing the corresponding selection strategy,
this insertion strategy greedily inserts the visit that is closest to any weighted center of
a vehicle tour. Weighted centers are recalculated after each insertion.

Region-based insertion Similar to the corresponding removal strategy, the region-
based insertion strategy accounts for the priorities of nearby locations, i.e., locations
within a maximum distance d. Locations are selected for insertion such that

i = arg max
Γo

∑
j∈V:dij<d

urj

costmin
i

. (8.8)

The objective is to prioritize highly relevant regions early during the
(re-)construction of routes. Note that we use remaining priorities uri instead of
the marginal contributions umi . Otherwise, we would overestimate the locations’ con-
tributions as they are considered in the marginal priority values of all their respective
neighbors. Again, the parameter d is randomized to insert locations in di�erent orders
during the search.

Cost-greedy insertion The cost-oriented insertion strategy greedily inserts visit i
with minimum insertion cost. We use this strategy for diversi�cation during the search,
as most other strategies focus on the locations’ priorities. Furthermore, in the case of
the TOP, it may help to construct and improve routes that include clustered locations.

Orienteering-regret insertion The orienteering-regret heuristic inserts visit loca-
tions �rst that may no longer be feasible if their insertion is delayed. In order to use this
strategy, we have to compute two values for each target remaining in Γo: the change in
the objective value at the current best position for visit i, denoted δobji,1 , and the change in
the objective if i is inserted in its nreg-th best position, denoted δobji,nreg , with regret param-
eter nreg ∈ {2, . . . , |Γp|}. If the nreg-th best position is not a feasible insertion position,
we set δobji,nreg = 0. Then, the heuristic selects a location i such that

i = arg max
Γo
|δobji,nreg − δobji,1 |. (8.9)

If some locations only have few feasible insertion positions left, setting δobji,nreg = 0 ensures
that these are associated with high regret values. In this case, the strategy prioritizes the
locations that o�er the highest marginal contribution to the objective, o�ering additional
diversi�cation as locations that are further away from a current route are inserted early.
If the nreg-th best position exists for all i ∈ Γo, the di�erence between δobji,nreg and δobji,1
re�ects the change in total route distance due to the weighted objective function. In
this situation, the insertion strategy �rst selects locations where a delay may lead to a
high detour. Similar to the cost-greedy strategy, this improves routes in terms of total
duration. If no feasible position remains, δobji,1 is 0 and the location is added to set Γu.
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8.2.7 Reheating-based acceptance criterion

As acceptance criterion, we employ a reheating-based scheme that increases the likeli-
hood of accepting a move associated with a decreasing objective value with the number
of moves since the last strict improvement of the objective function. Although quite sim-
ple, preliminary experiments have shown that this scheme obtains better results than a
conventional simulated annealing metaheuristic for the ALNS approach. This is due to
the e�ect that, once an improved solution has been found, subsequent search steps are
often able to quickly �nd further improvements. This way, subsequent search steps focus
on intensi�cation after an improving move. The acceptance threshold is only lowered if
improvements cannot be found, thereby accepting solutions with decreasing objective
values to leave local minima.

Similar to the well-known simulated annealing scheme, a new solution ωnew is ac-
cepted with a probability that depends on the best solution found so far ωbest and the
current temperature Ψ. With δobj = |Ibest − Inew| as the absolute decrease in solution
quality, the probability of accepting a move is determined as:

P
(
δobj
)

= exp

(
−δobj

Ψ

)
. (8.10)

The temperature Ψi in iteration i is increased in non-improving iterations such that
Ψi+1 = Ψi ·ψ with ψ > 1. In the beginning and whenever a new best solution is found,
Ψi is set to a given minimum temperature of Ψ0 = 1.

We initialize heating parameter ψ such that a decrease in solution quality of δobj will
be accepted with probability p = 0.5 after κ iterations. To do so, we use the following
equation:

ψ =

(
−δobj

Ψ0 ln 0.5

)(1/κ)

. (8.11)

As proposed by Kilby (2013), we can use Equation (8.10) for computing an acceptance
threshold prior to the construction of a solution, which is determined as

I = Ibest − δobj = Ibest + ln(p) ·Ψ (8.12)

given a random number p ∈ (0, 1]. An insertion step can be stopped preemptively
when the maximum achievable priority value I of a solution is less than the required
acceptance threshold. We therefore maintain an upper bound on the objective value of
GCorTOP, which is computed as follows:

I =
∑
i∈V

ui −
∑
i∈Γu

(ui −min{ui,
∑

j∈Ci\Γu
wjiui}) (8.13)

The upper bound in Equation (8.13) corresponds to the sum of all priorities reduced
by the sum of “lost” priority values, i.e., the proportion of priorities associated with
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locations in Γu that cannot be covered by any of the locations in Γp and Γo, respectively.

8.3 Summary
In this chapter, we discussed two approaches for solving the mission planning prob-
lem for emergency surveillance. We introduced a bi-directional dynamic programming
approach for providing a benchmark for small problem instances. To address realistic
instance sizes, we then proposed a two-phase multi-start adaptive large neighborhood
search (2MLS). In Phase 1, this approach seeks to quickly determine explorative vehicle
tours based on reduced problem representations. To this end, we proposed two di�erent
strategies based on spatial decomposition and the aggregation of candidate locations. In
Phase 2, these initial routes are further improved based on the full problem represen-
tation using an adaptive large neighborhood search approach that iteratively removes
several locations from a solution and re-inserts them to improve the objective value.
We propose several removal and insertion strategies that enforce desirable characteris-
tics in a solution, e.g., route shape or the priorities of selected targets. Search is guided
by a metaheuristic that accepts worse solutions with a probability depending on the
solutions’ objective values and the number of iterations since the last best solution was
found. This allows us to alternately intensify the search to further improve on a recently
found solution and to diversify it in case a local minimum was reached.
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This chapter provides an in-depth evaluation of the proposed models and solu-
tion approaches based on an extensive simulative study. It is dedicated to two
main issues: (1) The evaluation of the performance of the solution approach con-

sidering the achieved solution quality, robustness, and computation times, and (2) the
assessment of the applicability of the proposed models with respect to the mission plan-
ning problem introduced in Chapter 4.

In Section 9.1, we �rst introduce the benchmark instances that provide a starting point
for this evaluation and derive new benchmark instances for the MPPES based on real-
world data and simulated distributions of hazardous gases. In Section 9.2, we propose
evaluation criteria for measuring the quality of the modeling variants and solution pro-
cedure. The results of this study are presented and discussed in Sections 9.3 and 9.4.

9.1 MPPES benchmark instances
At the core of this evaluation are two sets of benchmark instances that provide insights
into the performance of the models and solution approaches. We use the existing bench-
mark instances proposed for the team orienteering problem (TOP) to compare our so-
lution approach to state-of-the-art algorithms for related problems. To this date, no
benchmark instances have been established for IPP. For evaluating the models and algo-
rithms in a realistic use case, we derive new instances speci�cally tailored to the mission
planning problem for emergency surveillance.

9.1.1 Existing benchmark instances
As a result of the attention the TOP has received in literature, a large number of bench-
mark instances are available for this problem class. An overview of these instances is
provided in Table 9.1. Most of the work published in this area uses the instance sets
proposed by Chao et al. (1996b) to evaluate proposed solution approaches. However,
many of these instances are comparatively easy to solve, either due to the low number
of locations in total or due to low route capacities that mean that only a small subset of
locations can be feasibly visited. For this reason, Sou�riau et al. (2010) and most authors
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Reference Nb. |V| |M|

Chao et al. (1996b) Set 1 54 32 2-4
Set 2 33 21 2-4
Set 3 60 33 2-4
Set 4 60 100 2-4
Set 5 78 66 2-4
Set 6 42 64 2-4
Set 7 60 102 2-4

Dang et al. (2013) 333 100-399 2-4

Table 9.1: Overview of team orienteering problem (TOP) benchmark instances introduced by
Chao et al. (1996b) and Dang et al. (2013).

of later publications only consider the 157 most “relevant” instances among the 387 in-
stances initially published. These instances are comprised by a subset of the sets 4 to
7 depicted in Table 9.1, leaving out those with tight budget constraints and thus short
routes.

To extend the number of available benchmark instances, Dang et al. (2013) introduced
a set of larger instances comprising up to 399 candidate target locations. These instances
are based on benchmark instances published for the orienteering problem by Fischetti
et al. (1998) which are, in turn, either adapted from benchmark instances for TSP and
VRP or randomly generated. As the instances by Chao et al. (1996b), the number of
available vehicles varies between 2 and 4.

9.1.2 Generation of new benchmark instances
While we can use benchmark instances established for the TOP to compare our solution
approach with existing approaches, they do not allow the evaluation and comparison of
the proposed modeling variants for the MPPES. Therefore, we introduce new large-scale
instances for this planning problem based on the practical use case presented in Chap-
ter 2. An overview of the parameters of the benchmark instances is given in Table 9.2.

In this study, we consider rotary-wing UAVs equipped with optical sensors for detect-
ing hazardous substances. Following the BBK’s recommendations, priorities are deter-
mined using recent information on population density (see Section 2.1.4). To simulate
the distributions of hazardous substances, we generate synthetic autocorrelated random
�elds. We furthermore consider 5 di�erent target area sizes. For every target area size,
we generate 90 instances by varying the assigned priorities, the number of UAVs and
maximum �ight time as indicated in the table. This leads to a total of 450 benchmark
instances.

Target areas and priorities

As the di�culty of the planning problem is primarily determined by the number of candi-
date targets, we vary the size of the target area between 1.5× 1.5 km2 and 2.5× 2.5 km2.
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Parameter Values

Cruise speed vmax (in m/s) 7
Acceleration amax (in m/s2) 2
Sensing time τi (in s) 2
Sensor resolution (pixel) 1, 000× 1, 000
Flight height h (in m) 120
Ground sampling resolution pxr (in m2/pixel) 0.01
Available vehicles {1; 2; 3}
Mission duration Tmax (in s) {600; 900; 1, 200; 1, 500; 1, 800}
Target area sizes (km2) {1.5× 1.5; 1.5× 2; 2× 2; 2.5× 2; 2.5× 2.5}

Table 9.2: Parameter settings for MPPES benchmarks.

Given the distance of 100 m between targets determined by the sensor equipment, this
results in 15 × 15 = 225 to 25 × 25 = 625 candidate target locations. Smaller a�ected
areas either do not require airborne surveillance or can be surveyed in their entirety
within the available �ight time limit. We do not consider larger areas, as they are not
within the UAVs’ operation range.

For the MPPES benchmarks, we select target areas within the German state of North
Rhine-Westphalia at random. For each area, we determine priorities using the corre-
sponding data on population density published by the Federal Statistical O�ce based
on data collected in the 2011 census (Statistisches Bundesamt (Destatis), 2018). This
dataset provides georeferenced information on population density in a resolution of 100
× 100 m, which is su�cient for our use case. Combined with geographical grids pro-
vided by the Central O�ce for Geotopography (2018), it can be loaded in Geographical
Information Systems (GIS) such as QGIS (QGIS Development Team, 2017). This allows
combining this information with additional map layers, which facilitates the interpre-
tation of these priorities by human operators. Furthermore, this provides an intuitive
interface for specifying target regions and UAV starting locations. An example is given
in Figure 9.1, which indicates the bounding box speci�ed by a user using the QGIS ap-
plication on the left-hand side, and the population data corresponding to this area on
the right-hand side.

Note that the published data is anonymized such that individuals cannot be identi�ed.
This is achieved by modifying values for grid cells with very few inhabitants. We cannot
ensure that areas that seem uninhabited in the published data are indeed unpopulated.
Therefore, we assign all targets a minimum priority of 1. This does not impact the overall
priority distribution but ensures that there are no locations with a priority of zero or
negative priority values.

An advantage of this way of determining priorities is its general applicability, as simi-
lar data sources are publicly available in many regions. For example, population density
estimates on a global scale are available in a spatial resolution of up to 250× 250 m from
the European Commission, Joint Research Centre (JRC) (2015). Thus, we can assume
that this procedure can be similarly applied to other regions.
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Figure 9.1: Generation of benchmark instances based on population density information. Own
representation using QGIS (QGIS Development Team, 2017), population data retrieved
from Statistisches Bundesamt (Destatis) (2018).

Vehicles

In our study, we consider UAV systems similar to those used in the BigGIS project (see
Section 2.2.1). We generate instances with 1 to 3 vehicles that are identical except for
their takeo� and landing positions, which are selected at random among the locations at
the border of the target area. To obtain insights on the trade-o� between �ight time and
information gain, we vary the maximum �ight timeTmax between 10 and 30 minutes. We
assume a maximum cruise speed vmax =7 m/s (approx. 25 km/h), which is realistic when
taking payload weight and environmental in�uences into account. The observations are
made at a standstill.

The time required for accelerating and decelerating has a major in�uence on total
travel time between locations in close proximity. For simplicity, we assume that UAVs
accelerate and decelerate with a constant horizontal acceleration rate amax =2 m/s2.
Then, travel time τij between any two points i and j can be determined depending on
traveled distance dij as follows:

τij =

{
2
√

dij
amax if dij < (vmax)2

amax

dij
vmax + vmax

amax otherwise
(9.1)

We furthermore include a �xed sensing time τi = 2 s. This is necessary as the UAVs need
to verify their position via GPS, their �ight needs to be stabilized at the target location,
and several observations are performed and processed before traveling further.

In our experiments, we assume that vehicles are equipped with a hyperspectral sen-
sor with a resolution of 1,000 × 1,000 pixels and a focal length of 12 mm. Given this
speci�cation, the �ight height and the covered ground area per image depend on the de-
sired target ground resolution, i.e., the covered ground area per pixel in the �nal image.
Based on experiments in the BigGIS project, we consider a ground sampling resolution
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of 0.01 m2/pixel to be acceptable. This corresponds to a covered ground area per image
of 100× 100 m at a �ight altitude of approximately 120 m. Then, candidate sampling lo-
cations are located in 100 m distance to one another, each of which represents the center
of an image taken by the UAVs.

Spatial distribution of contaminants

The priorities speci�ed above are central to the planning of UAV missions. The quality
of the proposed model, however, does not solely rely on whether or not high-priority
regions are covered by the vehicle routes. In practice, we use the samples taken along
the route to predict the distribution of hazardous substances across the relevant area.
Hence, the applicability of the proposed model largely depends on the predictive quality
that can be achieved for the distribution of hazardous substances.

To take this into account, we generate spatially autocorrelated random �elds that sim-
ulate distributions of contaminants across the target area. For this purpose, we de�ne
Gaussian process distributions ZV based on a set of covariance functions. We determine
arti�cial distributions by drawing samples from this distribution (see Section 3.2.2). For
each instance, this yields simulated values Z(i) for all i ∈ V that follow the speci�ed
covariance matrix of the GP prior. We normalize these values such that Z(i) ∈ [0, 100]
for all i, with a mean value of 50 for the multivariate normal distribution.

The covariance functions used are based on the results of Stachniss et al. (2009), who
use exponential kernels and Matérn covariance functions for modeling and predicting
gas distributions. We alternate between these two kernel functions when generating
random �elds. This way, we create distributions that vary in their smoothness, some
changing more quickly as others. An example for the planning scenarios, de�ned by
their unique set of priorities and simulated distribution, are depicted in Figure 9.2 for
a scenario with 500 target locations. Figure 9.2a is generated using the Matérn kernel,
resulting in the comparatively rough distribution that is indicated on the right. In con-
trast, the distribution indicated in Figure 9.2b is based on an exponential kernel, yielding
a much smoother distribution.

9.2 Study design and performance measures
As stated at the beginning of this chapter, we evaluate our proposed solution strategy for
the MPPES with a particular emphasis on two aspects: The performance of the solution
procedure, and the applicability of the models in a realistic setting. In this section, we
derive performance measures that allow us to compare and evaluate the proposed strate-
gies and models. Considering solution quality, we use measures established in literature
to compare the performance of the 2MLS on standard benchmarks with other published
results. For the evaluation of the models, we derive new performance measures that
permit a more detailed analysis of the obtained results.
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(a) Scenario based on a target area of 2 × 2.5 km2 (500 candidate locations) using a
Matérn kernel
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(b) Scenario based on a target area of 2.5 × 2.5 km2 (625 candidate locations) using
an exponential kernel

Figure 9.2: Examples for planning scenarios characterized by priorities and simulated distribution
of hazardous substances. Each cell in the images corresponds to one candidate target,
represented by the cell center.

9.2.1 Solution qality

To measure the achieved solution quality, we compare the best and the average results
out of 10 executions of our algorithm per benchmark instance. This follows established
practices in the literature on vehicle routing (see e.g., Dang et al., 2013; Vidal et al., 2015).
The best gap compares the best found solution ωbest to the best known solution ωBKS
as follows:

best gap =
I(ωbest)− I(ωBKS)

I(ωBKS)
(9.2)

The gap between ωBKS and the average informativeness Iavg = 1
N

∑N
i=1 I(ωi)

avg. gap =
Iavg − I(ωBKS)

I(ωBKS)
(9.3)
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serves as a measure of the robustness of the solution approach. The lower this value, the
closer the average results are to the best-known solution.

9.2.2 Covered priorities
As we have established in Chapter 4, one objective of our approach is to provide emer-
gency services with information at locations that are particularly relevant to them. Most
importantly, this includes locations at which a large number of people may be a�ected
after an incident.

In our model, this relative importance of target locations is considered in form of
the priorities ui. In a straightforward fashion, we could evaluate a solution based on
the sum of priorities

∑
i∈S ui. However, doing so leaves aside any information that

is obtained about neighboring locations due to the correlations within the distribution
of airborne contaminants. We therefore measure direct and indirect coverage using a
distance-dependent coverage measure PCovd

PCovd(S) =

∑
i∈V:∃j∈S with dij≤d ui∑

i∈V ui
, (9.4)

which gives the proportion of all priorities within distance d to a sampled location. Note
that these measures are independent of how we model informativeness I(S), thus al-
lowing a comparison of all discussed models.

In case of the MPPES, a UAV may travel further to provide better spatial coverage.
In other words, it may reduce the priorities associated with directly served targets∑

i∈S ui ≡ PCov0 in order to obtain better overall coverage. To obtain insights into these
patterns, we use three parametrizations of the measure. These indicate directly covered
priorities (PCov0) as well as those within 100 m and 300 m (PCov100 and PCov300) respec-
tively. A higher value for the last two measures indicates that a UAV path traverses most
of the highly prioritized regions, i.e., that the most relevant target locations are either
included in a vehicle route or are close to one.

9.2.3 Prediction qality
A central goal of the MPPES is to provide an accurate overview of the overall contami-
nation across the target area. Keeping this in mind, the quality of planned paths corre-
sponds to the quality of the predicted distributions of contaminants that are determined
based on the samples taken during the �ight.

To this end, we can use statistical means, speci�cally, GP regression approaches, which
are computationally too expensive for evaluating interim solutions during the search.
The theoretical foundation for this analysis is given in Chapter 3, in particular in Sec-
tion 3.2.2. The planned UAV mission determines a set of sampling locations S . The
corresponding observations zi for all i ∈ S are speci�ed by the simulated spatial distri-
bution of contaminants. We condition a Gaussian process on these samples. For �tting
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the covariance function of this GP to the sample data, we use the Python scikit-learn
package (Pedregosa et al., 2011). The GP posterior gives predicted values Ẑ(i) for all
i ∈ V . To measure the quality of this prediction, we measure the deviation of the pre-
dicted values from the “true” distribution of contaminants, i.e., the initially generated
distribution.

In this study, we use three measures: The mean absolute error (MAE)

MAE =
1

|V|
∑
i∈V

|Ẑ(i)− zi| (9.5)

allows to compare overall accuracy of the predictions.
The mean error (ME), which is de�ned as

ME =
1

|V|
∑
i∈V

(Ẑ(i)− zi), (9.6)

indicates whether or not the selected samples lead to a systematic deviation in the pre-
diction, e.g., a systematic underestimation or overestimation of the contamination.

Finally, we also determine the weighted mean absolute error (WMAE)

WMAE =
1∑
i∈V ui

∑
i∈V

ui · |Ẑ(i)− zi| (9.7)

which accounts for the fact that a reliable prediction is more important to emergency
services at locations where more people may be a�ected. This way, we can evaluate
the trade-o� between overall prediction quality and the accuracy at highly prioritized
locations.

9.2.4 Prediction robustness
The evaluation measures above are based on the assumption that samples taken by the
UAVs during their missions are accurate. In practice, this is not always the case, as
we cannot avoid measurement errors or inaccurate position estimations. To assess the
applicability of our model in real-world settings, we evaluate whether the achieved pre-
dictions are robust with respect to inaccurate sample values.

An overview of this approach is given in Figure 9.3. We mimic measurement errors
that may occur in practice by adding white noise drawn from a normal distribution with
mean 0 and standard deviation σ. A prediction is not computed based on the true data
zi, but on modi�ed observations yi = zi + ei, with ei ∼ N (0, σ). This means that the
expected value over all measurements does not change, but individual observations may
deviate from the exact values. In our experiments, we set σ = kµwith k ∈ R+ and µ the
mean value of the true data. We evaluate the approach with k = 0.05 and k = 0.1. Due to
the way we generated our test sets (see Section 9.1.2), we know that the mean value for
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all generated distributions is around 50. Hence, we add a noise with a standard deviation
of 2.5 and 5 respectively. This way, the measurement errors are ensured to be within a
reasonable range: Observations deviate noticeably from the true values, but the results
are not entirely arbitrary, which would prohibit any reasonable prediction.

For evaluating the robustness of the prediction, we compute the prediction quality
measures de�ned in Equations (9.5) to (9.7) and compare the result with those obtained
without noise. A high deviation between these two values indicates that the predicted
distribution of hazardous substances is sensitive with respect to measurement values. In
practice, this would limit the reliability and usefulness of such a UAV-based surveillance
system.

9.2.5 Model configurations
To evaluate the performance of our proposed model, we compare three modeling vari-
ants in terms of solution quality, runtime and robustness: The TOP, which only considers
priorities, CorTOP (Equation (7.11)) as a predecessor to our model with a lower emphasis
on covering aspects, and �nally, the GCorTOP model (Equation (7.12)).

In case of the latter two models, we have to specify the weights that de�ne the objec-
tive function. For CorTOP, these are based on the approximation used by Yu et al. (2014),
see Equation (7.8), with the covering neighborhood Ci of location imade up of its imme-
diate neighbors. For GCorTOP, our model is based on Equation (7.10) with w̄ =0.5 and
dmin =100 m. The radius of the covering neighborhood is limited to 400 m, as the impact
of including locations at larger distances in the covering neighborhood is negligible.

9.3 Computational results
The two-phase multi-start adaptive large neighborhood search (2MLS) is implemented
in C++. The bi-directional dynamic programming approach is implemented in Python
3.6. All evaluations are performed on an Intel Xeon 2.6GHz processor machine with 119Simulative Study
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Figure 9.3: Evaluation of robustness with respect to noisy input data.
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GB RAM running a 64-bit version of Windows Server 2012. Except for the parameter
tuning, each instance was solved 10 times.

9.3.1 Parameter tuning
To determine good parameter settings, we performed a series of preliminary experiments
on a subset of 60 randomly selected instances among the TOP and MPPES instances. The
idea behind this approach is to �nd reasonable parametrizations that perform well on
a diverse set of instances. For each instance and parameter con�guration, we ran the
2MLS three times. The performance of di�erent con�gurations are compared based on
the gap to the best known solution (BKS) averaged over all instances. Detailed results
can be found in Appendix A.

Based on the results of the tuning phase, we propose two parametrizations of the
2MLS: a “regular” con�guration achieving good results (2MLS), and a particularly fast
parametrization denoted as 2MLS-f. This distinction allows us to gain insights into the
trade-o� between computation time and solution quality. Furthermore, using the fast
version, we can evaluate how the algorithm performs in a practical setting where com-
putation times are strictly limited. Table 9.3 gives the parameter settings for the two
con�gurations.

We use the same insertion and removal strategies for both variants, selecting strate-
gies that performed best in the preliminary tests. However, we apply di�erent strategies
for Phase 1: We use the vehicle decomposition scheme for 2MLS-f, as it provides bet-
ter solutions early on during the search. In the regular variant, where we can exploit
the available time for further improvements of solutions, we use the aggregation-based
scheme. ALNS segment size is set to 200 iterations for the fast version, and 600 iterations
for the regular variant. This way, the search reacts more quickly after the �rst iterations
as the total number of iterations is limited. The convergence criterion is set to 100 itera-
tions (2MLS-f) and 300 iterations (regular con�guration). Similarly, we use two di�erent
con�gurations for average neighborhood size, with smaller neighborhoods being used
for the fast variant.

For the ALNS procedure, except for the parameters explicitly mentioned, we follow
the settings proposed by Pisinger and Ropke (2007). Speci�cally, this includes the strate-
gies’ weights and update procedures for the ALNS. Our tests have shown that the overall
search is robust with respect to these parameters, as no signi�cant changes have been
observed in preliminary tests when varying these parameters.

A note on rounding

Rounding issues have complicated the comparison of results in the past, as solutions
obtained using lower precision are occasionally better in terms of total priority, but are
infeasible for higher rounding precisions (see, e.g., the discussion in (Ke et al., 2008)). In
our implementation, all distances and travel times are rounded to two digits. The same
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Parameter 2MLS-f 2MLS

Strategy for Phase 1 Vehicle decomposition Aggregation
Number of multi-starts 4 4
ALNS limit in Phase 1 100 iterations 100 iterations
ALNS limit in Phase 2 2,000 iterations 2,000 iterations
ALNS segment size 200 iterations 600 iterations
Convergence limit 100 iterations 300 iterations
Neighborhood size limits nh− = max{0.05|V|, 10}

nh+ = min{0.2|V|, 100}
nh− = max{0.1|V|, 10}
nh+ = min{0.3|V|, 100}

Priority ratio factor q {1, 2} {1, 2}
Segment length υ [0.1 |S||M| , 0.25 |S||M| ] [0.15 |S||M| , 0.35 |S||M| ]

Randomization factor prand 0.05 0.05
Regret parameter nreg 2 2
Determinism parameter det 6 6
Heating parameter κ 400 iterations 400 iterations

Table 9.3: Search con�gurations for computational experiments.

precision is used for calculating the objective value in case the weights in the GCorTOP
models make rounding necessary.

9.3.2 2MLS results on TOP benchmarks
In a �rst step, we use the existing benchmarks for TOP in order to compare the proposed
two-phase multi-start adaptive large neighborhood search with other approaches, which
represent the state of the art with regard to computation time or solution quality:

• Fast path relinking (FPR), proposed by Sou�riau et al. (2010), run on an Intel Xeon
2.5GHz processor machine

• Particle swarm optimization-inspired algorithm (PSOiA), proposed by Dang et al.
(2013), tested on an AMD Opteron 2.6GHz CPU

• Uni�ed hybrid genetic search (UHGS) with augmented neighborhoods for implicit
customer selection proposed by Vidal et al. (2015), run on an Intel Xeon 3.07GHz
CPU

• Multi-start local search (MS-LS), again presented by Vidal et al. (2015), with similar
augmentations, tested on the same machine

• Pareto mimic algorithm (PMA) by Ke et al. (2016), run on a Intel Core i5 3.2GHz
CPU with 4 GB RAM

Due to the di�erent hardware used and the lack of further data, an accurate compari-
son of computation times is not possible. Except for two newer machines used by Vidal
et al. (2015) and Ke et al. (2016), the processors used are of a similar generation as ours
and can provide a rough indication of computation times.

89



9. Experimental study

Results on instances by Chao et al. (1996b)

The results are displayed in Table 9.4 in aggregated form. For each instance set and
solution procedure, the table gives the average and best deviation to the best-known
solution over the 10 runs and average computation time.

FPR PSOiA UHGS MS-LS PMA 2MLS-f 2MLS

avg. n.a. 0.11 % 0.05 % 1.52 % 0.32 % 3.18 % 1.75 %
4 best 0.73 % 0.00 % 0.01 % 0.21 % 0.00 % 0.90 % 0.36 %

t(s) 8.6 226.7 236.3 15.9 113.1 4.5 22.6

avg. n.a. 0.03 % 0.01 % 0.48 % 0.09 % 1.67 % 0.64 %
5 best 0.23 % 0.00 % 0.00 % 0.06 % 0.00 % 0.14 % 0.09 %

t(s) 2.9 73.9 138.0 3.4 32.3 1.3 12.0

avg. n.a. 0.00 % 0.00 % 0.34 % 0.29 % 1.10 % 0.10 %
6 best 0.11 % 0.00 % 0.00 % 0.03 % 0.00 % 0.00 % 0.00 %

t(s) 2.1 37.3 91.0 2.0 24.8 0.8 7.3

avg. n.a. 0.03 % 0.02 % 1.11 % 0.13 % 1.29 % 0.88 %
7 best 0.54 % 0.00 % 0.00 % 0.14 % 0.00 % 0.28 % 0.05 %

t(s) 6.3 130.3 228.0 9.8 68.6 2.7 22.1

avg. n.a. 0.06 % 0.03 % 0.99 % 0.20 % 2.03 % 1.04 %
all best 0.47 % 0.00 % 0.00 % 0.13 % 0.00 % 0.43 % 0.17 %

t(s) 5.0 138.4 192.0 9.3 69.3 2.8 18.0

Table 9.4: Summary of results on Chao et al. (1996b) instances.

The best solutions are obtained by PSOiA, UHGS and PMA, all of which are associated
with considerable running times. Compared to these approaches, 2MLS comes with a
slightly worse solution quality, achieving a best gap of 0.17 % and an average gap of
1.04 % to the best-known solutions. 2MLS-f has a best gap of 0.43 % and an average gap
of 2.03 %. However, with an average computation time of 2.8 seconds, it is faster than
any of the other approaches. The best gap slightly improves on FPR. As the authors
have not published information on their average results, it is not possible to compare
the robustness of the algorithms.

Results on instances by Dang et al. (2013)

The instances introduced by Dang et al. (2013) have received considerably less attention
in literature. To this date, only two solution approaches are available for comparison:
PSOiA proposed by Dang et al. (2013), and PMA introduced by Ke et al. (2016). Both of
these approaches are population-based mechanisms with comparatively high computa-
tion times.

The computational results are reported in Table 9.5. Note that both previous publica-
tions limit their study to a subset of 82 “di�cult” instances among the 333 in the large
benchmark set. In the same manner, we give average results on these 82 instances as
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well as on the entire benchmark set. Note that, while the proposed instances on aver-
age include around 171 target locations, this is increased to approximately 240 for this
selection. The comparison of results on the entire benchmark set is based on the results
reported on the personal website1 of the authors of the second journal paper.

PSOiA PMA 2MLS-f 2MLS

avg. 0.13 % 0.13 % 1.62 % 1.03 %
all best 0.01 % 0.00 % 0.42 % 0.19 %

t(s) 4,379.4 343.9 10.7 32.8

avg. 0.50 % 0.42 % 2.86 % 1.86 %
sel. 82 best 0.04 % 0.00 % 1.13 % 0.55 %

t(s) 11,031.0 999.2 25.8 70.5

Table 9.5: Summary of results on Dang et al. (2013) instances, averaged over all instances and the
selection of 82 instances considered by Dang et al. (2013) and Ke et al. (2016).

The table shows that PMA obtains the best results in terms of solution quality. 2MLS
and 2MLS-f are associated with a higher gap. The best solutions found by 2MLS are close
to the BKS, with an average gap of 1.03 % and a best gap of 0.19 %, averaged over all in-
stances. These gaps are slightly higher when considering the 82 more di�cult instances
but remain below 2 % on average. For 2MLS-f, the average gap of these instances is less
than 3 %.

Compared to the two other published approaches, this increase in average gap comes
with a considerable improvement in terms of computation time: 2MLS is more than ten
times faster than PMA, and 2MLS-f reduces average computation time by a factor of 30.
Both variants use less than 1 % of the computation time required for PSOiA.

9.3.3 2MLS results on MPPES benchmark instances
In the next section, we discuss the results on the new benchmark instances proposed for
mission planning problem for emergency surveillance. To evaluate the solution quality
with respect to known optimal solutions, we study the results on small problem instances
and analyze the runtime behavior and quality of the solution approach. The validity of
the model itself is evaluated in the �nal part of this section.

Optimality gap on small problem instances

The exact solution approach based on bidirectional dynamic programming is only
tractable for small problem instances. We were unable to solve any of the large-scale
instances derived in Section 9.1.2 to optimality within reasonable computation time. To
obtain some indication of the limitations of an exact approach and to compare the heuris-
tic results with proven optimal solutions, we generated a set of smaller instances with

1http://gr.xjtu.edu.cn/web/keljxjtu/download, accessed 23.09.2018
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9. Experimental study

16 to 49 target locations in a rectangular grid. The instances are based on the same pa-
rameters as depicted in Table 9.2, except for the maximum duration per vehicle route,
which varies between 100 and 250 seconds, and the target area size, which is limited to
0.4 × 0.4 km2 to 0.7 × 0.7 km2. The computation time for the exact approach has been
limited to 10,000 seconds.

Computation times of the exact approach quickly increase with instance size, route
duration, and the number of vehicles. In the single-vehicle case, we can only solve so-
lutions to optimality that include around 40 locations or less, unless route durations are
very short. Instances with two or more vehicles quickly become intractable for around
20 target locations. These �ndings are consistent with the performance of the MIQP
model proposed by Yu et al. (2014) for solving the CorTOP. Unfortunately, a direct com-
parison of these approaches is not possible, as Yu et al. (2014) have not published their
instances.

Compared with the known optimal results, 2MLS-f has an average gap of 0.1 % with
an average computation time of 0.22 s. Meanwhile, the slower con�guration of 2MLS
has an average gap of 0.0005 % at a computation time of 1.98 s. Both variants can �nd
the optimal solution in 53 out of the 55 cases for which we know the exact solution.
Furthermore, for 51 out of 55 instances, 2MLS �nds the optimal solution in all runs.

Solution qality and robustness

We now move on to the larger benchmark instances for MPPES introduced in Sec-
tion 9.1.2. The results on TOP benchmark, particularly the larger ones by Dang et al.
(2013), already indicate that even though 2MLS scales better than many other solution
approaches, it is still associated with high computational e�ort for large instances. This
is particularly obvious for the 82 di�cult instances. These instances comprise on aver-
age 240 candidate locations. The largest instances in our study, are almost three times
as large. Therefore, the following discussion focuses on the 2MLS-f.

In a �rst step, we investigate the solution quality achieved by our algorithm. As stated
above, exact approaches are limited for instances of this size. For this reason, we cannot
use optimal solutions for evaluating the solution quality of the heuristic approach. In-
stead, we use the best solutions found during our experiments, and consider the average
gap relative to this value as an indicator of the overall solution quality.

This gap is given in Table 9.6, which summarizes results based on the three major
aspects of target area size, maximum route duration, and the number of vehicles. The
minimum average gap is achieved for the smallest instances in combination with high
resource availability, i.e., instances with 225 and 300 target locations involving multiple
vehicles and high route durations. In these instances, the objective value is generally
close to the total sum of priorities

∑
i∈V ui. This means that it is comparatively easy

for the solution approach to determine a solution with high coverage, and the solu-
tions found during the search are mostly distinguished by their total duration rather
than overall coverage. The e�ect is exactly opposite in case of very limited resources,
i.e., single-vehicle instances with tight route duration constraints. In these situations,
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|V| |M|
Tmax (in s)

avg.600 900 1,200 1,500 1,800

225

1 1.8 % 1.1 % 0.5 % 0.3 % 0.1 % 0.7 %
2 0.8 % 0.1 % 0.0 % 0.0 % 0.0 % 0.2 %
3 0.2 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

avg. 0.9 % 0.4 % 0.2 % 0.1 % 0.0 % 0.3 %

300

1 2.6 % 2.7 % 1.5 % 0.9 % 0.6 % 1.7 %
2 1.6 % 0.5 % 0.1 % 0.0 % 0.0 % 0.5 %
3 1.1 % 0.1 % 0.0 % 0.0 % 0.0 % 0.2 %

avg. 1.8 % 1.1 % 0.5 % 0.3 % 0.2 % 0.8 %

400

1 1.5 % 1.9 % 1.5 % 1.0 % 0.7 % 1.3 %
2 0.7 % 0.9 % 0.4 % 0.1 % 0.0 % 0.4 %
3 0.3 % 0.3 % 0.1 % 0.0 % 0.0 % 0.1 %

avg. 0.8 % 1.0 % 0.6 % 0.4 % 0.2 % 0.6 %

500

1 1.4 % 1.7 % 1.6 % 1.5 % 1.1 % 1.5 %
2 0.8 % 1.0 % 0.7 % 0.4 % 0.2 % 0.6 %
3 0.4 % 0.6 % 0.2 % 0.0 % 0.0 % 0.3 %

avg. 0.9 % 1.1 % 0.9 % 0.6 % 0.5 % 0.8 %

625

1 2.0 % 2.4 % 2.9 % 2.0 % 1.8 % 2.2 %
2 1.2 % 1.6 % 1.2 % 0.6 % 0.5 % 1.0 %
3 0.8 % 1.0 % 0.4 % 0.2 % 0.1 % 0.5 %

avg. 1.4 % 1.7 % 1.5 % 0.9 % 0.8 % 1.2 %

avg. 1.2 % 1.1 % 0.7 % 0.5 % 0.3 % 0.8 %

Table 9.6: Average gap between best found and average solution quality obtained by the 2MLS-f
on the MPPES benchmark instances.
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e�cient use of the available resources is crucial, and exchanging some locations in a
solution can have a signi�cant impact on the objective value. Consequently, the high-
est gap of 2.9 % is observed in the instances with 625 candidate locations and a single
vehicle.

Runtime analysis

In this section, we look more closely at the computation times that can be achieved using
2MLS-f. We assume that the target area is de�ned after arriving at or near the scene of
an incident based on a �rst visual assessment. Our project partners estimate that a few
minutes are required after arrival until the UAV missions can be started, for example
for determining a feasible take-o� location and calibrating the �ight controller. At the
latest, �nal routes should be available at the end of this preparation phase in order not
to delay the surveillance and rescue operation.

The results for all planning scenarios and vehicle con�gurations are summarized in
Table 9.7. The required running time depends largely on the number of target locations
|V|, route duration Tmax, and number of vehicles |M|. The average computation time
over all instances is approximately 56 s, i.e., slightly less than a minute and well within
the allowed range in our application. Increasing the number of candidate locations is
almost always associated with an increase in computational e�ort. Whereas 24 seconds
su�ce for the smallest scenarios involving 225 targets, this is increased to 96 seconds on
average for the largest set with 625 locations.

The in�uence of Tmax is more ambiguous. The results indicate that increasing max-
imum route duration can both increase as well as decrease average computation time.
This can be explained by the fact that, as routes become longer, they cover larger parts
of the target area. In this case, continuing the search does not improve solutions further,
as most locations are already included in or in the vicinity of a vehicle route. In other
words, routes are already considered “informative” concerning the model at hand and
the convergence criterion applies.

This e�ect becomes particularly obvious when comparing the impact of increasing
route duration with respect to di�erent instance sizes. For the smallest instances in
terms of target locations, even comparatively short routes can cover major parts of the
target area. The highest computation times are reached for Tmax = 600 s for instances
with up to 300 targets. For larger instances, these shorter routes are insu�cient, leaving
out entire regions of the target area. Consequently, for 400 and 500 target locations,
computation times are highest for Tmax = 900 s and only decrease as Tmax increases
further. In case of 625 target locations, maximum computation times are reached for
Tmax = 1,200 s.

A similar e�ect can be observed when increasing the number of vehicles. Again, de-
ploying more vehicles allows covering larger areas. Thus, it becomes increasingly dif-
�cult to improve on a solution that already covers large parts of total priorities, either
directly or indirectly. As a result, computation time almost consistently decreases for the
smallest instances when the number of vehicles is raised. Similar to the observations re-
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|V| |M|
Tmax (in s)

avg.600 900 1,200 1,500 1,800

225

1 30.2 36.7 33.5 27.1 21.8 29.8
2 39.3 28.4 16.6 16.3 17.3 23.6
3 33.1 15.1 14.9 15.0 14.4 18.5

avg. 34.2 26.7 21.7 19.5 17.8 24.0

300

1 30.9 44.7 51.0 48.8 37.6 42.6
2 53.1 54.0 39.9 27.6 20.2 39.0
3 60.5 37.9 21.9 19.0 20.6 32.0

avg. 48.1 45.5 37.6 31.8 26.1 37.8

400

1 38.3 47.9 55.6 59.7 57.6 51.8
2 54.8 68.6 58.7 50.3 37.3 53.9
3 47.6 59.6 43.9 29.4 26.6 41.4

avg. 46.9 58.7 52.7 46.5 40.5 49.1

500

1 42.3 52.9 69.7 80.0 71.6 63.3
2 72.1 90.1 97.4 83.6 70.2 82.7
3 83.2 104.0 71.2 56.5 43.6 71.7

avg. 65.9 82.3 79.4 73.4 61.8 72.6

625

1 46.2 57.8 77.3 92.6 99.2 74.6
2 81.4 101.8 134.1 115.2 106.2 107.7
3 107.7 134.7 121.4 92.9 72.1 105.7

avg. 78.5 98.1 110.9 100.2 92.5 96.0

avg. 54.7 62.3 60.5 54.3 47.8 55.9

Table 9.7: Average computation time of 2MLS-f on the MPPES benchmark instances.
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garding Tmax, this pattern changes when looking at the largest instances. In these cases,
increasing |M| has a major impact on computation time for smaller values for Tmax.

The results demonstrate that for the vast majority of instances, computation times are
within the maximum delay speci�ed by our project partners. Particularly the impact that
increasingTmax and |M| can have on average computation time works to our advantage,
reducing computation time for larger and more complex instances.

These observations are consistent with the solution quality analyzed in the previous
section: For the scenarios with low gaps, computation time is reduced as the conver-
gence criterion stops search early. Instances with a higher average gap are associated
with comparatively high computation times. Here, more potential remains for further
improving solutions, thereby avoiding a preliminary stop of 2MLS-f.

9.3.4 GCorTOP model evaluation and comparison
Until now, we have focused on the performance of the solution approach in terms of
scalability and solution quality. In this section, we now study the results from a practi-
cal point of view. Speci�cally, we evaluate the applicability of the proposed model itself
with respect to the mission planning problem for emergency surveillance. This section
aims to determine whether valuable information can be obtained during these UAV mis-
sions. As discussed in Chapter 4, this requires the consideration of two aspects: The
provisioning of information at particularly critical areas and the reliable prediction of
the overall distribution of contaminants within the area.

Covered priorities

In a �rst step, we investigate the priorities that are covered by UAV missions. In Table 9.8,
we report the average percentage of priorities visited directly by the vehicles (PCov0) or
that are either surveyed or within 100 m or 300 m of a visited location (PCov100 and
PCov300). The results are grouped by instance size and the number of vehicles.

Focusing on PCov0, i.e., considering only the priorities of locations for which direct
observations are obtained, we can see that TOP performs best. This meets our expecta-
tions, as this model does not involve any trade-o� between spatial coverage and priorities
of directly visited locations. Results obtained using CorTOP are similar to these results.
The di�erence to the GCorTOP is larger, and this model yields the overall lowest PCov0

values. This pattern changes when accounting for covered priorities in the vicinity of
the vehicle tours. GCorTOP consistently outperforms the two other models with respect
to the PCov100 and PCov300 measures. Even though fewer high-priority target locations
are directly visited by a UAV, more of them are at least close to a UAV’s sensing location.
These e�ects are obvious when the total number of targets that can be reached is limited
with respect to instance size. In these cases, the trade-o� between priorities and indirect
coverage becomes particularly challenging. This increases the impact of incorporation
aspects of spatial coverage and correlation in the objective.
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Figure 9.4: PCov0, PCov100 and PCov300 on largest scenarios for all three modeling variants, de-
pending on number of vehicles |M| and route duration Tmax.
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|V| |M|
PCov0 PCov100 PCov300

TOP CorTOP GCorTOP TOP CorTOP GCorTOP TOP CorTOP GCorTOP

1 58.1 % 56.2 % 46.1 % 71.9 % 79.9 % 85.2 % 83.5 % 89.7 % 95.5 %
225 2 84.7 % 79.0 % 62.9 % 92.3 % 94.8 % 96.7 % 97.2 % 98.4 % 99.7 %

3 93.4 % 88.9 % 75.4 % 97.2 % 98.4 % 99.1 % 99.4 % 99.7 % 100.0 %

1 42.5 % 40.3 % 34.8 % 56.8 % 63.1 % 71.4 % 73.5 % 78.7 % 87.8 %
300 2 69.6 % 65.9 % 42.7 % 83.2 % 87.2 % 90.8 % 93.8 % 95.6 % 98.3 %

3 83.5 % 78.5 % 60.0 % 91.5 % 93.9 % 96.3 % 96.8 % 98.1 % 99.7 %

1 42.9 % 41.4 % 33.2 % 55.9 % 61.6 % 70.0 % 68.5 % 74.4 % 85.8 %
400 2 68.4 % 64.8 % 46.2 % 81.0 % 84.4 % 88.6 % 89.3 % 91.4 % 94.7 %

3 81.7 % 76.6 % 53.9 % 89.2 % 91.7 % 93.5 % 93.4 % 94.5 % 95.8 %

1 37.4 % 36.4 % 29.0 % 49.3 % 56.0 % 63.1 % 62.3 % 69.1 % 80.0 %
500 2 60.7 % 57.4 % 45.7 % 75.3 % 79.3 % 84.2 % 86.0 % 88.7 % 93.4 %

3 75.1 % 70.7 % 56.6 % 85.1 % 87.9 % 90.9 % 91.3 % 92.6 % 95.1 %

1 25.8 % 25.0 % 19.9 % 35.0 % 40.2 % 48.4 % 47.6 % 53.9 % 67.1 %
625 2 46.5 % 44.0 % 34.9 % 63.7 % 68.8 % 74.7 % 78.7 % 83.7 % 89.4 %

3 63.1 % 59.8 % 43.4 % 77.6 % 81.7 % 86.4 % 87.5 % 90.4 % 93.8 %

avg. 62.2 % 59.0 % 40.2 % 73.7 % 77.9 % 82.6 % 83.2 % 86.6 % 91.7 %

Table 9.8: Average values for PCov0, PCov100 and PCov300 depending on target area size, number
of vehicles, and modelling approach. Best values for each set are indicated in bold.

More detailed results on the largest instances with 625 candidate locations are pro-
vided in Figure 9.4, which summarizes the results over all runs in the form of box plot
diagrams. For all models, increasing Tmax and |M| has a strictly positive impact on all
three measures PCov0, PCov100 and PCov300. We can furthermore see that GCorTOP ob-
tains much better values for PCov300, speci�cally in the single vehicle case. This comes
at the cost of direct priorities, which are low compared with the two other models. In
con�gurations with two and three UAVs, covered utilities quickly exceed 95 % in this
modeling variant. For TOP and CorTOP, this threshold is only attained in settings with
three vehicles and higher route durations. In other words, the GCorTOP model achieves
a high level of indirect coverage at signi�cantly lower resource cost compared to the
other two modeling variants.

Prediction qality

Apart from the consideration of priorities, the ultimate goal of the UAV-based surveil-
lance system is the provisioning of a reliable overview of the overall contamination
across the a�ected area. Therefore, this section studies the quality of predicted distri-
butions of contaminants that are determined based on the selected sampling locations.
These also indicate whether the approximative way of integrating spatial dependencies
into the GCorTOP objective is successfully yielding “informative” solutions.

The results with respect to the mean absolute error (MAE), mean error (ME), and
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|V| |M|
MAE ME WMAE

TOP CorTOP GCorTOP TOP CorTOP GCorTOP TOP CorTOP GCorTOP

225
1 10.67 8.41 6.00 0.97 0.82 0.43 5.24 3.95 4.64
2 5.45 3.85 2.06 0.53 0.48 -0.03 1.40 1.87 1.19
3 3.12 1.83 1.16 0.49 0.36 -0.07 0.47 0.44 0.90

300
1 9.62 9.07 6.14 1.12 0.62 0.56 7.72 6.00 5.91
2 6.37 4.81 3.84 -0.14 0.21 0.07 2.42 2.09 2.69
3 4.17 2.71 2.17 -0.44 -0.07 -0.02 1.16 0.96 1.46

400
1 12.56 11.22 7.83 1.15 1.36 1.41 6.37 5.69 4.92
2 6.83 6.44 3.80 0.34 0.23 0.18 2.24 2.10 1.93
3 4.26 3.71 2.07 0.27 0.19 -0.03 1.04 1.24 0.88

500
1 11.56 10.91 8.57 1.64 1.38 0.83 6.46 5.53 4.34
2 6.55 6.14 3.41 0.46 0.44 0.32 2.20 1.93 1.90
3 4.58 4.31 2.49 0.44 0.47 0.18 1.16 1.06 1.08

625
1 13.53 12.64 9.28 0.33 0.60 0.80 9.52 8.23 5.69
2 7.23 6.49 5.17 1.27 1.31 1.36 3.28 2.56 2.27
3 4.98 4.42 2.88 1.27 1.14 0.32 1.56 1.41 1.22

avg. 7.03 6.46 5.09 0.65 0.64 0.49 3.42 2.96 2.80

Table 9.9: Average prediction quality measures depending on target area size, number of vehicles,
and modeling approach. Best values for each set are indicated in bold.

weighted mean absolute error (WMAE) are given in Table 9.9. We can see that with
respect to MAE, the GCorTOP model invariably achieves the lowest values, i.e., it yields
the most accurate predictions. Compared to TOP, MAE is reduced by approximately
43 % on average. Even compared to the CorTOP, which already incorporates aspects of
spatial coverage, MAE is reduced by 33 %.

The prediction bias (ME) is within a reasonable range for all models, and largely negli-
gible for the GCorTOP with multiple vehicles. In the solutions obtained using this model,
sampling locations are spread widely across the target area. This reduces the prediction
bias that may be introduced by taking several samples in close proximity and thus likely
with very similar values.

For all models, the WMAE measure is less than MAE. This is an e�ect of the integra-
tion of priorities. Prediction accuracy tends to deteriorate with increasing distance to
the next sampling location. The focus on samples at these prioritized locations ensure
that predictions are comparatively good in the corresponding areas. Despite this e�ect
and even though CorTOP and GCorTOP both come with a reduction of the direct prior-
ities PCov0, TOP does not yield the lowest WMAE. This is due to two reasons: First, the
overall reduction in MAE that is achieved by incorporating correlations also helps to re-
duce WMAE. Second, routes planned using TOP are often very narrow, leaving out some
areas with high priorities that do not justify a detour when coverage is not considered.
This is also demonstrated in the visual comparison at the end of this section.
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Figure 9.5: Comparison of ME, MAE, WMAE for GCorTOP on the largest instances (625 loca-
tions), depending on number of vehicles |M| and route duration Tmax.

As in the previous section, we look more closely at the largest instances comprising
625 locations. The results are given in Figure 9.5 for GCorTOP. We do not explicitly
indicate results obtained using the two other models as they show a very similar pattern.
We can observe that both MAE and MAE are unacceptably high for instances involving
a single UAV and low �ight time budgets. These errors quickly decrease as either �ight
time or the number of vehicles increases. This is particularly true for WMAE, which
decreases more rapidly than MAE. In the case of a single vehicle, we can obtain a WMAE
of less than 2 within a �ight duration of Tmax = 1,800 s, which is feasible in practice. If
more UAVs are available, this is even possible within much shorter �ight times of Tmax
= 1,200 s or less.

Comparing these results with the covered priorities (Table 9.8), high values for PCov100

and PCov300 are consistently associated with low error measures. A comparison of �g-
ures Figures 9.4c and 9.5 demonstrates this in more detail. The covered priorities come
close to 100 % given su�cient resources, while MAE and WMAE decrease simultane-
ously. Conversely, con�gurations that have a PCov100 of 60 % or less yield a MAE of 5 or
more, indicating signi�cant deviations between the prediction and the true value. These
observations suggest that our approach for modeling spatial coverage in the objective
function can successfully approximate the complex spatial interdependencies within the
surveyed regions.

From a practical point of view, these are promising results. Even for the largest in-
stance set, prediction quality is improved. While predictions are by no means �awless,
this means that for most areas of the target region, predicted values are at least close to
the true distribution. As the WMAE indicates, high prediction accuracy can be achieved
at least for crucial areas, even given comparatively limited �ight times. A visual repre-
sentation of these results is also given in the last section of this chapter.
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Prediction robustness

The measures discussed have been computed without accounting for measurement er-
rors. In this section, we consider the impact these measurement errors can have on
prediction quality, thereby evaluating whether the proposed approach is applicable in
practical situations. As stated in Section 9.2.4, we modify the observed values by adding
noise drawn from a normal distribution. The MAE depending on the noise level is indi-
cated in Figure 9.6. Again, we focus on the largest instances where the impact is most
noticeable.

As the �gure demonstrates, the measurement errors negatively impact prediction
quality. This is most obvious for low values for Tmax, i.e., the routes containing the
fewest samples. In case of s single vehicle, the MAE increases by nearly 20 % for Tmax
= 600 s. For |M| = 3 and Tmax = 600 s, it nearly doubles. The results also show that
doubling the standard deviation of the noise distribution does not have an equally high
in�uence on the results: Instead, increasing the noise level k from 0.05 to 0.1 comes
with much lower increases in MAE than increasing it from 0 to 0.05 in the �rst place.
In other words, while measurement errors have an impact on prediction quality, it does
not appear to be highly sensitive with respect to these errors. Furthermore, the model
still achieves a major reduction in MAE, even in the case of the highest noise level. This
indicates that it is still possible to achieve a prediction of similar quality than in the
error-free case, although it may require a higher total �ight time.

Visual comparison

In the last step, we give a visual indication of the impact that considering coverage as-
pects can have on the solutions. To this end, we compare the results for two instances.
The �rst example is depicted in Figure 9.7. We indicate priorities on the left-hand side
and the simulated “true” distribution of contaminants on the right. In both �gures, high
values are indicated in red and low values in blue.
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Figure 9.6: Comparison of MAE for di�erent noise levels for GCorTOP on the largest scenarios
(625 target locations).
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(b) Simulated distribution of gases

Figure 9.7: Base data of the benchmark instance for example 1.

Exemplary routes obtained using the three modeling variants are given in Figures 9.8
to 9.10. These routes are planned for a single UAV with a maximum �ight time of Tmax
= 1,500 s. Flights start and end at position (0, 400). For each solution, we indicate the
planned mission on the left-hand side, superposed on the priorities that are the basis for
this plan. On the right-hand side, we give the predicted distribution.

The TOP results in the narrow route given in Figure 9.8. We can see that it traverses
a region with high utilities but leaves major parts of the target region entirely unex-
plored. This means that for nearly half the target area, no reliable prediction is avail-
able. The mission planned using the CorTOP (Figure 9.9) is broader in comparison to
Figure 9.8. While it follows a similar trajectory than this path, sampling locations are
better spaced, with more unvisited target locations in between the sampled locations. Fi-
nally, the GCorTOP determines a route that di�ers strongly from the two other models.
The UAV travels further to gather more information at the regions with higher priorities
that are indicated in the right part of the �gure. This signi�cantly improves prediction
quality.

The base data for the second example is indicated in Figure 9.11. Compared to the
previous example, we can see that the simulated distribution of values is more coarse, i.e.,
it changes more quickly. Again, results for the three models are depicted in Figures 9.12
to 9.14. All vehicle routes are planned for one vehicle with a �ight duration limit of Tmax

= 1,200 s. The TOP solution in Figure 9.12 clearly mirrors the shape determined by the
priorities. It successfully covers almost all of the highly prioritized target locations. Even
though, the prediction is comparatively imprecise due to the coarse spatial distribution,
which means that prediction quality deteriorates quickly even in short distance to a
sampling location.

As the TOP already yields a cyclic shape, these sampling locations are better dis-
tributed in space than in the previous example. The CorTOP model leads to a very
similar result, both in terms of route trajectory and prediction quality. The GCorTOP
further emphasizes spatial interdependencies, yielding a much broader route compared
to the two other solutions (Figure 9.14). While prediction quality still su�ers due to the
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Figure 9.8: TOP results for example 1
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Figure 9.9: CorTOP results for example 1

x coordinate [m]

0

500

1000

1500

2000
y coordinate [m]

0
250

500
750

1000
1250

1500
1750

flight altitude [in m
]

0

20

40

60

80

100

120

140

(a) Planned mission

x coordinate [m]

0

500

1000

1500

2000
y coordinate [m]

0
250

500
750

1000
1250

1500
1750

flight altitude [in m
]

0

20

40

60

80

100

120

140

(b) Predicted distribution

Figure 9.10: GCorTOP results for example 1
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Figure 9.11: Base data of the benchmark instance for example 2

coarse distribution, this is the only model to indicate higher contamination values at
the right-hand side of the target area. These are severely underestimated using the two
other modeling approaches.

9.4 Discussion
This section summarizes and discusses the e�ects observed in the computational study.
Moreover, we derive insights into the applicability of the proposed solution approaches
and models for solving the MPPES in realistic settings.

Solution approaches

The results of the exact approach on small instances with up to 49 target locations
showed that instances quickly become intractable if they involve more than 20 tar-
gets. The results of the proposed two-phase multi-start adaptive large neighborhood
search (2MLS) and two-phase multi-start adaptive large neighborhood search (2MLS)-f
on benchmark instances for the TOP highlight the advantage of 2MLS-f compared to the
other proposed approaches in terms of computation time, with an average gap of 1.62 %
to the best known solution that is achieved within an average computation time of 10.7 s
on the largest available instances for TOP.

Considering the new instances for the MPPES with up to 625 targets and 3 UAVs, all
except the largest instances involving multiple vehicles have been solved in 100 seconds
or less on average. Meanwhile, the gap to optimality for the small instances that can be
solved exactly is 0.0005 % for 2MLS and 0.1 % for 2MLS-f. From a practical point of view,
the average deviation to the best known solution can be considered acceptable, as the
e�ciency and scalability of the solution approach are of higher importance in our use
case. In this respect, the quick convergence of the proposed approach, particularly when
using a vehicle decomposition scheme in the �rst search space, supports its applicability
in practice.
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Figure 9.12: TOP results for example 2
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Figure 9.13: CorTOP results for example 2
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Figure 9.14: GCorTOP results for example 2
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Models

To obtain insights into the performance of the GCorTOP model, we compared the results
with those obtained using two other related approaches, the TOP and the CorTOP. The
results demonstrate the trade-o� between maximizing the priorities of targets that are
directly included in vehicle routes and maximizing the indirect coverage of those that
are in the vicinity of a tour. Increasing indirect coverage is consistently associated with a
decrease in the sum of directly included priorities. The models compared in this section
deal with this challenge in di�erent ways: TOP emphasizes direct priorities, whereas
GCorTOP increases the focus on indirect coverage.

The advantages of the latter approach are demonstrated when looking at the predic-
tion quality. Here, the GCorTOP model consistently achieves the best results. Despite
its lower focus on direct priorities, this is even true for the weighted mean absolute er-
ror, which focuses on prediction quality at highly prioritized areas. This suggests that
our approach for modeling spatial correlations in the objective function is a useful rep-
resentation of the true spatial interdependencies in the observed phenomenon. As the
visual comparison indicates, this leads to the coverage of major parts of the target region,
whereas routes planned using TOP and CorTOP models are much more narrow.

9.5 Summary of Part II
In this part, we studied o�ine planning variants for emergency rapid mapping. In Chap-
ter 4, we introduced the mission planning problem for emergency surveillance (MPPES).
The MPPES corresponds to the problem of selecting sampling locations such that the
overall information gained at critical locations is maximal within technical limitations
of the UAVs. In Chapter 5, we provided a comprehensive overview of approaches that
address spatial coverage and priority maximization in vehicle routing. We introduced a
new classi�cation to distinguish between di�erent types of spatial coverage and sum-
marized advances from di�erent �elds of research: To our knowledge, this is the �rst
detailed overview that combines approaches from vehicle routing with advances made
in informative path planning (IPP) in the �eld of robotics.

Based on this survey, we discussed the capabilities and limitations of existing ap-
proaches in Chapter 6. We demonstrated that, while approaches in the VRP literature
have lead to e�cient heuristic solution approaches for related problems, the models that
are used do not provide the level of detail we require for the MPPES. In contrast, ad-
vances in literature on IPP o�er detailed models, but require a computational e�ort that
prevents the application of these approaches in time-sensitive situations. To �ll this gap,
we introduced new models and solution approaches in Chapters 7 and 8. Speci�cally,
we proposed the generalized correlated team orienteering problem (GCorTOP) as a �ex-
ible means for approximating spatial coverage. This model is more detailed compared
to the simple coverage-based approaches proposed in the domain of vehicle routing, but
less computationally expensive than the probabilistic approaches currently available.
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9.5. Summary of Part II

Moreover, we developed an e�cient two-phase multi-start adaptive large neighborhood
search (2MLS) for quickly determining high-quality UAV missions. In particular, we
combined a �rst search phase that emphasizes spatial coverage with e�cient improve-
ment steps in a second step. We also showed how the GCorTOP model can be integrated
into this approach to allow the quick evaluation of search moves. Furthermore, we in-
troduced an exact approach for benchmarking purposes.

In Chapter 9, we evaluated these approaches from a practical point of view. We intro-
duce new benchmark instances for the MPPES based on real-world data on population
density and derive measures for assessing the quality of solutions that take priorities
and spatial interdependencies into account. Using benchmark instances for the TOP, we
showed that the 2MLS achieves high solution quality within short computation times.
Extensive experiments on MPPES instances demonstrated that the proposed GCorTOP
approach improves over previous modeling variants in terms of both covered priorities
and achieved prediction quality. Overall, we demonstrated that the approaches intro-
duced in this thesis can yield high-quality predictions within the limitations on compu-
tation time that are imposed in an emergency setting.
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Part III

Online mission planning





10 Online planning and online
learning

In part III of this thesis, we investigate the planning of information maximizing UAV
tours in a dynamic setting, dealing with new information that has been obtained
about the surveyed environment. In this chapter, we introduce the corresponding

planning problem and summarize requirements that characterize promising solution ap-
proaches. We illustrate the combination of online planning and online learning of spatial
phenomena in a representative example.

10.1 Adaptive mission planning problem for emergency
surveillance (AMPPES)

In Part II of this thesis, we have studied o�ine approaches for solving the mission plan-
ning problem for emergency surveillance (MPPES). The algorithms make decisions based
on the assumption that the essential characteristics of the phenomenon are known be-
fore the �ight. Most importantly, this concerns the spatial correlation of the observed
distribution of contaminants, which indicates to which degree samples taken at di�er-
ent locations may yield similar results. Based on this prior knowledge, it proceeds to
select “informative” samples, taking both the spatial correlation between surveyed and
surveyed locations and priorities in the target area into account.

In this part, we extend the issue of selecting informative sampling locations to the
online case, where decisions are made while the mission is still in progress. Again, the
overall objective is to provide accurate predictions about the contamination at critical
locations, i.e., at locations where a large number of people may be a�ected or where
the likelihood of needing support by the emergency services is high. Addressing this
problem in an online setting involves two aspects that di�erentiate it from the MPPES:
Online planning and online learning. Online planning refers to the selection of the sam-
pling locations, which is done in an online fashion, i.e., only a few sampling locations
are selected to be surveyed at each point in time, and the next sampling locations are
determined after completing the previous set. This also facilitates adjusting to new pos-
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sibilities or restrictions, e.g., newly available or failing UAVs. Online learning means that
the information obtained during the �ight is used to train and update predictive mod-
els that represent the current distribution of gases before the end of the mission. This
way, these models provide the best possible prediction at each point in time, and are
continuously re�ned by new incoming samples.

In our study, we seek to gain insights into how these two aspects can be combined
to improve the overall information that is gained during the surveillance mission. To
this end, we de�ne the adaptive mission planning problem for emergency surveillance
(AMPPES) as the problem of determining the next sampling locations for UAVs based
on the previously obtained knowledge such that the prediction quality at the end of the
mission is maximal.

Solution approach to the AMPPES should ful�ll three focal properties to be success-
fully applied within a real-world context:

Adaptivity: Models should be able to adjust to the obtained knowledge about the envi-
ronment. Most importantly, this involves the utilization of updated environmental
beliefs for the selection of the next sensing locations.

Scalability: To support the deployment of UAV �eets in real-world applications, models
need to be able to handle an increasing number of UAVs and a large number of
candidate sensing locations under consideration of real-time constraints.

E�cacy: E�cacy describes the capability of an approach to achieve the primary mis-
sion objective, i.e., a low prediction error at important target locations.

It should be noted that these requirements are con�icting: For example, adaptive models
require a higher computational e�ort compared to less complex online planning ap-
proaches due to the need to update predictive models. This is contradictory to the need
to reduce computation times to remain scalable if there are several UAVs involved and
updates have to be processed often. For this reason, the main focus of this part is to
identify strategies that provide a reliable balance between these requirements and to
assess the capabilities and limitations of these approaches in the context of emergency
surveillance.

10.2 Illustrative example
Figure 10.1 illustrates the combination of heuristic planning strategies and online learn-
ing of environmental processes using a simpli�ed example. The �gure represents the
planned mission and obtained information at three points in time during a mission
surveilling a target area of 1.5 × 1.5 km2.

In the �rst snapshot that is shown, a few samples have been collected near the starting
location of a UAV. As the collected values are similar, a predictive model trained with
these few initial samples initially assumes that the surveyed phenomenon is relatively
smooth, i.e., that the observed level of contamination is likely to be stable throughout
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(a) Prediction (snapshot 1)

x coordinate [m]

0
200

400
600

800
1000

1200
1400

y coordinate [m]

0
200

400
600

800
1000

1200
1400

0

20

40

60

80

100

(b) Error variance (snapshot 1)
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(c) Prediction (snapshot 2)
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(d) Error variance (snapshot 2)
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(e) Prediction (snapshot 3)
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(f) Error variance (snapshot 3)

Figure 10.1: Evolution of the predicted distribution (left) and variance (right). High predicted con-
tamination is indicated in orange, high error variance is represented in dark purple.
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the considered area (Figure 10.1a), and that the prediction error variance is relatively
low (Figure 10.1b).

As the UAV travels further, newly obtained samples di�er more from the predicted
level of contamination than the initial model had assumed. This invalidates the initial
assumption of a very smooth process. Most importantly, this means that the initial as-
sumption about the nature of the spatial correlation has been incorrect and that less
information can be inferred about unobserved locations further away from the collected
samples. Consequently, the estimation error variance after updating the environment
model increases much more quickly with distance to the collected samples (see Fig-
ure 10.1d relative to Figure 10.1b). This information then motivates the next sampling
locations, leading to a more accurate mapping of the process (Figure 10.1e) and an over-
all reduction in the prediction error estimate, particularly in the center of the target area
(Figure 10.1f).

Overall, example 10.1 illustrates the possibility of training a process model in an online
fashion and using the obtained knowledge to select the next sampling locations. Most
importantly, this means that incorrect beliefs about the correlation can be corrected,
which is not possible in o�ine or non-adaptive planning. This allows, e.g., to increase
the spatial density of samples if the surveyed process varies more quickly, and to identify
areas where the collected information is insu�cient.

However, we can also see that the main outcome of the planning approach is a mission
where sampling locations are well distributed across the target area, similar to the e�ects
we have observed in Part II of this thesis. This observation motivates the following
chapters, in which we investigate to what extent adaptive planning is advantageous and
in which situations simpler strategies are su�cient.

10.3 Outline of Part III
In this part, we study solution approaches for the adaptive mission planning problem for
emergency surveillance, i.e., the problem to compute UAV missions in an online fashion,
using information obtained during the mission to improve the selection of subsequent
sampling locations. Our main concern lies in the consideration of the trade-o� between
the adaptivity, the e�cacy and the scalability of a solution approach. To this end, we
�rst summarize approaches for related problems that have already received attention in
literature in Chapter 11. We identify common solution principles within the domain of
environmental surveillance and complete this overview with a summary of approaches
for solving dynamic problems in related �elds.

In Chapter 12, we summarize these �ndings with particular attention to the planning
requirements stated in this chapter. We identify the main research gaps that are currently
complicating the implementation of these approaches in practice. In Chapter 13, we
introduce a uni�ed model for the AMPPES and derive several modeling and solution
variants based on approaches from the literature and the concepts introduced in Part II of
this thesis. We also propose new models tailored toward dealing with time-dependencies
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in the surveyed data, i.e., phenomena that change over time.
We seek to evaluate and compare these models in an unbiased fashion. Therefore, we

implement them within a common solution framework, which is introduced in Chap-
ter 14. This chapter furthermore introduces a discrete event simulation framework that
is developed in this thesis to enable the unbiased comparison of solution concepts. The
simulative study and the obtained results are discussed and analyzed in Chapter 15. We
furthermore summarize the main insights and give recommendations for applying the
solution approaches in practice.
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11 Online planning in dynamic
environments

Tthis chapter reviews the state of the art related to our problem. We do so from
two perspectives: In Section 11.1, we summarize approaches addressing related
applications in environmental surveillance. Section 11.2 looks into methods for

solving dynamic problems proposed in other domains. The �ndings are summarized in
Section 11.3.

11.1 Solution approaches in environmental
surveillance

Due to the increasing availability of UAVs, there has been a growing interest in using
these vehicles for surveying spatial phenomena, both in environmental applications and
in emergency response. At the same time, communication technologies allow the co-
ordinated deployment of multi-vehicle teams and �eets, which has motivated the de-
velopment of strategies for planning multi-UAV missions in dynamic settings. Possible
applications range from precision agriculture (Popović et al., 2017) over radiation map-
ping (Newaz et al., 2016) up to forest �re surveillance (Casbeer et al., 2006). All of these
applications have in common that mobile sensing systems move in a two-dimensional
or three-dimensional space to obtain information about the environment that surrounds
them.

Numerous solution approaches have been developed addressing these problem set-
tings. However, these approaches are typically tailored toward speci�c applications.
The goal of this overview is to identify common concepts and fundamental principles
that constitute the basis of many of these approaches rather than to discuss individual
approaches in detail.

To analyze these concepts, we propose a classi�cation that distinguishes between six
essential aspects:

1. the addressed mission objective,
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11. Online planning in dynamic environments

2. the coordination mechanism for multiple vehicles,

3. the control scheme (i.e., central decision making or decentralized control),

4. the considered model of the surveyed environment,

5. the proposed planning heuristic (i.e., the logic determining the next sampling lo-
cation), and

6. the decision scope.

Figure 11.1 gives an overview of these aspects and summarizes the most common prob-
lem types. We emphasize that these aspects cannot always be separated. For instance,
some planning objectives such as source localization often use speci�c process models
that are intertwined with dedicated solution approaches.

Several dimensions have already been introduced in previous publications, especially
addressing the control scheme and modeling and heuristic approaches: Stranders (2010)
addresses several application domains in the context of “situational awareness” and
proposes uni�ed model-based solution approaches. This survey is closest to the one
o�ered here in its distinction between environment representation and planning ap-
proaches. Low et al. (2008) distinguish between adaptive and non-adaptive model-based
approaches, while Schwager et al. (2011) study and compare model-based, geometric
and potential �eld approaches. Hutchinson et al. (2017) summarize modeling variants
for source location and boundary tracking. Control and communication aspects have
been discussed in the survey articles by Ponda et al. (2015). Finally, Otto et al. (2018)
cover optimization approaches in several UAV-based application domains.

The previously mentioned publications address several of the dimensions in more
detail compared to this work. No consensus or �nal classi�cation scheme covering more
than a few of these aspects has been achieved yet. To our knowledge, our work is the
�rst one in this direction. Due to the versatility of approaches proposed in the literature,
we give no detailed overview of solution variants. We rather identify the most common
principles used in the design of solution approaches in this line of work.

As the main focus of this work lies in �nding sensing locations for rotary-wing UAVs,
we do not discuss system dynamics, e.g., maneuverability. In general, we assume that
a �ight controller is capable of executing the proposed sequence of waypoints. Consid-
ering the integration of these aspects, we refer the reader to Strobel (2016) and Ritter
(2017). Furthermore, the development and re�nement of predictive models for spatial
processes is not at the heart of this thesis. We, therefore, give a summary of commonly
used models but do not discuss these in more detail.

11.1.1 Mission objectives
The mission objective determines the main purpose of a UAV-based surveillance system.
In the context of spatial processes, we distinguish between �ve types of high-level plan-
ning objectives that are often addressed in literature. These objectives di�er either in the
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Figure 11.1: Online planning approaches for surveying spatial phenomena.

sort of information that is desired or in the way they seek to achieve this information.
Figure 11.2 illustrates these applications along with representative mission trajectories.
Their main characteristics are summarized below:

Distribution mapping refers to applications where an accurate estimate of the entire
distribution of the observed phenomenon is required. This is for example used in
the context of agricultural or oceanic applications (Hitz et al., 2017) as well as for
gas distribution mapping (Neumann, 2013). Speci�c to this planning objective is
that it is also relevant to obtain information about areas where the surveyed phe-
nomenon is only present on a smaller scale. Distribution mapping can furthermore
become relevant for source localization and boundary tracking addressed below,
e.g., to identify multiple sources of contamination.

Source localization and characterization applications aim at identifying the source
of a gas spill or leakage as quickly as possible. Often, this combines an estimate
of the intensity of the leak along with the identi�cation of its position (Kuroki
et al., 2010; Ristic et al., 2017). Applications di�er in whether the objective is to
move a sensor to the source location (“source seeking”) or rather to predict this
location accurately, independent of the �nal sensor location (“source term estima-
tion”) (Hutchinson et al., 2017).
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11. Online planning in dynamic environments

Boundary tracking variants seek to delineate the extent of a (compact) phenomenon.
The objective is to trace, as accurately as possible, the “edge” that is de�ned by a
certain intensity or concentration of the monitored substance (e.g., Casbeer et al.,
2006; Euler, 2017). In contrast to distribution mapping, further information about
the intensity of a phenomenon, e.g., in less a�ected areas, is not required.

Area coverage and exploration can be considered as a substitute for surveillance ap-
plications where observations spread across a �eld of action are bene�cial (Mege-
rian et al., 2005). In environmental monitoring, it serves to ensure a reliable and
broad coverage, often in a setting similar to distribution mapping.

Persistent monitoring seeks to observe a phenomenon that is slowly changing over
time, e.g., in oceanic applications (Smith et al., 2011). Instead of a one-time surveil-
lance mission, the target locations are surveyed repeatedly throughout a longer
planning horizon.

Other applications for UAV-based surveillance outside the domain of environmental
surveillance include strategic patrolling or intruder and object detection and tracking.
Strategic patrolling refers to applications where strategically acting entities have to be
intercepted by the UAVs. Intruder and object detection requires the detection of other
entities, either static or moving, in the target area. Similar to environmental monitor-
ing, many planning approaches for these applications rely on formalized beliefs about
a UAV’s environment, e.g., the probability of a certain target being present at a given
location (Stranders et al., 2013).

11.1.2 Vehicle coordination
Most of the applications addressed in this study rely on the deployment of multiple
vehicles with a common mission objective. In this case, coordination mechanisms are
needed to determine how a UAV acts and interacts in a �eet. We can distinguish between
two forms of coordination:

Independent vehicles can move and act independently from one another. They do
not need to remain close to one another and can move freely across the a�ected
area. Using a decentralized control mechanism (see also Section 11.1.3), the group
of UAVs is also referred to as a “swarm” (Strobel, 2016).

Vehicles in a formation are constrained by their relative positions. Typically, this
means that vehicles have to remain within given distance limits between one an-
other. In most cases, this is due to communication issues. The shape of these
formations does not need to be static, as relative positions can change and adjust
during the mission (see, e.g., Daniel et al., 2011; Ristic et al., 2017).

For a more in-depth discussion, we refer to the overview presented by Strobel (2016). In
our study, we focus on independent vehicles. We include solution approaches targeted
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(a) Distribution mapping (b) Source localization

(c) Boundary tracking (d) Area coverage

(e) Persistent monitoring

Figure 11.2: Applications for online planning approaches.
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towards UAV formations in this section if the corresponding planning concepts are trans-
ferable to cases with independent vehicles. For example, this includes approaches where
a high-level heuristic determines where a formation moves, while low-level coordination
mechanisms determine the positions of UAVs within the formation.

11.1.3 Control mechanism
The control mechanism characterizes the underlying architecture that determines the
UAVs’ actions.

Central control mechanisms run on a central machine with full information on the
current system state. The results bene�t from the available information and pro-
cessing power, but require a stable communication with small time lags.

Decentralized control refers to applications without a central instance, no shared or
partially shared information basis and without guarantees for arrival reliability of
messages passed between the vehicles. Decentralized approaches are more robust,
but rely on more complex communication and require processing power on the
vehicles themselves, in particular when using computationally expensive process
models. We can furthermore distinguish between decentralized control schemes
with active or explicit coordination and those with passive or implicit coordina-
tion (Stranders, 2010; Ponda et al., 2015). Active coordination relies on messages
exchanged between vehicles, with each vehicle communicating its current belief
about its environment and its current intentions. Passive coordination is relevant
in all cases where each vehicle only obtains information about others through ob-
serving the environment, e.g., by monitoring and following other vehicles (Stran-
ders, 2010).

For more information especially concerning decentralized variants, we refer to Ponda
et al. (2015).

11.1.4 Environment models
In this section, we summarize models that serve as a representation of the dynamic en-
vironment in which the UAVs operate. These models provide the knowledge used by
the planning heuristics discussed in Section 11.1.5 to decide on actions and movements.
There exist a large variety of concepts for environment representations, and many au-
thors apply highly application-speci�c models. In the following, we extract principles
that are most common in literature. The di�erent types of models are brie�y de�ned
below and discussed in more detail in what follows.

Sensor coverage models represent the sensors themselves together with the area that
has been covered by previous measurements.
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Distribution interpolation variants model the surveyed environmental phe-
nomenon, e.g., the expected contamination, as a spatial process that can be
interpolated using the obtained samples. These variants often employ proba-
bilistic models that capture the spatial and temporal correlations governing the
process.

Geometric phenomenon representation represent the surveyed phenomenon not
as a spatial process, but as a geometric object. As a consequence, they are less
interested in the distribution of values but rather in identifying borders delineat-
ing the extent of a phenomenon.

Other Other variants are application-speci�c models or techniques such as arti�cial
potential �elds, which are used to plan trajectories based on known positions and
obstacles. Hence, we provide only an overview of approaches that have been used
several times without claiming completeness.

None Finally, some solution approaches discussed in Section 11.1.5 are model-free, i.e.,
they use no representation of the environment for planning vehicle missions.

In the following, we introduce the di�erent representations in more detail. We high-
light di�erences between the concepts and give examples for successful applications in
literature.

Sensor coverage

Sensor coverage models represent the sensors and their ranges. They indicate areas
where information is provided as well as those that are not covered in the current set-
ting. Typically, they model a sensor with a given sensing radius, determining the area
in which information can be obtained. In a very basic form, these are, e.g., disc-shaped
representations that assume that full information is obtained about the area immediately
surrounding a UAV (e.g., Euler, 2017). More complex representations account for the fact
that information gain varies with the distance to a sampled location.

The GCorTOP model introduced in Chapter 7 falls into this line of work. Some au-
thors in this line of work also use stochastic model enhancements. An example is given
by Lambrou and Panayiotou (2013), who model sensor coverage as the probability of
detecting an event, which is decreasing with increasing distance to the sensor location.

Distribution interpolation

In this work, we use the term “distribution interpolation” for summarizing methods that
represent the surveyed phenomenon as a process varying in space and potentially over
time. This is the most versatile group of methods. Authors use a wide range of techniques
that have been derived in other �elds of research or apply dedicated variants that are
speci�c, e.g., to oceanic phenomena or gas distribution mapping.
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Among the most popular means in this line of work are probabilistic models such as
Gaussian processes (GP), which represent the environmental processes themselves as
a family of random variables with speci�c dependencies between one another. They
provide, in addition to a prediction of the phenomenon, information about the expected
prediction variance and estimation error, which can be exploited for designing strategies
that minimize these error measures. We refer to Chapter 3 for a more detailed discus-
sion of probabilistic models. In addition to these techniques, which are widely used
in other domains, several dedicated dispersion models have been proposed for model-
ing gas distributions. Notable approaches are Gaussian plume or Gaussian pu� models,
which describe the distribution of gases originating from a single source considering
in�uences such as wind and either a continuous or an intermittent release of the sub-
stance (Hutchinson et al., 2017). The kernel extrapolation distribution mapping (Kernel
DM) algorithm and its extensions use Gaussian kernels to determine predicted distribu-
tions and expected prediction variance maps (Neumann, 2013; Reggente, 2014).

These concepts are complemented by models addressing speci�c distribution patterns.
An example is AERMOD which has been developed for modeling atmospheric disper-
sion (Truong et al., 2016). This approach operates on a larger scale than our use case,
e.g., scenarios where areas of several hundred square kilometers are a�ected. Other
dispersion models dedicated to source localization and characterization are reviewed in
Hutchinson et al. (2017).

Geometric phenomenon representation

Geometric models for representing the surveyed phenomena are used especially in
boundary tracking applications. They try to model distributions using speci�c geomet-
ric shapes such as polygons and �t the parameters of these objects such that they cor-
respond to the obtained observations (Saldaña et al., 2015; Newaz et al., 2016). Some
variants of this only use local information rather than modeling the entire phenomenon
using one object. In this case, the contour of a phenomenon is for example approximated
by a straight line or polygon, which is only valid within a limited distance to a sensor
(Casbeer et al., 2006).

Other approaches

We give a brief overview of approaches and ideas that do not �t the categories above but
are used in several publications. Motivated by applications such as intruder detection,
some publications decide based on some hypotheses about the environment. Informa-
tion gathered during the mission can be used to con�rm a hypothesis or show that it is
inconsistent with the observations (Lim et al., 2016). This allows modeling the informa-
tion gain of each candidate location with respect to the formulated hypotheses.

Originally used for robot motion planning, arti�cial potential �elds (APFs) have been
applied to mission planning as well. In APF, the UAVs are represented as objects moving
in an (arti�cial) force �eld. Areas to be avoided are modeled as repellent areas with
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high potential. Prioritized or “informative” target locations are represented as attractive
forces with low potential (e.g., Saldaña et al., 2015). The vehicles try to move from high
to low potential areas, following a negative gradient in the force �eld. In environmental
surveillance, APFs are often applied when obstacle avoidance or formation control is
crucial. To give an example, other vehicles are modeled as high potentials, and desired
positions in vehicle formations can be modeled as potential minima at speci�c angles
and distances relative to other vehicles to avoid collisions (e.g., Fiorelli et al., 2006). Due
to their close connection with motion control, they cannot be strictly separated from the
planning heuristics discussed in the next section.

11.1.5 Planning heuristics
A wide range of planning variants has been proposed in literature. These are usu-
ally application-speci�c and closely tied to the mission objective and process models.
Nonetheless, we can identify common features that are used in many of these ap-
proaches. Below, we �rst introduce these fundamental principles. We then introduce
speci�c approaches in more detail. Note that, in all variants, the underlying planning
problems are rarely solved exactly. For exceptions in o�ine planning approaches, we
refer to Section 5.5. Some approaches determine optimal solutions for shorter planning
horizons, see also Section 11.1.6.

We group planning principles for informative tours into three major categories, which
are illustrated in Figure 11.3:

Geometric approaches are essentially segmentation-guided and seek to divide the tar-
get space between the available vehicles based on the known current positions and
the size and shape of the considered area. They are not used to plan UAV routes
but instead aim at achieving a good distribution of sensors. In its most basic form,
this is done without considering information about the surveyed process. The par-
titioning of the area can be static, based on some a-priori partitioning approach.
Online versions adjust the partitions while the mission is in progress, i.e., while
the UAVs move and collect new information.

Model-based variants use a formalized model representation to evaluate potential tar-
gets and to measure a plan’s expected quality. If the model and thus the evalua-
tion of targets changes based on previous observations, these variants are typically
called adaptive in literature. To reduce the number of candidates that need to be
evaluated, many model-based approaches use a graph representation of the target
area, where nodes denote candidate sampling locations and arcs indicate possible
moves of the vehicles. In contrast, many of the other planning variants discussed
here can be applied continuously.

Rule-based variants make use of a prede�ned rule set without explicitly modeling an
objective function. Non-adaptive rule-based versions determine, for example, a
lawnmower-like pattern or lead to a circular motion of the vehicles (Neumann,
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2013). Adaptive rule-based versions make decisions based on the current infor-
mation about the process and a limited set of rules that describe allowed motion
patterns.

(a) Geometric (Voronoi
partitionings)

(b) Model-based: Movement toward
high utilities

(c) Rule-based: Set of prede�ned
moves

(d) Hybrid: Area partitioning and
rule-based traversal

Figure 11.3: Representative planning approaches in online surveillance.

A strict separation between these concepts is not always possible, and some publi-
cations propose hybrid variants that combine two of these ideas. Examples of hybrid
approaches are two-staged approaches where an area is �rst separated into partitions
to reduce the complexity for a subsequent model-based planning step (Stranders et al.,
2013). Some authors dynamically switch between concepts, e.g., to balance exploration
with a more detailed inspection at some locations (Saldaña et al., 2015).

Geometric algorithms

Spatial decomposition techniques have been used to determine an a-priori partition of
a target area (e.g., Singh et al., 2009; Xu et al., 2013). Each UAV is assigned to one of
these regions. This can lead to ine�cient outcomes e.g., in case of vehicle failure (Lam-
brou and Panayiotou, 2013), unless there are strategies that either adapt the partitions or
dynamically switch to other heuristics (see, e.g., Schwager et al. (2017) for a hybridized
approach based on di�erent geometry-based heuristics).
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Many solution approaches seek to obtain a centroidal Voronoi tessellation of the target
area. In this context, a Voronoi tessellation is a partitioning of a plane based on a set of
prede�ned generating points. Each point in the plane is assigned to the generator to
which it is closest. The resulting regions are called Voronoi cells. Such a partitioning is
a centroidal tesselation if all generators also correspond to the center of mass (centroid)
of the corresponding Voronoi cell.

Many solution variants apply Lloyd’s algorithm, an iterative way to achieve an ap-
proximation of a centroidal Voronoi tessellation, rather than relying on a-priori parti-
tions. This algorithm is initialized with the starting position of the available vehicles.
Then, the target area is partitioned into regions such that each point in space is assigned
to the vehicle closest to it. Each vehicle moves to the current centroid of the correspond-
ing Voronoi cell. Afterward, the partition is updated and the vehicles are again replaced
to their next centroid. This is repeated until the computed partitions and vehicle posi-
tions remain su�ciently stable. The objective is to achieve and maintain a homogeneous
distribution of sensors and sensing locations across the target space. In approaches tar-
geted towards area coverage or persistent monitoring, such as the algorithm proposed
by Schwager et al. (2017), the Voronoi decomposition determines the �nal position, i.e.,
the vehicles do not move further after a stable distribution has been achieved.

Voronoi tesselations have also been used to achieve other desirable properties in a
solution procedure. They are a popular means for decentral coordination because each
UAV only requires knowledge about the current positions of its neighbors. This means
that the communication e�ort is low, see, e.g., (Cortes et al., 2004; Kemna et al., 2017;
Todescato et al., 2017). Furthermore, as noted by Pavone et al. (2011), an adaptive parti-
tioning scheme has the additional bene�t of maintaining a balanced workload between
vehicles. Other authors use Voronoi tesselations for collision avoidance, e.g., by speci-
fying minimum distances to the boundaries for the Voronoi cells that limit the vehicle
movements (Nguyen et al., 2015). Finally, it is possible to combine these approaches
with environment models – current predictions or uncertainties as well as priorities –
are weighted Voronoi diagrams, as used for example by Kemna et al. (2017), or power
diagrams (Pavone et al., 2011). These approaches enable an adaptive decomposition of
the target space based on previous observations.

Model-based heuristics

At the heart of model-based approaches are representations of the surveyed �eld and
phenomenon. Usually, these are based on the environment models introduced in the
previous section. Many model-based approaches fall into one of two broad categories:
Gradient-based algorithms and utility maximization.

Gradient-based approaches use an estimated concentration gradient to either move
along a contour line or towards areas of higher concentrations. In source localization
applications, heuristics in this line of research are also referred to as “chemotaxis” al-
gorithms. A more detailed overview of di�erent implementations and variants can be
found in Neumann (2013) and Hutchinson et al. (2017). For contour line tracking, sev-
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eral speci�c algorithms have been proposed in literature. An overview can be found in
the study by Hutchinson et al. (2017). This includes, for example, strategies that switch
direction once a threshold is reached (i.e., the contaminant �eld is either left or entered
too far) rather than directly computing and following the gradient. Vehicle movements
in an APF similarly follow a negative potential gradient to move to a potential minimum.

Utility maximization or cost function minimization approaches decide based on some
model that represents the bene�t of sensing locations or vehicle movements. These
variants are often discretized to allow the evaluation and comparison of a �nite number
of candidate locations (e.g., Nguyen et al., 2015). An example of a non-probabilistic model
is given by Lambrou and Panayiotou (2013), who use a cost function that combines the
distance to other sensors and obstacles, the boundary of the region, and the distance to
the sensing candidate itself.

Given a probabilistic model of the phenomenon, several approaches use information
criteria such as mutual information or entropy (see Section 3.2.4). Popović et al. (2017)
combine two probabilistic utility functions: entropy reduction, which favors exploration,
and an application-speci�c measure for the number of areas without a su�cient amount
of information. They gradually move from the �rst to the second to encourage intensi-
�cation as time progresses. Similar to chemotaxis, the literature on source localization
often refers to utility-maximizing variants as “infotaxis” strategies (Hutchinson et al.,
2017; Ristic et al., 2017).

Rule-based approaches

Similar to model-based and geometric approaches, rule-based approaches (called “expert
system” by Kuroki et al. (2010)) exist in adaptive and non-adaptive versions. Adaptive
rule-based variants are closely related to model-based variants. The main di�erence is
that in rule-based algorithms, the current assumptions about the environment deter-
mine the vehicle motion, but are not used to compare options or to evaluate the impact
of the next decisions. Exemplary strategies in this line of work use prede�ned moves
based on the current location of the sensor and the current estimated location of a gas
spill (Kuroki et al., 2010). In this example, the UAV moves downwind or traverses the
area diagonally. Flight direction changes when the measured concentration is below a
threshold value, i.e., when the UAV as likely left the plume. Non-adaptive variants es-
sentially describe deterministic �ight patterns, e.g., spiral or lawnmower patterns. We
refer to the surveys by Otto et al. (2018) and Cabreira et al. (2019) for more details on
�ight pattern planning for area coverage. These variants can also be used for detect-
ing a plume or spill before proceeding with more �nely grained model-based algorithms
(Neumann, 2013). Finally, combinations of these variants are also addressed. To give an
example, Brink and Pebesma (2014) use prede�ned non-adaptive strategies until detect-
ing a smoke plume and then proceed by using a limited set of movement adaptions for
tracking the detected object.
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11.1.6 Decision scopes in model-based planning
The model-based planning approaches introduced in the previous section can be fur-
thermore characterized by the decision scope that is considered. The decision scope
comprises two aspects:

• the length of the planning horizon, and

• the way decisions are made within this horizon.
In other words, the decision scope characterizes the options that are available each time
a UAV mission is updated.

The planning horizon describes how approaches account for the e�ects that a par-
ticular decision or sequence of decisions can have on an (expected) future state of the
system, typically within a given moving window relative to the point in time where a
decision is made. The objective is to make decisions such that the outcome at the end
of this horizon is improved with respect to some evaluation criterion. The literature on
environmental surveillance distinguishes between greedy approaches, variants with a
�nite planning horizon, and non-myopic or in�nite horizon approaches, depending on
the length of the considered horizon (Stranders et al., 2013).

Considering the decision scope, we distinguish between the following three concepts
for making decisions within these planning horizons:
Greedy algorithms disregard the future state of the system and evaluate each decision

only based on its immediate impact. Gradient-based approaches as discussed in
the previous section can generally be considered as greedy.

Selection-oriented approaches separate the model-informed selection of sampling lo-
cations from the routing decision. They �rst select sampling locations without
consideration of their spatial order. Often, this selection is done in a heuristic
fashion to reduce the computational e�ort in each step (e.g., Ma et al., 2017). In
the next step, a visit sequence is determined such that the overall resource con-
sumption for visiting the selected targets is minimal. A heuristic implementing
this concept is, e.g., presented by Popovic et al. (2019).

Integrated variants determine the best possible sequence of sensing locations while
explicitly considering the length of the planning horizon (Low et al., 2008). Unlike
the previous version, these approaches ensure that the selected target sequence is
feasible, i.e., they yield an optimal solution to the resource-constrained informa-
tion gathering problem with respect to the current environment model. Examples
for this concept are the algorithms for solving the informative path planning (IPP)
in Section 5.5, which evaluate plans based on the estimated overall information
gain at the end of the mission.

Similar to model predictive control (Section 11.2.3), the decisions are often imple-
mented in the form of a receding horizon control strategy: While the approaches deter-
mine a sequence of decisions in each step, only the �rst few actions are implemented in
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each step. Then, the vehicle path is updated again based on the new data (e.g., Hitz et al.,
2017).

11.2 Relation to other optimization concepts

In Section 11.1, we have summarized approaches in the �eld of environmental sensing
and surveillance that are similar to AMPPES. In this section, we discuss how these ap-
proaches relate to concepts for online planning and learning that have been proposed
in operations research and machine learning. All of these approaches can be roughly
summarized in Figure 11.4. They have in common that decisions are made (a) several
times in a dynamic setting, (b) are (partially) informed by beliefs about an expected fu-
ture state of the system, and (c) that the decisions impact this future state and thereby
in�uence possible future actions. Often, actions and predictions are only valid within a
certain planning horizon relative to the point in time where a decision is made.

11.2.1 Dynamic vehicle routing problems

The AMPPES is similar to a dynamic VRP in that information is revealed over time. The
main di�erence is the source of dynamism: In dynamic VRPs, the most common dynamic
elements are the requests to be served, travel times, or vehicle availability (Bektaş et al.,
2014). Dynamic requests are by far the most common problem variant in this area (Pillac
et al., 2013; Psaraftis et al., 2016). In contrast, the main source of dynamism in our case
is the acquisition of new samples that change the current bene�t associated with the
target locations.

The literature on dynamic VRP distinguishes between deterministic and stochastic
problems (Pillac et al., 2013). In deterministic problems, the input is dynamically re-
vealed, and no forecasts or probabilities relating to future events are used. This is also
referred to as online VRP (ibid). In stochastic problem variants, future conditions are
described by a known probability distribution that can be exploited. An example is the
generation of “dummy” customers, that are included in tours and can be replaced by
actual realizations (e.g., Ichoua et al., 2006), or the repositioning of vehicles to cover
expected future requests (e.g., Gendreau et al., 2006).

Stochastic orienteering problems, where the pro�t of nodes is unknown but follows
a known distribution, are close to the AMPPES. In contrast to the variants of the VRP
where the demand or pro�t is revealed upon arrival at a location, the pro�t in our use
case depends on the other visits performed by the UAV �eet during the mission. Further-
more, in the case of the AMPPES, no accurate information on the known distribution is
available before planning. This prevents the application of solution concepts for stochas-
tic problems.
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Figure 11.4: Generalized update loop in dynamic optimization and planning approaches.

11.2.2 Online optimization with lookahead
The term “lookahead” has been used in recent publications on environmental surveil-
lance in the context of robotics as well as in literature on online optimization. A clas-
si�cation and overview in the �eld of combinatorial optimization are given by Dunke
and Nickel (2016). This study has been extended to the notion of gradual lookahead by
Dunke and Nickel (2019). Examples for publication using this term in environmental
surveillance are the studies by Popović et al. (2017) and Lim et al. (2016).

The interpretation of what constitutes a lookahead is di�erent in the two areas. Ta-
ble 11.1 gives a summary of the main di�erences in these two lines of research, based
on the distinction between an informational and a processual component proposed by
Dunke and Nickel (2016). In online optimization, a lookahead is de�ned as a preview
on future events (e.g., incoming requests). In the case of gradual lookahead, this pre-
view can be uncertain. Typically, the uncertainty associated with the preview is reduced
as the release time comes closer (Dunke and Nickel, 2019). This preview can be used to
make better decisions. In the context of environmental surveillance, “lookahead” is often
used interchangeably to the term “planning horizon”. In these applications, no preview
exists in the sense that future inputs are known. Instead, solution approaches update the
current belief about the process and use this belief to evaluate potential choices within
a speci�ed planning horizon to get a better objective value or minimize resource usage.

From this perspective, the literature on environmental sensing focuses on the pro-
cessual point of view: The approaches determine possible action sequences over some
planning horizon, which are evaluated with respect to an expected �nal system state.
However, the evaluation is not informed by a preview of future events and only depends
on past inputs and the considered actions. This is supported by the literature itself, which
typically refers to algorithms with lookahead as an alternative to greedy approaches
(Stranders, 2010). At the beginning of this chapter, we have therefore referred to these
approaches using the term moving planning horizon rather than lookahead.
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Online optimization Environmental surveillance

Interpretation of lookahead Preview on future events Evaluation of the impact of
future decisions

Informational component Future events and associated
uncertainty set

Current belief about the
surveyed process / value of
candidate visit locations

Processual component Various processing rules for the
available data

Moving planning horizons

Table 11.1: Interpretation of “lookahead”.

Similarities between the two concepts lie mostly in the implementation of the pro-
cessing rules. Speci�cally, all approaches have to consider the following aspects:

• the frequency with which new input data is processed,

• the de�nition of permissible actions for each update, which are evaluated and com-
pared based on the available information.

• the exploitation of information relating to the uncertainty of the available infor-
mation.

11.2.3 Model predictive control

Model predictive control (MPC) refers to feedback control mechanisms for dynamic sys-
tems where the impact of decisions or control inputs on a future state can be assessed
using a model representation of this system. Its origins lie in process control in indus-
trial applications, e.g., chemical plants. Its �nal goal is often to achieve and maintain a
stable system state.

Usually, MPC works in three steps (Seborg et al., 2010): (1) optimal control inputs are
determined for �nite prediction and control horizons, (2) the �rst action is implemented,
thereby changing the underlying physical system, and (3) when a new input is received
or a given time has passed, the horizon is moved forward in time and new control input
is determined. Consequently, MPC is also referred to as receding horizon control. This
makes it possible to deal with uncertain in�uences and unexpected system changes.

MPC can be considered to be more closely related to AMPPES than stochastic VRP:
Stochastic VRP use information provided externally to make decisions. In the case of
AMPPES and MPC, the available information is updated based on the system’s own de-
cisions, which result in new measurements or control inputs. This similarity has been
noted by some authors, e.g., Indelman et al. (2015). In the context of controlling au-
tonomous vehicles, MPC is used to ensure that vehicles follow the waypoints determined
by a higher-level mission planning approach as closely as possible (Strobel, 2016).
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11.2.4 Active learning
Active learning, as a discipline in machine learning, refers to a class of supervised learn-
ing algorithms that actively requests new (labeled) input data. This can, for example,
reduce high labeling and training e�ort by iteratively selecting only the most “informa-
tive” input. These approaches are often used in the context of classi�cation problems. To
this end, active learning systems combine two components: one component for training
a model on the current training set, the other for selecting unlabeled samples to be added
to the training set.

In the context of this study, the selection component is of particular interest. A wide
range of measures has been proposed in the literature on active learning to evaluate and
compare candidate input samples. Following the surveys by Settles (2009) and Wang and
Hua (2011), we can distinguish between several recurring strategies, which are summa-
rized in the following:

Error reduction: Strategies targeted towards error reduction select the sample that
minimizes the expected estimation error or prediction variance (see Section 3.2.4).
These are typically computationally expensive, as the expected error reduction has
to be computed for all candidate samples.

Uncertainty: These variants select the most uncertain samples. In the case of a classi-
�cation problem, those are the samples that are closest to the classi�cation bound-
ary. Other variants select samples that are most informative, e.g., using measures
such as entropy.

Diversity: Given a measure for the distance between two samples, these strategies seek
to maximize the diversity of the training set, i.e., the dissimilarity between pairs
of selected samples. This is for example based on kernel functions modeling the
“distance” between two samples.

Density: Similar to the previous criterion, density-based strategies use a distance mea-
sure to identify “representative” samples, i.e., samples with similar characteristics
as others, such as their respective location. Examples are clustering techniques,
where only cluster centers are selected.

Committee-based: To improve the predictions, some authors use several learning
models that are trained simultaneously on the available input data. Committee-
based selection strategies make use of these models, e.g., by selecting the samples
where the learning components disagree most.

From this point of view, AMPPES can be considered as an active learning problem
where the planning heuristic selects sampling locations for training, e.g., a Gaussian
process model of the environment. As we have already seen, some methods for deciding
on sampling locations are based on similar concepts, for example, the selection of the
next sample as the one where the prediction is least certain. The main di�erence is
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that in AMPPES, the resources available for sampling are limited, and more informative
samples, i.e., those at larger distances to the already surveyed area, can come at a higher
cost. This means that not all subsets of samples can be feasibly included in the tours and
that each decision impacts the choice of additional samples in the future.

11.3 Summary
In this chapter, we reviewed the state of the art relating to the AMPPES. In a �rst step, we
identi�ed common concepts that are used in the context of environmental sensing. To
this end, we introduced a classi�cation scheme for dynamic approaches and summarized
a wide range of approaches in this line of work (Section 11.1). We have shown that, even
though the literature applies a variety of environment models and solution approaches,
many of these approaches are derived from a few core concepts. In a second step, we
summarized solution techniques proposed in di�erent domains, notably dynamic solu-
tion variants for the VRP, online optimization with lookahead, model predictive control
and active learning (Section 11.2).

In the next chapter, we discuss the applicability of these approaches for the AMPPES,
and identify the main research gaps that are addressed in the subsequent chapters. The
concepts identi�ed in this overview then provide the foundation of the models and
heuristic approaches proposed in Chapter 13.
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12 Research gap and
contributions

As shown in the previous chapter, numerous concepts for problems related to the
AMPPES have been proposed in literature. In this chapter, we review these con-
cepts and identify promising online and adaptive approaches, whose suitability

and limitations with respect to the AMPPES we examine in detail in the remainder of
this work. We then identify open questions regarding the design of mission planning
strategies and summarize our contributions in this direction.

12.1 Discussion of solution approaches
In the previous chapter, we have identi�ed six dimensions characterizing online ap-
proaches, which we have summarized in Figure 11.1. Among these dimensions, our main
interest lies in the solution approaches for planning UAV missions, which are character-
ized by (1) the applied environment model, (2) the planning heuristic, and (3) the decision
scope.

Considering the environment representations, two concepts are promising for our ap-
plication: sensor coverage and process interpolation methods. Sensor coverage models
are inherently inadaptive in the sense that they do not adjust based on previous measure-
ments. They are computationally inexpensive and are likely to scale well to scenarios
where the a�ected areas are large and spatial coverage is most important. In contrast,
probabilistic process models o�er the possibility to adapt based on the obtained samples.
They provide detailed information about predicted values and remaining uncertainty in
the process. However, updating these models to new information itself can be expensive,
as is the evaluation of candidate sampling locations.

The remaining modeling variants discussed in the previous chapter are often speci�c
to other applications or, in the case of APF, focus on aspects such as collision avoidance
that are not relevant to our use case. Geometric representations of the phenomenon are
promising when the primary goal lies in estimating the extent of a phenomenon. For
AMPPES, where we are interested in the concentration of contaminants in “hotspots” as
well as in less a�ected areas, these do not provide a su�cient amount of information.
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Among the di�erent planning heuristics, geometric and model-based approaches
seem promising for our use case. Geometric approaches serve as a substitute for the
“true” objective of achieving low prediction errors as they seek to improve the spatial
distribution of sensors. As dissimilarities between two locations increase with distance,
an even distribution of UAVs is generally advantageous for the prediction quality. These
approaches furthermore scale well to large UAV �eets and are stable with respect to
vehicle failure.

Model-based approaches explicitly use the information provided by the environment
representation to select the next sampling locations. Hence, their performance strongly
depends on the information encoded in the underlying model. The gradient-based ap-
proaches in this group largely rely on local information, i.e., in our use case, the gradient
of the concentration. Often, these approaches assume that the observed �eld has appro-
priate features, such as a single source of contamination. If this assumption holds, they
can perform well for the stated mission objective.

In the AMPPES, where the informativeness associated with candidate locations de-
pends on factors such as the previously sampled locations, priorities in the target area,
and potentially the time since the last observation, utility-based measures o�er the pos-
sibility to evaluate sets of sampling locations within the entire a�ected area. In other
words, they o�er a “global” view on the relative bene�t of sampling locations. This can
be used to quickly move toward the most relevant locations, which is promising for our
use case compared to gradient-based strategies. The computational complexity depends
on the applied environment model and tends to be high, especially when using longer
planning horizons and more expensive probabilistic interpolation models.

12.2 Research gap
In our use case, we face two particular challenges compared to other applications ad-
dressed in literature. First, the available computation time for making decisions is lim-
ited. UAVs require the next sampling location within a few seconds after a measurement
in order not to delay the mission. Second, there is little time available for executing the
mission: The technological limitations restrict the total �ight time of the UAVs, and the
response units require information within a very short time after arriving at the scene
of an emergency.

Many approaches proposed in literature are tailored toward speci�c applications, and
the relative performance of di�erent designs is rarely considered. Our goal is to identify
solution strategies that are promising for solving the AMPPES, keeping the limitations
stated above in mind. We focus on three major issues that are relevant for designing
planning concepts for our use case:

Assessment of the benefit of adaptive models The literature leaves open whether
and to which extent adaptive planning improves plans compared to less expensive mod-
els. Most authors assume that adaptive planning is better, independently of its cost.
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Advantages of using adaptive process models over simple coverage models have been
shown for sensor placement problems (e.g., Krause et al., 2008). Other authors highlight
the bene�ts over complete coverage approaches (e.g., Popović et al., 2017). To the best
of our knowledge, it has not yet been empirically assessed whether adaptive planning
provides bene�ts over less complex coverage-based approaches in the case of moving
sensors.

Furthermore, adjusting to the obtained information is expensive. For example, the
trained process models have to be updated and evaluated, which requires a higher com-
putational e�ort than more simple coverage-based models. In our application, this com-
putation e�ort might become prohibitively high if plans have to be updated quickly.
Consequently, even if adaptive environment models yield better results than other ap-
proaches, it is not certain that using these models would be feasible in our context.

Comparison of geometric and model-based approaches As our literature review
has shown, geometric approaches and model-based planning strategies constitute the
two recurrently used strategies for environmental surveillance. The more e�cient ge-
ometric approaches are often used in applications where a large number of vehicles is
available or when the focus lies on decentralized planning approaches. However, these
methods are targeted toward obtaining a rough distribution of sensors over a large area
and do not address the problem of planning more �nely tuned missions for individual
UAVs within this area. Model-based approaches, in contrast, are advantageous in this
respect, but are more expensive and depend on the applied models.

It remains unclear which approaches perform better under which circumstances–e.g.,
number and �ight time of the deployed UAVs or size of the a�ected area. In case several
planning concepts are hybridized, it remains an open question what each component
contributes toward the quality of a solution. A better understanding of these e�ects
would make it possible to identify promising combinations of planning strategies.

Design of effective decision scopes Larger decision scopes are often applied to
account for the impact that decisions can have on future states of the system. For the
AMPPES, in which the bene�t of observations can usually only be assessed jointly, in-
creasing the decision scope means that this interdependence between sampling locations
can be better taken into account.

There are two aspects in which larger decision scopes promise improvements: The
�rst one is the improved selection of samples that, together, provide more information
than sampling locations selected sequentially. The second factor is the increased ef-
�ciency of the routes as detours can be avoided and “zig-zagged” routes are avoided.
However, it is not certain whether these potential e�ects can be realized. First, all plans
depend on the current information that is encoded in the environment model. As these
beliefs about the surveyed phenomenon are not necessarily accurate, decisions based on
these assumptions may not yield improvements. Second, choices that are optimal for
a shorter planning horizon are not guaranteed to also improve the �nal outcome of a

137



12. Research gap and contributions

mission.
As a consequence, it remains an open question what constitutes an e�ective decision

scope for the AMPPES, especially considering the additional computational e�ort that
may be required. Speci�cally, it is not certain to which degree the joint selection of sam-
pling locations is worthwhile, or whether similar advantages can be achieved through
the improved sequences for visiting sequentially selected sampling locations. Likewise,
it has not yet been examined what length the considered planning horizon should have
to provide an appropriate balance of computing e�ort and improved decisions.

12.3 Contributions
Our contributions toward closing the research gap are summarized below. We focus
on three aspects: The derivation of models and solution approaches for solving the
AMPPES, the combination of these approaches in a uni�ed modeling and solution frame-
work, and the comparison and evaluation of designs as a basis for future research in this
and related �elds.

Models for spatial processes We study modeling paradigms for environmental pro-
cesses that range from simple covering variants to probabilistic process models. To this
end, in Chapter 13, we develop a uni�ed model that comprises these di�erent aspects.
We adapt existing modeling variants to our use case and derive new concepts based on
our models introduced in Part II of this thesis. Based on these modeling variants, we
empirically investigate the bene�ts of using complex environment models and the per-
formance of less expensive strategies in an extensive computational study in Chapter 15.
We demonstrate the high performance of coverage-based models as well as their limi-
tations and show in which situations models o�ering a high degree of adaptivity yield
better results than other approaches. We furthermore demonstrate that the GCorTOP
modeling approach proposed in Part II of this thesis achieves a reliable trade-o� between
an accurate representation of spatial interdependencies and computational complexity
for a wide range of scenarios.

Plannung heuristics and decision scope design We combine the models studied
in this work with solution strategies for di�erent decision scopes to provide insights into
what constitutes an e�ective heuristic design. We focus on assessing the potentials of
three interlinked aspects: (1) the sequencing of targets in longer planning horizons, (2)
the modi�ed selection of samples when considering resource constraints within these
planning horizons, and (3) the usage of the obtained information in adaptive planning
and the degree of adaptivity that should be supported when using longer planning hori-
zons. Similar to the investigation of the environment models, we empirically identify
suitable solution procedures and weight up the computational costs against the quality
of solutions using a large set of scenarios for the AMPPES.
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Architecture and simulation framework An unbiased comparison of di�erent
solution strategies can only be obtained in a controlled environment based on a large
number of scenarios. Therefore, we integrate all of the models and solution techniques
summarized in this chapter in a common solution architecture. This framework is in-
troduced in Chapter 14. Using this architecture, we can freely combine di�erent models,
planning heuristics, and decision scope variants. We furthermore implement a discrete-
event simulation framework that allows us to assess the performance of these solution
concepts in realistic scenarios.
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13 Models and solution
strategies for adaptive

mission planning

In the previous chapters, we have summarized promising concepts for solving the
AMPPES. However, we have also shown that there are several open questions con-
cerning the design of strategies. Our goal is to answer these questions and to identify

strategies that perform well, especially considering the computational restrictions in our
use case.

For this purpose, this chapter presents di�erent solution principles. Our focus lies in
model-based planning approaches. First, we formally describe the underlying planning
problem in Section 13.1 and give an overview of the concepts studied in this work in Sec-
tion 13.2. We introduce three heuristics addressing di�erent decision scope variants for
model-based planning in Section 13.3. To compare these approaches with less expensive
planning strategies, we also adapt a geometric approach to our use case. In Section 13.4,
we then introduce a uni�ed modeling approach and discuss several environment repre-
sentations that can be combined with these planning heuristics, These models are par-
tially based on existing variants, comprising the approaches derived in Part II of this
thesis together with new concepts. This enables us to gain a better understanding of the
trade-o�s between computational e�ciency, adaptivity, and performance o�ered by the
various strategies.

13.1 AMPPES problem definition
Following the notation introduced in Chapter 7, we represent the target area as a discrete
set of locations V ∈ R2. These are the locations we wish to receive information about,
either by surveying them directly or by interpolating the distribution of contaminants
based on other samples within the target area. Again, each location i ∈ V is associated
with a priority ui that represents the relative importance of obtaining accurate informa-
tion at i. The position of a location i is denoted posi with coordinates (pxi , p

y
i ).

The set of available UAVs is denotedM. Each vehicle is associated with takeo� and
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landing locations sstartm and sendm , respectively. The maximum �ight time of a vehicle is
denoted Tmax. For simplicity, we assume that each sensing operation requires a �xed
sensing time τi at standstill. Travel distance between all locations i, j ∈ R2 is denoted as
dij . The corresponding travel time including the sensing time at the destination as well
as the time necessary for acceleration and deceleration is denoted as τij . The planning
horizon is a �nite interval of time [0, T ], with 0 indicating the start of the mission.

The overall mission planning problem consists of selecting sampling locations S ⊆ V
that can be visited by the available UAVs within their maximum �ight time and that
maximize the information obtained about V . In case of the AMPPES, decisions are made
in an online fashion at time instants t ∈ [0, T ]. We use a receding horizon concept where
the optimization is performed for a moving planning horizon with length ∆T ≤ T ,
starting at time t. New sampling locations are computed when a vehicle has no target
locations left but does not yet need to return to its landing position. Additionally, new
targets can be computed after a �xed decision horizon ∆T �x ≤ ∆T has passed since
the mission has last been updated.

To formalize this problem, we require additional notations indicating the state of the
system while the mission is in progress: We denote the position of a UAV m at time t
as posmt. All locations sampled by the vehicles inM from the beginning of the mission
until time t are comprised in the set S<t ⊆ V . For the purpose of adaptive planning, we
denote the corresponding measurements as Y<t.

The AMPPES at time t ≤ T is de�ned as the problem of selecting the next sampling
locations St such that the estimated information gain I(St,S<t), which depends on both
the already surveyed locations in S<t and the set of candidate samples St, is maximal.
A feasible solution to the AMPPES consists of a set of selected targets St that can be
surveyed within the moving planning horizon ∆T starting at the current positions of
the UAVs posmt,m ∈ M, at time t ∈ T such that all UAVs can reach their destination
locations sendm within their maximum �ight time Tmax.

13.2 Overview of solution approaches
In this chapter, we focus on the three aspects characterizing a solution approach sum-
marized in our literature review, see Figure 11.1: the environment model, the planning
heuristic, and the decision scope. We �rst introduce planning strategies for deciding on
the next sampling locations during the mission, i.e., for determining the set St to be sur-
veyed. Second, we propose a range of environment models that o�er an indication of the
expected information gain of a set of locations. That is, they provide an informativeness
measure I(St,S<t).

In Section 13.3, we introduce four planning heuristics addressing di�erent decision
scopes:

Greedy We use a greedy heuristic for maximizing I as an initial approach for model-
based planning. In each step, this selects one sample per UAV to visit next, ac-
counting for all previous sample locations S<t. This strategy is less expensive
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than the other two model-based planning approaches and has found frequent use
in literature. Furthermore, previous work on online optimization has shown that
increasing the decision scope and using more sophisticated strategies is not nec-
essarily better (Dunke and Nickel, 2016). Hence, it provides a useful benchmark
for more elaborate approaches.

Sequential selection The sequential selection strategy selects target locations for each
UAV in a heuristic fashion. To this end, it selects samples one after the other un-
til the moving horizon ∆T is exceeded. In each step, the next sampling location
is selected greedily as the one that provides the largest incremental bene�t with
respect to all previously sampled locations in S<t as well as those already chosen
for visitation at time t, i.e., those that are already included in St. For each UAV,
a TSP is solved to determine the order of survey locations. This means that the
selection of targets is done in a heuristic fashion, while the routing is done opti-
mally. This allows us to assess whether larger decision scopes improve over the
greedy strategy due to a more e�cient order in which samples are taken.

Integrated planning The integrated planning approach considers sample selection
and routing together, determining the optimal combination of sampling locations
within the considered moving planning horizon ∆T . That is, we solve the static
MPPES in each iteration. In contrast to both greedy and sequential selection, this
approach gives an indication of how much decisions can be improved by a more
sophisticated method of choosing sampling locations.

Geometric approach The geometric approach adapts LLoyd’s algorithm for moving
the UAVs to positions that are distributed as good as possible across the target
region. In its basic version, this is independent of the environment representation
I . This allows us to measure the bene�t of using one of the model-based planning
approaches discussed above against a simple but robust strategy that does not
consider previous samples or predictions.

We combine these planning strategies with di�erent environment representations.
As demonstrated in Chapter 11, previous publications have proposed a wide range of
possible models, many of which are highly application-speci�c. In this work, we propose
strategies that represent the most common approaches in literature. As our main interest
lies in the assessment of the necessary level of detail and adaptivity, we focus on three
broad categories of representations, each one including several concepts for representing
the environment and estimating the informativeness I of samples:

Nonadaptive models We apply nonadaptive models that use information about the
targets’ priorities together with a nonprobabilistic model of the spatial correla-
tions that is �xed throughout the mission to measure I . This means that they
account only for the distances between sampled and unsampled locations. We
propose di�erent concepts, with a simple disc-based approach and a more detailed
representation based on the GCorTOP model introduced in Part II.
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Extensions to time-dependent models We extend the existing nonadaptive models
such that they account for the time that has passed between two samples close
to one another. These extensions are new and have not yet been discussed in
literature. In the context of AMPPES, they allow us to account for the available
time during the mission: Longer �ight times mean that more samples can be taken,
which is considered when evaluating a target’s value. Furthermore, these models
provide a means to survey time-dependent processes.

Adaptive process models To assess the bene�t of adaptive planning, we propose sev-
eral measures for I that rely on Gaussian process models for the surveyed phe-
nomenon. Again, we adapt di�erent strategies from literature that vary in the
level of detail with which they estimate the information gained by a set of sam-
pling candidates. This facilitates an assessment of the trade-o�s between model
complexity, information gain, and e�ciency.

13.3 Planning heuristics
In this section, we discuss planning strategies for selecting St that we have introduced
above. In Section 13.3.1, we derive model-based planning concepts with di�erent deci-
sion scopes. This way, we can vary the degree of adaptability, the replanning frequency,
and the horizon length to obtain a better understanding of these approaches. In Sec-
tion 13.3.2, we adapt Lloyd’s algorithm, which is the most popular geometric approach,
to the AMPPES. This allows assessing the performance of purely geometrically moti-
vated approaches in our problem setting.

The di�erent concepts are illustrated in Appendix B, Figures B.10 to B.12.

13.3.1 Model-based approaches
The model-based approaches discussed in this section solve the AMPPES for arbitrary
informativeness measures I . However, this is a di�cult problem: Identifying a pro�t-
maximizing set of samples under consideration of tour length constraints is NP-hard.
The same holds for the optimization of submodular objective functions, e.g., the mutual
information criterion, even without considering sequence-dependent budget restrictions
(Das and Kempe, 2008).

To deal with this challenge, model-based approaches for the AMPPES restrict the de-
cision scope, e.g., by limiting the moving planning horizon ∆T that is considered at the
time of the planning, or by considering only a subset of possible combinations of sam-
pling locations at each point t in the planning horizon. For evaluating these concepts,
we implement and compare three variants: a greedy informativeness maximization, a
heuristic selection, and an optimal solution strategy for the time-restricted subproblems.
These variants are de�ned in the next sections.
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Greedy informativeness maximization

The least expensive model-based approach is greedy utility maximization, i.e., the selec-
tion of a single target location st that is associated with the highest estimated informa-
tiveness, based on the information that is available in the environment model. This can
easily lead to “zig-zagged” movements, e.g., because the prediction variance is highest
at distances that are very far from the sampled locations. To prevent this, we maintain a
distance limit dlimit between subsequent sampling locations, i.e., we solve the following
optimization problem each time a new sampling point is required for UAV:

(AMPPES-greedy) max
st∈Vm

I({st},S<t) (13.1)

with Vm = {s ∈ V : dlimit ≥‖ poss − posmt ‖}. AMPPES-greedy is solved for each UAV
m ∈M sequentially. When the distance limit is narrow, this closely mirrors a gradient
ascent approach, resulting in a local maximum.

The environment model is updated in between the di�erent vehicles to account for
the selected sample. This means that st is provisionally added to S<t for the purpose of
evaluating I . This way, if several UAVs start at the same position, the second one will
move to the second-best target.

The main advantage of the greedy planning approach over other model-based strate-
gies is that it is computationally inexpensive. Its computational e�ort is quickly dom-
inated by the cost for evaluating I in case of more sophisticated environment models,
as is shown in what follows. However, this approach provides no means to anticipate
the impact of a decision. For example, there might exist bene�cial targets that can be
included at low cost in between the current and the next sampling location of a vehicle.
These are left out by the greedy approach, requiring a larger detour at a later point in
time.

Seqential selection heuristic

The idea of a larger decision scope is to select several targets in each iteration. In the se-
quential selection heuristic, this selection is done by iteratively selecting the target with
the highest marginal bene�t and including it in the planned mission until the moving
planning horizon is exceeded. The approach is depicted in Algorithm 6. Similar to the
greedy approach, this problem is solved for each UAV separately.

Throughout the algorithm, we maintain a set of candidates that can be included in
St for the currently considered UAV m ∈ M, denoted Vm. This set is initialized as
the set of target locations that can be reached from posmt within the moving planning
horizon ∆T such that a return to the end location sendm is feasible for UAV m within its
maximum �ight duration Tmax. In each iteration of the algorithm, one location st is
greedily selected from Vm and added to the set of selected sampling locations St such
that I(St∪{st},S<t∪St) is maximal. This means that st provides the largest incremen-
tal bene�t assuming that the locations in S<t as well as all already selected sampling
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Algorithm 6: Sequential selection strategy
Input: Environment model and informativeness measure I , time instant t, UAV

position posmt and destination position sendm , previously selected samples
S<t, moving horizon length ∆T , candidate locations V , �ight time limit
Tmax

Output: Sampling points St ∈ V
1 initialize St = ∅ and corresponding shortest travel time TSt = 0;
2 initialize reachable candidates
Vm = {i ∈ V : τposmti ≤ ∆T and t+ τposmti + τisendm ≤ Tmax};

3 while Vm 6= ∅ do
4 st = arg maxs∈Vm I(St ∪ {s},S<t ∪ St);
5 add st to planned targets St = St ∪ {st};
6 update TSt as the shortest travel time for visiting St starting at posmt;
7 update Vm = {s ∈ Vm : s 6∈ St and TSt∪{s} ≤ ∆T };
8 end
9 return St;

locations St are visited. This way, each iteration accounts for all previously selected
targets. After deciding on the next target st, Vm is updated such that it includes only
locations that can be added to St while still reaching all selected locations within the
moving horizon ∆T .

Algorithm 6 stops when Vm is empty, i.e., when there are no candidates left that can be
added to the St without exceeding the moving planning horizon. The time required for
visiting St, denoted TSt , is determined by solving an open traveling salesman problem,
i.e., a TSP without returning to a �xed location. This way, we avoid the zig-zag e�ect
discussed in the greedy approach, as samples close to the current position are visited
�rst even though their current informativeness value might be lower.

The sequential selection strategy results in a heuristic selection of samples for the
given planning horizon length ∆T , as not all possible visit combinations for St are eval-
uated. In comparison to the greedy approach, it promises two advantages: It anticipates
the e�ect that the �rst observations can have on the bene�t of subsequent targets, and
it can improve the resource utilization by changing the order of target locations.

Integrated approach

The last option considered in this work is the integrated approach, which consists of
determining the optimal selection of sampling locations. This means that we solve the
AMPPES de�ned in Section 13.1 to optimality for a given planning horizon ∆T .

For this purpose, we adapt the dynamic programming approach introduced Sec-
tion 8.1. In contrast to Part II, we model the planning problem as an open planning
problem, as the UAVs do not need to return to their destination location sendm at the end
of the moving horizon. Therefore, we only use forward labeling, as the �nal position
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at the end of the considered moving planning horizon is not �xed. Still, the algorithm
ensures that all paths built this way allow the UAVs to return to their destination within
their �ight time Tmax.

In contrast to the two previous approaches, the integrated consideration of target se-
lection and routing ensures that the best possible solution within the moving horizon
is found. Moreover, this planning approach optimizes the routes for all UAVs together
rather than considering them one after the other. However, this is computationally ex-
pensive, as we have shown in the experimental study in Part II.

Moving and fixed planning horizon

Both the sequential selection and the integrated planning approach determine missions
within a moving planning horizon ∆T . However, it is not necessary to fully execute
the planned mission. To this end, we use a �xed decision horizon ∆T �x ≤ ∆T . Routes
are planned throughout ∆T , but after a time ∆T �x has passed, the previous plans are
discarded in favor of an updated mission. This way, we can control the degree of adap-
tivity as well as the e�ort that is necessary for updating missions throughout the entire
planning horizon.

If the �xed decision horizon ∆T �x is small, missions are recomputed very quickly, i.e.,
new information is quickly taken into account. However, only a subset of the samples
that have been selected in the previous iteration is surveyed before the mission is up-
dated. This means that possible bene�ts due to a good combination of samples can be
lost. The main advantage of this approach is that it anticipates the impact of the next
few visited target locations on the outcome of the mission, either with respect to their
contribution to the overall information gain or concerning the �ight time necessary to
reach them, while o�ering a high degree of adaptivity.

In contrast, if ∆T �x is large, the planned mission, which is either optimal for ∆T in
case of the integrated approach or at least includes an optimal sequencing of locations
in case of the heuristic strategy, is executed in full or nearly in its entirety. This takes
advantage of the more sophisticated approaches that use larger decision scopes but loses
the ability to adapt more quickly. Furthermore, the possibly expensive computation of a
mission within the moving planning horizon ∆T is not repeated as often.

13.3.2 Geometric solution approach
We introduce one geometric solution approach for benchmarking the model-based ap-
proaches introduced above. This approach adapts Lloyd’s algorithm for determining an
even distribution of sensors.

As brie�y described in Section 11.1.5, Lloyd’s algorithm is an iterative way to construct
Voronoi tessellations based on a set of initial generators. Note that even though Lloyd’s
algorithm can be applied to continuous input data, we need to compare results to model-
based variants operating on discrete candidate locations. Hence, we adapt the algorithm
for selecting sampling locations based on a discrete set of candidate sampling locations.
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This algorithm relies on Voronoi tessellations of the target regions at time t ∈ T ,
which depends on the current position posmt of all UAVs m ∈ M at time t. To this end,
we determine a partition (i.e., a Voronoi region)

Vm = {i ∈ V : ‖posi − posmt‖ ≤ ‖posi − posnt‖ for n ∈M, n 6= m} (13.2)

for each UAV m ∈M. UAVs then move toward the centroid c of Vm, which is located at

posc =

(∑
i∈Vm I(i) · pxi∑
i∈Vm I(i)

,

∑
i∈Vm I(i) · pyi∑
i∈Vm I(i)

)
, (13.3)

with (pxi , p
y
i ) as the coordinates of all target locations i ∈ V .

The position posc of centroid c depends on the informativeness measure I de�ned
over V that assigns weights to target locations. In the purely geometric variant, this
function corresponds to the locations’ priorities. In Equation (13.3), we use the more
generic expression that allows integrating the di�erent environment models and infor-
mativeness measures in Section 13.4. In the most simple case, where I(i) corresponds
to the priority ui, posc corresponds to the priority-weighted center of the partition.

In our implementation, each UAV calls Algorithm 7 to determine its next sampling
position st. This algorithm �rst determines the Voronoi region for UAV m ∈M and its
centroid c, depending on the measure I . The next sampling location is the candidate in
Vm that is within a maximum distance of dlimit with respect to the UAV position posmt at
the time the algorithm is called and that is associated with the lowest detour compared
to a direct �ight to c.

Algorithm 7: Lloyd’s algorithm adapted to the AMPPES
Input: Available UAVsM with positions posnt, n ∈M, relevant UAV m ∈M,

target locations V with informativeness measure I(i), i ∈ V , step width
restriction dlimit

Output: Next sampling point st ∈ V for UAV m
1 determine Voronoi region Vm using Equation (13.2);
2 determine centroid c of Vm with position posc based on Equation (13.3);
3 determine the next sampling position

st = argminposi∈Vm:‖i−posmt‖≤dlimit(‖posi − posmt‖+ ‖posc − posi‖);
4 return st;

Note that Algorithm 7 does not depend on the UAV �ight time Tmax or moving plan-
ning horizon ∆T : It seeks to incrementally achieve a balanced spatial distribution of
UAVs across the target area. As it does not consider UAV movements further, tempo-
ral aspects have no impact on the outcome. Instead, UAVs simply return home to their
designated landing position when their �ight time is exceeded. This means that Algo-
rithm 7 is relatively quick and robust in achieving a reliable spatial distribution, but may
not utilize the available mission time once this distribution is achieved.
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13.4 Environment models and information measures
Environment models de�ne the informativeness measure I , which has been used as a
black box model for evaluating possible sampling candidates St in the planning heuris-
tics discussed in the previous section. They allow us to represent the knowledge obtained
about the phenomenon and to assess the information provided by candidate sampling
locations, depending on the previously sampled locations S<t. To study the e�ects of dif-
ferent environment representations, we introduce several variants, ranging from basic
coverage models to complex estimations based on probabilistic process models. In the
following, we formally describe these environment representations and utility functions,
we apply a uni�ed model comprising four elements:

• The input parameters that are used to initialize the model.

• The model data, i.e., model-speci�c data structures that are maintained and up-
dated during the mission.

• An update component for updating the model data based on obtained samples.
This is done each time a UAV completes an observation at some location s ∈ V .

• An evaluation component for determining the value of candidate sampling loca-
tions St based on the updated model data.

The modeling variants are discussed in more detail below. For all models, we de�ne
the four components introduced above and state the formal de�nition of the underlying
informativeness measure for candidate samples. Illustrative examples for the application
of these models to a representative planning scenario can be found in Appendix B with
a focus on the evolution of the informative measure as the mission progresses.

13.4.1 Nonadaptive models
In a �rst step, we discuss nonadaptive models, i.e., models that do not rely on previous
observations. They represent strategies that often lead to good results, in particular by
favoring an even distribution of measurements.

Direct priority-based model

The �rst environment model is based on the priorities in the target area. Hence, this
model corresponds to an online version of the TOP. As the most basic model, this vari-
ant ensures that unsampled locations associated with high priorities in the input data
are visited �rst. Similar to our study in Part II, this model o�ers an indication of the
results that can be achieved without considering spatial interdependencies in the infor-
mativeness measure.

Table 13.1 summarizes the relevant components. The model is initialized with infor-
mation about the targets’ priorities ui, i ∈ V . The model maintains an additional data
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structure for keeping track of the visited locations S<t. The information gain then corre-
sponds to the sum of the priorities of the candidates St that have not yet been surveyed
before.

Parameters Priorities ui ≥ 0 for all locations i ∈ V

Model data Completed sampling locations S<t
Update Add sampled location s to the set of completed samples S<t
Evaluate IDIRECT(St,S<t) =

∑
s∈St\S<t

us

Table 13.1: De�nition of the direct priority coverage model.

Disc-based coverage model

The disc-based coverage model assumes that each sampled location provides complete
knowledge about all surrounding locations within a maximum covering distance dcover.
This distance represents the extent of the correlation in the process, i.e., the distance
up to which one can assume that observations yield similar results. The assumption of
disc-based coverage has motivated several models in literature, e.g., the covering sales-
man problem (see Section 5.2) as well as online environment representations (see Sec-
tion 11.1.4). In their most basic variant, these models only consider whether a location
has been within the covering distance of a completed observation. In our model, we ad-
ditionally account for how many observations have been made within dcover. This way,
we encourage a balanced distribution of sampled locations across the target area.

The constituting components of the disc-based model are summarized in Table 13.2.
As indicated above, we assume that each sampled location provides information about
other targets within a �xed radius of dcover that has to be speci�ed by the user. For each
location i ∈ V , we keep track of the number of times ni a sample was taken at any lo-
cation within the maximum distance dcover to i. The model represents the value of either
sampling a visit i directly or surveying a location within dcover to i as the squared di�er-
ence between ni and the maximum coverage count maxj∈V nj over all targets, weighted
with the location’s priority ui. The estimated informativeness of a set St corresponds to
the sum of these values for all i ∈ V that are within covering distance of at least one
sample s ∈ St.

Using the squared di�erence (maxj∈V nj−ni)2 between these coverage counts means
that the regions that have received the least attention are prioritized as the total number
of samples increases. The proposed model furthermore ensures that even if nearly all
targets in the considered area have been surveyed or covered, their informativeness is
not simply set to 0, as is the case in less complex coverage models. Instead, it o�ers a
means to select further samples in an informed manner, thus ensuring that the available
�ight time is used in its entirety.
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Parameters Coverage radius dcover > 0, priorities ui ≥ 0, i ∈ V

Model data Target coverage counter ni for all i ∈ V , initialized as 0

Update Set ni = ni + 1 for all i ∈ V within distance dcover to a sampled location s

Evaluate IDISC(St) =
∑

i∈V:mins∈St dis≤dcover
ui (max

j∈V
nj − ni)2

Table 13.2: De�nition of the disc-based coverage model.

An example for IDISC is given in Figure 13.1, which illustrates the informativeness
values of all targets depending on previous samples indicated as black crosses. Note
that for this example, the priority of all locations is 1, i.e., only the modeled spatial
dependencies impact the informativeness values of di�erent locations. As expected, we
can see that the informativeness is low at areas where the mission has provided samples
and high in areas further away. The next sample chosen using the greedy heuristic
based on this informativeness measure is connected to the last sampling location using
a dashed line.

Kernel-based coverage

In the next step, we propose a more re�ned coverage model compared to the disc-based
coverage approach. Speci�cally, this means that we model the correlation within the
target area in more detail. To this end, we use the GCorTOP objective function derived
in Section 7.3, see Equation (7.12), which represents the spatial correlations as a distance-
dependent kernel function.

In the o�ine case, the informativeness of a set of samples S is measured as the sum of
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Figure 13.1: Informativeness of sampling
locations using IDISC.
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Figure 13.2: Informativeness of sampling
locations using IGCorTOP.
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the priorities ui of all directly surveyed locations i ∈ S plus the priorities of unsampled
locations j ∈ V \ S , weighted with a factor wji ∈ [0, 1] depending on their distance to
the next surveyed location i ∈ S . This objective is formally de�ned as follows:

IGCorTOP(S) =
∑
i∈S

ui +
∑
j∈V\S

min{uj,
∑
i∈S∩Cj

wjiuj},

with the covering neighborhood Ci that includes all targets within a maximum distance
dcover to location i ∈ V , i.e., Ci = {j ∈ V \ {i} : dcover ≥‖ posj − posi ‖}. The weights wji
allow us to represent the correlations using arbitrary distance-dependent kernel func-
tions. Hence, we refer to the coverage model for online planning as kernel-based cover-
age in contrast to the disc-based model.

The environment model for the online case is de�ned in Table 13.3. We use the same
inverse-distance based approach for determine weights wij, i, j ∈ V as in the o�ine
case, see also Equation (7.10). This means that we specify all weights wij for i, j ∈ V
relative to a baseline weight w̄ at some distance dmin as

wji =

{
w̄ · dmin

dji
, j ∈ Ci

0, otherwise.
(13.4)

The bene�t of a set of candidate samples St is then determined as the incremental change
IGCorTOP, i.e., IKERNEL(St,S<t) = IGCorTOP(S<t ∪ St)− IGCorTOP(S<t).

Parameters Coverage radius dcover > 0, baseline weight w̄ ∈ (0, 1] and distance
dmin > 0, priorities ui ≥ 0 for i ∈ V

Model data Weightswij based on Equation (13.4), completed sampling locations S<t
Update Add sampled location s to the set of completed samples S<t
Evaluate IKERNEL(St,S<t) = IGCorTOP(S<t ∪ St)− IGCorTOP(S<t)

=
∑

s∈S<t∪St

us −
∑
s∈S<t

us︸ ︷︷ ︸
incremental value for direct coverage

+
∑

s∈V\(S<t∪St)

min{us,
∑

j∈S<t∪St

wjsus} −
∑

s∈V\S<t

min{us,
∑
j∈S<t

wjsus}︸ ︷︷ ︸
incremental value for indirect coverage

Table 13.3: De�nition of the kernel-based coverage model.

The kernel-based coverage model is more expensive to compute than the disc-based
coverage model. Using the weights wij , however, means that more detailed information
about spatial coverage can be used for evaluating targets. For instance, this allows a
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better approximation of the bene�ts of including multiple samples that cover the same
locations.

Figure 13.2 provides an example for IGCorTOP. Similar to the example for the disc-based
coverage model, it indicates the current informativeness values depending on previously
sampled locations, with priorities ui = 1, i ∈ V . We can observe that the resulting mea-
sures for the targets’ priorities are similar to the disc-based model. The main di�erence
between the two measures in this example is the value assigned to targets close to pre-
vious samples. This value is higher relative to the remainder of the samples in case of
IGCorTOP. This accounts for the fact that additional samples still provide information in
these areas, even though unsampled regions should be preferred for the next sampling
locations.

13.4.2 Extension to time-dependent models
The models discussed up to this point only rely on spatial information, i.e., they are blind
to the point in time at which an observation was performed at some location. We ex-
tend them to spatio-temporal models, where information loses value as time progresses.
This allows us to address spatio-temporal phenomena, where the surveyed distribution
changes in time. Additionally, these models can be applied to balance observations over
time as well as over space and to account for the available �ight time when evaluating
the information gain of samples.

Latency-based coverage model

In a �rst step, we adjust the disc-based coverage model. Again, we assume that loca-
tions provide full information about all samples within a given distance dcover. Instead
of counting the number of samples, however, we keep track of the time since the last
measurement has been made in the vicinity of a location. We then measure the infor-
mativeness of a location relative to the sampling latency, i.e., the time since the last
measurement at the location itself or nearby.

The de�nition of this model is given in Table 13.4. We maintain an additional data
structure for storing the last sampling time τ lati , i ∈ V . Similar to the disc-based coverage
model, we use the squared di�erence between the current time t ∈ [0, T ] and the last
sampling time of a target to penalize long delays between samples.

The latency-based model, similar to the disc-based model, favors the regions in the
target area that have received the least attention. These tend to be the locations furthest
away from the current UAV positions. This way, we encourage spatial diversi�cation.

Figure 13.3 illustrates the latency-based measures, again using an instance with unit
priorities. The UAV mission starts at the lower left side of the represented area and pro-
ceeds as indicated using the black line. We can see that the informativeness of sampling
locations near the current position of the UAV in the middle of the area is low. How-
ever, ILAT is already high in the area that has been sampled �rst, thereby encouraging
additional samples in this region.
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Parameters Coverage radius dcover > 0, priorities ui ≥ 0 for i ∈ V

Model data Last sampling time τ lati , i ∈ V , initialized as 0

Update Set τ lati = ts for all i ∈ V within dcover to location s sampled at time ts
Evaluate ILAT(St) =

∑
i∈V:mins∈St dis≤dcover

ui
(
t− τ lati

)2

Table 13.4: De�nition of the latency-based coverage model.

Kernel-based coverage with devaluation

The GCorTOP approach assumes that a process is time-invariant. We, therefore, need
to adapt the idea in situations in which we want to account for temporal relationships.
We propose to devalue the information gain provided by samples as time proceeds de-
pending on the length of the planning horizon. For this purpose, the model maintains
information about previously sampled locations and sampling times in the form of the
set S<t. This means that in the time-dependent context, S<t contains tuples of values
(s, ts) that indicate a sampled location s together with the time ts ∈ [0, T ] the sam-
ple was obtained. This way, if a location is surveyed several times, it is represented by
multiple entries with di�erent sampling times in S<t.

Using this information, we formulate the time-dependent correlated team orienteer-
ing problem (GCorTOP-TD) as an extension of Equation (7.12) (Section 7.4). We account
for the fact that information loses value over time by multiplying the distance-dependent
weight wsi between a sampled location s and an interpolated location i ∈ V by a factor
(1 − t−ts

T ), where t indicates the point in time at which the informativeness measure
is evaluated, with t ∈ [0, T ]. As the time since the last sampling time ts increases, the
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Figure 13.3: Informativeness of sampling
locations using ILAT.
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Figure 13.4: Informativeness of sampling
locations using IGCorTOP-TD.
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fraction t−ts
T converges to 1, i.e., (1− t−ts

T ) converges to 0. The same assumption holds
for the information that a location provides about itself at a later point in time. For this,
we assume that wss = 1. This weight is similarly discounted as time progresses.

Based on this assumption, the GCorTOP-TD model estimates the informativeness of
a set of completed samples S<t relative to a point in time t as follows:

IGCorTOP-TD(S<t) =
∑
i∈V

min{ui,

indirect information available about i relative to time t︷ ︸︸ ︷∑
(s,ts)∈S<t

(
1− t− ts

T

)
wsi︸ ︷︷ ︸

reduced weight between s and i

ui }. (13.5)

Note that we assume that t ≥ ts, as IGCorTOP-TD can only be reasonably evaluated with
respect to samples obtained during the mission until t. We maintain our assumption that
the sum of all indirect coverage values is equal or less to ui to avoid redundant samples
in close vicinity or within a short time (see Section 7.4).

Table 13.5 gives the de�nition of the modi�ed model. Similar to the kernel-based
approach given in Table 13.3, we de�ne the informativeness IKERNEL-TD of sampling can-
didates St as the incremental change in the objective value IGCorTOP-TD with respect to
the available samples S<t. For this purpose, all candidate locations s ∈ St are evaluated
as if they were surveyed immediately at time t, i.e., their weights wsi are fully taken into
account.

Parameters Coverage radius dcover > 0, baseline weight w̄ ∈ (0, 1] and distance
dmin > 0, priorities ui ≥ 0 for i ∈ V , planning horizon length T

Model data Weightswij based on Equation (13.4), completed sampling locations S<t
Update Add (s, ts) to the set of completed samples S<t
Evaluate IKERNEL-TD(St) = IGCorTOP-TD(S<t ∪ St)− IGCorTOP-TD(S<t)

=
∑
i∈V

min{ui,

 ∑
(s,ts)∈S<t

(
1− t− ts

T

)
wsi +

∑
s∈St

wsi

 · ui}
−
∑
i∈V

min{ui,
∑

(s,ts)∈S<t

(
1− t− ts

T

)
wsiui}

Table 13.5: De�nition of the kernel-based coverage model with devaluation.

As indicated above, we measure the time t − ts that has passed since the last mea-
surement relative to the length of the planning horizon T . This means that information
is devaluated more quickly the shorter the planning is, as little time remains to make
additional samples. In contrast, in the case of longer planning horizons, UAVs are en-
couraged to travel further before returning for additional samples. Same as the weights
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wji, j, i ∈ V , this factor can be adjusted if information about the nature of the temporal
correlation in the process is available.

We again represent this measure based on a scenario with unit priority, indicated
in Figure 13.4. In this case, the UAV starts at position (5, 0). Similar to the example
for latency-based coverage, the area close to the starting position is surveyed �rst and
becomes relevant again as the mission progresses, leading the UAV to return and take
additional samples nearby. Note that overall, values for IGCorTOP-TD are higher than for
IGCorTOP and ILAT, as the distance between samples both in the spatial as well as in the
temporal dimension limit the value of the already obtained information.

13.4.3 Gaussian process models
Adaptive models make use of the observations received while the mission is in progress
to adjust and improve the current environment representation. In this work, we use
Gaussian process (GP) models that represent the surveyed distribution of gases. We
compare di�erent measures for modeling information gain based on these processes.
These models can be applied to stationary processes as well as to phenomena changing
over time by using appropriate kernel functions k (see also Section 3.2.2).

In this study, we consider three informativeness measures based on GP representa-
tions that follow the measures discussed in Section 3.2.4. The de�nition of these three
models is given in Table 13.6. They make use of the same fundamental process represen-
tations and update strategies during the mission and di�er in how I(S,S<t) is evaluated.
In all cases, we parametrize the environment model using a kernel kθ with hyperparam-
eters θ that characterizes the initial belief about the nature of the correlation.

Process updates

While the mission progresses, UAVs take (potentially noisy) measurements of the ob-
served phenomenon. We denote such a measurement taken at time t at a location s ∈ V
as yst. We refer to the set of collected measurements up to time t as Y<t. This set repre-
sents the entire information available at the time t a mission is updated. Note that the
set Y<t includes the values of the observations in contrast to the locations represented
by S<t, which we have used in the models up to this point.

To make use of the information collected during the mission, the hyperparameters θ
are updated such that they best �t the available data that is represented by the set Y<t.
This yields a �tted kernel kθ̂ with optimized hyperparameters θ̂. The fundamental idea
behind this approach is to �nd a parametrization that matches the patterns exhibited by
the collected samples as well as possible. We refer to Section 3.2.2 for an overview of
how the parameters can be �tted to the obtained information. The �tted GP based on
a kernel kθ with hyperparameters θ conditioned on samples S<t is denoted as Zkθ

V|S<t v

GP(µkθV|S<t ,Σ
kθ
V,V|S<t) in the following.

Any predictions and variance estimates are based on such a �tted process model
Z
kθ̂
V|S<t . This means that the estimated information value of locations can change over
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time, and can increase and decrease depending on previous measurements. If, for exam-
ple, the correlation between samples at larger distances is higher than initially assumed,
the estimated value provided by locations close to previous sampling points decreases.
If the model correctly identi�es this property, it can increase the distance between sam-
pling locations. This way, it uses the obtained knowledge about the correlation to cover
a larger area. The computational e�ort for an update step in which newly obtained infor-
mation is processed depends on how the parameters θ̂ are determined. Scikit-learn
(Pedregosa et al., 2011), which is used in this work, uses a gradient-based multi-start
approach to �nd locally optimal parameter sets.

Parameters Kernel kθ de�ning the prior covariance Σkθ
V,V

Model data Sampled locations S<t, corresponding measurements Y<t, posterior GP
Z
kθ̂
V|St de�ned by the kernel function kθ̂

Update Add s to the set of sampled locations S<t and add the corresponding
measurement yst to Y<t.

Update kernel kθ̂ such that the hyperparameters θ̂ are optimal
with respect to the log-marginal likelihood function, i.e., θ̂ =

arg maxθ log p(Y<t|θ), and compute the posterior distribution Z
kθ̂
V|S<t

(see also Equation (3.12), Section 3.2.2)

Evaluate Use one of three measures:

IVAR(St,S<t) = tr
(

Σ
kθ̂
St,St|S<t

)
IARV(St,S<t) =

1

|V|

(
tr
(

Σ
kθ̂
V,V|S<t

)
− tr

(
Σ
kθ̂
V,V|(S<t∪St)

))
IMI(St,S<t) = H

(
Z
kθ̂
V\(S<t∪St)|S<t

)
−H

(
Z
kθ̂
V\(S<t∪St)|(S<t∪St)

)
Table 13.6: De�nition of GP based models.

Informativeness measures

The core of the GP-based models is the way the information gain of a setSt is determined.
We study three variants that di�er in the degree of complexity that is included in the
models:

The measure IVAR, as the most basic model, estimates informativeness as the sum of
the posterior variances associated with the candidate sampling locations in St. That
is, it computes the trace of the posterior covariance matrix Σ

kθ̂
St,St|S<t de�ned over the

locations in St. Hence, the model assigns the highest values to the most uncertain target
locations. Usually, these tend to be those furthest from the surveyed locations.
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The IVAR model does not make full use of the information provided by the covariance
matrix about the surveyed process. It selects the samples where the prediction is cur-
rently least certain, but these are not necessarily the sampling locations that can provide
the most information about the remainder of the a�ected area. This can be achieved by
applying more elaborate informativeness measures proposed in literature.

As the second measure, we use the average reduction in variance (ARV), see also Equa-
tion (3.21) (Section 3.2.4). The IARV measures the expected reduction of the variability
in the GP posterior that can be achieved by the samples in St. To this end, we compute
the variability in the process over the entire target area V depending on the observed
locations S<t as the trace of the posterior covariance Σ

kθ̂
V,V|S<t . The expected variabil-

ity assuming that the locations in St are surveyed as well is tr
(

Σ
kθ̂
V,V|(S<t∪St)

)
, i.e., the

trace of the posterior covariance matrix conditioned on sets S<t and St together. The
reduction in variance is the di�erence between these two values.

The ARV provides a more sophisticated measure of the improvement in prediction
quality that can be expected by a set St. However, this means that the posterior co-
variance Σ

kθ̂
V,V|(S<t∪St) has to be computed for measuring the bene�t obtained by a set

of sampling locations. This has to be repeated for every evaluated set St, introducing a
signi�cant overhead relative to IVAR.

As the third measure, we use the mutual information (MI) criterion, which measures
the expected information gain provided by the samples about the remainder of the pro-
cess, see also Equation (3.22) (Section 3.2.3). For sensor placement models, this measure
has often yielded the best reported results. However, it is also the most expensive one
(Krause et al., 2008). The MI criterion uses the entropy H(ZV) to measure the uncer-
tainty of a process ZV (see Equation (3.17), Section 3.2.3). This measure is applied to the
sampling locations V \ (S<t ∪ St) that are not included in either the previously selected
samples nor in the candidate locations. The informativeness IMI is then de�ned as the
di�erence between the entropy of the process Zkθ̂

V\(S<t∪St)|S<t that only considers previ-
ous measurements S<t and the entropy of the process Zkθ̂

V\(S<t∪St)|(S<t∪St) that has been
conditioned on completed and candidate samples together.

The strength of these adaptive informativeness measures is that they assign the high-
est values to the targets that, accounting for all available information, will provide the
most insights into the nature of the process. Furthermore, they consider these sets
jointly–that is, they assess the information gain that is provided by all candidates St
together depending on their locations and distances toward one another as well as to all
remaining locations. However, the required computational e�ort is signi�cantly higher
than in case of nonadaptive models due to the need to �t the GP to the completed ob-
servations and to compute the GP posterior.

The three informativeness measures are illustrated in Figures 13.5 to 13.7. Again,
black lines illustrate the executed missions and dashed lines the path toward the next
sampling location that is greedily selected based on the underlying environment mod-
els. Figure 13.5 illustrates simple structure obtained when using IVAR where each loca-
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tion’s informativeness corresponds to its posterior covariance. Consequently, the mea-
sure yields large values further away from the samples. Most importantly, this a�ects
the locations that are near the border of the target region.
IARV prevents this e�ect, as is illustrated in Figure 13.6. This measure does not pri-

oritizes the locations that are most uncertain themselves, but that reduce overall vari-
ance most. Again, this corresponds to locations further away from the obtained samples.
However, the measure accounts for the fact that even though little information is known
about the border locations, they also provide less insight into the phenomenon.

The last measure IMI is represented in Figure 13.7. Based on the executed mission
and obtained samples, this measure assigns high informativeness values to the area on
the right hand side of the area. This is because previous measurements fall, roughly, on
a vertical line, which means that little information has been obtained about the spatial
correlation in the orthogonal direction.
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Figure 13.5: Informativeness of sampling
locations using IVAR.
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Figure 13.6: Informativeness of sampling
locations using IARV.
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Figure 13.7: Informativeness of sampling
locations using IMI.
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13.5 Summary
In this chapter, we formally de�ned the AMPPES and introduced a range of planning
approaches for solving this problem that is summarized in Table 13.7. These approaches
include di�erent strategies for the main components of solution concepts that we have
identi�ed in Chapter 11: The planning heuristic, the decision scope, and the environment
representation.

We proposed approaches based on two planning concepts: First are model-based vari-
ants that use an informativeness measure to estimate the bene�t of potential sampling
locations. The second one is a geometric approach that seeks to distribute the available
UAVs as well as possible across the target area. For model-based planning, we further-
more discussed possible decision scope variants. Besides a basic greedy heuristic, we
introduced two concepts addressing longer planning horizons. In the �rst one, locations
are selected heuristically and an optimal sequence through these locations is determined.
In the other one, the problem of maximizing information gain within the considered
planning horizon is solved exactly.

We furthermore proposed a wide range of environment models based on a uni�ed
modeling approach. The two core functionalities of such a model are an update step,
which is used to adjust the model based on newly obtained measurements, and an eval-
uation method that returns some measure of informativeness for a set of candidate sam-
pling locations, based on all previously obtained information. We sought to introduce
environment models that are as varied as possible in terms of their expressiveness and
computational e�ort. These approaches can be broadly grouped into three categories:
First, we proposed models that represent the sensor range to assess where information
has been collected and where it might not yet be su�cient. Second, we adapted these
models such that they account for the time that has passed in between measurements
as well. Third, we discussed probabilistic process models to study the e�ects of adaptive
planning. Together with the proposed planning concepts, these models provide us with
the means to study the trade-o� between computational e�ort, adaptivity and prediction
quality that is o�ered by these approaches, and to identify promising concepts for the
AMPPES.
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Environment models

Nonadaptive w.o. temporal aspects
Direct priority (IDIRECT)
Disc-based (IDISC)
Kernel-based (IKERNEL)

Nonadaptive with temporal aspects Latency-based (ILAT)
Kernel devaluation (IKERNEL-TD)

Adaptive
Maximum variance (IVAR)
Avg. reduction in variance (IARV)
Mutual information (IMI)

Planning approaches

Geometric LLoyd’s algorithm

Model-based
Greedy
Sequential selection
Integrated planning

Table 13.7: Summary of environment models and planning strategies.
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14 Planning and simulation
framework for online

emergency surveillance

This chapter introduces the framework developed in this thesis for implement-
ing and evaluating the approaches proposed in the previous chapter. Section 14.1
describes a modular planning architecture, using which we can which can com-

bine the di�erent planning strategies and environment models. To analyze and compare
these strategies, we furthermore develop a discrete-event simulation that interacts with
the planning strategies. This simulation is introduced in Section 14.2.

The essential entities that de�ne this framework are illustrated in Figure 14.1. In prac-
tice, a human operator initializes the system, de�nes the planning problem and is in-
formed about the results of the mission. The deployed UAVs communicate directly with
the planning framework to receive sampling locations and to send status updates and
obtained information. These entities are replaced by the simulation environment in this
study, which represents, e.g., UAV movement and observations. This separation allows
us to de�ne and use common interfaces for communicating with the planning approach,
which allows a direct transfer of the proposed mechanism to a real-world application.

14.1 Modular planning framework
We propose a solution architecture in which we can integrate the di�erent concepts dis-
cussed in Chapter 13, i.e., the proposed environment models and the di�erent planning
heuristics. This allows an unbiased evaluation and comparison of solution approaches.

The basic scheme is depicted in Figure 14.2. In this �gure, we distinguish between two
groups of components that, together, fully de�ne the planning strategy: The representa-
tion of the environment and the planning strategy. This framework furthermore de�nes
interfaces that can be accessed by the UAVs for updating information and determining
new target locations.

The environment representation indicated on top includes three core elements:
1. It stores the given input data, e.g., priorities that characterize the target area.
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predicted distribution

available UAVs, target 
area, a-priori belief
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planned target locations

Operator

UAVs

Planning
frameworkdeployment

Simulation framework

Figure 14.1: Central entities in the online planning and simulation framework.

2. It maintains information on the state of the deployed UAV system, e.g., the current
positions of the available vehicles.

3. It includes one of the environment models discussed in Section 13.4.

The di�erent environment models proposed in the previous chapter implement the in-
terfaces de�ned in the framework, which allows us to freely exchange them against one
another. They are initialized with the prior beliefs about the application scenario and
target area. For example, in case of GP models, this belief describes the initial covariance
matrix. Information on previously sampled locations and observed values is stored in
the environment model and is updated throughout the mission.

The planning strategies evaluate these environment models in order to decide on UAV
actions. To this end, we combine two elements:

1. A module that determines the currently permitted actions based on the input and
system state, i.e., based on the given range restriction or length of the planning
horizon.

2. The planning heuristic itself, which selects one or several targets from the set of
permitted actions based on the implemented planning strategy and the environ-
ment knowledge encoded in the process model.

The result of the planning heuristics constitutes the next targets in the UAVs’ missions.
Note that not all components are always necessary for implementing the planning

concepts that we study here. For example, purely geometric approaches do not require
an updated process model for making decisions.

14.2 Simulation framework
In order to evaluate the proposed approaches, the solution architecture introduced in
Section 14.1 is embedded in a discrete-event simulation (DES). This simulation repre-
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Figure 14.2: General online planning architecture. Elements that allow us to implement the var-
ious solution heuristics are hatched in grey. Interface functions for system status
updates and target calculations are indicated in typewriter style.
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sents the evolution of the system–including the UAVs and the surveyed phenomenon
itself–through time. Each simulation run de�nes a scenario that is characterized by a
population distribution, a distribution of contaminants and a number of UAVs. The situ-
ation then mirrors the movements of the UAVs through space and the information that
is obtained while traveling, i.e., measurements including a possible measurement error.

In Figure 14.3, we give an activity diagram depicting the central loop of the simulation
engine. A more detailed description in form of pseudocode can be found in Appendix C.
The simulation represents the evolution of a planning scenario as a sequence of events,
i.e., GPS position updates or plan updates, occurring at discrete points in time. It interacts
with the planning architecture using the interface functions illustrated in Figure 14.2.

At the core of the simulation is a list of all pending events. Each event represents an
instant in time at which the system state changes for any reason. The list of events is im-
plemented as a priority queue sorted by event occurrence time in increasing order. The
simulation progresses by removing the next event from the priority queue and resolving
its e�ects until no events remain.

Each simulation run is initialized with complete input data on a speci�c scenario. A
scenario is de�ned by the addressed target area, UAV con�guration including take-o�
and failure times, and a generated distribution of contaminants. At the start of the simu-
lation run, the event queueQ is initialized using the �xed UAV deployment and potential
failure times along with the initial GPS position updates. Afterward, the simulation re-
solves events in increasing order of their respective occurrence time.

Event resolution depends on the type of event that occurs. In our simulation, we
distinguish between �ve event types:

• Vehicle creation events

• GPS update events

• Vehicle failure events

• Observation events

• Events triggering an update of the planned mission.

Note that events that are concurrent in the simulation, i.e., events associated with the
same point in time, are resolved in a strict hierarchy following the order indicated in the
list above. The event resolution subroutines can also create new events for modeling the
impact of a system state change or decision.

UAV creation events are resolved �rst. Otherwise, the planning strategy might receive
updates from UAVs unknown to it. A new UAV is registered with the planner using the
addUAV() function and is assumed to be ready immediately after registration. This means
that a new event triggering an update of the plan of the corresponding UAV is created
and inserted into the priority queue.

GPS updates and potential UAV failures are similarly announced to the planner by
calling updatePosition() and updateStatus(), respectively. In case of a failure, we
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Figure 14.3: Activity diagram of the simulation engine. Calls to the interface functions o�ered by
the planning strategy are indicated in typewriter style.
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furthermore abort all future events associated with the UAV, as they are no longer valid.
Note that aborted events are not removed from Q, but are not resolved.

An observation event noti�es the planning strategy that a new sample has been com-
pleted using the updateObservation() function. If desired, the simulation adds an ob-
servation error to the data.

Vehicle missions are updated last. This ensures that all information available at this
point has been processed and can inform the next decision. Depending on the imple-
mented planning strategy and decision scope, getNextTargets() returns one or more
sampling locations for each UAV. In the simulation, we then model the UAV’s trajec-
tory as a straight line starting from its current position to the next destinations. GPS
updates are created in �xed increments of time until the arrival at the target position.
Furthermore, observation events are added for each completed sample. These events
are inserted intoQ together with the corresponding arrival times. Calls to the planning
strategy are scheduled each time a new UAV is registered in the system and after each
completed observation. This corresponds to an idle vehicle requesting new tasks.

Statistics on the performance of the planning strategy are maintained in the planning
framework itself, e.g., computation time. After completing its run, the simulation engine
assesses the quality of the obtained mission, e.g., by comparing predicted values with the
true distribution that is unknown to the planner. For more details on these measures,
we refer to the experimental study in Chapter 15.

14.3 Summary
In this chapter, we introduced the proposed planning and simulation framework that is
the foundation of the study discussed in the next chapter. Together, these two compo-
nents enable a comprehensive, unbiased evaluation of the planning strategies studied
in this thesis: The solution architecture allows the implementation of di�erent environ-
ment models and planning strategies within a shared planning framework. This frame-
work o�ers interfaces that can be accessed by the deployed UAVs to send updates and
receive new targets. These interfaces can also be accessed by the simulation engine,
which imitates the evolution of the system and the surveyed process. By integrating
di�erent strategy-dependent components in the planning framework, we can compare
the performance of di�erent solution concepts in a controlled environment.
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15 Simulation based assessment
of online planning

approaches

In this study, we explore the models and solution concepts proposed in Chapter 13
and implemented within the framework discussed in Chapter 14. Our main goal
is to assess the di�erent strategies with respect to the requirements that we have

summarized at the beginning of Part III and to derive insights into the performance in
terms of prediction quality and spatial coverage, the advantages, and the limitations of
planning approaches.

We �rst introduce the instances on which this study is based in Section 15.1 and give an
overview of the design and structure of the computational study in Section 15.2. In Sec-
tion 15.3, we summarize the evaluation measures that are used throughout this chapter.
We present the results of this study in Section 15.4. Section 15.5 concludes this chapter
with a summary of insights and recommendations for the applications of the studied
solution methods in practice.

15.1 Instance generation
The instances used in the evaluation of the AMPPES are based on the concepts discussed
in detail in Part II of this thesis, see Section 9.1. Due to the large number of scenarios
that are used in what follows, we do not generate instances for all possible combinations
of input parameters—e.g., number of vehicles, instance size, or characteristics of the
observed phenomenon. Instead, we use one base setting and assess the impact of changes
in the instance characteristics in isolation. For each setting, we generate 20 instances to
limit the e�ects of possible outliers.

The di�erent parameters de�ning the base setting and the variations used in the fol-
lowing are summarized in Table 15.1. The base parameters are similar to those used for
the largest instance size with an area of 2.5× 2.5 km2 and 2 UAVs in Part II. This is used
as a baseline as the results for the o�ine case suggest that we can achieve a reliable
prediction with high mission duration, while room for improvement remains (see, e.g.,
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the summary of error measures in Figures 9.5 and 9.6).
The technical speci�cations characterizing the UAV and sensor types are the same as

in Chapter 9. Variations address the target area, the available UAVs, and the surveyed
distribution of gases. Similar to Section 9.1, we generate arti�cial distributions of con-
taminants by drawing samples from an unconditioned Gaussian process ZV based on a
covariance function k. To generate distributions of contaminants with di�erent char-
acteristics, we vary the parameters that de�ne the covariance function. Again, we use
a Matérn covariance function and vary the characteristic lengthscale l (see Rasmussen
and Williams (2006) for a more detailed discussion of properties). Examples of distri-
butions generated this way are represented in Figure 15.1. In the example depicted in
Figure 15.1a, the phenomenon changes rapidly within short distances. In contrast, the
distributions generated using the largest lengthscale parameter, depicted in Figure 15.1c,
are much smoother. Instances in the base setting exhibit medium spatial variability with
respect to the size of the target area, depicted in Figure 15.1b.

In practice, measurements are usually not completely accurate. This a�ects the quality
of the �nal predictions, but can also impact the performance of the adaptive models. In
order to account for these e�ects, we add noise to the sampled data such that we obtain
noisy samples yi = zi+ei, with ei ∼ N (0, σ). The standard deviation σ of the error term
is determined as σ = coe · µ, where µ is the mean value of the true data and coe ∈ R+

indicates the error level relative to the mean value (i.e., the coe�cient of variation).

15.2 Study design
In this study, we compare the planning heuristics and environment models proposed in
Chapter 13. For an overview of all proposed approaches, we refer to Table 13.7. Our
computational study is structured in four sections, which are summarized in Table 15.2.

In the �rst step, we assess the e�cacy and e�ciency of the proposed environment
models. To this end, we combine them with the basic greedy heuristic and apply them
to the instances in the base setting discussed in the previous section (see Table 15.1). This
provides us with an indication of the computational e�ort and prediction quality that is
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Figure 15.1: Spatial distributions with varying variability.
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15.2. Study design

Parameter Base setting Variants

Technical
speci�cation

Cruise speed vmax (in m/s) 7 -
Acceleration amax (in m/s2) 2 -
Sensing time τi (in s) 2 -
Sensor resolution (pixel) 1,000 × 1,000 -
Flight height h (in m) 100 -
Ground sampling resolution pxr
(in m2/pixel)

0.01 -

Target area
and resources

Available vehicles |M| 2 1 to 5
Starting locations Random at border -
Mission duration Tmax (in s) 1,200 600 to 1,800
Target area sizes (km2) 2.5 × 2.5 2.5 × 2.5 to 5 × 5

Process
Generator process kernel Matérn covariance -
Spatial variability (lengthscale l) Medium (l = 400 m) 100 m to 800 m
Error level coe 0.05 0.0 - 0.2

Table 15.1: Parameter settings and instance characteristics for AMPPES study.

associated with these di�erent approaches. We furthermore study the impact of the
initialization of these models, i.e., the impact of the coverage radius and the weights that
characterize nonadaptive models and the initial belief in the case of adaptive variants.

In the second step, we address the question of adaptive planning. Again, we com-
pare the performance of all proposed environment models using a greedy approach. In
contrast to the �rst step, we do not vary the con�guration of the models but modify the
characteristics of the surveyed phenomenon and the measurement error level. This way,
we can assess the potential bene�t of adaptive models over nonadaptive variants.

In the third step, we focus on the scalability of the proposed approaches. To this end,
we use instances that are larger than those in the base setting, addressing a larger tar-
get area or a larger number of UAVs. We compare the greedy approach and Lloyd’s
algorithm to assess the scalability of model-based planning and geometric variants, re-
spectively. Note that we do not consider model-based approaches with a larger decision
scope. These are analyzed separately in the fourth part of this study. In this �nal step,
we compare the greedy planning heuristic against the sequential selection of targets and
the integrated approach that solves subproblems exactly. This way, we can assess the
cost of increasing the decision scope and gain insights into the main reasons for poten-
tial improvements, i.e., either the improved sequencing of a heuristically selected set of
locations or the optimal computation of routes.

The con�gurations of the planning approaches considered throughout this study are
summarized in Table 15.3. Again, we de�ne a base con�guration for all models and
planning heuristics. This initial con�guration is based on the results of Part II: For non-
adaptive planning, we use the same weights wij, i, j ∈ V for the GCorTOP model and
a similar range for the covering radius dcover of disc-based variants. These con�gura-
tions have shown promising results for the o�ine case. Most importantly, they provide
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Focus Models Planning concepts Aim Section

E�cacy,
e�ciency,
robust-
ness

All Greedy, geometric
approach

Comparison of environment models
on a common basis, impact of model
initializations and initial beliefs

Section 15.4.1

Adaptivity All Greedy Comparison of adaptive and
nonadaptive models, dependency on
phenomenon characteristics and
sampling error

Section 15.4.2

Scalability All Greedy, geometric
approach

Performance on larger scenarios
(target area size and number of
UAVs), comparison of model-based
and geometric planning

Section 15.4.3

Decision
scope

All Greedy, sequential
selection, integrated
planning

Assessment of costs and bene�ts of
larger decision scopes, indication of
the main contributions to potential
solution improvements (selection or
e�cient sequencing)

Section 15.4.4

Table 15.2: Structure of the computational study.

a reasonable approximation of the distances at which the surveyed phenomenon ex-
hibits positive spatial correlation in the base setting for the instances with a medium
lengthscale of l = 400 m. To enable a fair comparison with the nonadaptive models, the
adaptive models are similarly initialized with the correct information about the surveyed
process, i.e., with the correct lengthscale.

We vary these parameters to assess the robustness of the approaches with respect to
erroneous model con�gurations. To this end, both the adaptive and the nonadaptive
variants can be initialized such that they either assume that the process either varies
much more quickly or is much more smooth.

We furthermore study the impact of di�erent moving planning horizons ∆T and �xed
decision horizons ∆T �x. The moving planning horizon, i.e., the time window for which
approaches with larger decision scopes determine a mission, is up to three minutes long.
This is the limit of what is computationally feasible, based on preliminary experiments.

Parameter Base con�guration Variants

Initial belief in adaptive models (lengthscale l in m) 400 100 - 800
Coverage radius dcover (m) for coverage models 300 100 to 800
Baseline weight w̄ for kernel-based models 0.5 -
Baseline distance dmin (m) for kernel-based model 100 -
Move restriction (m) for greedy variants 400 -
Moving planning horizon ∆T (s) n.a. 0 to 180
Fixed decision horizon ∆T �x (s) n.a. 0 to 90

Table 15.3: Algorithm con�gurations for applied environment models and heuristics.
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The �xed decision horizon, which indicates for how long this mission is executed until
a new plan is determined, varies between 0 and 90 seconds, i.e., between an immediate
replanning and an execution of large parts of the planned mission. Note that in all cases,
we ensure that ∆T �x ≤ ∆T .

15.3 Performance measures for online planning

The �rst set of measures used in this chapter are those introduced in Section 9.2 for
assessing the quality of solutions. First among them is the PCovd value (Equation (9.4))

PCovd(S) =

∑
i∈V:∃j∈S with dij≤d ui∑

i∈V ui
,

which determines the percentage of priorities within distance d to a sampling location.
Here, S indicates the set of all sampling locations taken throughout the mission. We use
the PCovd value as a �rst indication of how many highly prioritized targets are covered
and how well the samples are spread across the target region. It formalizes the visual
impression that an operator may have when looking at a planned mission.

Second, we use the weighted mean absolute error (WMAE) (Equation (9.7))

WMAE =
1∑
i∈V ui

∑
i∈V

ui · |Ẑ(i)− zi|,

which evaluates the quality of the obtained prediction weighted with the priority of
target locations. This directly represents the overall goal of the planning approaches of
achieving high quality predictions.

To compare the performance of the solution approaches on a common basis, we eval-
uate the prediction quality using the same GP model for all strategies. This means that
we use the same kernel function kθ for all settings. The obtained samples YH , which
depend on the applied strategy H , are then used to compute the GP posterior based on
the �tted kernel function kθ̂. The quality of a prediction, i.e., the remaining uncertainty
and the prediction error, is measured based on this posterior. To compare results over
di�erent instances and instance sizes, all results are based on normalized error measures,
indicating the prediction error relative to the prediction quality at the beginning of the
mission (indicated as rel. WMAE in what follows).

Following Dunke and Nickel (2016), we use counting distribution functions to com-
pare the performance of di�erent solution strategies in an online setting. Counting dis-
tribution functions allow the comparison of solution methods across a larger set of prob-
lem instances Λ. To this end, we denote the solution obtained using an algorithm con-
�guration H as ωH. The value for a solution measure f for a solution ω to instance i ∈ Λ
is denoted f(ω, i). The performance ratio of two con�gurations H1 and H2 depending
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15. Simulation based assessment of online planning approaches

on the problem instance i is then de�ned as:

ζH1,H2(i) =
f(ωH1 , i)

f(ωH2 , i)
. (15.1)

In this chapter, we use WMAE as solution measure f , but other measures are equally
possible.

To compare the two approaches H1 and H2 across the entire range of instances Λ, the
counting distribution function FH1,H2(ζ) of the performance ratio ζ is then de�ned as:

FH1,H2(ζ) =

∑
i∈Λ 1(−∞,ζ](ζH1,H2(i))

|Λ|
, (15.2)

with indicator function

1(−∞,ζ](ζ
′) =

{
1 if ζ ′ ≤ ζ

0 otherwise.
(15.3)

That is, FH1,H2(ζ) indicate the proportion of instances with a performance ratio of ζ
or less. As discussed by Dunke and Nickel (2016), this provides additional information
about the global performance of algorithms over all instances while indicating the vari-
ability of approaches and best-case and worst-case ratios.

An illustrative example is given in Figure 15.2. Note that, for the WMAE measure,
a heuristic H1 improves over an alternative approach H2 if the WMAE is lower, i.e., if
ζH1,H2(i) < 1. If ζH1,H2(i) > 1, H2 yields the better result. In the example indicated in
Figure 15.2, FH1,H2(1) is approximately 0.75, i.e., in around 75 % of considered instances,
H1 has achieved a lower WMAE. Furthermore, we can see that while there are instances
in which H2 improved over H1, this improvement is minor relative to the worst case
outcome, i.e., the possible loss in solution quality in the worst case for H2.
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Figure 15.2: Illustrative example for a counting distribution function.

The computation times of the studied approaches are interpreted with respect to prac-
tical requirements. For o�ine planning, our project partners have estimated that a few
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minutes are available before the UAVs can be deployed after arriving at the scene of an
incident. In online planning, results should be available within a few seconds at the most
to ensure that the mission progress is not delayed.

15.4 Computational results
The solution strategies and the simulation are implemented in Python 3.6 using numpy
(Oliphant, 2006) and scikit-learn (Pedregosa et al., 2011). Note that these libraries
support multi-threading, e.g., for matrix operations. To enable an unbiased comparison
of computational e�ort, however, all experiments summarized here are run on a single
core.

15.4.1 Comparison of environment models
In a �rst step, we compare the performance of the proposed environment models (see
Table 13.7 for an overview of model variants proposed in this thesis). All results in this
section are based on greedy maximization or our geometric approach. We compare the
performance of approaches within the base setting characterized in Table 15.1, i.e., on
target areas with a size of 2.5× 2.5 km2, a distribution with medium spatial variability
and 2 UAVs. The models are initialized using the parameters given in Table 15.3 such
that they �t the observed process relatively well. This section aims at providing a �rst
comparison of the performances of adaptive and nonadaptive models, and to assess their
robustness concerning the model parametrization.

Evaluation on base setting

In the following paragraphs, we compare the performance of the di�erent models based
on instances in our base setting using a greedy planning heuristic. We also include the
geometric approach (Algorithm 7). Figure 15.3 summarizes the performance measures
over all instances in this setting. The time per computation, i.e., the average computation
time per call to the planning approach, is given on the left. Here, the geometric approach
as well as IDISC and ILAT come with the lowest computation time, with 1-10 ms per call.
The other models yield results in around 1 s or less, except for IMI as the computationally
most expensive one. Considering the practical limitations, the computation time of IMI

is still acceptable, as the impact relative to the travel time from one location to the next
is low.

With respect to the PCov300 measure, the nonadaptive models IDISC and IKERNEL, which
both directly address spatial coverage, perform best, with around 85 % to 90 % of prior-
ities covered this way. The adaptive models IVAR, IARV, IMI result in a mean value for
PCov300 that is more than 10 % lower than the results obtained with nonadaptive models.
Furthermore, these models lead to a higher variance in the results.

Finally, we look at the relative WMAE, indicated on the right-hand side of Figure 15.3.
For all models, we observe a relatively high variance in the results. The general level of
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Figure 15.3: Comparison of modeling approaches on base settings: Computation time per itera-
tion (left), PCov300 (middle) and relative WMAE (right).

uncertainty in the prediction can be attributed to the nature of the created distributions,
which are relatively coarse (see Figure 15.1b). Except for the geometric approach, the
performances of the di�erent models are similar. Minor improvements can be achieved
by nonadaptive models over adaptive variants. We attribute the good performance of
nonadaptive models to the excellent spatial coverage that they can achieve. Note that
the three adaptive models yield similar results for WMAE even though they come with
lower spatial coverage.

These e�ects are highlighted in three examples represented in Figure 15.4. The disc-
based coverage model IDISC, in Figure 15.4a, leads to the survey of large parts of the
target region. Even though the mission trajectories cross one another, sampling locations
in general are well distributed. The mission illustrated in Figure 15.4b, based on IVAR,
explores a smaller region. The �gure furthermore illustrates a particular problem of this
environment model: The objective is to visit locations where the current uncertainty
is high. In this example, this leads to a focus on the border region, as the environment
model does not account for the fact that these samples are less relevant for the remainder
of the target region. This also explains why the prediction quality indicated in Figure 15.3
for IVAR shows major outliers.

In contrast, IARV, as an alternative adaptive model, focuses much more heavily on
areas further away from the border of the target region. These locations provide more
information about the area of interest than the ones selected in the previous example.
This increases overall robustness relative to IVAR.

Finally, we asses the evolution of the information gain provided by the di�erent ap-
proaches in Figure 15.5. The �gure shows the relative WMAE as a function of the
time that has passed since the beginning of the mission. The basic geometric approach
achieves the best results within the �rst 200 s, as UAVs move from their takeo� location
toward the inner regions of the target area. After this initial phase, the UAVs are close
to weighted centers of their respective partitions and do not travel much further, which
means that less information is obtained, leading to a major loss in prediction quality.
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Figure 15.4: Missions obtained with di�erent modeling strategies: IDISC (nonadaptive), IVAR and
IARV (adaptive), superposed on the predicted distribution.

This problem is avoided in the di�erent model-based variants. Again, we observe that
the di�erence between the environment models is low. Overall, the best performance
is achieved by the IDISC and IKERNEL models. We also see that the rate of improvement
decreases as with increasing mission duration. At this point, large parts of the target
region have been covered and the overall extent of the distribution can be mapped with
reasonable accuracy. To improve the prediction further, samples would have to be taken
in much closer density, which is not feasible within the restricted mission duration.
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Figure 15.5: Evolution of WMAE relative to the mission duration, averaged over all instances.
Note the scale on the vertical axis.
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Impact of coverage radius in nonadaptive models

The results discussed up to this point have been achieved using a value for the coverage
radius dcover in nonadaptive models which �ts the “true” spatial correlation in the data
relatively well. In practice, we cannot always assume that this is the case. Therefore, we
evaluate the impact of changes to the parametrization of the nonadaptive models, given
a �xed spatial variability in the process.

The results for the four nonadaptive models, IDISC, IKERNEL, ILAT and IKERNEL-TD, are
summarized in Figures 15.6 and 15.7. Figure 15.6 indicates the relative WMAE that can
be achieved for each model and value for dcover. We can observe an impact of parameter
variations on prediction quality for all models except ILAT. Errors are particularly high
for low values for dcover, where both prediction quality and the stability of the results
are severely impacted by the changed parametrization. Overestimating dcover also has
a negative impact on results but to a lesser extent. ILAT is a�ected by these parameter
changes as well. However, the impact especially of underestimating dcover is lower when
applying this model. This is due to the consideration of the temporal dimension: As
the time between subsequent samples is taken into account in addition to the spatial
proximity, the in�uence that dcover has on the results decreases. For a similar reason, the
impact of dcover on IKERNEL-TD is less than the e�ects on its time-independent counterpart
IKERNEL .

In Figure 15.7, we indicate the corresponding coverage PCov300. Again, we can see a
major impact of the parameter changes, with the best results obtained for values for dcover
that are close to the real range of the correlation in the observed data. Discrepancies are
particularly high for IDISC and ILAT. Here, increasing dcover means that large parts of the
target area are considered as “covered” after performing a sample. The models, therefore,
have di�culty to distinguish between areas where a su�cient number of samples have
been taken and other regions where there is a lack of information. The more �exible
models IKERNEL and IKERNEL-TD, in contrast, can account for the fact that coverage is low
at high distances to the sampled location, which means that the impact of increasing dcover
diminishes. However, they still perform much worse for low values for dcover. The results
suggest that, even though these models can achieve very high performance, they are less
robust to changes in the input parameters. Most importantly, their average performance
is impaired by underestimating dcover, as they do not achieve su�cient spatial coverage
of the target area and do not have the means to compensate for this lack of exploration.

Impact of initial belief in adaptive variants

Similar to the nonadaptive models, the adaptive variants are initialized with a �rst belief
about the nature of the spatial correlation in the process. This is done in the form of the
GP prior, which depends on the initial parameterization of the applied kernel function.
Again, we seek to assess the impact that an erroneous initial belief can have on the
outcome of the mission. Therefore, we vary one parameter characterizing the prior
belief, and assess the changes this variation has on the obtained results. In this study,
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Figure 15.6: Impact of coverage radius dcover on WMAE for nonadaptive environment models.
Note the scale on the vertical axis.
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Figure 15.7: Impact of coverage radius dcover on achieved coverage PCov300 for nonadaptive envi-
ronment models. Note the scale on the vertical axis.
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we use the lengthscale l that, similar to dcover, represents the extent of the correlation.
The lengthscale used for creating the synthetic distributions of gases is l = 400 m in
the con�guration of the base instances which are considered in this section. We vary
the lengthscale of the initial belief, i.e., the initial con�guration of the GP represented
in the environment models, with values ranging from l = 100 m to l = 800 m.

The impact of the initial belief on the prediction quality for the three adaptive models
IVAR, IARV and IMI is presented in Figure 15.8. We can see that, in contrast to nonadaptive
models, the results do not depend much on the initial parametrization. Instead, the
informativeness measure that is used has the largest e�ect, with IVAR generally leading
to higher prediction errors and IMI yielding the best results. This pattern corresponds
to our results in the base setting, depicted in Figure 15.3. It suggests that the adaptive
models are successfully adjusting to the true correlation in the process.

Similar observations can be made when looking at the coverage measure PCov300 in
Figure 15.9. Again, the results do not achieve the same quality as the nonadaptive models
in the base setting and show relatively high variability. However, they also do not depend
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Figure 15.8: Impact of lengthscale l in the initial belief (Gaussian prior) on WMAE for adaptive
environment models. Note the scale on the vertical axis.
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Figure 15.9: Impact of lengthscale l in the initial belief on achieved coverage PCov300 for non-
adaptive environment models. Note the scale on the vertical axis.
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as much on the initial parameters. While it appears that larger lengthscales l lead to a
slight decrease in the variability of the achieved coverage in the case of IARV and IMI, the
overall level remains roughly the same. This allows avoiding the major loss in coverage
and prediction quality that can be observed for nonadaptive variants.

15.4.2 Characteristics of the surveyed phenomenon
In this section, we assess to which degree the performance of the di�erent models de-
pends on the characteristics of the surveyed phenomenon. In particular, we are inter-
ested in studying in which situations adaptive models yield improvements over non-
adaptive variants. To this end, we vary the characteristics of the surveyed phenomena
and evaluate how well models perform, depending on these settings.

Spatial variability

First, we give the results on the achieved prediction quality, depending on the variabil-
ity within the surveyed distribution of gases. Figure 15.10 represents the WMAE for
three di�erent settings: Left, we give results for instances with particularly high spatial
variability. The �gure in the middle summarizes results on instances with medium vari-
ability, while smooth phenomena are represented on the right. Note that the examples
illustrated in Figure 15.1 share these characteristics.

The variability in the process has a major impact on the quality of a prediction that can
be achieved within a limited amount of time. This e�ect is consistent over all modeling
variants and is particularly obvious for processes with high spatial variability. Here, the
available time is not su�cient for taking samples in the density that would be required
for making more accurate predictions about these and similar processes.

However, the results on instances with high variability indicate that in these cases,
adaptive planning approaches can improve prediction quality. While the predictions
never achieve the same level of accuracy as is possible for processes with lower variabil-
ity, IVAR, IARV and IMI can decrease the WMAE by up to 10 % compared to nonadaptive
variants. In contrast to the base instances discussed above, IVAR performs best among
these three models for these scenarios. This pattern changes as the spatial variability de-
creases. In these cases, nonadaptive planning concepts achieve a similar or even better
performance, as can be seen on the right-hand side.

Figure 15.11 summarizes the impact that these changes have on the achieved cover-
age. As can be seen on the left-hand side, the improved prediction quality of the adaptive
models come with a major decrease in the covered priorities. Again, the e�ect is partic-
ularly obvious for IVAR. This indicates that all three models correctly identify and adjust
to the high variability, leading to samples that are located much more closely together.
This enables a more accurate prediction, but the limited mission duration only allows
surveying a relatively narrow region. However, the high variability in the process also
means that little information can be inferred about the remainder of the area based on
the sampled location. This might be the reason that IMI, which explicitly models the
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Figure 15.10: Impact of spatial variability on WMAE for di�erent modeling approaches, depend-
ing on the spatial variability of the process.
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Figure 15.11: Impact of spatial variability on PCov300 of di�erent modeling approaches.
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Figure 15.12: Empirical counting distribution function FH1,IDISC(ζ) of the performance ratio of
WMAE for di�erent models and levels of spatial variability. Note the di�erent scales
on the horizontal axis.
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value of the inferred information, performs worse than the other adaptive variants. The
coverage obtained by the nonadaptive variants is independent of the lengthscale in the
model, as they do not provide the possibility to adjust to this information.

To obtain a better understanding of the relative performance of these approaches,
depending on the variability in the process, we summarize the results using the count-
ing distribution function for the WMAE measure. Figure 15.12a shows the results on
instances with high variability for all environment models relative to IDISC, which we
have chosen as a benchmark as it is the most basic model that considers spatial inter-
dependencies. Note that ζH,IDISC < 1 indicates that an approach H performs better than
IDISC.

We can see that IVAR is not only better on average, but performs better on 90 % of
instances. IARV also improves over IDISC, but not to the same degree. Considering the
performance of the other nonadaptive variants relative to IDISC, no conclusive result
can be obtained. We observe the opposite behavior for instances with low variability,
depicted in Figure 15.12b. Here, adaptive variants tend to decrease performance. This
loss in prediction quality can be high, especially in contrast to the possible gains in
Figure 15.12a.

An interesting observation is that the outcome in case of high process variability is
more stable. In particular, the worst-case performance, i.e., the maximum deterioration
relative to IDISC, is much more critical in case of a lengthscale l = 800 m. However, we
believe that this is not due to the models themselves, but results from the nature of the
studied scenarios: A high process variability means that the available �ight time is not
su�cient to obtain the number of samples that would be needed to provide an accurate
prediction about the spatial distribution of gases. Hence, for all applied models, the
achieved prediction quality is low. This limits the potential losses due to the application
of a wrongly con�gured model.

Figure 15.13 illustrates these e�ects at the example of two missions planned using IVAR.
The instance with high spatial variability, illustrated in Figure 15.13a, shows that samples
are selected close to one another, which leaves large parts of the area unsurveyed. In
contrast, the selected sampling locations for the scenario with low variability, which are
shown in Figure 15.13b, are spread relatively wide apart. Furthermore, we can observe
that IVAR leads to samples at the border of the considered region. This not only limits
the information that can be inferred about the phenomenon within this region but also
means that the coverage of priorities diminishes, con�rming the e�ects summarized in
Figure 15.11.

Impact of observation noise

In addition to the nature of the phenomenon itself, information gain is also in�uenced by
the observation error. In this study, this is modeled as white noise added to the obtained
measurement, with a standard deviation that depends on an error level coe relative to
the mean of the distribution. Values for coe have been determined in preliminary tests
by increasing the value such that the e�ects are noticeable, but meaningful predictions
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Figure 15.13: Missions based on IVAR for instances with varying spatial variability.

are still possible on the noisy data. Note that, in all models, increasing the observation
error impacts the �nal prediction quality. In the case of adaptive models, this factor can
also in�uence the planned missions.

Figure 15.14 summarizes the prediction error for four models, depending on the error
level. On the left-hand side, we give results for IDISC. This serves as a baseline for the
other models, as the selected sampling locations with and without noise are identical.
This means that all changes in the prediction quality can be directly attributed to the
errors in the sampled data. The other three �gures give results for the three adaptive
models, where these errors can impact the missions.
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Figure 15.14: Impact of observation noise on prediction quality for di�erent environment models.
Note the scale on the vertical axis.

IVAR again comes with the highest prediction error and is much less stable with re-
spect to increases in the noise level than the other models. Most likely, increasing the
observation noise means that the posterior covariance used for the prediction increases
over all locations. This makes it more di�cult for IVAR to identify promising sampling
candidates. The other two variants, in contrast, prove to be relatively stable with re-
spect to the sampling error. Prediction quality is impacted in all cases, but the e�ect is
not larger than in the case of IDISC.
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15.4.3 Scaling up
In this section, we focus on the scalability of our modeling approaches. To this end, we
increase the target area size from 2.5 × 2.5 km2 to 5 × 5 km2, i.e., to instances with up
to 2,500 target locations. We furthermore include up to 5 UAVs.

Target area size

We summarize the results depicting the e�ect of increasing the target area in Fig-
ures 15.15 and 15.16 for scenarios with 3 UAVs. Figure 15.15 summarizes the prediction
error for all considered models and target area sizes. The corresponding computation
times are given in Figure 15.16. We again include the geometric approach as a benchmark
for the model-based variants.

As expected, increasing the size of the considered area without adjusting the resources
that are available for the survey negatively impacts the reliability of the prediction.
Counterintuitively, the �gure also shows that the prediction quality of the geometric
approach can slightly improve as the target area size increases. We attribute this to the
fact that in small-scale scenarios, UAVs quickly reach the centers of their respective par-
titioning of the target area and do not move much afterward. In larger scenarios, they
have to travel further, thus spending a larger proportion of the available mission time
actively surveilling the area. Additionally, as the target area size increases, achieving a
balanced distribution of sampling locations over space becomes more important. This
aspect is directly addressed by the geometric approach.

For all model-based approaches summarized in Figure 15.15, increasing the size of the
target area comes with a consistent loss in prediction quality. The results do not vary
signi�cantly between the di�erent scenarios and model variants. For the largest area,
the WMAE of all models is close to the one achieved by the geometric approach.

The computation times show that the geometric approach is robust with respect to
increasing target area sizes. Similarly, IDISC, ILAT and IVAR scale well due to their capa-
bility to very quickly evaluate the informativeness associated with candidate sampling
locations. The computational e�ort of IKERNEL, IKERNEL-TD and IARV, in contrast, increases
with the target areas size, reaching 5 to 10 s per computation for the largest scenarios.
Considering the limits on �ight and computation time, these computation times are no
longer acceptable. IMI, which has been the slowest model in the base setting, becomes
prohibitively expensive for larger areas. Here, computation times for determining the
next sampling location can far exceed the travel time that would be necessary to move
there.

Number of UAVs

One possibility to deal with the increasing size of the target area is to deploy more UAVs.
For the largest scenarios with a target area size of 5×5 km2, the impact of the number of
UAVs on the prediction error is depicted in Figure 15.17. With one UAV, all approaches
achieve a similar prediction quality. This includes the geometric approach. However,
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Figure 15.15: WMAE depending on target area size.
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rather than demonstrating that the geometric variant performs well, this indicates that
all approaches fail at obtaining a reliable prediction for these scenarios. As we have
expected, increasing the number of vehicles consistently helps to achieve lower predic-
tion errors. The incremental bene�t of additional vehicles is largest for the �rst few but
diminishes when the number of UAVs is increased further.

This e�ect is also illustrated in the example scenario given in Figure 15.18. We show
a large-scale instance with a simulated distribution of contaminants as indicated on the
left and depict two missions, one using 2 UAVs and the other using 5, planned using the
IMI criterion. Here, 2 UAVs are not su�cient to cover the entire area, leaving room for
further improvements. With 5 UAVs, however, the distribution of contaminants can be
approximated reasonably well. The predicted distribution is too smooth compared to
the ground truth indicated on the left, but otherwise, it closely mirrors the true data. To
better represent the coarse structures would require samples to be taken in much closer
density than is possible in this scenario.
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Figure 15.17: WMAE depending on the number of deployed UAVs.
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(b) Prediction based on 2 UAVs
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(c) Prediction based on 5 UAVs

Figure 15.18: Missions and predictions obtained for a large-scale scenario (4.5× 4.5 km2) for IMI

with 2 and 5 UAVs.
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15.4.4 Decision scope analysis
After studying the environment representations in the previous sections in a greedy
context, we now move on to larger decision scopes. We introduced these concepts in
Section 13.3.1. Speci�cally, we proposed two di�erent variants: First is a sequential se-
lection heuristic where a set of sampling locations St is selected heuristically and a TSP
is solved to determine the order in which these locations are visited. Second is an inte-
grated approach where optimal solutions are determined for a moving planning horizon
∆T . Both variants are embedded in a receding horizon framework, where decisions are
�xed for time ∆T �x ≤ ∆T . This means that the computed mission is not necessarily
executed in its entirety within the moving horizon ∆T , but updated after a time ∆T �x

has passed. This means that the larger planning horizon is only used to assess the impact
of decisions, but the mission itself can adjust more quickly based on new information.

We tested both strategies on instances in our base setting, i.e., with two UAVs, a target
area size of 2.5× 2.5 km2, and medium spatial variability. We combined them with all
proposed environment models. For the sequential selection heuristic, we considered
planning horizons with a length of up to 180 s, i.e., up to 10 % of the total �ight time.
The integrated variant, which is computationally more expensive, has been run with
planning horizons of up to 90 s.

In Figures 15.19 and 15.20, we summarize the relative WMAE of all runs for the two
planning approaches. Note that we set the �xed horizon ∆T �x to have the same length
as the moving planning horizon for this evaluation. The e�ect of changing the ∆T �x is
studied later in this section. The sequential selection heuristic is depicted in Figure 15.19.
Contrary to our assumption that the selection and sequencing of multiple targets can
lead to more e�cient missions, thereby decreasing the prediction error, we observe that
prediction quality nearly always stagnates or decreases with increasing length of the
planning horizon. This is the case for both the nonadaptive models as well as the adap-
tive variants.

The integrated planning approach, summarized in Figure 15.20, demonstrates the op-
posite e�ect: Increasing the decision scope improves overall prediction quality with one
exception (ILAT). This suggests that the most important aspect of larger decision scopes
is the improved combination of sampling locations. We can observe this, for example, for
IKERNEL and IMI. Both strategies o�er relatively complex representations of the interde-
pendencies in the target area. The integrated approach can use this information to select
sampling locations that work well together. In the sequential selection heuristic, the se-
lection of targets is done in a heuristic fashion, which does not su�ciently account for
the joint information gain of the sampling locations. As the decrease in solution quality
demonstrates, the sequencing of targets alone does not provide additional bene�ts over
a greedy approach.

The computation times associated with these results are given in Figures 15.21
and 15.22. In the �rst image, we give the results for the sequential selection heuris-
tic. As expected, increasing the length of the planning horizon also increases the e�ort
that is required for each computation. The most important factor is the time needed to
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Figure 15.19: Relative WMAE for the sequential selection heuristic depending on the length of
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evaluate the informativeness of a set of candidates: For models where this evaluation
is inexpensive, e.g., for IVAR, which can be evaluated in O(|St|), the increase in com-
putation time is negligible. For more expensive models, however, even the sequential
selection heuristic becomes prohibitively expensive for longer planning horizons, with
computation times exceeding 10 s for every individual call.

The integrated solution approach, represented in Figure 15.22, shows an even more
pronounced impact of the length of the planning horizon on the computation time. Here,
computation times grow exponentially with the length of the planning horizon. Even
for the less expensive models, e.g., IDISC or IKERNEL, computation times quickly exceed
the acceptable limits of a few seconds at most. Increasing the length of the planning
horizon even more would mean that total computation time exceeds the available �ight
time.

To obtain a better understanding of the relative performance of di�erent decision
scopes and planning horizon lengths, Figure 15.23 provides more detailed results for
two environment models, IKERNEL and IMI, where the e�ects are particularly pronounced.
The �gure represents the counting distribution function of the prediction error relative
to a greedy solution approach.

First, we look at the sequential selection heuristic, represented in the left column.
For both environment models, we can see that the best results are obtained for shorter
moving planning horizons ∆T . As the lengths of the horizon increases, the performance
deteriorates further. For a planning horizon of more than 100 s, it performs worse than
the greedy heuristic on virtually all instances. The �xed horizon ∆T �x, represented
in the form of di�erent line styles, con�rms this result: The longer this horizon is, the
worse the performance of the heuristic approach becomes. The only improvements over
a simple greedy approach that can be observed are obtained using the shortest possible
horizon lengths of 30 s. Even then, the worst-case performance far outweighs these
potential gains.

The right-hand column of Figure 15.23 summarizes the same information for the in-
tegrated decision scope. In accordance with our earlier observations, we can see the
opposite e�ect compared to the sequential selection planning strategy: For integrated
planning, the best results are obtained for longer planning horizons, especially when
decisions are �xed. This con�rms our assumption that the joint selection of several lo-
cations that together provide valuable information about the phenomenon is the main
driver of improved prediction quality in these models.

15.5 Discussion and insights

To conclude this study, we summarize and discuss the results with particular attention
to the requirements stated for AMPPES in Chapter 10. We then state the core insights
and recommendations for the application of these approaches in practical settings.
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Figure 15.21: Computation time for sequential planning depending on the length of the planning
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Environment models

To assess the proposed environment models, we applied them to a large range of in-
stances using a greedy planning heuristic. We furthermore studied the impact of erro-
neous assumptions in the model con�gurations, i.e., assumptions about the range of the
correlation that do not match the surveyed phenomenon.

The results demonstrated that the simple coverage-based approaches can, in many set-
tings, achieve very good results at very low computation times, making them promising
candidates for environmental surveillance considering the practical limitations on com-
putation and �ight times. In particular, the study con�rmed that the main source for
prediction quality is the selection of sampling locations that are well distributed within
the considered area, an e�ect that we have already observed in the evaluation of the
o�ine approaches in Section 9.3.

The main disadvantage of these nonadaptive models that we observed in our study
is their inability to correct erroneous initial assumptions and parameter settings. Here,
the basic coverage model IDISC reached its limits as it does not provide the means to
compensate for incorrect assumptions. The kernel-based variants IKERNEL and IKERNEL-TD
were more stable with respect to wrong estimates of the correlation, as they provide a
more natural representation of spatial coverage. However, all nonadaptive approaches
were sensitive to an underestimation of the range of the correlation, which can come
with a major loss in coverage and prediction quality.

Adaptivity

To assess the bene�t of adaptive planning, we applied the di�erent environment models
to a set of instances with varying spatial characteristics, ranging from very coarse struc-
tures to smooth distributions of gases. This analysis showed that adaptive planning is
bene�cial in certain settings. Speci�cally, adaptive models provide the means to correct
initial beliefs, which increases their stability over nonadaptive variants. However, they
come at a much higher computational e�ort that limits their applicability to AMPPES.
Moreover, we observed that the nonadaptive coverage-based yield reasonable results in
many settings, despite their inability to adust to the obtained measurements.

The comparatively poor performance of adaptive modeling variants was especially
surprising considering that the bene�t of these variants has been shown for other appli-
cations. To give one example, the bene�t of using IMI as an informativeness criterion has
been shown in sensor placement problems (e.g., Krause et al., 2008; Stranders, 2010). We
attribute the di�erent outcome in our study to two reasons: First, the additional rout-
ing constraints that we have to consider in the AMPPES limit the �exibility available
for selecting sampling locations, which means that the full information of probabilistic
models cannot be used. Second, a general challenge in the AMPPES is that we face tight
constraints on the available resources for sampling, and the overall number of sampled
locations is limited. This increases the importance of spatial coverage, which is more
naturally represented in the nonadaptive variants. This also explains the good perfor-
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mance of the geometric solution approach in the early stages of the mission.

Decision scopes

The decision scope variants–i.e., the considered planning horizon as well as the way
decisions are made within this horizon–are studied by applying two approaches, the
heuristic selection of targets and the optimal solution of subproblems. The results indi-
cated that increasing the decision scope is not bene�cial in all cases. In particular, we
showed that the sequential selection heuristic, which involves a heuristic selection of
sampling locations and a separation of the selection and the routing decisions, does not
improve prediction quality. In contrast, the exact solution of subproblems generally re-
sulted in lower prediction errors. This means that the main disadvantage of the greedy
and the sequential selection heuristics are their inability to consider the joint bene�t of
several sampling locations together. The improved sequencing of selected targets and
the resulting potential gains in the e�ciency of the planned mission do not show im-
provements over simple greedy planning approaches.

Consequently, the largest improvements due to the integrated decision scope have
been achieved in combination with the most complex environment representations–i.e.,
IKERNEL among the set of nonadaptive variants, and IMI as an adaptive model. However,
these improvements came with computation times that prohibit their use in practical
situations at this point.

Insights and recommendations

Over all instances, the di�erence between adaptive and nonadaptive approaches was
surprisingly little during the course of this study. In other words, the advantage of adap-
tive planning has been mostly situational for the AMPPES. This is most likely due to two
reasons: (1) If well parametrized, adaptive and nonadaptive models lead to similar sam-
pling designs. These are characterized, for example, by the distances between sampled
locations and the avoidance of areas near the border of the target region. (2) The practi-
cal limitations in emergency surveillance, especially the limited �ight time, means that
relatively few sampling locations can be taken. Hence, the routing constraints limit the
�exibility in choosing sampling locations and, as a consequence, the potential of more
sophisticated models. In practice, this often suggests using less complex approaches in
many situations.

Based on this observation and the results of the computational study, we can o�er the
following insights and recommendations to practitioners:

• Nonadaptive modeling variants yield excellent results as long as they represent
the “true” correlation reasonably well. As a consequence, if there is some prior
knowledge of the correlation within the surveyed distribution of gases, e.g., due
to surveillance �ights at a higher altitude or the experience of the operator, these
modeling variants are likely to su�ce in many applications.
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• Among the nonadaptive models, the gains in solution quality that can be attributed
to the more detailed kernel-based representation (IKERNEL) outweigh the additional
computational costs.

• The main disadvantage of nonadaptive models is their limited robustness with
respect to erroneous assumptions. Including temporal aspects in the environment
model helps to limit this e�ect to some degree, as the resulting missions are not
only dependant on the assumptions about the spatial correlation.

• If there are doubts about the spatial processes, adaptive models o�er a higher de-
gree of robustness and the ability to correct wrong initial beliefs.

• Among the adaptive models, IVAR often demonstrates reasonable results. However,
the worst-case results and high variability in solution quality of this approach out-
weigh its advantages in terms of computation time and average-case performance.

• The IMI measure is robust on a large case of scenarios. As long as its application is
feasible for practical limitations on computation time and resources, it is the most
promising model among the adaptive variants.

• If the mission time is very limited or if there is a large number of UAVs, geometric
approaches o�er a reliable starting heuristic to obtain information very quickly.
This is similarly true if a simple rule-based approach is needed for planning mis-
sions immediately after the deployment of the UAVs before the models can be ini-
tialized. In case of longer planning horizons, it is likely bene�cial to switch over
to another planning strategy after the �rst samples have been obtained.

• If the available computation time allows planning missions within a larger plan-
ning horizons, the integrated planning variant, i.e., the optimal solution of the cor-
responding subproblem, should be preferred. Improving the sequence of sampling
locations that are not optimal with respect to the considered planning horizon
provides much less potential for the overall information gain.

• There does not seem to be an advantage in adapting the missions very quickly
or very often. Instead, if there is su�cient time to plan missions for a longer
moving planning horizon using the integrated approach, these missions should be
executed in their entirety.

15.6 Summary of Part III
In Part III of this thesis, we focused on online mission planning approaches. We de�ned
the adaptive mission planning problem for emergency surveillance (AMPPES) in Chap-
ter 10 as the problem of combining online planning and online learning approaches so
as to use the information that has been collected to improve the selection of sampling
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locations while the mission is still in progress. In Chapter 11, we summarized solution
concepts that have emerged in the context of environmental surveillance based on a
classi�cation scheme introduced in this thesis. In this classi�cation, we explicitly dis-
tinguished between the applied environmental models, the planning strategies, and the
decision scope that are used to determine missions. We completed this overview with a
summary of online planning approaches in related domains.

In Chapter 12, we analyzed the solution concepts identi�ed in the previous chapter
with respect to the planning requirements stated for the AMPPES. We showed that the
various planning concepts for environmental surveillance have not yet been compared
and measured against one another. Speci�cally, it remained unclear whether expen-
sive approaches–especially adaptive models, which react to obtained measurements, and
heuristics with larger decision scopes–provide a bene�t over easier strategies, consider-
ing the constraints on computation times in emergency surveillance.

In the remaining chapters in Part III, we sought to answer these questions, thereby
identifying strategies that are applicable to the AMPPES. In particular, we focused on
the trade-o�s between computational e�ort and performance of di�erent solution ap-
proaches, this way gaining a better understanding of when the use of more expensive
adaptive models is justi�ed over less complex strategies. In Chapter 13, we adapted ex-
isting environment representations and proposed new solution concepts to our use case.
The proposed models range from simple disk-based coverage approximation to complex
probabilistic models, which have been described using a uni�ed modeling framework.
We also adapted the GCorTOP introduced in Part II for online planning and introduced
new strategies that take into account that information loses value over time.

To measure these models and approaches against one another on a broad and unbiased
basis, we implemented all variants within a novel solution architecture. This architec-
ture is combined with a discrete-event simulation. Both of these core components of
our evaluation are discussed in Chapter 14. In contrast to existing approaches, which,
with few exceptions, assess the performance of planning heuristics on a few selected
data sets, this architecture allows the evaluation and comparison on a large number of
scenarios. We summarized the results of an extensive simulative study in Chapter 15.
We demonstrated the high performance of simple coverage-based approaches, which
can achieve excellent spatial coverage and good predictions with a few milliseconds per
computation. However, they are less robust with respect to wrong initial beliefs. The
more detailed environment representation based on the GCorTOP introduced in Part
II improves robustness and o�ers a well-balanced trade-o� between solution time and
computational e�ort. Adaptive models, which adjust based on the obtained measure-
ments, o�er advantages in situations with high variability in the surveyed random �eld
and are particularly robust as they provide the means to correct wrong initial beliefs.
Similarly, simple greedy planning heuristics demonstrate very good performance at low
computation times. We demonstrated that increasing the decision scope can improve
results as it is possible to select sets of sampling locations that, together, increase overall
information gain. However, we also showed that currently, the computational e�ort for
these variants is prohibitively high for practical applications in emergency surveillance.
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16 Conclusion and outlook

This thesis aimed at identifying e�cient modeling and solution approaches for
planning UAV missions for emergency surveillance, especially after large �res
or chemical accidents. To this end, we have provided an overview of the tech-

nological and theoretical foundations for UAV-based emergency surveillance (Part I),
introduced new models and heuristic solution strategies for the o�ine planning of in-
formative missions (Part II), and obtained insights into the e�ective design of strategies
for online mission planning (Part III). In this chapter, we o�er a summary of our main
�ndings and results throughout these three parts. We conclude this thesis with an out-
line of promising future research topics.

16.1 Summary and results
After an accident or emergency leading to the release of contaminants and hazardous
substances, a quick �rst assessment of the extent of the contamination is crucial for the
e�ective deployment of response units and the protection of the a�ected population. To
this end, the distribution of contaminants can be interpolated based on a set of samples
taken within the area of interest, using models that account for the spatial correlation
between the contamination at di�erent locations. In this thesis, we have developed so-
lution approaches that enable the UAV-based rapid assessment of the distribution of
hazardous substances across an area in time-sensitive situations.

The context in emergency surveillance poses speci�c challenges for solution ap-
proaches: The actual contribution of each surveyed sampling location in terms of pre-
diction quality cannot be assessed in isolation. Instead, it depends on all other survey
locations throughout the mission, as samples that are taken close to one another usu-
ally provide less information about the overall process compared to sampling locations
further apart. This means that sophisticated models that can represent these interde-
pendencies are needed. Moreover, the available computation time is limited due to the
need to quickly provide relevant information to the emergency services. This prevents
the application of detailed but expensive models for spatial interdependencies. Instead,
the development of e�cient approximative models and solution heuristics is necessary.

We approached these challenges from three di�erent angles:
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In Part I, we discussed the role of surveillance and situation assessment in emergency
management and provided an overview of UAV and sensor systems as the technolog-
ical basis for UAV-based surveillance. We summarized advances for interpolating and
predicting spatial phenomena. Most important are probabilistic models that provide an
estimation of the achieved prediction quality solely based on the locations selected for
sampling, i.e., before actually starting the survey. Based on these models, several authors
have proposed sampling strategies that minimize the expected prediction error. We then
discussed how these models can be �tted to the collected data, which o�ers the possibil-
ity to correct wrong initial assumptions about the studied distribution. These overviews
provided the foundation of the approaches introduced and analyzed in the remainder of
this work.

In Part II, we introduced the mission planning problem for emergency surveillance
(MPPES), which is de�ned as the problem of determining sampling locations for sev-
eral UAVs such that the prediction accuracy at critical locations is maximal. We showed
that literature in related �elds has focused on either simple disc-based models for spatial
coverage or on probabilistic models that are prohibitively expensive for our use case.
We introduced the generalized correlated team orienteering problem (GCorTOP) as a
way to model spatial interdependencies with reasonable accuracy. To solve even large
scale instances with several hundred candidate target locations, we developed the two-
phase multi-start adaptive large neighborhood search (2MLS). This heuristic combines
a very e�cient �rst phase targeted toward designing explorative vehicle tours with a
more intensive second phase that seeks to improve these initial routes. We studied these
approaches in an extensive computational study. On benchmark instances for the team
orienteering problem, our approach yielded competitive results in terms of solution qual-
ity within computation times that are up to ten times faster than previously published
approaches on the largest instances. We introduced a large set of benchmark instances
for the MPPES based on real-world population data and simulated distributions of con-
taminants. Based on these instances, we highlighted the advantages of the GCorTOP in
contrast to less detailed models for spatial interdependencies.

Part III has focused on the adaptive mission planning problem for emergency surveil-
lance (AMPPES). The AMPPES is the problem of combining predictive models and mis-
sion planning approaches in an online framework that uses the trained models for select-
ing the next sampling locations. This promises to improve overall prediction quality, as
the model can mirror the actual correlations in the surveyed distribution of gases more
closely. However, it also introduces a signi�cant computational overhead. In this work,
we, therefore, aimed to determine in which situations adaptive planning approaches
provide advantages over less complex approaches. To this end, we demonstrated that
many existing approaches for online environmental mapping are derived from a few
core concepts. Similar to the o�ine planning approaches in Part II, these range from
simple coverage approximations to complex probabilistic variants. We adapted these
concepts to our use case and introduced new concepts, notably the GCorTOP and vari-
ants that account for the time that has passed between samples in close proximity. These
approaches were embedded in a simulation framework for comparing the approaches
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against one another. In a study on a large number of scenarios, we demonstrated that
non-probabilistic coverage models can compete with learning approaches, provided they
are correctly parametrized. In contrast, adaptive variants based on trained process mod-
els outperform these variants when initial assumptions about the process are incorrect.

From a modeling perspective, we studied the trade-o� between model complexity
and e�ciency in both o�ine and online planning. Overall, our results demonstrated
the excellent performance of computationally inexpensive coverage-based representa-
tions, notably the GCorTOP model, relative to the more expensive probabilistic process
models. However, this depends on whether or not these coverage models are correctly
parametrized, i.e., whether they represent the true correlation in the process reasonably
accurately. If this is not the case, the resulting missions can become detrimental as the
fundamental assumptions based on which sampling locations are selected are wrong. In
these situations, adaptive planning approaches based on trained process models yield
superior results, as they can compensate for incorrect initial assumptions. In short, this
shows that adaptive planning is not inherently better, but is more robust with respect to
wrong model con�gurations.

Insights into what constitutes good models for spatial interdependencies also help
in designing e�cient solution approaches. We have exploited this in our 2MLS, which
heavily promotes spatial coverage. This is also consistent with the results obtained using
geometric approaches. These approaches achieve good results in the very early stages
of a mission during which it is crucial to survey locations that are as widely spread
across the a�ected area as possible. The lower computational e�ort associated with these
approaches means that they are applicable in practice and scale to larger UAV �eets and
target areas.

A similar balance between computation time and solution quality has to be found in
the solution approaches that are based on these environment representations. In general,
more complex solution approaches improve overall prediction quality. These approaches
need to be capable of handling the interdependencies in the environment models, which
means that the bene�t of samples cannot be assessed in isolation, without considering
the remainder of the mission. For this reason, the online approaches focusing on the
greedy or sequential selection of samples can be detrimental to the overall prediction
quality, as they cannot account for the joint contribution of a set of samples. We have
shown that determining optimal samples within the planning horizon, in contrast, is
bene�cial. However, this comes at a high cost and is currently impractical for realistic
scenarios. In this regard, e�cient heuristics can o�er a suitable compromise for time-
sensitive applications.

Overall, the approaches and strategies proposed in this thesis provide a basis for the
further development of decision support systems in emergency surveillance. Most im-
portantly, the better understanding of the trade-o�s between the computational cost
and the obtained solution quality that are o�ered by the various approaches enables the
development of more sophisticated methods in emergency surveillance.
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16.2 Future work and outlook
We conclude this thesis by outlining promising lines of research build upon the results
obtained in this thesis.

Regarding the development of planning methods for emergency surveillance, two im-
portant steps remain open for practical applications: First, the planning approaches need
to be able to provide estimates about distributions that change over time, e.g., due to ex-
ternal factors such as wind. To this end, the proposed methods have to be extended such
that they yield an estimate of the temporal correlations in the process. This also means
that the duration of the missions has to be extended in order to provide a continuous
assessment of the changing distribution of gases. In practice, it is necessary to assess
how quickly a phenomenon can change until the provisioning of reliable information
becomes impossible.

The second essential aspect is to consider the priorities within the target area as dy-
namic rather than treating them as static throughout the planning horizon. To give one
example, it is possible to derive population maps based on mobile phone data. This way,
emergency services would not depend on the quality of a-priori available information
but can use up-to-date data. When the population is highly mobile, e.g., during public
events or if an evacuation is in progress, this would ensure that information is always
provided where it is most crucial. However, these dynamic priorities add a new dimen-
sion to an already challenging problem.

Another promising direction is the development of more sophisticated planning ap-
proaches that combine the strengths of individual concepts. A possibility for this is the
integration of o�ine planning with online recourse actions: An initial mission can be de-
termined quickly using simple models that incorporate the available information before
the �ight. During the mission, predictive models are trained using the incoming data.
Only when a critical deviation between the initial assumptions and the survey results
becomes revealed, is the mission updated using a corrected representation of the spatial
correlations. This would increase the reliability of the outcome without the same com-
putational costs as purely adaptive approaches. Another idea for addressing particularly
large-scale scenarios is to combine a �rst phase based on highly e�cient geometric plan-
ning approaches with later model-based strategies that exploit the information obtained
during the �rst phase.

Given the plurality of solution approaches, a promising step is the development of
automated decision support systems for con�guring mission planning approaches based
on the situation at hand. This would support emergency services in selecting appropriate
mission planning approaches. In o�ine planning, such a system can then decide, e.g.,
between complete coverage and sampling-based approaches based on the available time
and equipment. As the operation continues, it can be used to decide on the best models
for subsequent surveillance �ights, based on the insights obtained earlier.

Furthermore, our approaches have addressed centralized planning procedures for ho-
mogeneous UAV �eets with limited �ight time. In practice, this can be extended in sev-
eral ways: The rotary-wing UAVs considered here can be supplemented by �xed-wing
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vehicles that allow the survey of larger areas but come with limited maneuverability.
Additionally, UAVs might be recharged and deployed again, in which case later samples
can improve early quick assessment. Integrating these aspects would allow emergency
services to move from a rapid assessment to the monitoring and continuous surveillance
of a larger a�ected area, thereby receiving updated information throughout the entire
emergency response phase.

Finally, a centralized planning instance might not be available in emergency response.
Also, communication is likely limited, and not all data and observations can be trans-
mitted in real-time. Decentralized approaches promise to be more robust with respect to
these limitations. However, this imposes additional restrictions on the computational ef-
fort, due to the restrictions of on-board processing units. Hence, it would be interesting
to study the design of e�cient decentralized models with lightweight communication
e�ort based on our approaches.
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A
Parameter tuning for 2MLS

This appendix gives detailed insights into the results of the parameter tuning phase
for 2MLS. Speci�cally, this includes the starting solution concept used in Phase
1, the proposed insertion and removal strategies, neighborhood size parameters

and the convergence criterion.

Aggregation and decomposition strategies

In Section 8.2.3, we have proposed two strategies for obtaining reduced problem repre-
sentations. One is based on the aggregation of locations, using only selected represen-
tatives in Phase 1 of the 2MLS. The other is based on the decomposition of the target
region, resulting in several single-vehicle problem representations. The iterations of the
multi-start approach are limited to 4, i.e. we generate 4 di�erent reduced problem in-
stances for each approach. The maximum number of iterations of the ALNS to improve
these solutions during Phase 1 is limited to 100.

In this section, we evaluate these two strategies based on their impact throughout the
entire search. This means that we consider the quality of solutions found during Phase
2 of the search approach given the respective initial solution obtained in Phase 1. This
provides a better indication of the impact these strategies have than would be possible
by simply comparing the achieved initial solution.

For this purpose, we compare the convergence of the solution approach as search
proceeds. Figure A.1 gives the average gap of the best found solution during search
depending on the computation time. The vehicle decomposition strategy is represented
as a green dashed line. The performance of the aggregation strategy is indicated in blue.
For both strategies, the leftmost entry in the graph indicates the point in time at which
the Phase 1 terminates as well as the corresponding solution quality. The following

205



A. Parameter tuning for 2MLS

points indicate average quality at 2 seconds, 5 seconds, and 10 seconds after the end
of Phase 1. The second-to-last points for both strategies give the time at which the
best found solution was achieved. Finally, the last point of each series indicates the
termination of the search procedure.

We can see that the vehicle decomposition scheme quickly determines a very good
starting solution. The average gap between the solution at the end of Phase 1 and the
best-known solution is slightly higher than 4 %. Using the aggregation strategy, Phase
1 terminates more quickly, but the average gap is almost three times as high. How-
ever, this strategy is associated with a slightly higher average solution quality during
the remainder of the search: We believe that this result indicates that the aggregation
scheme obtains routes that are, in general, comparatively close to the best possible ones
for each instance. This indicates that the strategy succeeds in anticipating the potential
rewards for di�erent regions and routes traverse the target area accordingly. Discrep-
ancies between the initial routes and the best found ones can successfully be resolved
during Phase 2.

In the case of the vehicle decomposition scheme, we can successfully achieve good
decompositions and determine reasonable routes for each vehicle. However, if these
routes di�er signi�cantly from the best possible routes, it is di�cult for Phase 2 to correct
this, as routes would have to be changed in their entirety.

Insertion strategies

We �rst assess the performance of the insertion and removal strategies proposed in Sec-
tions 8.2.5 and 8.2.6. As a �rst step, we apply the di�erent insertion strategies for con-
structing starting solutions. For the sake of comparison, we also consider a random
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Figure A.1: Comparison of the convergence achieved with the proposed aggregation and decom-
position schemes. The graph indicates the average gap during Phase 1 and Phase 2
of the 2MLS as an average of all solutions used for parameter tuning.
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insertion order (Random). Vehicle routes are initialized with seeds and then completed
using the respective strategies until no further improvement can be found. The lower
the gap between these solutions and the best known one, the better we expect the cor-
responding strategy to perform during the ALNS. The results are depicted in Figure A.2
in form of a boxplot. The whiskers represent the 10th and 90th percentile.

For several instances, all proposed strategies yield the best known solution. Other
than that, we can see that the two parametrizations of the priority-ratio strategies (in-
dicated as BestRatio-1 and BestRatio-2 respectively) dominate in terms of average and
worst-case solution quality. The cost-greedy strategy (CostGreedy) has the next best
performance, even though it does not consider priority information for visit insertion.
The maximum priority strategy (MaxPrio) and the region-based strategy (RegionTotal)
also yield reasonable results.

Both the weighted center strategy (WeightedCenter) as well as the orienteering-regret
variant (Regret-2) perform noticeably worse. In case of the WeightedCenter, this is possi-
bly due to the fact that the weighted center is not a viable point of reference in case of an
almost empty route. For Regret-2, it is possible that the preferred insertion of locations
that are di�cult to reach negatively impacts the routes.

To obtain a better understanding of the performance of these heuristics when em-
bedded in the local search approach, we do not update the selection probabilities in the
ALNS, thereby selecting each strategy with equal probability throughout the search. We
can then compare the number of improving moves that have been achieved with each
strategy. The results are summarized in Table A.1. We distinguish between two forms

Figure A.2: Performance of insertion strategies: Average gap between starting solutions and best
known solutions (BKS).
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A. Parameter tuning for 2MLS

Insertion strategy moves resulting in improvements
... of informativeness ... of route duration

BestRatio-2 6.1 % 18.5 %
BestRatio-1 5.5 % 18.8 %
MaxPrio 5.2 % 17.2 %
Regret-2 3.7 % 21.4 %
CostGreedy 3.5 % 18.2 %
RegionTotal 3.5 % 16.9 %
WeightedCenter 3.5 % 16.8 %
Random 3.3 % 16.4 %

Table A.1: Performance of insertion strategies: Improving moves during the ALNS relative to
total number of executions per strategy. Best results are indicated in bold.

of improvement: First, we only consider the strict improvement of resulting informa-
tiveness (or the sum of priorities in case of a TOP model). The results are given in the
middle column. Second, we take into account improvements in route duration with at
least equal informativeness or total priority. This evaluation is indicated on the right.
To facilitate the comparison, the three best-performing strategies in each category are
indicated in bold. We can see that the BestRatio-1 and BestRatio-2 again perform partic-
ularly well, achieving good results in terms of both informativeness and route duration.
The Regret-2 heuristic, which has performed worst in terms of average starting solution
quality, yields improvements in terms of route duration. Based on these results, we se-
lect six strategies for our evaluation runs: Four of them, Ratio1, Ratio-2, CostGreedy, and
MaxPrio, are selected due to their overall good performance. We furthermore choose to
use the Regret-2 heuristic due to the potential for route improvement. Finally, we also
select the RegionTotal strategy: While average performance during the ALNS is not out-
standing, it performs reliably well with respect to the obtained starting solutions.

Removal strategies

Unlike the insertion heuristics, removal strategies cannot be evaluated independently of
the ALNS. Instead, we have to assess whether they can provide room for improvements
during the search.

Similar to the insertion strategies discussed above, we evaluate the number of moves
that yield an improved solution relative to the total number of executions per strategy.
The results can be found in Table A.2. With few exceptions, we can observe a clear dis-
tinction between strategies that perform well in terms of informativeness and those that
yield improvements of total route duration. All in all, the priority-delta strategy (Priori-
tyDelta) results in the largest number of improving moves. However, as we will see be-
low, these improvements are minor compared to the results of the other strategies. The
worst-angle removal strategy (WorstAngle) achieves good results in both aspects, in-
formativeness and duration. In contrast, the route sparsi�cation strategy (SparseRoute)
yields similar results regarding informativeness but is associated with a particularly high
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degradation of average route duration, possibly due to the major impact this strategy can
have on routes. The remaining strategies perform well in terms of route duration rather
than informativeness, with the region-based removal strategy (RegionTotal) as a rather
extreme example.

In the next step, we evaluate the extent of the achieved improvements in order to get a
better impression of the relative performance of these strategies. Figure A.3 indicates the
average improvement in terms of informativeness of a newfound solution relative to the
previous one. In this comparison, the RegionTotal strategy yields the best results. Hence,
even though it does not obtain new solutions very often, we can conclude that if it is
successful, it can achieve major improvements. The di�erences between the remaining
strategies are not as large. Still, we can see that two of them perform worse than the
others: In the case of the randomized-nearest neighbor removal strategy (RandNN), this
corresponds to the average performance as indicated in Table A.2. The PriorityDelta
strategy is more interesting, as this result seems to be at odds with the comparatively
high ratio of improving moves in Table A.2. We believe that this is because many of
the improvements made are rather incremental, with only a few locations in the routes
exchanged with more promising targets. Based on these results, we decide against using
the RandNN strategy in our evaluation, as it is outperformed by the others in terms
of the number of improving moves, impact on route duration, and magnitude of the
achieved improvements. We keep the remaining set of strategies to o�er a broad range
of possibilities to improve both target location selection and route durations.

Search neighborhood parameters

In the next step, we compare several parametrizations of the adaptive large neighbor-
hood search. In Figure A.4, we give the performance depending on the average neighbor-
hood size, i.e. the average number of visits removed by a removal strategy. The image
indicates the runtime associated with a removal size as well as the achieved solution
quality. The neighborhood size has a signi�cant impact on overall computation time,
as larger neighborhoods increase the e�ort necessary to rebuild vehicle routes. How-

Removal strategy moves resulting in improvements
... of informativeness ... of route duration

PriorityDelta 8.7 % 17.0 %
WorstAngle 5.4 % 20.8 %
SparseRoute 5.4 % 12.4 %
SequNN 4.8 % 20.4 %
WeightedCenter 3.3 % 18.0 %
RandNN 2.8 % 19.3 %
RegionTotal 1.7 % 22.8 %

Table A.2: Performance of removing strategies: Improving moves during the ALNS relative to
total number of executions per strategy. Best results are indicated in bold.
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A. Parameter tuning for 2MLS

Figure A.3: Performance of selection strategies during the ALNS: Average improvement of ac-
cepted solutions with respect to the previous solution.

ever, they positively in�uence the achieved solution quality. This e�ect decreases with
increasing neighborhood size, as larger neighborhoods more often lead to failures.

Figure A.5 reports the results obtained when varying the length of the segments re-
moved from vehicle routes using the sequence-nearest neighbor removal strategy and
the route sparsi�cation strategy. The segment length depends on the average length of
a vehicle route to adapt itself depending on the instance at hand: As vehicle capacities
increase, tours become longer, which means that more locations have to be removed
to change the route structures in a meaningful way. Variations of this parameter only
have a minor in�uence on computation time, as the overall neighborhood size is �xed.
Surprisingly, segment lengths that perform well are comparatively large, with the best
results obtained for removing segments that include, on average, 25 % of the locations
in a route. Further increasing the segment length has a detrimental impact on solution
quality, as the initial route structure is no longer preserved, risking the loss of compar-
atively good segments.

Convergence criterion

Finally, we assess the in�uence of the convergence criterion, i.e. the number of non-
improving moves after which search is stopped. The objective of this criterion is to ter-
minate the search as early as possible if the current solution cannot be improved further.
The results are reported in Figure A.6. Again, we can see a major impact on overall com-
putation time as well as on solution quality. As we have already seen in Figure A.1, the
�rst iterations during Phase 2 are associated with major gains in solution quality. We
can, therefore, achieve reasonable results even when using a comparatively strict ter-
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Figure A.4: Performance of the 2MLS depending on average neighborhood size.
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Figure A.5: Performance of the 2MLS depending on average segment size.
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A. Parameter tuning for 2MLS

mination criterion of, e.g., 50 non-improving iterations. Finding further improvements
later during the search becomes more di�cult. As a consequence, increasing the conver-
gence limit is associated with an increase in overall runtime, but not with further major
improvements in solution quality.
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Figure A.6: Performance of the 2MLS depending on the convergence criterion.
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B
Illustration of online planning

strategies

The next pages serve as an illustration of the environment models and planning
concepts introduced in Part III of this thesis. We refer to Chapter 13 for the de�-
nition of these models.

All planning approaches are demonstrated based on one scenario with priorities de-
picted in Figure B.1. For the sake of simplicity, we use a normalized target area with a
size of 15 × 15 distance units. Vehicles move one distance unit per unit of time, total
�ight time is limited to 40 units of time. Performing an observation at a target loca-
tion equally requires one unit of time. For greedy approaches, the maximum distance
between samples is set to 3 distance units.

In the next sections, we illustrate the selection of the �rst six samples of one vehicle for
each of the di�erent strategies that we apply. To facilitate the comparison of approaches,
we use normalized scales to indicate the relative importance of target locations, with
the target that is currently seen as the most important one indicated in red. This allows
demonstrating the evolution of the information represented in the models over time.

The range from within samples can be selected is indicated as a circle. The performed
UAV trajectory is indicated in black, while the proposed next sampling locations are
given as a dashed line extending from the current vehicle position.
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B. Illustration of online planning strategies
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Figure B.1: Priority distribution used for illustrating planning strategies.

Direct coverage

Figure B.2 illustrates the selection of the �st samples using a direct coverage model. The
algorithm iteratively selects the most highly valued target within the imposed range
restriction for each step. Afterward, the target’s priority is set to 0 and the algorithm
proceeds with the next sample. The result is a narrow tour exploring highly prioritized
samples in the immediate vicinity of the UAV takeo� location.

Disc-based coverage

The disc-based coverage model IDISC is illustrated in Figure B.3. The initial distribution
of the estimated informativeness resembles the model based on direct priority coverage
discussed in the previous section. As the mission processes, the di�erence between the
coverage count ni at unsampled locations and the maximum coverage count maxj∈V nj
increases. Priorities in the area surrounding the �rst sampling locations are decreased,
while the estimated bene�t of targets outside this region increases. This leads the UAV
to explore previously unsurveyed areas with high priorities.
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(f) Step 6

Figure B.2: Environment model based on input priorities.
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(f) Step 6

Figure B.3: Environment model based on disc coverage IDISC.
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Kernel-based coverage

The kernel-based measure IKERNEL in Figure B.4 assigns high values to areas where sev-
eral target come with high individual priority values. The UAV starts by moving toward
the �rst one of these regions. The importance of sampling locations where observations
have already been performed is set to 0, and the estimated bene�t of samples in the
vicinity of these nodes is decreased accordingly. Compared to a direct coverage model,
this prevents redundant samples in close proximity. Instead, the UAV travels further,
covering several locations with high priorities in the process.

Latency-based model

The latency-based information measure ILAT is initialized similarly to the disc-based
model such that the initial estimate of the target’s bene�t follows the distribution of in-
put priorities (Figure B.5). The importance of areas that are not yet covered in a mission
increases over time, while the estimated bene�t in the vicinity of the last samples de-
creases. In contrast to the previous models, these areas become more relevant again as
time progresses. This can be seen in the last two �gures (Figures B.5e and B.5f), where
the importance of those areas surveyed in the earlier iterations is increased relative to
the area surrounding the current UAV position.

Kernel-based coverage with devaluation

Figure B.6 represents the �rst iterations based on the kernel-based model with devalua-
tion (IKERNEL-TD). In the early stages of the mission, the estimated information gain corre-
sponds to the kernel-based model discussed above (Appendix B), and the UAV moves in
a similar fashion. Di�erences become more pronounced as the mission progresses. The
relative importance of the areas sampled in the �rst steps increases again. Note further-
more that the estimated information gain of a location already surveyed never decreases
as much as in the time-independent case: As this model assumes that a process varies
in time, performing additional observations at an already surveyed location always pro-
vides additional information, speci�cally about the temporal correlation within the pro-
cess.
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(f) Step 6

Figure B.4: Environment model based on kernel-based coverage IKERNEL.
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(f) Step 6

Figure B.5: Environment model based on the reduction of sampling latency ILAT.
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(f) Step 6

Figure B.6: Environment model based on a kernel model with devaluation (IKERNEL-TD).
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Variance maximization

As the �rst Gaussian process based model, the environment model based on the max-
imum process variance (IVAR) is represented in Figure B.7. Initially, i.e., before at least
two samples are available and a model can be trained, this model uses the input priorities
to evaluate targets. This changes in Figure B.7c and what follows, as the obtained sam-
ples allow an early estimate of the characteristics of the surveyed process. The posterior
variance is low where samples have already been taken, as the prediction is likely to be
accurate in this region. New samples are used to update the GP posterior, as can be seen
in the changes between Figure B.7e and Figure B.7f. Here, the last sample taken leads to
a change in the process model that decreases its certainty about the left-hand side of the
region (e.g., coordinate (2,9)).

Average reduction in variance

Decision based on the average reduction in variance (IARV) are illustrated in Figure B.8.
As in the previous example, in the early stages of the missions, the lack of available sam-
ples does not allow an estimate of the variance within the process. Again, this changes in
Figure B.8c. We emphasize that areas indicated as highly relevant here are not (necessar-
ily) those with the highest current variance, but those that are likely to reduce prediction
variance within the target area the most. This means that compared to the previous ex-
amples, targets close to the border of the target region are less valuable. Hence, the UAV
�rst moves toward the center of the area. Then, it proceeds to move in the direction with
high estimated bene�ts.

Mutual information

The last environment representation IMI uses mutual information (MI) as an informa-
tiveness criterion. This is illustrated in Figure B.9. Again, early iterations do not have
su�cient information available. This changes when two samples are processed. Similar
to IARV, we can see that IMI decreases the importance of targets near the border of the
considered area. Highly valued areas are far from the border and at larger distances from
the previous samples. Therefore, the UAV again moves toward the center. As the �rst
samples taken are nearly on a straight vertical line, they allow to estimate the covari-
ance along this axis but provide little information about the interdependencies in the
horizontal axis. For this reason, the model state represented in Figure B.9e suggests that
samples that diverge from this �rst line of samples can provide more information about
the process, which motivates the UAV movement indicated in Figure B.9f.
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Figure B.7: Environment model based on sampling location variance IVAR.
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Figure B.8: Environment model based on average reduction in variance IARV.
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B. Illustration of online planning strategies
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Figure B.9: Environment model based on mutual information IMI.
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Geometric approach

Figure B.10 illustrates several iterations based using LLoyd’s algorithm, summarized in
Algorithm 7). As this algorithm seeks to determine a partitioning of the target area
between several UAVs, we adjust the base scenario considered in the other examples so
that it includes two vehicles. The representation, however, focuses on one of these two
UAVs. The �gure demonstrates how the UAV iteratively moves toward the centroid of
its partition, using the input priorities as a weight function. This centroid is indicated as
a small red cross near position (9,7).

Seqential selection heuristic

Figure B.11 represents a sequential selection heuristic. The environment model used is
the IARV model. The example furthermore uses a moving planning horizon of ∆T = 10
units of time and a �xed decision horizon of ∆T �x = 5 units of time, i.e., planned targets
can be changed, as only the �rst half is �xed before recomputing the sequence. Again,
the algorithm �rst decides based on direct priorities. The resulting samples lead to a
reduction of the ARV value toward the lower and left borders of the target region (Fig-
ures B.11c and B.11d), motivating the UAV to travel further in the subsequent steps. The
structure of the solution di�ers signi�cantly from the one obtained using the greedy
algorithm which is illustrated in Appendix B. As the error variances tend to be higher
for areas further away from the current sampling positions, increasing the length of
the planning horizon means that the distances between subsequent sampling locations
relatively large. The UAV travels further but obtains fewer samples during the mission.

Integrated decision scope

The integrated decision scope which determines the optimal sampling locations for a
given planning horizon is illustrated in Figure B.12. We again use IARV for measuring
the importance of target locations and set ∆T = 10 and ∆T �x = 5. Especially compared
to the sequential selection illustrate in the previous example, we can see a major impact
of the used planning strategy: Rather than traveling far and taking fewer samples, the ap-
proach determines relatively short trajectories with several sampling locations. It moves
toward the center of the area, where samples are promising, as we have seen using the
examples given in Appendix B, rather than including samples near the border as in the
previous example.
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B. Illustration of online planning strategies
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Figure B.10: Geometric solution approach (LLoyd’s algorithm).
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Figure B.11: Sequential selection heuristic based on IARV.
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B. Illustration of online planning strategies
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Figure B.12: Integrated decision scope for target selection based on IARV.
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C
Discrete event simulation

This overview describes the discrete event simulation implemented for evaluating
planning strategies in more detail. Speci�cally, we give the pseudocode of the
simulation engine in Algorithm 8 and specify the event resolution routines.

Algorithm 8: Simulation engine

Input: UAVsM, target area V with priorities ui, planning horizon T , ground
truth zi,t for i ∈ V , t ∈ T , planning heuristic planner

/* main simulation procedure */

1 Function run():
2 initialize event queue Q = ∅, simulation clock t = 0;
3 for all UAVsm inM do
4 Q.insert(VehicleCreationEvent(entryTime,m));
5 Q.insert(VehicleFailureEvent(failureTime,m));
6 Q.insert(TriggerPlanEvent(entryTime,m));
7 end
8 while not Q.empty() and Q.peek().time ≤ T do
9 event =Q.pop();

10 set t to event.time;
11 if event has not been aborted then
12 event.resolve() ;
13 end
14 compute statistics;
15 end

229



C. Discrete event simulation

Algorithms 9 to 13 depict the resolution of the update events that occur during the
mission in the order in which they are resolved in each time step. The �rst four events
only lead to an update of the data structures in the planning strategy, and, in case of a
vehicle failure, the abortion of future events associated with the corresponding UAV sin
the simulation.

Algorithm 13 combines two tasks: The algorithm triggers the planning strategy so that
new targets are computed, and implements the mission resulting from these updates in
the simulation. The planner is called each time a new UAV becomes available as well as
each time an observation is completed. Note that it is possible that the mission does not
change between subsequent calls, e.g., in case of longer �xed decision horizons. How-
ever, for the sake of simplicity, we do not distinguish between original and recomputed
mission in this overview. Hence, each recomputation of a mission �rst leads to the abor-
tion of all future events except, potentially, the failure of the UAV which is �xed for an
instance. They are no longer valid as the mission might have changed. In a second step,
the movements of the UAV through the newly determined set of samples is estimated,
along with the completion times of samples, and events for completed observations and
GPS updates along this route are inserted into the priority queue.

Algorithm 9: Vehicle creation

Input: Vehicle creation time t, vehicle ID m

1 Function VehicleCreationEvent.resolve():
2 planner.addUAV(t,m);
3 planner.updateStatus(t,m, status.READY);
4 end

Algorithm 10: GPS update

Input: Event time t, vehicle ID m, position posm,t
1 Function GPSEvent.resolve():
2 planner.updatePosition(t,m, posm,t);
3 end
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Algorithm 11: Vehicle failure

Input: Failure time t, vehicle ID m

1 Function VehicleFailureEvent.resolve():
2 planner.updateStatus(t,m, status.FAILED);
3 for all events event in Q do
4 if event.time ≥ t and event.vehicleID = m then
5 abort event;
6 end
7 end

Algorithm 12: Observation event

Input: Sampling time t, vehicle ID m, ground truth zi
1 Function ObservationEvent.resolve():
2 simulate noisy observation yi = zi + ei with ei ∼ N (0, σ);
3 planner.updateObservation(t, yi);
4 end

Algorithm 13: Trigger planning heuristic

Input: Event time t, vehicle ID m

1 Function TriggerPlanEvent.resolve():
2 S = planner.getNextTargets(m);
3 for all events event in Q do
4 if event.time ≥ t and event.vehicleID = m and event is not a

VehicleFailureEvent then
5 abort event;
6 end
7 for all sampling positions s ∈ S do
8 compute estimated observation completion time (completionTime);
9 Q.insert(ObservationEvent(completionTime,m, zs,completionTime));

10 Q.insert(TriggerPlanEvent(completionTime,m));
11 for all positions posm,t′ en route to s in �xed increments of time do
12 Q.insert(GPSEvent(t′,m, posm,t′));
13 end
14 end
15 end

231





List of Figures
1.1 O�ine and online mission planning approaches . . . . . . . . . . . . . . 5
1.2 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Screenshot of the WISER system . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Prototypical UAV system and hyperspectral camera . . . . . . . . . . . . 14
2.3 Spectral signature of a smoke cloud blended with chlorophyll . . . . . . 15
2.4 Dependency between camera speci�cations and ground resolution . . . . 17

3.1 Prior and posterior probability distributions . . . . . . . . . . . . . . . . 24

4.1 Illustration of di�erent mission planning concepts . . . . . . . . . . . . . 36

7.1 Derivation of discretized weights . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Limitations of the approximation by Yu et al. (2014) . . . . . . . . . . . . 60
7.3 Impact of increased neighborhood size on approximated weights . . . . . 61

8.1 Simpli�ed problem representations . . . . . . . . . . . . . . . . . . . . . 69

9.1 Generation of benchmark instances . . . . . . . . . . . . . . . . . . . . . 82
9.2 Example planning scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.3 Evaluation of robustness with respect to noisy input data . . . . . . . . . 87
9.4 PCov0, PCov100 and PCov300 on largest scenarios . . . . . . . . . . . . . . 97
9.5 Comparison of ME, MAE, WMAE for GCorTOP . . . . . . . . . . . . . . 100
9.6 Comparison of MAE for di�erent noise levels . . . . . . . . . . . . . . . . 101
9.7 Base data of the benchmark instance for example 1 . . . . . . . . . . . . 102
9.8 TOP results for example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.9 CorTOP results for example 1 . . . . . . . . . . . . . . . . . . . . . . . . 103
9.10 GCorTOP results for example 1 . . . . . . . . . . . . . . . . . . . . . . . 103
9.11 Base data of the benchmark instance for example 2 . . . . . . . . . . . . 104
9.12 TOP results for example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.13 CorTOP results for example 2 . . . . . . . . . . . . . . . . . . . . . . . . 105
9.14 GCorTOP results for example 2 . . . . . . . . . . . . . . . . . . . . . . . 105

10.1 Evolution of the predicted distribution and variance . . . . . . . . . . . . 113

233



List of Figures

11.1 Classi�cation of online planning approaches . . . . . . . . . . . . . . . . 119
11.2 Applications for online planning approaches . . . . . . . . . . . . . . . . 121
11.3 Planning approaches in online surveillance . . . . . . . . . . . . . . . . . 126
11.4 Dynamic optimization and planning concepts . . . . . . . . . . . . . . . 131

13.1 Example of disc-based coverage . . . . . . . . . . . . . . . . . . . . . . . 151
13.2 Example of disc-based coverage . . . . . . . . . . . . . . . . . . . . . . . 151
13.3 Example of latency-based informativeness measure . . . . . . . . . . . . 154
13.4 Example of GCorTOP with devaluation . . . . . . . . . . . . . . . . . . . 154
13.5 Example of variance-based informativeness measure . . . . . . . . . . . 159
13.6 Example of ARV informativeness measure . . . . . . . . . . . . . . . . . 159
13.7 Example of MI informativeness measure . . . . . . . . . . . . . . . . . . 159

14.1 Entities in the online planning framework . . . . . . . . . . . . . . . . . 164
14.2 Online planning architecture . . . . . . . . . . . . . . . . . . . . . . . . . 165
14.3 Activity diagram of the simulation engine . . . . . . . . . . . . . . . . . 167

15.1 Spatial distributions with varying variability . . . . . . . . . . . . . . . . 170
15.2 Example counting distribution function . . . . . . . . . . . . . . . . . . . 174
15.3 Comparison of modeling approaches on base scenarios . . . . . . . . . . 176
15.4 Missions and predictions achieved with di�erent modeling strategies . . 177
15.5 Evolution of WMAE relative to the mission duration . . . . . . . . . . . 177
15.6 Impact of coverage radius on WMAE . . . . . . . . . . . . . . . . . . . . 179
15.7 Impact of coverage radius on PCov300 . . . . . . . . . . . . . . . . . . . . 179
15.8 Impact of initial belief on WMAE . . . . . . . . . . . . . . . . . . . . . . 180
15.9 Impact of initial belief on PCov300 . . . . . . . . . . . . . . . . . . . . . . 180
15.10 WMAE of di�erent models depending on spatial variability . . . . . . . . 182
15.11 PCov300 of di�erent models depending on spatial variability . . . . . . . . 182
15.12 Counting distribution function for di�erent variabilities . . . . . . . . . . 182
15.13 Missions based on IVAR for instances with varying spatial variability. . . 184
15.14 Impact of sampling error . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
15.15 WMAE depending on target area size . . . . . . . . . . . . . . . . . . . . 186
15.16 Computation time depending on target area size . . . . . . . . . . . . . . 186
15.17 WMAE depending on number of UAVs . . . . . . . . . . . . . . . . . . . 187
15.18 Missions and predictions achieved with with multiple vehicles . . . . . . 187
15.19 WMAE for sequential selection heuristic . . . . . . . . . . . . . . . . . . 189
15.20 WMAE for integrated planning . . . . . . . . . . . . . . . . . . . . . . . 189
15.21 Computation times for sequential planning . . . . . . . . . . . . . . . . . 191
15.22 Computation times for integrated selection heuristic . . . . . . . . . . . 191
15.23 Counting distribution function for di�erent decision scopes . . . . . . . 192

A.1 Comparison of aggregation and decomposition strategies . . . . . . . . . 206
A.2 Performance of insertion strategies for starting solution . . . . . . . . . . 207
A.3 Performance of removal strategies during the ALNS . . . . . . . . . . . . 210

234



List of Figures

A.4 Performance of the 2MLS depending on average neighborhood size . . . 211
A.5 Performance of the 2MLS depending on average segment size . . . . . . 211
A.6 Performance of the 2MLS depending on the convergence criterion. . . . 212

B.1 Priority distribution used for illustrating planning strategies. . . . . . . . 214
B.2 Environment model based on input priorities . . . . . . . . . . . . . . . . 215
B.3 Environment model based on disc coverage . . . . . . . . . . . . . . . . . 216
B.4 Environment model based on kernel coverage . . . . . . . . . . . . . . . 218
B.5 Environment model based on the reduction of sampling latency . . . . . 219
B.6 Environment model based on a kernel model with devaluation . . . . . . 220
B.7 Environment model based on sampling location variance . . . . . . . . . 222
B.8 Environment model based on average reduction in variance . . . . . . . 223
B.9 Environment model based on mutual information . . . . . . . . . . . . . 224
B.10 Geometric solution approach . . . . . . . . . . . . . . . . . . . . . . . . . 226
B.11 Sequential selection heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 227
B.12 Integrated decision scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

235





List of Tables

2.1 Priority levels for emergency sampling . . . . . . . . . . . . . . . . . . . 12

5.1 Related literature on the covering tour problem . . . . . . . . . . . . . . 42
5.2 Related literature on the team orienteering problem . . . . . . . . . . . . 44
5.3 Related literature on the informative path planning problem . . . . . . . 48

6.1 Problem variants with pro�t maximization or coverage constraints . . . 52

9.1 Overview of TOP benchmark instances . . . . . . . . . . . . . . . . . . . 80
9.2 Parameter settings for MPPES benchmarks . . . . . . . . . . . . . . . . . 81
9.3 Search con�gurations for computational experiments . . . . . . . . . . . 89
9.4 Summary of results on Chao et al. (1996b) instances . . . . . . . . . . . . 90
9.5 Summary of results on Dang et al. (2013) instances . . . . . . . . . . . . . 91
9.6 Average gap of 2MLS-f . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.7 Average computation time of 2MLS-f . . . . . . . . . . . . . . . . . . . . 95
9.8 PCov0, PCov100 and PCov300 depending on modeling approach . . . . . . 98
9.9 Prediction quality depending on modeling approach . . . . . . . . . . . . 99

11.1 Interpretation of “lookahead” . . . . . . . . . . . . . . . . . . . . . . . . . 132

13.1 De�nition of the direct priority coverage model . . . . . . . . . . . . . . 150
13.2 De�nition of the disc-based coverage model . . . . . . . . . . . . . . . . 151
13.3 De�nition of the kernel-based coverage model . . . . . . . . . . . . . . . 152
13.4 De�nition of the latency-based coverage model . . . . . . . . . . . . . . 154
13.5 De�nition of the kernel-based coverage model with devaluation . . . . . 155
13.6 De�nition of GP based models . . . . . . . . . . . . . . . . . . . . . . . . 157
13.7 Summary of environment models and planning strategy . . . . . . . . . 161

15.1 Parameter settings and instance characteristics for AMPPES study . . . . 171
15.2 Structure of the computational study . . . . . . . . . . . . . . . . . . . . 172
15.3 Algorithm con�gurations for applied environment models and heuristics 172

A.1 Performance of insertion strategies in the ALNS . . . . . . . . . . . . . . 208

237



List of Tables

A.2 Performance of removal strategies in the ALNS . . . . . . . . . . . . . . 209

238



Acronyms
2MLS two-phase multi-start adaptive large neighborhood search.

ACO ant colony optimization.

ALNS adaptive large neighborhood search.

AMPPES adaptive mission planning problem for emergency surveillance.

APF arti�cial potential �eld.

ARV average reduction in variance.

BB branch-and-bound.

BBK Bundesamt für Bevölkerungsschutz und Katastrophenhilfe (Federal O�ce of Civil
Protection and Disaster Assistance).

BC branch-and-cut.

BCP branch-and-cut-and-price.

BP branch-and-price.

CorTOP correlated team orienteering problem.

CSP covering salesman problem.

CTP covering tour problem.

DES discrete-event simulation.

FPR fast path relinking.

GCorTOP generalized correlated team orienteering problem.

GLS guided local search.

GP Gaussian process.

239



Acronyms

GRASP greedy randomized adaptive search procedure.

HGA hybrid genetic algorithm.

IDW inverse distance weighting.

ILP integer linear programming.

ILS iterated local search.

IPP informative path planning.

MAE mean absolute error.

ME mean error.

MI mutual information.

MIP mixed integer linear programming.

MIQP mixed integer quadratic programming.

MPC model predictive control.

MPPES mission planning problem for emergency surveillance.

MS-LS multi-start local search.

NN nearest neighbor interpolation.

OP orienteering problem.

PMA pareto mimic algorithm.

PSOiA particle swarm optimization-inspired algorithm.

RCSPP resource constraint shortest path problem.

RIG rapidly-exploring information gathering algorithm.

RMSE root mean squared error.

SA simulated annealing.

SOP set orienteering problem.

TOP team orienteering problem.

TS tabu search.

TSP traveling salesman problem.

240



Acronyms

UAV unmanned aerial vehicle.

UHGS uni�ed hybrid genetic search.

VNS variable neighborhood search.

VRP vehicle routing problem.

WMAE weighted mean absolute error.

241





Symbols
Prediction and interpolation

Z(s) Random variable

{Z(s)}s∈V Random process de�ned over V

zs Realization of the random variable Z(s) at s ∈ V

ys Noisy sample of the random variable Z(s) with ys = zs + es
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λs Interpolation weight λs ∈ [0, 1]

H Entropy
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Symbols

es Error or noise at s ∈ V

MPPES and AMPPES models

V Locations comprising the target area with V ⊂ R2

S Set of sensing locations with S ⊆ V

M Set of available vehicles m ∈M

sstartm Takeo� location of UAV m ∈M

sendm Destination location of UAV m ∈M

NS Set of UAV starting locations with NS =
⋃
m∈M sstartm

NE Set of UAV destination locations with NE =
⋃
m∈M sendm

N All locations, with N = V ∪ NS ∪NE

Ci Covering neighborhood with Ci ⊆ V , i ∈ V

I(S) Informativeness value associated with samples S

r Route (sequence of planned visit locations)

Ω,Ωm Set of all feasible routes r / feasible routes for vehicle m ∈ V

ω Solution to the MPPES

yr Decision variable, 1 if r ∈ Ωm is selected in a solution, 0 otherwise

xi Decision variable, 1 if i ∈ V is included in set S , 0 otherwise

pos = (px, py) Position and corresponding coordinates with pos ∈ R2

ui Priority associated with visiting i ∈ V

τij Flight time between two locations or positions

τi Sensing time at location i ∈ V

dij Airline distance between two locations or positions

Tmaxm Maximum �ight time of UAV m ∈M

wij Weight between nodes i, j ∈ V with w ≤ 1

dmin Baseline distance for inverse distance weighting, dmin > 0

w̄ Baseline weight for inverse distance weighting relative to dmin, with w̄ ≤ 1
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Symbols

O�line planning

(S,m, Tm, i) Label

Lfw,Lbw Forward and backward label sets

P, P red Problem representation and reduced problem, resp.

ωred Solution to the reduced problem representation P red

δremoval Removal strategy

∆removal Set of removal strategies, with ∆removal =
⋃
δremoval

δinsert Insertion strategy

∆insert Set of insertion strategies, with ∆insert =
⋃
δinsert

Γo Open, i.e., unassigned locations, with Γo ⊆ V

Γp Planned (visited) locations in an emerging solution, with Γp ⊆ V

Γu Unvisited locations in an emerging solution, with Γu ⊆ V

uri Remaining utility of a node i ∈ V , relative to the emerging solution

umi Marginal utility of a node i ∈ V , relative to the emerging solution

I Lower bound on the objective value relative to the emerging solution

I Upper bound on the objective value relative to the emerging solution

prand Randomization factor for visit insertion

cost, costmin Cost (detour) associated with a visit insertion / minimum insertion cost

nh Search neighborhood size, with absolute limits nh−, nh+

υ Segment length factor relative to average route size, υ ∈ (0, 1)

% Factor for distance in objective function

nreg Regret parameter, nreg ∈ N+

det Determinism parameter, det > 0

δobji,nreg Di�erence between the objective value for the best and the nreg-th best in-
sertion position for i

δobj Objective value delta between solutions in reheating scheme
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Symbols

Ψ,Ψ0 Temperature in the reheating scheme initial temperature

ψ Heating factor with ψ > 1

κ Iteration limit for heating factor

Online approaches

T Planning horizon

∆T Moving planning horizon

∆T �x Fixed decision horizon

S<t Set of sampled locations until (excluding) time t

Y<t Set of obtained measurements until (excluding) time t

st,St Sampling locations / set of sampling candidates selected at time t

TSt Travel time associated with path trough St

Vm Voronoi region of generator m

{Vm}m∈M Voronoi tesselation determined by generators m ∈M

dcover Maximum coverage radius for disc-based environment models

dlimit Maximum distance between subsequent sampling locations

τ lats Sampling latency at s ∈ V : time since last sample in coverage radius

ζ Performance ratio

F(ζ) Counting distribution function for performance ratio ζ

Other

vmax
m Maximum UAV speed [m

s ]

amax
m Maximum UAV acceleration [ m

s2 ]

h Flight height above ground [m]

f Focal length [mm]

b Horizontal sensor size [mm]

pix Number of pixels per axis

pxr Ground sampling resolution [ m2

pixel]
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Symbols

A Covered ground area [m2]

c Center, representative

Q Priority queue

Λ Set of problem instances

d Distance

q Exponent for ratio parametrization, q > 0

p Probability, random number

i, j Indices

O Time complexity (“big O notation”)

tr Trace of a matrix (sum of eigenvalues)

‖ · ‖ Euclidean norm

n,N Count or number of elements
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